TWI416103B - Biosensor, package structure and detecting system using the same - Google Patents

Biosensor, package structure and detecting system using the same Download PDF

Info

Publication number
TWI416103B
TWI416103B TW99137285A TW99137285A TWI416103B TW I416103 B TWI416103 B TW I416103B TW 99137285 A TW99137285 A TW 99137285A TW 99137285 A TW99137285 A TW 99137285A TW I416103 B TWI416103 B TW I416103B
Authority
TW
Taiwan
Prior art keywords
biosensor
carbon nanotube
electrode
carbon
sample
Prior art date
Application number
TW99137285A
Other languages
Chinese (zh)
Other versions
TW201217774A (en
Inventor
Xue-Shen Wang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99137285A priority Critical patent/TWI416103B/en
Publication of TW201217774A publication Critical patent/TW201217774A/en
Application granted granted Critical
Publication of TWI416103B publication Critical patent/TWI416103B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a biosensor. The biosensor includes a substrate having a surface, a first electrode, a second electrode and an inductor. The first electrode and the second electrode are located on the surface of the substrate. The inductor is located between the first electrode and the second electrode and capable of reacting with a detecting sample to cause a current change of the biosensor. The first electrode includes a plurality of first carbon nanotubes located parallel with each other. The second electrode includes a plurality of second carbon nanotubes located parallel with each other. Each of the plurality of first carbon nanotubes is located corresponding to one of the plurality of second carbon nanotubes. A biosensor package structure and a detecting system using the same is also provided.

Description

生物感測器,其封裝結構及檢測系統 Biosensor, its package structure and detection system

本發明涉及一種生物感測器及檢測系統,尤其涉及一種基於奈米碳管的生物感測器及檢測系統。 The invention relates to a biosensor and a detection system, in particular to a biosensor and a detection system based on a carbon nanotube.

感測器為檢測系統的重要元件,在檢測系統中有著廣泛的應用。 The sensor is an important component of the detection system and has a wide range of applications in inspection systems.

先前技術中的生物感測器通常包括一第一電極,以及一與該第一電極對應設置的第二電極。所述第一電極和第二電極通過電極引線與外界電路電連接。可以理解,所述生物感測器的精確度和靈敏度要求越高越好。然而,該生物感測器的第一電極和第二電極通常採用金屬製備。由於金屬電極的線寬會影響金屬電極的電阻,當金屬電極的線寬減小到奈米級時,其電阻值將顯著增大,故,目前於生物感測器中採用金屬製備的第一電極和第二電極的線寬通常為幾微米到幾十微米。故,單位面積內設置第一電極或第二電極的數量較少,影響了生物感測器的精確度和靈敏度。進一步,金屬製備的第一電極和第二電極耐腐蝕性較差,從而影響了生物感測器的壽命。 The biosensor of the prior art generally includes a first electrode and a second electrode disposed corresponding to the first electrode. The first electrode and the second electrode are electrically connected to an external circuit through an electrode lead. It can be understood that the higher the accuracy and sensitivity requirements of the biosensor, the better. However, the first and second electrodes of the biosensor are typically fabricated using metal. Since the line width of the metal electrode affects the resistance of the metal electrode, when the line width of the metal electrode is reduced to the nanometer level, the resistance value thereof is remarkably increased. Therefore, the first metal preparation is currently used in the biosensor. The line width of the electrode and the second electrode is usually from several micrometers to several tens of micrometers. Therefore, the number of first electrodes or second electrodes in the unit area is small, which affects the accuracy and sensitivity of the biosensor. Further, the first electrode and the second electrode prepared by the metal have poor corrosion resistance, thereby affecting the life of the biosensor.

有鑒於此,提供一種具有較高靈敏度和較長壽命的生物感測器及 檢測系統實為必要。 In view of this, a biosensor with high sensitivity and long life is provided. The inspection system is really necessary.

一種生物感測器,其包括:一基底,該基底具有一表面;一第一電極和一第二電極,該第一電極和第二電極相互間隔設置於該基底的表面;以及一感應元件設置於該第一電極和第二電極之間,所述感應元件可與被測樣品進行反應,從而引起生物感測器的電流變化;其中,所述第一電極包括複數個平行設置的第一奈米碳管,所述第二電極包括複數個平行設置的第二奈米碳管,所述第一奈米碳管與第二奈米碳管一一對應設置。 A biosensor comprising: a substrate having a surface; a first electrode and a second electrode, the first electrode and the second electrode being spaced apart from each other on a surface of the substrate; and an inductive component arrangement Between the first electrode and the second electrode, the sensing element can react with the sample to be tested to cause a current change of the biosensor; wherein the first electrode comprises a plurality of first sets arranged in parallel The carbon nanotubes, the second electrode comprises a plurality of second carbon nanotubes disposed in parallel, and the first carbon nanotubes are disposed in one-to-one correspondence with the second carbon nanotubes.

一種生物感測器,其包括:一基底,該基底具有一表面;至少一第一奈米碳管,該至少一第一奈米碳管的一端與一第一電極引線電連接,另一端具有一第一探測尖端;至少一第二奈米碳管,該至少一第二奈米碳管的一端與一第二電極引線電連接,另一端具有一第二探測尖端,所述第二奈米碳管的第二探測尖端與第一奈米碳管的第一探測尖端相對且間隔設置;以及一感應元件設置於該第一奈米碳管的第一探測尖端和第二奈米碳管的第二探測尖端之間,所述感應元件可與被測樣品進行反應,從而引起生物感測器的電流變化。 A biosensor includes: a substrate having a surface; at least one first carbon nanotube, one end of the at least one first carbon nanotube is electrically connected to a first electrode lead, and the other end has a first detecting tip; at least one second carbon nanotube, one end of the at least one second carbon nanotube is electrically connected to a second electrode lead, and the other end has a second detecting tip, the second nanometer a second detecting tip of the carbon tube is opposite and spaced apart from the first detecting tip of the first carbon nanotube; and an inductive element is disposed on the first detecting tip and the second carbon nanotube of the first carbon nanotube Between the second probe tips, the sensing element can react with the sample being tested to cause a change in the current of the biosensor.

一種生物感測器封裝結構,其包括:一基底;一蓋體,所述基底與蓋體相對設置,且蓋體與基底之間定義有一空間作為檢測室,該檢測室通過一進樣通道和一出樣通道與外界連通;以及至少一生物感測器設置於檢測室內;其中,所述生物感測器為上述生物感測器。 A biosensor package structure includes: a base; a cover opposite to the cover, and a space defined between the cover and the base as a detection chamber, the detection chamber passing through a sample passage and A sample channel is connected to the outside; and at least one biosensor is disposed in the detection chamber; wherein the biosensor is the biosensor.

一種檢測系統,其包括:一生物感測器封裝結構;一樣品供給系統,該樣品供給系統通過一輸入管與生物感測器封裝結構連接;一樣品收集系統,該樣品收集系統通過一輸出管與生物感測器封裝結構連接;以及一信號採集和分析系統,該信號採集和分析系統通過複數個導線與生物感測器封裝結構電連接;其中,該生物感測器封裝結構為上述生物感測器封裝結構。 A detection system comprising: a biosensor package structure; a sample supply system coupled to the biosensor package structure via an input tube; a sample collection system, the sample collection system passing through an output tube Connected to the biosensor package structure; and a signal acquisition and analysis system electrically coupled to the biosensor package structure through a plurality of wires; wherein the biosensor package structure is biologically sensitive Detector package structure.

與先前技術相比,所述生物傳感器具有以下優點:第一,由於第一電極和第二電極採用奈米碳管製備,故,第一電極和第二電極具有優良的導電性,提高了生物感測器的靈敏度。第二,由於第一電極和第二電極中的奈米碳管的尺度較小,且不會影響其導電性,單位面積內可以設置更多的第一電極和第二電極,故,提高了生物感測器的檢測精確度和靈敏度。第三,由於第一電極和第二電極採用奈米碳管製備,故,第一電極和第二電極具有優良的抗腐蝕性,提高了生物感測器的使用壽命。 Compared with the prior art, the biosensor has the following advantages: First, since the first electrode and the second electrode are prepared by using a carbon nanotube, the first electrode and the second electrode have excellent conductivity and improve the biological activity. Sensitivity of the sensor. Second, since the size of the carbon nanotubes in the first electrode and the second electrode is small and does not affect the conductivity, more first electrodes and second electrodes can be disposed per unit area, thereby improving Biosensing detection accuracy and sensitivity. Third, since the first electrode and the second electrode are prepared using a carbon nanotube, the first electrode and the second electrode have excellent corrosion resistance and improve the service life of the biosensor.

10‧‧‧檢測系統 10‧‧‧Detection system

100‧‧‧生物感測器封裝結構 100‧‧‧Biosensor package structure

102‧‧‧樣品供給系統 102‧‧‧Sample supply system

104‧‧‧樣品收集系統 104‧‧‧ Sample Collection System

106‧‧‧信號採集和分析系統 106‧‧‧Signal acquisition and analysis system

110‧‧‧蓋體 110‧‧‧ cover

1102‧‧‧凹槽 1102‧‧‧ Groove

1104‧‧‧進樣通道 1104‧‧‧Injection channel

1106‧‧‧出樣通道 1106‧‧‧Drawing channel

120‧‧‧生物感測器 120‧‧‧Biosensor

1210‧‧‧第一電極 1210‧‧‧First electrode

1212‧‧‧第一電極引線 1212‧‧‧First electrode lead

1214‧‧‧第一奈米碳管 1214‧‧‧First carbon nanotube

1216‧‧‧第一探測尖端 1216‧‧‧First detection tip

1220‧‧‧第二電極 1220‧‧‧second electrode

1222‧‧‧第二電極引線 1222‧‧‧Second electrode lead

1224‧‧‧第二奈米碳管 1224‧‧‧Second carbon nanotube

1226‧‧‧第二探測尖端 1226‧‧‧Second detection tip

1230‧‧‧感應元件 1230‧‧‧Inductive components

1232‧‧‧擔載體 1232‧‧‧ Carrier

1234‧‧‧感應材料 1234‧‧‧Induction materials

130‧‧‧輸入管 130‧‧‧Input tube

140‧‧‧輸出管 140‧‧‧Output tube

150‧‧‧導線 150‧‧‧ wire

160‧‧‧針腳 160‧‧‧ stitches

170‧‧‧檢測室 170‧‧‧Test room

180‧‧‧基底 180‧‧‧Base

1802‧‧‧矽片 1802‧‧‧ Picture

1804‧‧‧二氧化矽層 1804‧‧‧2 bismuth oxide layer

190‧‧‧奈米碳管陣列 190‧‧‧Nano Carbon Tube Array

圖1為本發明實施例提供的生物感測器的第一種結構示意圖。 FIG. 1 is a schematic diagram of a first structure of a biosensor according to an embodiment of the present invention.

圖2為本發明實施例提供的生物感測器的第二種結構示意圖。 FIG. 2 is a schematic diagram of a second structure of a biosensor according to an embodiment of the present invention.

圖3為本發明實施例提供的生物感測器的第三種結構示意圖。 FIG. 3 is a schematic diagram of a third structure of a biosensor according to an embodiment of the present invention.

圖4為本發明實施例提供的生物感測器封裝結構的結構示意圖。 FIG. 4 is a schematic structural diagram of a biosensor package structure according to an embodiment of the present invention.

圖5為本發明實施例提供的檢測系統的結構示意圖。 FIG. 5 is a schematic structural diagram of a detection system according to an embodiment of the present invention.

圖6至圖10為本發明實施例提供的生物感測器的製備方法工藝流程圖。 FIG. 6 to FIG. 10 are process flowcharts of a method for preparing a biosensor according to an embodiment of the present invention.

以下將結合附圖詳細說明本發明實施例提供的生物感測器,其封裝結構及檢測系統。 The biosensor provided by the embodiment of the present invention, the package structure and the detection system thereof will be described in detail below with reference to the accompanying drawings.

請參閱圖1,本發明實施例提供一生物感測器120,其包括一第一電極1210,一第二電極1220以及一感應元件1230。所述第一電極1210和第二電極1220相互間隔地設置於一基底180同一表面,所述感應元件1230設置於所述第一電極1210與第二電極1220之間。 Referring to FIG. 1 , an embodiment of the present invention provides a biosensor 120 including a first electrode 1210 , a second electrode 1220 , and an inductive component 1230 . The first electrode 1210 and the second electrode 1220 are disposed on the same surface of a substrate 180 at intervals. The sensing element 1230 is disposed between the first electrode 1210 and the second electrode 1220.

所述第一電極1210包括至少一第一奈米碳管1214以及一與該第一奈米碳管1214電連接的第一電極引線1212。優選地,所述第一奈米碳管1214為一單根奈米碳管,且每個第一奈米碳管1214一端與所述第一電極引線1212電連接,另一端具有一第一探測尖端1216。所述第一奈米碳管1214可以為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管。所述單壁奈米碳管的直徑為0.5奈米~50奈米,所述雙壁奈米碳管的直徑為1.0奈米~50奈米,所述多壁奈米碳管的直徑為1.5奈米~50奈米。所述第一奈米碳管1214的長度不限,可以根據實際需要選擇。優選地,所述第一奈米碳管1214為金屬性奈米碳管。可以理解,當包括複數個第一奈米碳管1214時,複數個第一奈米碳管1214可以平行設置,且相鄰兩個第一奈米碳管1214之間的距離為1微米~100微米。由於奈米碳管具有較小的直徑,故,單位面積內可以設置更多的第一奈米碳管1214,從而提高了生物感測器120的精確度和靈敏度。本實施例中,所述第一電極1210包括三個平行設置的第一奈米碳管1214,且相鄰兩個第一奈米碳管1214之間的距離為5微米~10微米。所述三個第一奈米 碳管1214遠離第一探測尖端1216的一端分別與第一電極引線1212電連接。所述第一奈米碳管1214的長度為10微米~50微米。 The first electrode 1210 includes at least one first carbon nanotube 1214 and a first electrode lead 1212 electrically connected to the first carbon nanotube 1214. Preferably, the first carbon nanotube 1214 is a single carbon nanotube, and one end of each first carbon nanotube 1214 is electrically connected to the first electrode lead 1212, and the other end has a first detection. Tip 1216. The first carbon nanotube 1214 may be a single-walled carbon nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube has a diameter of 1.5. Nano ~ 50 nm. The length of the first carbon nanotube 1214 is not limited and can be selected according to actual needs. Preferably, the first carbon nanotube 1214 is a metallic carbon nanotube. It can be understood that when a plurality of first carbon nanotubes 1214 are included, the plurality of first carbon nanotubes 1214 can be disposed in parallel, and the distance between adjacent two first carbon nanotubes 1214 is between 1 micrometer and 100. Micron. Since the carbon nanotubes have a smaller diameter, more first carbon nanotubes 1214 can be disposed per unit area, thereby improving the accuracy and sensitivity of the biosensor 120. In this embodiment, the first electrode 1210 includes three first carbon nanotubes 1214 disposed in parallel, and the distance between adjacent two first carbon nanotubes 1214 is 5 micrometers to 10 micrometers. The three first nanometers One end of the carbon tube 1214 away from the first detecting tip 1216 is electrically connected to the first electrode lead 1212, respectively. The first carbon nanotube 1214 has a length of 10 micrometers to 50 micrometers.

所述第一電極引線1212用於將該第一奈米碳管1214與外界電路電連接。所述第一電極引線1212的材料可以為導電漿料、金屬、奈米碳管或氧化銦錫(ITO)等。所述第一電極引線1212的長度,寬度和厚度可以根據實際需要選擇。本實施例中,通過絲網列印法列印導電漿料製備第一電極引線1212。該導電漿料的成分包括金屬粉、低熔點玻璃粉和黏結劑。其中,該金屬粉優選為銀粉,該黏結劑優選為松油醇或乙基纖維素。該導電漿料中,金屬粉的重量百分比為50%~90%,低熔點玻璃粉的重量百分比為2%~10%,黏結劑的重量百分比為8%~40%。所述第一電極引線1212設置於複數個第一奈米碳管1214的同一端並分別與複數個第一奈米碳管1214電連接。 The first electrode lead 1212 is used to electrically connect the first carbon nanotube 1214 to an external circuit. The material of the first electrode lead 1212 may be a conductive paste, a metal, a carbon nanotube or indium tin oxide (ITO) or the like. The length, width and thickness of the first electrode lead 1212 can be selected according to actual needs. In this embodiment, the first electrode lead 1212 is prepared by printing a conductive paste by a screen printing method. The composition of the conductive paste includes metal powder, low melting point glass powder, and a binder. Among them, the metal powder is preferably silver powder, and the binder is preferably terpineol or ethyl cellulose. In the conductive paste, the weight percentage of the metal powder is 50% to 90%, the weight percentage of the low-melting glass powder is 2% to 10%, and the weight percentage of the binder is 8% to 40%. The first electrode lead 1212 is disposed at the same end of the plurality of first carbon nanotubes 1214 and electrically connected to the plurality of first carbon nanotubes 1214, respectively.

所述第二電極1220包括至少一第二奈米碳管1224以及一與該第二奈米碳管1224電連接的第二電極引線1222。優選地,所述第二奈米碳管1224為一單根奈米碳管,且每個第二奈米碳管1224一端與所述第二電極引線1222電連接,另一端具有一第二探測尖端1226。所述第二電極1220的結構與第一電極1210的結構相同。當所述第二電極1220包括複數個第二奈米碳管1224時,該複數個第二奈米碳管1224可以平行設置。而且,所述第二奈米碳管1224與第一奈米碳管1214一一對應設置,且所述第二探測尖端1226與第一探測尖端1216間隔設置。優選地,所述第二探測尖端1226與第一探測尖端1216為第二奈米碳管1224與第一奈米碳管1214之間距離最 小的點。所述第二探測尖端1226與第一探測尖端1216之間的距離小於等於10微米。優選地,所述第二探測尖端1226與第一探測尖端1216之間的距離小於等於100奈米。可以理解,所述第二探測尖端1226與第一探測尖端1216之間的距離小於100奈米可以降低生物感測器120的開啟電流,從而提高生物感測器120的靈敏度。所述第一奈米碳管1214沿第一方向延伸,所述第二奈米碳管1224沿第二方向延伸。所述第二奈米碳管1224與第一奈米碳管1214的位置關係可以如圖1所示的共線設置,也可以如圖2所示的交叉設置,或如圖3所示的垂直設置。此處所謂共線設置即所述第一奈米碳管1214的延伸方向與第二奈米碳管1224的延伸方向相同,且對應設置的第一奈米碳管1214與第二奈米碳管1224位於同一直線上。所謂交叉設置即第一奈米碳管1214的第一延伸方向與第二奈米碳管1224的第二延伸方向之間形成一大於零度且不等於90度的夾角。所謂垂直設置即第一奈米碳管1214的第一延伸方向與第二奈米碳管1224的第二延伸方向之間形成一90度的夾角。 The second electrode 1220 includes at least one second carbon nanotube 1224 and a second electrode lead 1222 electrically connected to the second carbon nanotube 1224. Preferably, the second carbon nanotube 1224 is a single carbon nanotube, and each of the second carbon nanotubes 1224 is electrically connected to the second electrode lead 1222 at one end and has a second detection at the other end. Tip 1226. The structure of the second electrode 1220 is the same as that of the first electrode 1210. When the second electrode 1220 includes a plurality of second carbon nanotubes 1224, the plurality of second carbon nanotubes 1224 may be disposed in parallel. Moreover, the second carbon nanotubes 1224 are disposed in one-to-one correspondence with the first carbon nanotubes 1214, and the second detecting tips 1226 are spaced apart from the first detecting tips 1216. Preferably, the second detecting tip 1226 and the first detecting tip 1216 are the most distant between the second carbon nanotube 1224 and the first carbon nanotube 1214. Small point. The distance between the second probe tip 1226 and the first probe tip 1216 is less than or equal to 10 microns. Preferably, the distance between the second detecting tip 1226 and the first detecting tip 1216 is less than or equal to 100 nm. It can be understood that the distance between the second detecting tip 1226 and the first detecting tip 1216 is less than 100 nm, which can lower the opening current of the biosensor 120, thereby improving the sensitivity of the biosensor 120. The first carbon nanotube 1214 extends in a first direction and the second carbon nanotube 1224 extends in a second direction. The positional relationship between the second carbon nanotube 1224 and the first carbon nanotube 1214 may be collinear as shown in FIG. 1, or may be arranged as shown in FIG. 2, or vertical as shown in FIG. Settings. The collinear arrangement here means that the extending direction of the first carbon nanotube 1214 is the same as the extending direction of the second carbon nanotube 1224, and the corresponding first carbon nanotube 1214 and the second carbon nanotube are disposed correspondingly. 1224 are on the same line. The so-called crossover arrangement forms an angle greater than zero degrees and not equal to 90 degrees between the first extending direction of the first carbon nanotube 1214 and the second extending direction of the second carbon nanotube 1224. The vertical arrangement, that is, the first extending direction of the first carbon nanotube 1214 and the second extending direction of the second carbon nanotube 1224 form an angle of 90 degrees.

本實施例中,所述第二電極1220包括三個平行設置的第二奈米碳管1224,且該三個第二奈米碳管1224遠離第二探測尖端1226的一端分別與第二電極引線1222電連接。所述三個第二奈米碳管1224與三個第一奈米碳管1214一一對應,且共線設置。所述第二探測尖端1226與第一探測尖端1216之間的距離為50奈米。 In this embodiment, the second electrode 1220 includes three second carbon nanotubes 1224 disposed in parallel, and one end of the three second carbon nanotubes 1224 away from the second detecting tip 1226 and the second electrode lead respectively 1222 electrical connection. The three second carbon nanotubes 1224 are in one-to-one correspondence with the three first carbon nanotubes 1214, and are arranged in a line. The distance between the second probe tip 1226 and the first probe tip 1216 is 50 nanometers.

所述感應元件1230將所述第二探測尖端1226與第一探測尖端1216覆蓋,從而將第一電極1210和第二電極1220連接。所述感應元件1230的大小可以根據實際需要選擇。所述感應元件1230包括複數 個擔載體1232以及感應材料1234。 The sensing element 1230 covers the second probe tip 1226 with the first probe tip 1216 to connect the first electrode 1210 and the second electrode 1220. The size of the sensing element 1230 can be selected according to actual needs. The sensing element 1230 includes a plurality A carrier 1232 and an inductive material 1234.

所述擔載體1232可以為奈米碳管、石墨稀、碳纖維、無定形碳或石墨等。所述擔載體1232會於第一電極1210與第二電極1220之間形成導電通路,以連接位於第一電極1210與第二電極1220之間的感應材料1234。所述對應設置的第二奈米碳管1224與第一奈米碳管1214可以被單個或複數個擔載體1232連接。本實施例中,所述擔載體1232為複數個奈米碳管。所述奈米碳管表面帶有功能團,該功能團包括羧基(-COOH)、羥基(-OH)、醛基(-CHO)以及氨基(-NH2)等中的一種或複數種。該功能團可以形成於奈米碳管管壁上。該複數個奈米碳管通過凡得瓦(Van Der Waals)力相互吸引,從而形成一具有特定的形狀奈米碳管結構。所述奈米碳管結構中的複數個奈米碳管均勻分佈,且有序排列或無序排列。該奈米碳管結構中的奈米碳管之間具有大量間隙,從而使該奈米碳管結構具有大量微孔。所述奈米碳管結構可以為奈米碳管膜、奈米碳管線或其組合。 The support 1232 may be a carbon nanotube, graphite thin, carbon fiber, amorphous carbon or graphite or the like. The carrier 1232 forms a conductive path between the first electrode 1210 and the second electrode 1220 to connect the sensing material 1234 between the first electrode 1210 and the second electrode 1220. The correspondingly disposed second carbon nanotubes 1224 and the first carbon nanotubes 1214 may be connected by a single or a plurality of carriers 1232. In this embodiment, the carrier 1232 is a plurality of carbon nanotubes. The surface of the carbon nanotube has a functional group including one or a plurality of carboxyl groups (-COOH), hydroxyl groups (-OH), aldehyde groups (-CHO), and amino groups (-NH 2 ). This functional group can be formed on the wall of the carbon nanotube tube. The plurality of carbon nanotubes are attracted to each other by Van Der Waals forces to form a carbon nanotube structure having a specific shape. The plurality of carbon nanotubes in the carbon nanotube structure are evenly distributed, and are arranged in an ordered or disordered arrangement. There is a large amount of gap between the carbon nanotubes in the carbon nanotube structure, so that the carbon nanotube structure has a large number of micropores. The carbon nanotube structure may be a carbon nanotube membrane, a nanocarbon pipeline, or a combination thereof.

所述感應材料1234可以與被測樣品進行反應,從而引起生物感測器120的電流變化。所述感應材料1234均勻分散於擔載體1232的表面以與擔載體1232形成複合結構。本實施例中,所述感應材料1234吸附於奈米碳管表面。由於奈米碳管具有極大的比表面及,故,該感應元件1230可以吸附大量的感應材料1234。所述感應材料1234可以為氣體、液體或顆粒。所述感應材料1234可以為抗體、抗原、DNA或螢光分子生物。本實施例中,所述感應材料1234為抗體。 The sensing material 1234 can react with the sample to be tested to cause a change in current of the biosensor 120. The sensing material 1234 is uniformly dispersed on the surface of the carrier 1232 to form a composite structure with the carrier 1232. In this embodiment, the sensing material 1234 is adsorbed on the surface of the carbon nanotube. Since the carbon nanotube has a large specific surface area, the sensing element 1230 can adsorb a large amount of the sensing material 1234. The sensing material 1234 can be a gas, a liquid, or a particle. The sensing material 1234 can be an antibody, an antigen, a DNA, or a fluorescent molecular organism. In this embodiment, the sensing material 1234 is an antibody.

本發明提供的生物傳感器具有以下優點:第一,由於第一電極和第二電極採用奈米碳管製備,故,第一電極和第二電極具有優良的導電性,提高了生物感測器的靈敏度。第二,由於第一電極和第二電極中的奈米碳管的尺度較小,單位面積內可以設置更多的第一電極和第二電極,且探測尖端之間的距離小於10微米,故,提高了生物感測器的檢測精確度和靈敏度。第三,由於第一電極和第二電極採用奈米碳管製備,故,第一電極和第二電極具有優良的抗腐蝕性,提高了生物感測器的使用壽命。 The biosensor provided by the invention has the following advantages: First, since the first electrode and the second electrode are prepared by using a carbon nanotube, the first electrode and the second electrode have excellent electrical conductivity, and the biosensor is improved. Sensitivity. Second, since the dimensions of the carbon nanotubes in the first electrode and the second electrode are small, more first electrodes and second electrodes may be disposed in a unit area, and the distance between the probe tips is less than 10 μm. Improves the detection accuracy and sensitivity of biosensors. Third, since the first electrode and the second electrode are prepared using a carbon nanotube, the first electrode and the second electrode have excellent corrosion resistance and improve the service life of the biosensor.

請進一步參閱圖4,本發明實施例進一步提供一生物感測器封裝結構100,其包括一基底180,一蓋體110,以及至少一生物感測器120。 With further reference to FIG. 4 , an embodiment of the present invention further provides a biosensor package structure 100 including a substrate 180 , a cover 110 , and at least one biosensor 120 .

所述基底180與蓋體110貼合且固定,以定義一檢測室170。所述生物感測器120設置於該檢測室170內的基底180表面。所述基底180和/或蓋體110進一步定義一進樣通道1104以及一出樣通道1106。本實施例中,所述基底180為一平面基底。所述蓋體110的一表面形成一長條形的凹槽1102。所述平面基底180將蓋體110的凹槽1102覆蓋以形成一檢測室170。可以理解,所述檢測室170也可以由基底180上的凹槽和平面蓋體110形成。優選地,所述生物感測器封裝結構100包括複數個生物感測器120沿著凹槽1102的長度方向排列設置。所述進樣通道1104和出樣通道1106均形成於蓋體110上。優選地,所述進樣通道1104從凹槽1102的底面開始沿著與凹槽1102的底面垂直的方向延伸,以便於輸入待檢測樣品。所述出樣通道1106從凹槽1102的側面開始沿著與凹槽1102的側面 垂直的方向延伸,以便於輸出檢測後的樣品。 The substrate 180 is attached and fixed to the cover 110 to define a detection chamber 170. The biosensor 120 is disposed on a surface of the substrate 180 within the detection chamber 170. The substrate 180 and/or the cover 110 further define a sample channel 1104 and a sample channel 1106. In this embodiment, the substrate 180 is a planar substrate. A surface of the cover 110 forms an elongated groove 1102. The planar substrate 180 covers the recess 1102 of the cover 110 to form a detection chamber 170. It will be appreciated that the detection chamber 170 may also be formed by a recess in the base 180 and a planar cover 110. Preferably, the biosensor package structure 100 includes a plurality of biosensors 120 arranged along the length of the groove 1102. The sample channel 1104 and the sample channel 1106 are both formed on the cover 110. Preferably, the sampling channel 1104 extends from the bottom surface of the recess 1102 in a direction perpendicular to the bottom surface of the recess 1102 to facilitate input of a sample to be detected. The sampling channel 1106 starts from the side of the groove 1102 along the side with the groove 1102. Extends in a vertical direction to facilitate output of the sample after detection.

所述基底180可以為一硬性基板或柔性基板。所述硬性基板可以為陶瓷基板、玻璃基板、石英基板、矽基板、氧化矽基板、金剛石基板、氧化鋁基板及硬性高分子基板等中的一種或複數種。所述柔性基板可以為高分子基板。所述高分子基板的材料可以為二甲基矽氧烷低聚物(PDMS)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯(PE)、聚醯亞胺(PI)或聚對苯二甲酸乙二醇酯(PET)等聚酯材料,或聚醚碸(PES)、纖維素酯、聚氯乙烯(PVC)、苯並環丁烯(BCB)或丙烯酸樹脂等材料等。可以理解,所述基底180的材料不限於上述材料。所述基底180的大小、形狀與厚度不限,本領域技術人員可以根據實際需要選擇。本實施例中,所述基底180包括一矽片1802以及形成於該矽片1802一表面的二氧化矽層1804。所述矽片1802的厚度為0.5毫米~2毫米。所述二氧化矽層1804的厚度為100微米~500微米。 The substrate 180 can be a rigid substrate or a flexible substrate. The hard substrate may be one or a plurality of ceramic substrates, glass substrates, quartz substrates, tantalum substrates, tantalum oxide substrates, diamond substrates, alumina substrates, and rigid polymer substrates. The flexible substrate may be a polymer substrate. The material of the polymer substrate may be dimethyl methoxy hydride oligomer (PDMS), polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene (PE), polyimine ( Polyester materials such as PI) or polyethylene terephthalate (PET), or polyether oxime (PES), cellulose ester, polyvinyl chloride (PVC), benzocyclobutene (BCB) or acrylic resin Such as materials. It is to be understood that the material of the substrate 180 is not limited to the above materials. The size, shape and thickness of the substrate 180 are not limited, and those skilled in the art can select according to actual needs. In this embodiment, the substrate 180 includes a cymbal sheet 1802 and a ruthenium dioxide layer 1804 formed on a surface of the cymbal sheet 1802. The cymbal sheet 1802 has a thickness of 0.5 mm to 2 mm. The ceria layer 1804 has a thickness of from 100 micrometers to 500 micrometers.

所述蓋體110的材料可以與基底180的材料相同。所述蓋體110的大小和厚度可以根據實際需要選擇。優選地,所述蓋體110為高分子基板,以便於形成凹槽1102、進樣通道1104和出樣通道1106。所述蓋體110與基底180之間可以通過黏結劑固定。本實施例中,所述蓋體110為一二甲基矽氧烷低聚物基板。所述凹槽1102可以通過注模的方法直接形成或通過機械擠壓的方法形成。所述凹槽1102的大小可以根據實際需要選擇。本實施例中,所述凹槽1102為長方形,其長度為5毫米~10毫米,寬度為0.2毫米~1毫米,深度為50微米~100微米。所述進樣通道1104和出樣通道1106分 別形成於凹槽1102沿長度方向的兩端。當被測樣品從進樣通道1104進入,從出樣通道1106流出時,被測樣品需流經所有生物感測器120。所述進樣通道1104和出樣通道1106可以為形成於蓋體110上的通孔,也可以為形成於蓋體110靠近基底180的表面的溝槽與基底180共同定義的通孔。所述進樣通道1104和出樣通道1106的直徑可以為200微米~400微米。 The material of the cover 110 may be the same as the material of the substrate 180. The size and thickness of the cover 110 can be selected according to actual needs. Preferably, the cover 110 is a polymer substrate to facilitate the formation of the recess 1102, the injection channel 1104, and the sample channel 1106. The cover 110 and the substrate 180 may be fixed by an adhesive. In this embodiment, the cover 110 is a monodimethyl siloxane oligomer substrate. The groove 1102 can be formed directly by injection molding or by mechanical extrusion. The size of the groove 1102 can be selected according to actual needs. In this embodiment, the groove 1102 is rectangular, and has a length of 5 mm to 10 mm, a width of 0.2 mm to 1 mm, and a depth of 50 μm to 100 μm. The injection channel 1104 and the sampling channel 1106 Do not form at both ends of the groove 1102 along the length direction. When the sample to be tested enters from the injection channel 1104 and flows out of the sample channel 1106, the sample to be tested needs to flow through all of the biosensors 120. The sample channel 1104 and the sample channel 1106 may be through holes formed in the cover 110, or may be through holes defined by the grooves formed on the surface of the cover 110 near the substrate 180 and the substrate 180. The diameter of the sample channel 1104 and the sample channel 1106 can be from 200 micrometers to 400 micrometers.

所述生物感測器120設置於所述基底180的表面。所述第一電極1210和第二電極1220分別通過導線150與一位於檢測室170外的針腳160電連接,以便於將該生物感測器120與外界電路連接。可以理解,當生物感測器封裝結構100包括複數個生物感測器120時,不同的生物感測器120可以包括不同的感應材料1234,從而使該生物感測器封裝結構100可以用於檢測一個樣品的不同成分。本實施例中,三個生物感測器120並排設置於基底180的表面。 The biosensor 120 is disposed on a surface of the substrate 180. The first electrode 1210 and the second electrode 1220 are electrically connected to a pin 160 outside the detection chamber 170 through a wire 150, respectively, to facilitate connection of the biosensor 120 to an external circuit. It can be understood that when the biosensor package structure 100 includes a plurality of biosensors 120, the different biosensors 120 can include different inductive materials 1234 so that the biosensor package structure 100 can be used for detection. A different component of a sample. In this embodiment, three biosensors 120 are arranged side by side on the surface of the substrate 180.

所述針腳160可以與生物感測器120設置於基底180的同一表面或不同表面。本實施例中,所述針腳160設置於基底180遠離生物感測器120的表面,所述導線150為導電膠,其設置於基底180的通孔內。可以理解,通過將第一電極引線1212和第二電極引線1222延伸至檢測室170外,也可以直接將生物感測器120與外界電路連接。 The stitches 160 may be disposed on the same surface or different surfaces of the substrate 180 as the biosensor 120. In this embodiment, the pin 160 is disposed on the surface of the substrate 180 away from the biosensor 120. The wire 150 is a conductive adhesive disposed in the through hole of the substrate 180. It can be understood that by extending the first electrode lead 1212 and the second electrode lead 1222 outside the detection chamber 170, the biosensor 120 can also be directly connected to the external circuit.

請一併參閱圖5,本發明實施例進一步提供一採用所述生物感測器120的檢測系統10,其包括:一生物感測器封裝結構100、一樣品供給系統102、一樣品收集系統104以及一信號採集和分析系統106。 Referring to FIG. 5 , an embodiment of the present invention further provides a detection system 10 using the biosensor 120, which includes: a biosensor package structure 100, a sample supply system 102, and a sample collection system 104. And a signal acquisition and analysis system 106.

所述樣品供給系統102通過一輸入管130與生物感測器封裝結構100的進樣通道1104連接。所述樣品收集系統104通過一輸出管140與生物感測器封裝結構100的出樣通道1106連接。所述信號採集和分析系統106通過複數個導線(圖未標)與生物感測器封裝結構100的針腳160電連接,從而與生物感測器120電連接。 The sample supply system 102 is coupled to the sample channel 1104 of the biosensor package structure 100 via an input tube 130. The sample collection system 104 is coupled to the sample channel 1106 of the biosensor package structure 100 via an output tube 140. The signal acquisition and analysis system 106 is electrically coupled to the biosensor 120 by a plurality of wires (not shown) that are electrically coupled to the pins 160 of the biosensor package structure 100.

所述樣品供給系統102可以為一微量注射泵。所述樣品收集系統104可以為一玻璃杯。所述信號採集和分析系統106可以為一化學分析儀。所述輸入管130和輸出管140可以為玻璃管或鋼管,其直徑可以為200微米~400微米。 The sample supply system 102 can be a microinjection pump. The sample collection system 104 can be a glass. The signal acquisition and analysis system 106 can be a chemical analyzer. The input tube 130 and the output tube 140 may be glass tubes or steel tubes, and may have a diameter of 200 micrometers to 400 micrometers.

所述檢測系統10,可以用於對液體或氣體的樣品進行檢測。下面以含有抗原的液體待檢測樣品為例說明檢測系統10的工作過程。所述檢測系統10工作時,採用樣品供給系統102將待檢測的液體樣品通過輸入管130從進樣通道1104輸入檢測室170。待檢測的液體樣品於檢測室170內流動,通過出樣通道1106流出,並被樣品收集系統104收集。檢測室170內的液體樣品中的抗原和感應元件1230中的抗體發生反應,引起生物感測器120的效應變化。該效應變化以電信號的方式傳輸到信號採集和分析系統106。通過信號採集和分析系統106對收集到的電信號進行分析,從而得到待檢測的液體樣品中抗原的含量、種類等資訊。 The detection system 10 can be used to detect samples of liquid or gas. The working process of the detection system 10 will be described below by taking a liquid sample to be detected containing an antigen as an example. When the detection system 10 is in operation, the liquid sample to be detected is input from the injection channel 1104 to the detection chamber 170 through the input tube 130 using the sample supply system 102. The liquid sample to be tested flows within the detection chamber 170, exits through the sample channel 1106, and is collected by the sample collection system 104. The antigen in the liquid sample in the detection chamber 170 reacts with the antibody in the sensing element 1230, causing a change in the effect of the biosensor 120. This effect change is transmitted to the signal acquisition and analysis system 106 in the form of an electrical signal. The collected electrical signals are analyzed by the signal acquisition and analysis system 106 to obtain information such as the content and type of the antigen in the liquid sample to be detected.

請參閱圖6,本發明實施例進一步提供一種生物感測器120的製備方法,其可以製備單個或複數個生物感測器120。本實施例以同時製備複數個生物感測器120為例進行說明,其包括以下步驟: Referring to FIG. 6, an embodiment of the present invention further provides a method for preparing a biosensor 120, which can prepare a single or a plurality of biosensors 120. This embodiment is described by taking a plurality of biosensors 120 at the same time, which includes the following steps:

步驟一:提供一基底180,並於該基底180的表面形成一奈米碳管陣列190,該奈米碳管陣列190包括複數個平行於基底180表面且彼此平行的奈米碳管。 Step 1: A substrate 180 is provided, and an array of carbon nanotubes 190 is formed on the surface of the substrate 180. The array of carbon nanotubes 190 includes a plurality of carbon nanotubes parallel to the surface of the substrate 180 and parallel to each other.

本實施例,所述基底180為一矽片。所述奈米碳管陣列190可以通過化學氣相沈積法直接生長於基底180的表面也可以通過轉印等方法將製備好的奈米碳管陣列轉移到基底180的表面。本實施例,先於矽片的一側邊形成一條形單分散性催化劑層,然後通過化學氣相沈積法直接生長奈米碳管陣列190。所述於基底180的表面直接生長奈米碳管陣列190的方法具體請參見申請人於2008年2月29日申請的,於2009年9月1日公開的第200936797號台灣公開專利申請“奈米碳管薄膜結構及其製備方法”。為節省篇幅,僅引用於此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部分。 In this embodiment, the substrate 180 is a cymbal. The carbon nanotube array 190 may be directly grown on the surface of the substrate 180 by chemical vapor deposition or the prepared carbon nanotube array may be transferred to the surface of the substrate 180 by transfer or the like. In this embodiment, a strip-shaped monodisperse catalyst layer is formed on one side of the ruthenium, and then the carbon nanotube array 190 is directly grown by chemical vapor deposition. For the method of directly growing the carbon nanotube array 190 on the surface of the substrate 180, please refer to the Taiwan Patent Application No. 200936797, filed on Sep. 29, 2009, filed on Sep. 1, 2009. Carbon nanotube film structure and preparation method thereof. In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application.

步驟二:製備複數個第一電極引線1212和複數個第二電極引線1222,所述第一電極引線1212和第二電極引線1222一一對應設置,且每對第一電極引線1212和第二電極引線1222之間被至少一個奈米碳管電連接。 Step 2: preparing a plurality of first electrode leads 1212 and a plurality of second electrode leads 1222, the first electrode leads 1212 and the second electrode leads 1222 are disposed one-to-one, and each pair of first electrode leads 1212 and second electrodes The leads 1222 are electrically connected by at least one carbon nanotube.

本實施例中,通過絲網列印法將導電漿料列印於基底180表面製備第一電極引線1212和第二電極引線1222。該導電漿料的成分包括金屬粉、低熔點玻璃粉和黏結劑。其中,該金屬粉優選為銀粉,該黏結劑優選為松油醇或乙基纖維素。該導電漿料中,金屬粉的重量百分比為50%~90%,低熔點玻璃粉的重量百分比為2%~10%,黏結劑的重量百分比為8%~40%。可以理解,所述第一電極引線 1212和第二電極引線1222也可以通過化學氣相沈積、磁控濺射等方法製備。 In this embodiment, the first electrode lead 1212 and the second electrode lead 1222 are prepared by printing a conductive paste on the surface of the substrate 180 by a screen printing method. The composition of the conductive paste includes metal powder, low melting point glass powder, and a binder. Among them, the metal powder is preferably silver powder, and the binder is preferably terpineol or ethyl cellulose. In the conductive paste, the weight percentage of the metal powder is 50% to 90%, the weight percentage of the low-melting glass powder is 2% to 10%, and the weight percentage of the binder is 8% to 40%. It can be understood that the first electrode lead The 1212 and second electrode leads 1222 can also be prepared by chemical vapor deposition, magnetron sputtering, or the like.

步驟三:去除部分奈米碳管陣列190,從而僅保留每對第一電極引線1212和第二電極引線1222之間的奈米碳管。 Step 3: A portion of the nanotube array 190 is removed such that only the carbon nanotubes between each pair of the first electrode lead 1212 and the second electrode lead 1222 are retained.

所述去除部分奈米碳管陣列190的方法可以為鐳射刻蝕。通過電腦程式控制鐳射刻蝕,可以精確去除多餘的奈米碳管,而僅保留每對第一電極引線1212和第二電極引線1222之間的奈米碳管。 The method of removing a portion of the nanotube array 190 may be a laser etch. By controlling the laser etching by a computer program, the excess carbon nanotubes can be accurately removed, leaving only the carbon nanotubes between each pair of first electrode leads 1212 and second electrode leads 1222.

步驟四:切斷每對第一電極引線1212和第二電極引線1222之間的奈米碳管,從而使得每對第一電極引線1212和第二電極引線1222之間形成一一對應且間隔設置的第一奈米碳管1214和第二奈米碳管1224。 Step 4: cutting the carbon nanotubes between each pair of first electrode leads 1212 and second electrode leads 1222 such that each pair of first electrode leads 1212 and second electrode leads 1222 form a one-to-one correspondence and are spaced apart The first carbon nanotube 1214 and the second carbon nanotube 1224.

所述切斷每對第一電極引線1212和第二電極引線1222之間的奈米碳管的方法可以通過鐳射刻蝕、電子束(E-Beam)曝光顯影、光刻、或通電流熔斷的方法實現。當採用通電流熔斷的方法時,可以先通過鐳射掃描的方式使奈米碳管上形成缺陷,然後於第一電極引線1212和第二電極引線1222之間施加電壓,從而使得奈米碳管於缺陷處斷裂。本實施例中,通過電子束曝光顯影同時切斷每對第一電極引線1212和第二電極引線1222之間的奈米碳管,從而形成尺寸為幾十奈米到幾十微米的斷裂。 The method of cutting the carbon nanotube between each pair of the first electrode lead 1212 and the second electrode lead 1222 may be performed by laser etching, electron beam (E-Beam) exposure development, photolithography, or current-crushing. Method implementation. When a method of blowing current is used, a defect can be formed on the carbon nanotube by laser scanning, and then a voltage is applied between the first electrode lead 1212 and the second electrode lead 1222, so that the carbon nanotube is The defect is broken. In the present embodiment, the carbon nanotubes between each pair of the first electrode lead 1212 and the second electrode lead 1222 are simultaneously cut by electron beam exposure development to form a fracture having a size of several tens of nanometers to several tens of micrometers.

步驟五:製備感應元件1230,並通過感應元件1230將每對第一電極引線1212和第二電極引線1222之間的第一奈米碳管1214和第二奈米碳管1224連接。 Step 5: The sensing element 1230 is prepared, and the first carbon nanotube 1214 and the second carbon nanotube 1224 between each pair of the first electrode lead 1212 and the second electrode lead 1222 are connected by the sensing element 1230.

本實施例中,所述感應元件1230的製備方法包括以下步驟:首先,功能化奈米碳管使其表面帶有功能團。 In this embodiment, the method for preparing the sensing element 1230 includes the following steps: First, the functionalized carbon nanotube has a functional group on its surface.

其次,採用感應材料對功能化的奈米碳管進行修飾,得到擔載有感應材料的奈米碳管。 Secondly, the functionalized carbon nanotubes are modified by an inductive material to obtain a carbon nanotube carrying an inductive material.

然後,將擔載有感應材料的奈米碳管分散於有機溶劑或水溶液中得到懸浮液。 Then, a carbon nanotube carrying an induction material is dispersed in an organic solvent or an aqueous solution to obtain a suspension.

最後,將懸浮液滴到對應且間隔設置的第一奈米碳管1214和第二奈米碳管1224之間,並乾燥。 Finally, the suspension is dropped between the corresponding and spaced first carbon nanotubes 1214 and the second carbon nanotubes 1224 and dried.

可以理解,乾燥前還可以採用奈米操縱儀移動擔載有感應材料的奈米碳管,使得擔載有感應材料的奈米碳管與第一奈米碳管1214和第二奈米碳管1224很好的連接。 It can be understood that the carbon nanotube carrying the induction material can be moved by a nanometer to dry before the drying, so that the carbon nanotube carrying the induction material and the first carbon nanotube 1214 and the second carbon nanotube can be used. 1224 is a good connection.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

120‧‧‧生物感測器 120‧‧‧Biosensor

1210‧‧‧第一電極 1210‧‧‧First electrode

1212‧‧‧第一電極引線 1212‧‧‧First electrode lead

1214‧‧‧第一奈米碳管 1214‧‧‧First carbon nanotube

1216‧‧‧第一探測尖端 1216‧‧‧First detection tip

1220‧‧‧第二電極 1220‧‧‧second electrode

1222‧‧‧第二電極引線 1222‧‧‧Second electrode lead

1224‧‧‧第二奈米碳管 1224‧‧‧Second carbon nanotube

1226‧‧‧第二探測尖端 1226‧‧‧Second detection tip

1230‧‧‧感應元件 1230‧‧‧Inductive components

1232‧‧‧擔載體 1232‧‧‧ Carrier

1234‧‧‧感應材料 1234‧‧‧Induction materials

180‧‧‧基底 180‧‧‧Base

Claims (15)

一種生物感測器,其包括:一基底,該基底具有一表面;一第一電極和一第二電極,該第一電極和第二電極相互間隔設置於該基底的表面;以及一感應元件設置於該第一電極和第二電極之間,所述感應元件可與被測樣品進行反應,從而引起生物感測器的電流變化;其改良在於,所述第一電極包括複數個平行設置的第一奈米碳管,所述第二電極包括複數個平行設置的第二奈米碳管,所述第一奈米碳管與第二奈米碳管一一對應間隔設置且通過該感應元件連接。 A biosensor comprising: a substrate having a surface; a first electrode and a second electrode, the first electrode and the second electrode being spaced apart from each other on a surface of the substrate; and an inductive component arrangement Between the first electrode and the second electrode, the sensing element can react with the sample to be tested to cause a current change of the biosensor; the improvement is that the first electrode includes a plurality of parallelly arranged a carbon nanotube, the second electrode comprises a plurality of second carbon nanotubes arranged in parallel, the first carbon nanotubes are arranged in a one-to-one correspondence with the second carbon nanotubes and connected by the sensing element . 如請求項第1項所述的生物感測器,其中,所述第一奈米碳管與第二奈米碳管均為單根奈米碳管。 The biosensor of claim 1, wherein the first carbon nanotube and the second carbon nanotube are both single carbon nanotubes. 如請求項第2項所述的生物感測器,其中,所述第一奈米碳管具有一第一探測尖端,所述第二奈米碳管具有一第二探測尖端,所述第一探測尖端與所述第二探測尖端相對且間隔設置,且第一探測尖端與第二探測尖端之間的距離小於等於10微米。 The biosensor of claim 2, wherein the first carbon nanotube has a first detecting tip, and the second carbon nanotube has a second detecting tip, the first The probe tip is opposite and spaced apart from the second probe tip, and the distance between the first probe tip and the second probe tip is less than or equal to 10 microns. 如請求項第3項所述的生物感測器,其中,所述第一探測尖端與第二探測尖端之間的距離小於等於100奈米。 The biosensor of claim 3, wherein a distance between the first detecting tip and the second detecting tip is less than or equal to 100 nm. 如請求項第1項所述的生物感測器,其中,所述任何相鄰兩個第一奈米碳管之間的距離為5微米~10微米,所述任何相鄰兩個第二奈米碳管之間的距離為5微米~10微米。 The biosensor of claim 1, wherein the distance between any two adjacent first carbon nanotubes is between 5 micrometers and 10 micrometers, and any adjacent two second nanometers. The distance between the carbon tubes is 5 microns to 10 microns. 如請求項第1項所述的生物感測器,其中,所述第一奈米碳管的延伸方向與第二奈米碳管的延伸方向相同,且對應設置的第一奈米碳管與第二奈米碳管位於同一直線上。 The biosensor of claim 1, wherein the first carbon nanotube extends in the same direction as the second carbon nanotube, and the corresponding first carbon nanotube is The second carbon nanotubes are on the same line. 如請求項第1項所述的生物感測器,其中,所述第一奈米碳管和第二奈米碳管均為金屬性奈米碳管。 The biosensor of claim 1, wherein the first carbon nanotube and the second carbon nanotube are metallic carbon nanotubes. 如請求項第1項所述的生物感測器,其中,所述感應元件分別與第一電極及第二電極電連接。 The biosensor of claim 1, wherein the sensing elements are electrically connected to the first electrode and the second electrode, respectively. 如請求項第1項所述的生物感測器,其中,所述感應元件包括複數個擔載體以及感應材料,且所述感應材料均勻分散於擔載體的表面;所述擔載體為奈米碳管、碳纖維、無定形碳及石墨中的一種或複數種;所述感應材料為抗體、抗原、DNA或螢光分子生物。 The biosensor of claim 1, wherein the sensing element comprises a plurality of carriers and an inductive material, and the inductive material is uniformly dispersed on a surface of the carrier; the carrier is nanocarbon One or more of a tube, carbon fiber, amorphous carbon, and graphite; the sensing material is an antibody, an antigen, a DNA, or a fluorescent molecular organism. 如請求項第9項所述的生物感測器,其中,所述擔載體為奈米碳管,且所述奈米碳管的表面帶有功能團;該功能團包括羧基、羥基、醛基及氨基中的一種或複數種。 The biosensor according to claim 9, wherein the carrier is a carbon nanotube, and the surface of the carbon nanotube has a functional group; the functional group includes a carboxyl group, a hydroxyl group, and an aldehyde group. And one or more of the amino groups. 如請求項第9項所述的生物感測器,其中,所述擔載體在第一奈米碳管與第二奈米碳管之間形成導電通路。 The biosensor of claim 9, wherein the carrier forms a conductive path between the first carbon nanotube and the second carbon nanotube. 如請求項第9項所述的生物感測器,其中,所述第一電極中複數個第一奈米碳管均與一第一電極引線電連接,所述第二電極中複數個第二奈米碳管均與一第二電極引線電連接。 The biosensor of claim 9, wherein the plurality of first carbon nanotubes in the first electrode are electrically connected to a first electrode lead, and the second electrode is plural in a second The carbon nanotubes are electrically connected to a second electrode lead. 一種生物感測器,其包括:一基底,該基底具有一表面;至少一第一奈米碳管,該至少一第一奈米碳管的一端與一第一電極引線電連接,另一端具有一第一探測尖端; 至少一第二奈米碳管,該至少一第二奈米碳管的一端與一第二電極引線電連接,另一端具有一第二探測尖端,所述第二奈米碳管的第二探測尖端與第一奈米碳管的第一探測尖端相對且間隔設置;以及一感應元件設置於該第一奈米碳管的第一探測尖端和第二奈米碳管的第二探測尖端之間並將該第一奈米碳管與第二奈米碳管連接,所述感應元件可與被測樣品進行反應,從而引起生物感測器的電流變化。 A biosensor includes: a substrate having a surface; at least one first carbon nanotube, one end of the at least one first carbon nanotube is electrically connected to a first electrode lead, and the other end has a first probe tip; At least one second carbon nanotube, one end of the at least one second carbon nanotube is electrically connected to a second electrode lead, and the other end has a second detecting tip, and the second detecting of the second carbon nanotube a tip opposite and spaced apart from the first probe tip of the first carbon nanotube; and an inductive element disposed between the first probe tip of the first carbon nanotube and the second probe tip of the second carbon nanotube The first carbon nanotube is connected to the second carbon nanotube, and the sensing element can react with the sample to be tested to cause a current change of the biosensor. 一種生物感測器封裝結構,其包括:一基底;一蓋體,所述基底與蓋體相對設置,且蓋體與基底之間定義有一空間作為檢測室,該檢測室通過一進樣通道和一出樣通道與外界連通;以及至少一生物感測器設置於檢測室內;其改良在於,所述生物感測器為如請求項第1至13項中任一項所述的生物感測器。 A biosensor package structure includes: a base; a cover opposite to the cover, and a space defined between the cover and the base as a detection chamber, the detection chamber passing through a sample passage and a sampling channel is connected to the outside; and at least one biosensor is disposed in the detection chamber; and the improvement is that the biosensor is the biosensor according to any one of claims 1 to 13. . 一種檢測系統,其包括:一生物感測器封裝結構,該生物感測器封裝結構包括:一基底;一蓋體,所述基底與蓋體相對設置,且蓋體與基底之間定義有一空間作為檢測室,該檢測室通過一進樣通道和一出樣通道與外界連通;以及至少一生物感測器設置於檢測室內;一樣品供給系統,該樣品供給系統通過一輸入管與該進樣通道連 接;一樣品收集系統,該樣品收集系統通過一輸出管與該出樣通道連接;以及一信號採集和分析系統,該信號採集和分析系統通過複數個導線與該生物感測器電連接;其改良在於,所述生物感測器為如請求項第1至13項中任一項所述的生物感測器。 A detection system includes: a biosensor package structure, the biosensor package structure includes: a substrate; a cover body, the substrate is disposed opposite to the cover body, and a space is defined between the cover body and the substrate As a detection chamber, the detection chamber communicates with the outside through a sample injection channel and a sample channel; and at least one biosensor is disposed in the detection chamber; a sample supply system, the sample supply system passes through an input tube and the injection Channel connection a sample collection system connected to the sample channel through an output tube; and a signal acquisition and analysis system electrically coupled to the biosensor through a plurality of wires; The improvement is that the biosensor is the biosensor according to any one of claims 1 to 13.
TW99137285A 2010-10-29 2010-10-29 Biosensor, package structure and detecting system using the same TWI416103B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99137285A TWI416103B (en) 2010-10-29 2010-10-29 Biosensor, package structure and detecting system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99137285A TWI416103B (en) 2010-10-29 2010-10-29 Biosensor, package structure and detecting system using the same

Publications (2)

Publication Number Publication Date
TW201217774A TW201217774A (en) 2012-05-01
TWI416103B true TWI416103B (en) 2013-11-21

Family

ID=46552303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99137285A TWI416103B (en) 2010-10-29 2010-10-29 Biosensor, package structure and detecting system using the same

Country Status (1)

Country Link
TW (1) TWI416103B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030595B (en) * 2017-06-09 2023-09-26 清华大学 Biosensor electrode and biosensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204428A1 (en) * 2005-01-24 2006-09-14 The Regents Of The University Of California Lipid nanotube or nanowire sensor
US20090035469A1 (en) * 2007-08-02 2009-02-05 The Texas A&M University System Dispersion, alignment and deposition of nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204428A1 (en) * 2005-01-24 2006-09-14 The Regents Of The University Of California Lipid nanotube or nanowire sensor
US20090035469A1 (en) * 2007-08-02 2009-02-05 The Texas A&M University System Dispersion, alignment and deposition of nanotubes

Also Published As

Publication number Publication date
TW201217774A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
Minot et al. Carbon nanotube biosensors: The critical role of the reference electrode
Han et al. A label-free electrochemical impedance cytosensor based on specific peptide-fused phage selected from landscape phage library
Chen et al. Electrochemical methods for detection of biomarkers of Chronic Obstructive Pulmonary Disease in serum and saliva
Erdem et al. Single‐walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions
KR101159012B1 (en) Electrode for electrochemical biosensor and biosensor including the same
CN102033089A (en) Biosensor and packaging structure thereof and detection system
Garoz-Ruiz et al. Development of a novel bidimensional spectroelectrochemistry cell using transfer single-walled carbon nanotubes films as optically transparent electrodes
Yeh et al. Nanoelectrodes for biological measurements
WO2015156617A1 (en) Spectroscopy sensor and method for manufacturing same
Tan et al. Impact of adsorption on scanning electrochemical microscopy voltammetry and implications for nanogap measurements
CN1468316A (en) Nanoscale sensor
KR20120039232A (en) Hydrogen gas sensor using carbon nanotube sheet and its fabrication method
Gong et al. Composite nanomaterial thin film-based biosensors
Lee et al. Electrical detection-based analytic biodevice technology
TWI416103B (en) Biosensor, package structure and detecting system using the same
Xu et al. Studies of probe tip materials by atomic force microscopy: a review
Vaseashta et al. Nanostructured and nanoscale devices and sensors
Takeda et al. A pH sensor based on electric properties of nanotubes on a glass substrate
Li et al. Flexible NWs sensors in polymer, metal oxide and semiconductor materials for chemical and biological detection
Zhang et al. Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires
Lin et al. Selective fabrication of nanowires with high aspect ratios using a diffusion mixing reaction system for applications in temperature sensing
Hafaiedh et al. Functionalised multi–walled carbon nanotubes for chemical vapour detection
CN109557160A (en) The method that self assembly has the preparation of the carbon nanotube of nanometer gold bar and carries out biomolecule detection using it
KR20150117198A (en) Sensor for spectroscopic analysis
CN103592344A (en) Carbon nanotube sensor and production method