TWI417696B - Energy-saving method and device for adjusting color temperature - Google Patents

Energy-saving method and device for adjusting color temperature Download PDF

Info

Publication number
TWI417696B
TWI417696B TW100109734A TW100109734A TWI417696B TW I417696 B TWI417696 B TW I417696B TW 100109734 A TW100109734 A TW 100109734A TW 100109734 A TW100109734 A TW 100109734A TW I417696 B TWI417696 B TW I417696B
Authority
TW
Taiwan
Prior art keywords
color
sub
coordinates
primary
energy
Prior art date
Application number
TW100109734A
Other languages
Chinese (zh)
Other versions
TW201239564A (en
Inventor
Yang Mang Ou
ting wei Huang
Zih-Sian Chen
Jin Chern Chiou
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW100109734A priority Critical patent/TWI417696B/en
Publication of TW201239564A publication Critical patent/TW201239564A/en
Application granted granted Critical
Publication of TWI417696B publication Critical patent/TWI417696B/en

Links

Description

節能式色溫調校方法及其調校裝置Energy-saving color temperature adjustment method and calibration device thereof

本發明係有關一種調校技術,特別是關於一種節能式色溫調校方法及其調校裝置。The invention relates to a calibration technique, in particular to an energy-saving color temperature adjustment method and a calibration device thereof.

光的明亮和色溫(Color Temperature,CT)與生理反應之關係已有相關的討論;且色溫對人類生理機能所引起的影響有廣泛研究探討,也探討過色溫對於人心理方面的影響;此外,照明因素包含照明明度,明度分佈、亮度、亮度分佈、演色性和色溫,其有助於使照明環境更舒適或令人愉快,而適當的色溫能夠達到合適的情境氣氛,是照明的重要因素。因此,人們會針對不同周遭環境、情境氣氛和個人喜好,去把照明調整成不同的色溫。The relationship between light brightness and color temperature (CT) and physiological response has been discussed in detail; and the effect of color temperature on human physiology has been extensively studied, and the effect of color temperature on human psychology has also been explored; Lighting factors include illumination brightness, brightness distribution, brightness, brightness distribution, color rendering and color temperature, which help to make the lighting environment more comfortable or enjoyable, and the appropriate color temperature can achieve the appropriate situational atmosphere, which is an important factor in lighting. Therefore, people will adjust the lighting to different color temperatures for different surrounding environments, situational atmospheres and personal preferences.

相關色溫(Correlative Color Temperature,CCT)是用來描述光源的特性,它的色度分佈垂直於蒲朗克(Planckian)軌跡外側上。使用紅綠藍(RGB)螢光燈來控制照明系統的相關色溫。最近的一般照明是控制發光二極體(LED)之工作溫度去提高LED的發光效能。一般技術使用紅色、綠色和藍色LED透過光的色彩混色、色彩光的亮度控制和色度點的保持去產生照明燈源。然後藉由個別控制RGB LED的前置電流(IR ,IG ,IB ),將原始相關色溫的色度座標轉換為另一種使用者喜歡的色度座標,其中設定原始色度座標的前置電流量(IR ,IG ,IB )是最大飽和的,並用(IRo ,IGo ,IBo )代表前置電流量最大值。然而,如何去選擇一個合適的色度座標去驅動最大電流通過指定的RGB LED變成一個優化設計的關鍵。Correlative Color Temperature (CCT) is used to describe the characteristics of a light source whose chromaticity distribution is perpendicular to the outside of the Planckian trajectory. Red, green and blue (RGB) fluorescent lamps are used to control the correlated color temperature of the lighting system. The most recent general illumination is to control the operating temperature of a light-emitting diode (LED) to improve the luminous efficacy of the LED. The general technique uses red, green, and blue LEDs to illuminate the source of light through the color mixing of the light, the brightness control of the color light, and the retention of the chromaticity points. Then, by individually controlling the pre-currents (I R , I G , I B ) of the RGB LEDs, the chrominance coordinates of the original correlated color temperature are converted to another user-like chromaticity coordinates, where the original chromaticity coordinates are set. The set current amount (I R , I G , I B ) is the maximum saturation, and (I Ro , I Go , I Bo ) represents the maximum amount of pre-current. However, how to choose a suitable chromaticity coordinate to drive the maximum current through the specified RGB LED becomes the key to an optimized design.

依據色彩理論指出,當原始色度座標去轉換成其它色度座標時光的亮度將會減少。美國專利證號7,515,128揭露一種對於亮度補償的方法,其係利用量測到的光譜功率分布映射到色彩空間,再根據國際照明委員會(CIE)色度座標所對應的x、y,並由公式F=0.256-0.184y-2.527xy+4.656x3y+4.657xy4,產生一個顯著不同顏色的飽和度,利用這樣的關係得到亮度Y與F的關係式Y1×10F1=Y2×10F2,進而得到亮度補償因子F,然而其所補償後的亮度並無法在節能的前提下,達到最大亮度。 According to color theory, the brightness of light will be reduced when the original chromaticity coordinates are converted to other chromaticity coordinates. U.S. Patent No. 7,515,128 discloses a method for brightness compensation that maps the measured spectral power distribution to a color space, according to the x, y corresponding to the International Illumination Commission (CIE) chromaticity coordinates, and by Formula F. =0.256-0.184y-2.527xy+4.656x 3 y+4.657xy 4 , produces a saturation of a significantly different color, using this relationship to obtain the relationship between the brightness Y and F Y 1 ×10 F1 =Y 2 ×10 F2 Then, the brightness compensation factor F is obtained, but the compensated brightness does not reach the maximum brightness under the premise of energy saving.

因此,本發明係在針對上述之困擾,提出一種節能式色溫調校方法及其調校裝置,以解決習知所產生的困擾。 Therefore, the present invention has been directed to the above-mentioned problems, and proposes an energy-saving color temperature adjustment method and a calibration device thereof to solve the problems caused by the prior art.

本發明之主要目的,在於提供一種節能式色溫調校方法及其調校裝置,其係可應用於多原色照明或顯示器背光之技術上,並在色溫點轉換時,符合節能、綠能之要求,並可使用最大照明亮度,以達到最節能之目的。 The main object of the present invention is to provide an energy-saving color temperature adjustment method and a calibration device thereof, which can be applied to the technology of multi-primary color illumination or display backlight, and meet the requirements of energy saving and green energy when the color temperature point is converted. And can use the maximum illumination brightness to achieve the most energy-saving purposes.

為達上述目的,本發明提供一種節能式色溫調校方法,首先擷取至少三原色之原色座標及其最大亮度等色彩資訊,接著,根據原色座標計算出複數混色重心色座標與一系統白點色座標,並以混色重心色座標建立原色之色域,此色域具有至少三個子區域,每一子區域由四個混色重心色座標定義之。再來選定一目標色溫之目標色座標所屬之子區域,並以此作為子目標區域。下一步驟為了求解,可依據子目標區域對應之混色重心色座標、最大亮度與系統白點色座標,計算出子目標區域對應之剩餘未知二原色之亮度解。最後,以亮度解及最大亮度為依據,調整所有原色之色溫。 In order to achieve the above object, the present invention provides an energy-saving color temperature adjustment method, which firstly captures color information such as the primary color coordinates of at least three primary colors and its maximum brightness, and then calculates a complex color center of gravity color coordinate and a system white point color according to the primary color coordinates. Coordinates, and the color gamut of the primary color is established by the color center of the color center. The color gamut has at least three sub-regions, each of which is defined by four color center of gravity coordinates. Then, a sub-region to which the target color coordinate of a target color temperature belongs is selected, and this is used as a sub-target region. In the next step, in order to solve, the luminance solutions of the remaining unknown primary colors corresponding to the sub-target regions can be calculated according to the color-matching center-of-color coordinates, the maximum brightness and the system white point color coordinates corresponding to the sub-target regions. Finally, adjust the color temperature of all primary colors based on the brightness solution and maximum brightness.

本發明亦提供一種節能式色溫調校裝置,其係連接發射一光訊號之一 發光源,光訊號包含至少三原色,此節能式色溫調校裝置包含一光檢測器,光檢測器係接收光訊號,並擷取上述原色之原色座標及其最大亮度等色彩資訊。光檢測器連接一處理器,並接收原色座標與最大亮度,以依據原色座標計算出複數混色重心色座標與一系統白點色座標,並以混色重心色座標建立上述原色之色域,此色域具有至少三個子區域,每一子區域由四個混色重心色座標定義之。處理器更選定一目標色溫之目標色座標所屬之子區域,作為子目標區域,並依據子目標區域對應之混色重心色座標、最大亮度與系統白點色座標,計算出子目標區域對應之剩餘未知二原色之亮度解。處理器與發光源連接一亮度驅動器,處理器係以亮度解與最大亮度為依據,透過亮度驅動器調整所有原色之色溫。 The invention also provides an energy-saving color temperature adjusting device, which is connected to one of the optical signals The light source comprises an at least three primary colors, and the energy-saving color temperature adjusting device comprises a light detector, wherein the light detector receives the optical signal and captures color information such as a primary color coordinate of the primary color and a maximum brightness thereof. The photodetector is connected to a processor and receives the primary color coordinates and the maximum brightness to calculate a complex color center of gravity color coordinate and a system white color coordinate according to the primary color coordinates, and establish a color gamut of the primary color by using a color center of gravity color coordinate, the color The domain has at least three sub-regions, each sub-region defined by four color-matched center-of-grain coordinates. The processor further selects a sub-region to which the target color coordinate of the target color temperature belongs, as the sub-target region, and calculates the remaining unknown corresponding to the sub-target region according to the color-matching center-of-color coordinates, the maximum brightness and the system white point color coordinates corresponding to the sub-target region. The brightness of the two primary colors. The processor and the light source are connected to a brightness driver, and the processor adjusts the color temperature of all the primary colors through the brightness driver based on the brightness solution and the maximum brightness.

茲為使 貴審查委員對本發明之結構特徵及所達成之功效更有進一步之瞭解與認識,謹佐以較佳之實施例圖及配合詳細之說明,說明如後: For a better understanding and understanding of the structural features and the achievable effects of the present invention, please refer to the preferred embodiment and the detailed description.

由習知技術可以瞭解,當一色溫調至另一色溫時,有無限多組亮度解,其中有高有低,但藉由本發明,在色溫轉換後,即能得到最大亮度;換言之,本發明在調整色溫後,降低最少光通量損失,進而達成節能、綠能的目的。 It can be understood from the prior art that when one color temperature is adjusted to another color temperature, there are an infinite number of brightness solutions, which are high or low, but by the present invention, maximum brightness can be obtained after color temperature conversion; in other words, the present invention After adjusting the color temperature, the minimum luminous flux loss is reduced, thereby achieving the purpose of energy saving and green energy.

以下請參閱第1圖,本發明之節能式色溫調校裝置10,其係連接發射一光訊號之一發光源12,此發光源12為發光二極體照明燈具或背光模組,且光訊號包含至少三原色。節能式色溫調校裝置10包含一光檢測器14,其係接收光訊號,並擷取所有原色之原色座標及其最大亮度等色彩資訊,此最大亮度為對應之原色之100%亮度。其中,令原色之數量為N,N3,NN3,N為正整數,上述原色座標分別為[x C (1) ,y C (1) ]、[x C (2) ,y C (2) ]、...、[x C ( n ) ,y C ( n ) ]、...、[x C ( N -1) ,y C ( N -1) ]、[x C ( N ) ,y C ( N ) ],且其最大亮度分別為Y C (1), MAX Y C (2), MAX 、...、Y C ( n ), MAX 、...、Y C ( N ) , MAX ,其中C (1),C (2),...,C (n ),...,C (N )各自代表第n個原色。Please refer to FIG. 1 , the energy-saving color temperature adjusting device 10 of the present invention is connected to a light source 12 that emits an optical signal, and the light source 12 is a light-emitting diode lighting device or a backlight module, and the optical signal is Contains at least three primary colors. The energy-saving color temperature adjustment device 10 includes a photodetector 14 that receives the optical signal and captures color information such as the primary color coordinates of all primary colors and their maximum brightness. The maximum brightness is 100% of the brightness of the corresponding primary color. Where the number of primary colors is N, N 3, NN 3, N is a positive integer, and the above primary color coordinates are [ x C (1) , y C (1) ], [ x C (2) , y C (2) ], ..., [ x C ( n ) , y C ( n ) ], ..., [ x C ( N -1) , y C ( N -1) ], [ x C ( N ) , y C ( N ) ], and their maximum brightness is Y C (1), MAX , Y C (2), MAX , ..., Y C ( n ), MAX , ..., Y C ( N ) , MAX , where C (1), C (2) ,..., C ( n ),..., C ( N ) each represent the nth primary color.

光檢測器14連接一處理器16,處理器16連接一儲存器18與一亮度驅動器20,並接收原色座標與最大亮度,以將其儲存於儲存器18中,且依據原色座標計算出複數混色重心色座標P{C (i ),C (i +1),...,C (k )}與一系統白點色座標(x w ,y w ),混色重心色座標P{C (i ),C (i +1),...,C (k )}與系統白點色座標(x w ,y w )係以下列公式計算而得之:The photodetector 14 is coupled to a processor 16, which is coupled to a memory 18 and a brightness driver 20, and receives the primary color coordinates and maximum brightness for storage in the memory 18, and calculates a complex color mixture based on the primary color coordinates. Center of gravity color coordinates P{ C ( i ), C ( i +1),..., C ( k )} and a system white point color coordinates ( x w , y w ), color center of gravity center coordinates P{ C ( i ), C ( i +1),..., C ( k )} and the system white point color coordinates ( x w , y w ) are calculated by the following formula:

N k >i 1時,P{C (i ),C (i +1),...,C (k )}=G =When N k > i 1 o'clock, P{ C ( i ), C ( i +1),..., C ( k )}= G =

另當N i >k 1時,P{C (i ),C (i +1),...,C (N ),C (1),...,C (k )}=G =Another when N i > k 1 o'clock, P{ C ( i ), C ( i +1),..., C ( N ), C (1),..., C ( k )}= G =

其中 among them

處理器16又以混色重心色座標建立原色之色域,此色域具有(N-2)個迴圈,每一迴圈具有N個子區域,每一子區域由四個混色重心色座標P{C (i ),C (i +1),...,C (N ),C (1),C (2),...,C [i -(N -j +1)]}、P{C (i ),C (i +1),...,C (N ),C (1),C (2),...,C [i -(N -j +1)],C [i -(N -j )]}、P{C (i -1),C (i ),C (i +1),...,C (N ),C (1),C (2),...,C [i -(N -j +1)],C [i -(N -j )]}、P{C (i -1),C (i ),C (i +1),...,C (N ),C (1),C (2),...,C [i -(N -j +1)]}定義之,其中i與j與下面所述之子目標區域有關。The processor 16 further establishes a color gamut of the primary color with a color center of gravity center color. The color gamut has (N-2) loops, each loop has N sub-regions, and each sub-region is composed of four color-matched center-of-grain coordinates P{ C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)]}, P { C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C ( i +1),..., C ( N ), C (1), C (2) ,..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C ( i +1) ,..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)]}, where i and j are sub-goals as described below Regional related.

處理器16更選定一目標色溫之目標色座標所屬之子區域,作為子目標區域,此子目標區域即為上述色域之第j個迴圈之第i個子區域,其中i=m+1,i+j=n-1,1iN,1jN-2,i、j、m與n皆為正整數。處理器16係依據子目標區域對應之混色重心色座標、最大亮度與系統白點色座標,計算出子目標區域對應之剩餘未知二原色之亮度解Y C ( m ) ,Y C ( n ) ,此亮度解Y C ( m ) ,Y C ( n ) 係依據下列公式求得:The processor 16 further selects a sub-region to which the target color coordinate of the target color temperature belongs, as the sub-target region, which is the i-th sub-region of the j-th circle of the color gamut, where i=m+1,i +j=n-1,1 i N,1 j N-2, i, j, m and n are all positive integers. The processor 16 calculates the luminance solutions Y C ( m ) and Y C ( n ) of the remaining unknown primary colors corresponding to the sub-target regions according to the color-matching center-of-color coordinates, the maximum brightness and the system white point color coordinates corresponding to the sub-target regions. This luminance solution Y C ( m ) , Y C ( n ) is obtained according to the following formula:

對於iki+j,Y C ( k ) =Y C ( k ), MAX  (3);For i k i+j, Y C ( k ) = Y C ( k ), MAX (3);

對於 for

其中 among them

對於k=i+j+1=n,For k=i+j+1=n,

,其中 ,among them

對於其餘k,Y C ( k ) =0 (6)。For the remaining k, Y C ( k ) =0 (6).

當亮度解Y C(m),Y C(n)求出後,處理器16便可以亮度解與最大亮度為依據,透過亮度驅動器20調整所有原色之色溫,並在降低最少光通量損失之前提下,達到最大照明亮度。 After the luminance solutions Y C ( m ) , Y C ( n ) are obtained, the processor 16 can adjust the color temperature of all the primary colors through the luminance driver 20 based on the luminance solution and the maximum luminance, and provide the reduction of the minimum luminous flux loss. , to achieve maximum illumination brightness.

以下請同時參閱第2圖。首先如步驟S10所示,光檢測器14擷取至少三原色之原色座標及其最大亮度等色彩資訊,此最大亮度為對應之原色之100%亮度。接著如步驟S12所示,處理器16依據原色座標計算出複數混色重心色座標P{C(i),C(i+1),...,C(k)}與一系統白點色座標(x w ,y w ),其中N3,且為正整數,混色重心色座標P{C(i),C(i+1),...,C(k)}係以公式(1-1)、(1-2)計算而得之,系統白點色座標(x w ,y w )則以公式(2)計算而得之。同時,處理器16以混色重心色座標建立原色之色域,此色域具有(N-2)個迴圈,每一迴圈具有N個子區域,每一子區域由四個混色重心色座標P{C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)]}、P{C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)],C[i-(N-j)]}、P{C(i-1),C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)],C[i-(N-j)]}、P{C(i-1),C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)]}定義之,其中i與j與下面所述之子目標區域有關。 Please refer to Figure 2 below. First, as shown in step S10, the photodetector 14 captures color information such as the primary color coordinates of at least three primary colors and their maximum brightness, and the maximum brightness is 100% of the brightness of the corresponding primary color. Then, as shown in step S12, the processor 16 calculates the complex color center-of-gravity color coordinates P{ C ( i ), C ( i +1), . . . , C ( k )} and a system white point color coordinate according to the primary color coordinates. ( x w , y w ), where N 3, and is a positive integer, the color center of gravity center coordinates P{ C ( i ), C ( i +1), ..., C ( k )} are calculated by formulas (1-1), (1-2) In the end, the system white point color coordinates ( x w , y w ) are calculated by the formula (2). At the same time, the processor 16 establishes a color gamut of the primary color with a color center of gravity color. The color gamut has (N-2) loops, each loop has N sub-regions, and each sub-region is composed of four color-matched center-of-grain coordinates. { C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)]}, P{ C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C ( i +1),..., C ( N ), C (1), C (2 ),..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C ( i +1 ),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)]}, where i and j are as described below Target area related.

再來如步驟S14所示,處理器16選定目標色溫之目標色座標所屬之子區域,作為子目標區域,此子目標區域即為上述色域之第j個迴圈之第i個子區域,其中i=m+1,i+j=n-1,1iN,1jN-2,i、j、m、n皆為正整數。 Then, as shown in step S14, the processor 16 selects a sub-region to which the target color coordinate of the target color temperature belongs, as the sub-target region, which is the i-th sub-region of the j-th circle of the color gamut, where i =m+1,i+j=n-1,1 i N,1 j N-2, i, j, m, and n are all positive integers.

下一步驟即求解,如步驟S16所示,處理器16依據子目標區域對應之混色重心色座標、最大亮度與系統白點色座標,計算出子目標區域對應之 剩餘未知二原色之亮度解Y C(m),Y C(n),此亮度解Y C(m),Y C(n)係依據公式(3)、(4)、(5)、(6)求得。 The next step is to solve the problem. As shown in step S16, the processor 16 calculates the brightness solution Y of the remaining unknown primary colors corresponding to the sub-target area according to the color-matching center of gravity color coordinates, the maximum brightness and the system white point color coordinates corresponding to the sub-target area. C ( m ) , Y C ( n ) , and the luminance solution Y C ( m ) and Y C ( n ) are obtained according to the formulas (3), (4), (5), and (6).

最後如步驟S18所示,處理器16以上述亮度解與最大亮度為依據,透過亮度驅動器20調整所有原色之色溫,以在通過最大電流,光通量最小損失下,即最節能的前提下,具備最大照明亮度。 Finally, as shown in step S18, the processor 16 adjusts the color temperature of all the primary colors through the brightness driver 20 based on the brightness solution and the maximum brightness, so as to have the maximum under the maximum current, the minimum loss of the luminous flux, that is, the most energy-saving. Lighting brightness.

為了具體描述本發明提出的方法流程,以下以三原色紅(R)、綠(G)、藍(B)為例進行說明,即N=3,並請同時參閱第1圖及第3圖。 In order to specifically describe the flow of the method proposed by the present invention, the following description will be made by taking three primary colors of red (R), green (G), and blue (B) as an example, that is, N=3, and please refer to FIG. 1 and FIG. 3 at the same time.

C(1),C(2),C(3)分別對應為C(R),C(G),C(B),其係各自代表紅色、綠色及藍色之原色,其原色座標分別為[x C(R),y C(R)]、[x C(G),y C(G)]及[x C(B),y C(B)],最大亮度則分別為Y C(R),MAX Y C(G),MAX Y C(B),MAX Let C (1), C (2), and C (3) correspond to C ( R ), C ( G ), and C ( B ), respectively, which represent the primary colors of red, green, and blue, and their primary color coordinates are respectively For [ x C ( R ) , y C ( R ) ], [ x C ( G ) , y C ( G ) ] and [ x C ( B ) , y C ( B ) ], the maximum brightness is Y C ( R ), MAX , Y C ( G ), MAX , Y C ( B ), MAX .

首先,光檢測器14接收光訊號,以擷取[x C(R),y C(R)]、[x C(G),y C(G)]、[x C(B),y C(B)]及Y C(R),MAX Y C(G),MAX Y C(B),MAX 等色彩資訊。接著,處理器16接收原色座標與最大亮度,以儲存於儲存器18中,並依據原色座標計算出複數混色重心色座標P{C(R)}、P{C(G)}、P{C(B)}、P{C(R),C(G)}、P{C(G),C(B)}、P{C(R),C(B)}、P{C(R),C(G),C(B)}與一系統白點色座標(x w ,y w ),其中混色重心色座標P{C(R)}、P{C(G)}、P{C(B)}、P{C(R),C(G)}、P{C(G),C(B)}、P{C(R),C(B)}、P{C(R),C(G),C(B)}可根據公式(1)求得,系統白點色座標(x w ,y w )則可依據下列公式求得: First, the photodetector 14 receives the optical signal to extract [ x C ( R ) , y C ( R ) ], [ x C ( G ) , y C ( G ) ], [ x C ( B ) , y C ( B ) ] and Y C ( R ), MAX , Y C ( G ), MAX , Y C ( B ), MAX and other color information. Next, the processor 16 receives the primary color coordinates and the maximum brightness for storage in the storage 18, and calculates a complex color center of gravity center coordinates P{ C ( R )}, P{ C ( G )}, P{ C according to the primary color coordinates. ( B )}, P{ C ( R ), C ( G )}, P{ C ( G ), C ( B )}, P{ C ( R ), C ( B )}, P{ C ( R ) , C ( G ), C ( B )} and a systematic white point color coordinate ( x w , y w ), where the color center of gravity center coordinates P{ C ( R )}, P{ C ( G )}, P{ C ( B )}, P{ C ( R ), C ( G )}, P{ C ( G ), C ( B )}, P{ C ( R ), C ( B )}, P{ C ( R ) , C ( G ), C ( B )} can be obtained according to formula (1), and the system white point color coordinates ( x w , y w ) can be obtained according to the following formula:

同時,處理器16以混色重心色座標建立原色之色域,此色域具有一個 迴圈,此迴圈具有三個子區域,其中第1個子區域(zone1)由P{C(R)}、P{C(R),C(G)}、P{C(R),C(B)}、P{C(R),C(G),C(B)}所定義,第2個子區域(zone2)由P{C(B)}、P{C(G),C(B)}、P{C(R),C(B)}、P{C(R),C(G),C(B)}所定義,第3個子區域(zone3)由P{C(G)}、P{C(R),C(G)}、P{C(G),C(B)}、P{C(R),C(G),C(B)}所定義。 At the same time, the processor 16 establishes a color gamut of the primary color with a color center of gravity center color. The color gamut has a loop, and the loop has three sub-regions, wherein the first sub-region (zone1) is composed of P{ C ( R )}, P. { C ( R ), C ( G )}, P{ C ( R ), C ( B )}, P{ C ( R ), C ( G ), C ( B )}, the second sub-region ( Zone2) by P{ C ( B )}, P{ C ( G ), C ( B )}, P{ C ( R ), C ( B )}, P{ C ( R ), C ( G ), C ( B )} defined, the third sub-region (zone3) consists of P{ C ( G )}, P{ C ( R ), C ( G )}, P{ C ( G ), C ( B )}, P { C ( R ), C ( G ), C ( B )}.

再來,處理器16選定目標色溫之目標色座標所屬之子區域,作為子目標區域。令1iN,1jN-2,i、j皆為正整數,當目標色座標位於zone1時,j=i=1;當目標色座標位於zone2時,j=1,i=2;當目標色座標位於zone3時,j=1,i=3。 Then, the processor 16 selects a sub-region to which the target color coordinate of the target color temperature belongs, as the sub-target region. Order 1 i N,1 j N-2, i, j are positive integers, when the target color coordinates are in zone1, j=i=1; when the target color coordinates are in zone2, j=1, i=2; when the target color coordinates are in zone3, j=1, i=3.

令i=m+1,i+j=n-1,m、n皆為正整數,且將上段所述之i、j代入公式(3)、(4)、(5)、(6),並改寫成C(R),C(G),C(B)形式,可求得子目標區域對應之剩餘未知二原色之亮度解Y C(m),Y C(n)Let i=m+1, i+j=n-1, m and n be positive integers, and substituting i and j mentioned in the above paragraph into formulas (3), (4), (5), (6), And rewritten into C ( R ), C ( G ), C ( B ) form, the luminance solutions Y C ( m ) and Y C ( n ) of the remaining unknown two primary colors corresponding to the sub-target region can be obtained.

若目標色座標位於zone1時,紅色亮度Y C(R)Y C(R),MAX ,綠色亮度 藍色亮度If the target color coordinate is in zone1, the red luminance Y C ( R ) is Y C ( R ), MAX , green brightness Blue brightness .

若目標色座標位於zone2時,藍色亮度Y C(B)Y C(B),MAX ,綠色亮度 紅色亮度If the target color coordinates are in zone2, the blue luminance Y C ( B ) is Y C ( B ), MAX , green brightness Red brightness .

若目標色座標位於zone3時,綠色亮度Y C(G)Y C(G),MAX ,紅色亮度 藍色亮度If the target color coordinate is in zone3, the green brightness Y C ( G ) is Y C ( G ), MAX , red brightness Blue brightness .

最後,處理器16以公式(3)、(4)、(5)、(6)求得所有的亮度解為依據,透過亮度驅動器20調整所有原色之色溫,即完成全部流程。 Finally, the processor 16 obtains all the luminance solutions based on the equations (3), (4), (5), and (6), and adjusts the color temperatures of all the primary colors through the luminance driver 20, that is, completes the entire process.

接著以下以四原色為例進行說明,即N=4,並請同時參閱第1圖及第4圖。 Next, the following four primary colors are taken as an example, that is, N=4, and please refer to FIG. 1 and FIG. 4 at the same time.

C(1),C(2),C(3),C(4)分別代表四原色,其原色座標分別為[x C(1),y C(1)]、[x C(2),y C(2)]、[x C(3),y C(3)]及[x C(4),y C(4)],最大亮度則分別為Y C(1),MAX Y C(2),MAX Y C(3),MAX Y C(4),MAX Let C (1), C (2), C (3), C (4) represent the four primary colors, respectively, whose primary color coordinates are [ x C (1) , y C (1) ], [ x C (2) , y C (2) ], [ x C (3) , y C (3) ] and [ x C (4) , y C (4) ], the maximum brightness is Y C (1), MAX , Y C (2), MAX , Y C (3), MAX , Y C (4), MAX .

首先,光檢測器14接收光訊號,以擷取[x C(1),y C(1)]、[x C(2),y C(2)]、[x C(3),y C(3)]、[x C(4),y C(4)]及Y C(1),MAX Y C(2),MAX Y C(3),MAX Y C(4),MAX 等色彩資訊。接著,處理器16接收原色座標與最大亮度,以儲存於儲存器18中,並依據原色座標計算出複數混色重心色座標P{C(1)}、P{C(2)}、P{C(3)}、P{C(4)}、P{C(1),C(2)}、P{C(2),C(3)}、P{C(3),C(4)}、P{C(4),C(1)}、P{C(1),C(2),C(3)}、P{C(2),C(3),C(4)}、 P{C(3),C(4),C(1)}、P{C(4),C(1),C(2)}、P{C(1),C(2),C(3),C(4)}。與一系統白點色座標(x w ,y w ),其中混色重心色座標P{C(1)}、P{C(2)}、P{C(3)}、P{C(4)}、P{C(1),C(2)}、P{C(2),C(3)}、P{C(3),C(4)}、P{C(4),C(1)}、P{C(1),C(2),C(3)}、P{C(2),C(3),C(4)}、P{C(3),C(4),C(1)}、P{C(4),C(1),C(2)}、P{C(1),C(2),C(3),C(4)}可根據公式(1)求得,系統白點色座標(x w ,y w )則可根據公式(2)求得。 First, the photodetector 14 receives the optical signal to capture [ x C (1) , y C (1) ], [ x C (2) , y C (2) ], [ x C (3) , y C (3) ], [ x C (4) , y C (4) ] and Y C (1), MAX , Y C (2), MAX , Y C (3), MAX , Y C (4), MAX Color information. Next, the processor 16 receives the primary color coordinates and the maximum brightness for storage in the storage 18, and calculates the complex color center-of-gravity color coordinates P{ C (1)}, P{ C (2)}, P{ C according to the primary color coordinates. (3)}, P{ C (4)}, P{ C (1), C (2)}, P{ C (2), C (3)}, P{ C (3), C (4) }, P{ C (4), C (1)}, P{ C (1), C (2), C (3)}, P{ C (2), C (3), C (4)} , P{ C (3), C (4), C (1)}, P{ C (4), C (1), C (2)}, P{ C (1), C (2), C (3), C (4)}. And a system white point color coordinates ( x w , y w ), where the color center of gravity color coordinates P{ C (1)}, P{ C (2)}, P{ C (3)}, P{ C (4) }, P{ C (1), C (2)}, P{ C (2), C (3)}, P{ C (3), C (4)}, P{ C (4), C ( 1)}, P{ C (1), C (2), C (3)}, P{ C (2), C (3), C (4)}, P{ C (3), C (4 ), C (1)}, P{ C (4), C (1), C (2)}, P{ C (1), C (2), C (3), C (4)} Equation (1) finds that the system white point color coordinates ( x w , y w ) can be obtained according to formula (2).

同時,處理器16以混色重心色座標建立原色之色域,此色域具有二個迴圈,每一迴圈具有四個子區域,其中第1個子區域(zone1)由P{C(1)}、P{C(1),C(2)}、P{C(4),C(1)}、P{C(4),C(1),C(2)}所定義;第2個子區域(zone2)由P{C(2)}、P{C(1),C(2)}、P{C(2),C(3)}、P{C(1),C(2),C(3)}所定義;第3個子區域(zone3)由P{C(3)}、P{C(2),C(3)}、P{C(3),C(4)}、P{C(2),C(3),C(4)}所定義;第4個子區域(zone4)由P{C(4)}、P{C(3),C(4)}、P{C(4),C(1)}、P{C(3),C(4),C(1)}所定義;第5個子區域(zone5)由P{C(1),C(2)}、P{C(4),C(1),C(2)}、P{C(1),C(2),C(3)}、P{C(1),C(2),C(3),C(4)}所定義;第6個子區域(zone6)由P{C(2),C(3)}、P{C(1),C(2),C(3)}、P{C(2),C(3),C(4)}、P{C(1),C(2),C(3),C(4)}所定義;第7個子區域(zone7)由P{C(3),C(4)}、P{C(2),C(3),C(4)}、P{C(3),C(4),C(1)}、P{C(1),C(2),C(3),C(4)}所定義;第8個子區域(zone8)由P{C(4),C(1)}、P{C(4),C(1),C(2)}、P{C(3),C(4),C(1)}、P{C(1),C(2),C(3),C(4)}所定義。 At the same time, the processor 16 establishes the color gamut of the primary color with the color center of gravity, the color gamut has two loops, and each loop has four sub-regions, wherein the first sub-region (zone1) is composed of P{ C (1)} , P{ C (1), C (2)}, P{ C (4), C (1)}, P{ C (4), C (1), C (2)}; the second sub The zone (zone2) consists of P{ C (2)}, P{ C (1), C (2)}, P{ C (2), C (3)}, P{ C (1), C (2) , C (3)} is defined; the third sub-region (zone3) is composed of P{ C (3)}, P{ C (2), C (3)}, P{ C (3), C (4)} , P{ C (2), C (3), C (4)} are defined; the fourth sub-region (zone4) is composed of P{ C (4)}, P{ C (3), C (4)}, P{ C (4), C (1)}, P{ C (3), C (4), C (1)} are defined; the fifth sub-region (zone5) is composed of P{ C (1), C ( 2)}, P{ C (4), C (1), C (2)}, P{ C (1), C (2), C (3)}, P{ C (1), C (2 ), C (3), C (4)} is defined; the sixth sub-region (zone6) is composed of P{ C (2), C (3)}, P{ C (1), C (2), C ( 3)}, P{ C (2), C (3), C (4)}, P{ C (1), C (2), C (3), C (4)}; 7th sub The zone (zone7) consists of P{ C (3), C (4)}, P{ C (2), C (3), C (4)}, P{ C (3), C (4), C ( 1)}, P {C ( 1), C (2), C (3), C (4)} defined 8 subregions (zone8) by the P {C (4), C (1)}, P {C (4), C (1), C (2)}, P {C (3), C (4) , C (1)}, P{ C (1), C (2), C (3), C (4)}.

再來,處理器16選定目標色溫之目標色座標所屬之子區域,作為子目標區域。令1iN,1jN-2,i、j皆為正整數,舉例來說,若目標色座標 位於zone7,即zone7作為子目標區域,由於zone7是第2個迴圈的第3個子區域,因此j=2,i=3。令i=m+1,i+j=n-1,m、n皆為正整數,且將上述之i、j代入公式(3)、(4)、(5)、(6),可求得子目標區域對應之剩餘未知二原色之亮度解Y C(m),Y C(n)。下表一為所有子區域之對應之所有亮度解: Then, the processor 16 selects a sub-region to which the target color coordinate of the target color temperature belongs, as the sub-target region. Order 1 i N,1 j N-2, i, j are all positive integers. For example, if the target color coordinate is in zone7, ie zone7 is the sub-target zone, since zone7 is the third sub-region of the second loop, j=2, i =3. Let i=m+1, i+j=n-1, m and n be positive integers, and substitute i and j above into formulas (3), (4), (5), and (6). The luminance solutions Y C ( m ) , Y C ( n ) of the remaining unknown primary colors corresponding to the target region are obtained. Table 1 below shows all the luminance solutions for all sub-regions:

最後,處理器16以公式(3)、(4)、(5)、(6)求得所有的亮度解為依據,透過亮度驅動器20調整所有原色之色溫,即完成全部流程。 Finally, the processor 16 obtains all the luminance solutions based on the equations (3), (4), (5), and (6), and adjusts the color temperatures of all the primary colors through the luminance driver 20, that is, completes the entire process.

綜上所述,本發明應用於色溫點轉換時,能在節能、綠能之前提下,使用最大照明亮度,以達到最節能之目的。 In summary, when the present invention is applied to color temperature point conversion, it can be lifted before energy saving and green energy, and the maximum illumination brightness is used to achieve the most energy-saving purpose.

以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, so that the shapes, structures, features, and spirits described in the claims of the present invention are equally varied and modified. All should be included in the scope of the patent application of the present invention.

10‧‧‧色溫調校裝置 10‧‧‧Color temperature adjustment device

12‧‧‧發光源 12‧‧‧Light source

14‧‧‧光檢測器 14‧‧‧Photodetector

16‧‧‧處理器 16‧‧‧ Processor

18‧‧‧儲存器 18‧‧‧Storage

20‧‧‧亮度驅動器 20‧‧‧Brightness driver

第1圖為本發明之裝置方塊圖。 Figure 1 is a block diagram of the apparatus of the present invention.

第2圖為本發明之方法流程圖。 Figure 2 is a flow chart of the method of the present invention.

第3圖為本發明之三原色色域邊界二維圖。 Figure 3 is a two-dimensional diagram of the three primary color gamut boundaries of the present invention.

第4圖為本發明之四原色色域邊界二維圖。 Figure 4 is a two-dimensional map of the four primary color gamut boundaries of the present invention.

Claims (14)

一種節能式色溫調校方法,包含下列步驟:擷取至少三原色之原色座標及其最大亮度;根據該些原色座標計算出複數混色重心色座標與一系統白點色座標,並以該些混色重心色座標建立該原色之色域,該色域具有至少三個子區域,每一該子區域由四個該混色重心色座標定義之;選定一目標色溫之目標色座標所屬之該子區域,並以此作為子目標區域;依據該子目標區域對應之該些混色重心色座標、該最大亮度與該系統白點色座標,計算出該子目標區域對應之未知二該原色之亮度解;以及以該亮度解及該最大亮度為依據,調整該些原色之色溫。 An energy-saving color temperature adjustment method comprises the steps of: capturing a primary color coordinate of at least three primary colors and a maximum brightness thereof; calculating a complex color center color coordinate and a system white color coordinate according to the primary color coordinates, and using the color center of gravity The color coordinates establish a color gamut of the primary color, the color gamut having at least three sub-regions, each of the sub-regions being defined by four color-matching center-of-gravity coordinates; the sub-region to which the target color coordinate of a target color temperature belongs is selected, and The sub-target area is obtained; according to the color-matching center-of-color coordinates corresponding to the sub-target area, the maximum brightness and the white point color coordinate of the system, the brightness solution corresponding to the original target color corresponding to the sub-target area is calculated; The color temperature of the primary colors is adjusted based on the brightness solution and the maximum brightness. 如申請專利範圍第1項所述之節能式色溫調校方法,其中該原色之數量為N,N3,該些原色座標分別為[x C(1),y C(1)]、[x C(2),y C(2)]、...、[x C(n),y C(n)]、...、[x C(N),y C(N)],該些最大亮度分別為Y C(1),MAX Y C(2),MAX 、...、Y C(n),MAX 、...、Y C(N),MAX ,該色域具有(N-2)個迴圈,每一該迴圈具有N個該子區域,每一該子區域由該四個該混色重心色座標P{C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)]}、P{C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)],C[i-(N-j)]}、P{C(i-1),C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)],C[i-(N-j)]}、P{C(i-1),C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)]}定義之,且該子目標區域為該色域之第j個該迴圈之第i個該子區域,其中C(1),C(2),...,C(n),...,C(N)各自代表第n個原色。 For example, the energy-saving color temperature adjustment method described in claim 1 wherein the number of primary colors is N, N 3. The primary color coordinates are [ x C (1) , y C (1) ], [ x C (2) , y C (2) ], ..., [ x C ( n ) , y C ( n ) ],...,[ x C ( N ) , y C ( N ) ], the maximum brightnesses are Y C (1), MAX , Y C (2), MAX , ..., Y C ( n ), MAX , . . . , Y C ( N ), MAX , the color gamut has (N-2) loops, each loop has N sub-regions, each of the sub-regions Four of these mixed color center-of-grain coordinates P{ C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)]}, P{ C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C ( i +1),..., C ( N ), C (1), C(2),..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)]}, and The sub-target area is the i-th sub-region of the jth circle of the color gamut, where C (1), C (2), ..., C ( n ), ..., C ( N ) each represents the nth primary color. 如申請專利範圍第2項所述之節能式色溫調校方法,其中該些混色重心色座標P{C(i),C(i+1),...,C(k)}係由下列公式求得:當N k>i 1時, P{C(i),C(i+1),...,C(k)}=G=(),其中 當Ni>k1時,P{C(i),C(i+1),...,C(N),C(1),...,C(k)}=G= 其中 ;以及該系統白點色座標(x w ,y w )係由下列公式求得: (x w ,y w )=(),其中The energy-saving color temperature adjustment method according to claim 2, wherein the color-matching center-of-grain color coordinates P{ C ( i ), C ( i +1), ..., C ( k )} are as follows Formula found: when N k > i 1 o'clock, P{ C ( i ), C ( i +1),..., C ( k )}= G =( ),among them When N i>k 1 o'clock, P{ C ( i ), C ( i +1),..., C ( N ), C (1),..., C ( k )}=G= among them And the white point color coordinates ( x w , y w ) of the system are obtained by the following formula: ( x w , y w )=( ),among them . 如申請專利範圍第3項所述之節能式色溫調校方法,其中在該依據該子目標區域對應之該些混色重心色座標、該最大亮度與該系統白點色座標,以計算出該亮度解之步驟中,i=m+1,i+j=n-1,1iN,1jN-2,且該亮度解Y C(m),Y C(n)係依據下列公式求得:對於iki+j,Y C(k)=Y C(k),MAX ;對於k=i-1=m, Y C(k)=Y C(m)=,其中 對於k=i+j+1=n, Y C(k)=Y C(n)=,其中 ,;以及對於其餘k,Y C(k)=0。 The energy-saving color temperature adjustment method according to claim 3, wherein the color center-of-gravity color coordinates corresponding to the sub-target area, the maximum brightness and the white point color coordinates of the system are calculated to calculate the brightness. In the solution step, i=m+1, i+j=n-1,1 i N,1 j N-2, and the luminance solution Y C ( m ) , Y C ( n ) is obtained according to the following formula: for i k i+j, Y C ( k ) = Y C ( k ), MAX ; for k=i-1=m, Y C ( k ) = Y C ( m ) = ,among them For k=i+j+1=n, Y C ( k ) = Y C ( n ) = ,among them , And for the remaining k, Y C ( k ) =0. 如申請專利範圍第1項所述之節能式色溫調校方法,其中該原色之數量為三時,該色域具有一個迴圈,該迴圈具有三個該子區域。 For example, in the energy-saving color temperature adjustment method described in claim 1, wherein the number of primary colors is three, the color gamut has a loop, and the loop has three sub-regions. 如申請專利範圍第1項所述之節能式色溫調校方法,其中該原色之數量為四時,該色域具有二個迴圈,每一該迴圈具有四個該子區域。 The energy-saving color temperature adjustment method according to claim 1, wherein the number of primary colors is four, the color gamut has two loops, and each loop has four sub-regions. 一種節能式色溫調校裝置,其係連接發射一光訊號之一發光源,該光訊號包含至少三原色,該節能式色溫調校裝置包含:一光檢測器,其係接收該光訊號,並擷取該些原色之原色座標及其最大亮度;一處理器,連接該光檢測器,並接收該些原色座標與該最大亮度,以依據該些原色座標計算出複數混色重心色座標與一系統白點色座標,並以該些混色重心色座標建立該原色之色域,該色域具有至少三個子區域,每一該子區域由四個該混色重心色座標定義之,該處理器更選定一目標色溫之目標色座標所屬之該子區域,作為子目標區域,並依據 該子目標區域對應之該些混色重心色座標、該最大亮度與該系統白點色座標,計算出該子目標區域對應之二該原色之亮度解;以及一亮度驅動器,連接該處理器與該發光源,該處理器以該亮度解與該最大亮度為依據,透過該亮度驅動器調整該些原色之色溫。 An energy-saving color temperature adjusting device is connected to emit a light source of an optical signal, the light signal comprises at least three primary colors, and the energy-saving color temperature adjusting device comprises: a light detector, which receives the optical signal, and Taking the primary color coordinates of the primary colors and their maximum brightness; a processor connecting the photodetectors and receiving the primary color coordinates and the maximum brightness to calculate a plurality of mixed color center of gravity coordinates and a system white according to the primary color coordinates Point color coordinates, and the color gamut of the primary color is established by the color-matching center-of-gravity color coordinates, the color gamut has at least three sub-regions, each of the sub-regions is defined by four color-matching center-of-gravity coordinates, and the processor further selects one The sub-region to which the target color coordinate of the target color temperature belongs, as the sub-target region, and based on The sub-target area corresponding to the color-matching center-of-grain color coordinates, the maximum brightness and the white point color coordinates of the system, calculating a brightness solution corresponding to the primary color of the sub-target area; and a brightness driver connecting the processor and the The light source is configured to adjust the color temperature of the primary colors through the brightness driver based on the brightness solution and the maximum brightness. 如申請專利範圍第7項所述之節能式色溫調校裝置,其中該發光源為發光二極體照明燈具或背光模組。 The energy-saving color temperature adjusting device according to claim 7, wherein the light source is a light-emitting diode lighting fixture or a backlight module. 如申請專利範圍第7項所述之節能式色溫調校裝置,更包含一儲存器,其係連接該處理器,該處理器將該些原色座標與該最大亮度儲存於該儲存器中,以供該處理器計算之。 The energy-saving color temperature adjusting device according to claim 7, further comprising a storage device connected to the processor, wherein the processor stores the primary color coordinates and the maximum brightness in the storage device, For the processor to calculate. 如申請專利範圍第7項所述之節能式色溫調校裝置,其中該原色之數量為N,N3,該些原色座標分別為[x C(1),y C(1)]、[x C(2),y C(2)]、...、[x C(n),y C(n)]、...[x C(N-1),y C(N-1)]、[x C(N),y C(N)],該些最大亮度分別為Y C(1),MAX Y C(2),MAX 、...、Y C(n),MAX 、...Y C(N),MAX ,該色域具有(N-2)個迴圈,每一該迴圈具有N個該子區域,每一該子區域由該四個該混色重心色座標P{C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)]}、P{C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)],C[i-(N-j)]}、P{C(i-1),C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)],C[i-(N-j)]}、P{C(i-1),C(i),C(i+1),...,C(N),C(1),C(2),...,C[i-(N-j+1)]}定義之,且該子目標區域為該色域之第j個該迴圈之第i個該子區域,其中C(1),C(2),...,C(n),...,C(N)各自代表第n個原色。 The energy-saving color temperature adjusting device according to Item 7 of the patent application, wherein the number of the primary colors is N, N 3. The primary color coordinates are [ x C (1) , y C (1) ], [ x C (2) , y C (2) ], ..., [ x C ( n ) , y C ( n ) ],...[ x C ( N -1) , y C ( N -1) ], [ x C ( N ) , y C ( N ) ], the maximum brightness is Y C (1) , MAX , Y C (2), MAX , ..., Y C ( n ), MAX , ... Y C ( N ), MAX , the color gamut has (N-2) loops, each of which The loop has N sub-regions, each of which consists of the four color-matched center-of-gravity coordinates P{ C ( i ), C ( i +1), ..., C ( N ), C (1) , C (2),..., C [ i -( N - j +1)]}, P{ C ( i ), C ( i +1),..., C ( N ), C (1 ), C (2),..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)], C [ i -( N - j )]}, P{ C ( i -1), C ( i ), C ( i +1),..., C ( N ), C (1), C (2),..., C [ i -( N - j +1)]} is defined, and the sub-target area is the i-th sub-region of the j-th circle of the color gamut, where C (1), C (2), ..., C ( n ),..., C ( N ) each represent the nth primary color. 如申請專利範圍第10項所述之節能式色溫調校裝置,其中該些混色重心 色座標P{C(i),C(i+1),...,C(k)}係由下列公式求得:當N k>i 1時, P{C(i),C(i+1),...,C(k)}=G=(),其中 當Ni>k1時,P{C(i),C(i+1),...,C(N),C(1),...,C(k)}=G= (), 其中 ;以及該系統白點色座標(x w ,y w )係由下列公式求得: (x w ,y w )=(),其中The energy-saving color temperature adjusting device according to claim 10, wherein the color-matching center-of-gravity coordinates P{ C ( i ), C ( i +1), ..., C ( k )} are as follows Formula found: when N k > i 1 o'clock, P{ C ( i ), C ( i +1),..., C ( k )}= G =( ),among them When N i>k 1 o'clock, P{ C ( i ), C ( i +1),..., C ( N ), C (1),..., C ( k )}= G = ( ), among them And the white point color coordinates ( x w , y w ) of the system are obtained by the following formula: ( x w , y w )=( ),among them . 如申請專利範圍第11項所述之節能式色溫調校裝置,其中i=m+1,i+j=n-1,1iN,1jN-2,且該亮度解Y C(m),Y C(n)係依據下列公式求得:對於iki+j,Y C(k)=Y C(k),MAX ;對於k=i-1=m, ,其中 對於k=i+j+1=n, ,其中 對於其餘k,Y C(k)=0。 For example, the energy-saving color temperature adjusting device described in claim 11 wherein i=m+1, i+j=n-1,1 i N,1 j N-2, and the luminance solution Y C ( m ) , Y C ( n ) is obtained according to the following formula: for i k i+j, Y C ( k ) = Y C ( k ), MAX ; for k=i-1=m, ,among them For k=i+j+1=n, ,among them For the remaining k, Y C ( k ) =0. 如申請專利範圍第7項所述之節能式色溫調校裝置,其中該原色之數量為三時,該色域具有一個迴圈,該迴圈具有三個該子區域。 The energy-saving color temperature adjusting device according to claim 7, wherein the number of primary colors is three, the color gamut has a loop, and the loop has three sub-regions. 如申請專利範圍第7項所述之節能式色溫調校裝置,其中該原色之數量為四時,該色域具有二個迴圈,每一該迴圈具有四個該子區域。 The energy-saving color temperature adjusting device according to claim 7, wherein the number of the primary colors is four, the color gamut has two loops, and each of the loops has four sub-regions.
TW100109734A 2011-03-22 2011-03-22 Energy-saving method and device for adjusting color temperature TWI417696B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100109734A TWI417696B (en) 2011-03-22 2011-03-22 Energy-saving method and device for adjusting color temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109734A TWI417696B (en) 2011-03-22 2011-03-22 Energy-saving method and device for adjusting color temperature

Publications (2)

Publication Number Publication Date
TW201239564A TW201239564A (en) 2012-10-01
TWI417696B true TWI417696B (en) 2013-12-01

Family

ID=47599546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109734A TWI417696B (en) 2011-03-22 2011-03-22 Energy-saving method and device for adjusting color temperature

Country Status (1)

Country Link
TW (1) TWI417696B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157261B (en) * 2013-05-13 2017-04-12 华硕电脑股份有限公司 Display mode adjusting method of display device and display mode adjusting module thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290624A1 (en) * 2005-06-08 2006-12-28 Tir Systems Ltd. Backlighting apparatus and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290624A1 (en) * 2005-06-08 2006-12-28 Tir Systems Ltd. Backlighting apparatus and method

Also Published As

Publication number Publication date
TW201239564A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
CN104633499B (en) The LED light source module of a kind of high color rendering index (CRI) and LED lamp
CN109819546B (en) Wide color gamut dimming and mixing method and atmosphere lamp
US9661715B2 (en) Solid state light emitting devices including adjustable melatonin suppression effects
TWI468614B (en) Color temperature adjustable lamp
JP2019149546A (en) Circadian friendly LED light source
CN104885571B (en) The manufacture method of light-emitting device, the method for designing of light-emitting device, the driving method of light-emitting device, means of illumination and light-emitting device
TWI557372B (en) A color temperature adjustment method of a solid state light-emitting device and an illumination device using the method thereof
CN104540263B (en) A kind of method and device for simulating daylight change
US20140175987A1 (en) Color temperature adjusting method and illuminating device using the method
CN105042365A (en) White light LED illuminating system with high light color quality and designing method thereof
CN103889101A (en) Color temperature adjusting method and lighting device using same
CN105163419B (en) High color saturation White-light LED illumination system and its color mixing designs method
US20140146318A1 (en) Illumination apparatus and method for optimal vision
Kim et al. Precise control of a correlated color temperature tunable luminaire for a suitable luminous environment
Malik et al. A low-cost, wide-range, CCT-tunable, variable-illuminance LED lighting system
CN206611610U (en) A kind of adjustable LED/light source of color parameter
TWI417696B (en) Energy-saving method and device for adjusting color temperature
CN106061014B (en) Linear colour temperature database construction method, color temperature adjusting method and device, LED lamp
CN101801141B (en) Method for acquiring high color rendering white light with adjustable color temperature from combination of cool white, red, yellow and green LEDs
CN115484709A (en) Intelligent lamp control system and light environment regulation and control method thereof
TWI459859B (en) Energy-saving method for adjusting color temperature
US20140265926A1 (en) Illumination apparatus with gradually changeable color temperatures
TW200928174A (en) Illuminating system
KR101314130B1 (en) Chromatic value of each color temperature calculating method for sensibility lighting
CN218649007U (en) Intelligent lamp control system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees