TWI415194B - Method of fabricating strained silicon transistor - Google Patents

Method of fabricating strained silicon transistor Download PDF

Info

Publication number
TWI415194B
TWI415194B TW97127606A TW97127606A TWI415194B TW I415194 B TWI415194 B TW I415194B TW 97127606 A TW97127606 A TW 97127606A TW 97127606 A TW97127606 A TW 97127606A TW I415194 B TWI415194 B TW I415194B
Authority
TW
Taiwan
Prior art keywords
layer
forming
transistor
transistor region
stress
Prior art date
Application number
TW97127606A
Other languages
Chinese (zh)
Other versions
TW201005832A (en
Inventor
Chao Ching Hsieh
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW97127606A priority Critical patent/TWI415194B/en
Publication of TW201005832A publication Critical patent/TW201005832A/en
Application granted granted Critical
Publication of TWI415194B publication Critical patent/TWI415194B/en

Links

Abstract

A method of fabricating a strained silicon transistor is provided. Amorphous silicon is formed below the transistor region before the transistor is formed. By using the tensile/compressive stressor, amorphous silicon is recrystallized to form a strained silicon layer. In addition, the dopants in the well can be driven in and activated by using the same annealing process with the amorphous silicon recrystallization.

Description

一種製作應變矽電晶體的方法Method for manufacturing strained germanium crystal

本發明係關於一種半導體裝置,特別是關於製作應變矽電晶體的方法。The present invention relates to a semiconductor device, and more particularly to a method of fabricating a strained germanium transistor.

隨著半導體朝向微細化尺寸之發展,電晶體的閘極、源極、汲極的尺寸也隨著特徵尺寸的減小而跟著不斷地縮小。但由於材料先天物理性質的限制,閘極、源極、汲極的尺寸減小會造成電晶體元件中決定電流大小的載子量減少,進而影響電晶體的效能。因此,提升載子遷移率以增加MOS電晶體之速度已成為目前半導體技術領域中之一大課題。As semiconductors move toward miniaturized sizes, the size of the gate, source, and drain of the transistor continues to shrink as the feature size decreases. However, due to the inherent physical properties of the material, the reduction in the size of the gate, source, and drain causes a decrease in the amount of the current-determining carrier in the transistor component, which in turn affects the performance of the transistor. Therefore, increasing the carrier mobility to increase the speed of the MOS transistor has become a major issue in the field of semiconductor technology.

在目前已知的技術中,係有利用在通道中製造機械應力,以提升載子遷移率的方法。例如,在矽基底上磊晶生成一鍺化矽(silicon germanium;SiGe)通道層,以形成一壓縮應變通道(compressive strained channel),可以明顯地增加電洞遷移率。或者在鍺化矽層上磊晶生成一矽通道(silicon channel),以形成一伸張應變通道(tensile strained channel),則可以明顯地增加電子遷移率。Among the currently known techniques, there is a method of manufacturing mechanical stress in a channel to enhance carrier mobility. For example, epitaxial formation of a germanium germanium (SiGe) channel layer on a germanium substrate to form a compressive strained channel can significantly increase hole mobility. Or by epitaxially forming a silicon channel on the germanium telluride layer to form a tensile strained channel, the electron mobility can be significantly increased.

另外,亦有使用選擇性磊晶成長方法,於閘極形成之後,在源極/汲極區域中嵌入摻雜鍺,形成受壓擠的應變矽結構,以增進PMOS的電子遷移率。或在NMOS製程中進行摻雜碳的矽選擇性磊晶嵌入源極/汲極區域中,形成拉伸的應變矽結構,以增進電子遷移率。In addition, a selective epitaxial growth method is also used. After the gate is formed, a doped germanium is embedded in the source/drain region to form a squeezed strained germanium structure to enhance the electron mobility of the PMOS. Alternatively, a carbon-doped germanium-selective epitaxy is embedded in the source/drain region in an NMOS process to form a tensile strain 矽 structure to enhance electron mobility.

又或者另有使用在接觸洞蝕刻停止層(contact etch stop layer,CESL)施加應力,使半導體基底上各電晶體的通道產生伸張或壓縮的應變,而改進載子的遷移率。Alternatively, or in addition, a stress is applied in the contact etch stop layer (CESL) to cause strain of the channels of the transistors on the semiconductor substrate to expand or compress, thereby improving the mobility of the carrier.

然而,隨著金氧MOS電晶體之尺寸不斷朝向微型化發展,對於MOS電晶體之速度需求亦不斷地增加,利用上述習知技術所形成之壓縮應力或伸張應力,已難以達成所需的程度。However, as the size of the gold-oxygen MOS transistor continues to be toward miniaturization, the speed demand for the MOS transistor is also increasing, and it is difficult to achieve the required degree by using the compressive stress or the tensile stress formed by the above-mentioned conventional techniques. .

有鑑於此,申請人提出一種製作應變矽電晶體之方法,以改善上述習知技術的缺點,進而提升MOS電晶體之效能。In view of this, the applicant proposes a method of fabricating a strained germanium crystal to improve the disadvantages of the above-mentioned prior art, thereby improving the performance of the MOS transistor.

本發明提供一種製作應變矽電晶體之方法,首先,提供一基底包含一第一電晶體區、一第二電晶體區以及一絕 緣物位於該第一電晶體區和該第二電晶體區之間,接著,於該第一電晶體區之該基底內形成一第一應變矽層,然後,於該第二電晶體區之該基底內形成一第二應變矽層,之後,於該第一電晶體區形成一第一導電型態的電晶體,最後於該第二電晶體區形成一第二導電型態的電晶體。The present invention provides a method for fabricating a strained germanium crystal. First, a substrate is provided comprising a first transistor region, a second transistor region, and a An edge is located between the first transistor region and the second transistor region, and then a first strained germanium layer is formed in the substrate of the first transistor region, and then, in the second transistor region A second strained layer is formed in the substrate, and then a first conductivity type transistor is formed in the first transistor region, and finally a second conductivity type transistor is formed in the second transistor region.

本發明另提供一種製作應變矽電晶體之方法,首先,提供一基底包含一電晶體區以及一絕緣物位於該電晶體區之外圍,然後,於該電晶體區之該基底內形成一應變矽層,之後於該電晶體區形成一第一導電型態的電晶體。The present invention further provides a method for fabricating a strained germanium crystal. First, a substrate is provided with an oxide region and an insulator is disposed at a periphery of the transistor region, and then a strain is formed in the substrate of the transistor region. a layer, and then forming a first conductivity type of transistor in the transistor region.

本發明又提供一種製作應變矽電晶體之方法,首先提供一基底包含一電晶體區以及一絕緣物位於該電晶體區之外圍,其次於該電晶體區內進行一非晶矽化製程,接著,於該電晶體區內形成一摻雜井,然後形成一應力層覆蓋該電晶體區,之後進行一回火製程,以在該電晶體區之該基底內形成一應變矽層並且活化該摻雜井內之摻質,最後移除該應力層以及於該電晶體區形成一第一導電型態的電晶體。The invention further provides a method for fabricating a strained germanium crystal, firstly providing a substrate comprising a transistor region and an insulator located at a periphery of the transistor region, and secondly performing an amorphous germanium formation process in the transistor region, and then, Forming a doping well in the transistor region, then forming a stress layer covering the transistor region, and then performing a tempering process to form a strained germanium layer in the substrate of the transistor region and activating the doping The dopant in the well finally removes the stress layer and forms a first conductivity type of transistor in the transistor region.

本發明之應變矽電晶體製程其特徵在於利用應力記憶技術(SMT)所形成在電晶體區內的應變矽層之形成時點,係在隔離結構,例如淺溝渠隔離結構,完成之後,而電晶體 還未形成之前。此外,利用本發明之製程,在進行摻雜井離子佈植製程和非晶矽化製程時,可以使用同一個遮罩。再者,本發明之應變矽電晶體製程中,可以在一次回火步驟中同時趨入及活化摻雜井內之摻質並且在基底內形成應變矽層。The strain enthalpy transistor process of the present invention is characterized in that the time at which the strain enthalpy layer formed in the transistor region is formed by the stress memory technique (SMT) is after the isolation structure, such as the shallow trench isolation structure, is completed, and the transistor Before it was formed. In addition, with the process of the present invention, the same mask can be used in the doping well ion implantation process and the amorphous deuteration process. Furthermore, in the strain 矽 transistor process of the present invention, the dopant in the doping well can be simultaneously introduced and activated in a tempering step and a strain enthalpy layer is formed in the substrate.

請參考第1圖至第5圖,第1圖至第5圖為本發明第一較佳實施例之製作應變矽電晶體之製程示意圖。Please refer to FIG. 1 to FIG. 5 . FIG. 1 to FIG. 5 are schematic diagrams showing a process for fabricating a strained germanium crystal according to a first preferred embodiment of the present invention.

如第1圖所示,首先提供一基底10,例如一矽基底或一絕緣層上覆矽(SOI)基底等,而基底10表面定義有一第一電晶體區12與一第二電晶體區14,接著進行淺溝隔離結構(STI)等之隔離製程,例如利用蝕刻步驟先在基底10蝕刻出溝渠,再利用化學沉積製程,沉積一層氧化物填滿溝渠以及覆蓋基底表面,接著再用化學機械研磨將前述的氧化物磨平,以於基底10中形成淺溝隔離結構16等之絕緣物加以隔離電晶體區12、14,其中第一電晶體區12係為用來形成第一導電型態之電晶體的主動區域,也就是說,設置在第一電晶體區12內的電晶體為第一導電型態,例如N型MOS電晶體;第二電晶體區14係為用來形成第二導電型態的電晶體的主動區域,也就是說,設置在第二 電晶體區14內的電晶體為第二導電型態,例如P型MOS電晶體。以下之實施例將以第一電晶體區12上的電晶體為N型,第二電晶體區14上的電晶體為P型來舉例說明。As shown in FIG. 1, a substrate 10 such as a germanium substrate or an insulating layer overlying germanium (SOI) substrate is provided first, and a surface of the substrate 10 defines a first transistor region 12 and a second transistor region 14. Then, an isolation process such as a shallow trench isolation structure (STI) is performed, for example, etching is performed on the substrate 10 by an etching step, and then an oxide deposition process is performed to deposit a layer of oxide to fill the trench and cover the surface of the substrate, followed by chemical mechanical processing. The foregoing oxide is ground to form an insulating layer of the shallow trench isolation structure 16 or the like in the substrate 10 to isolate the transistor regions 12, 14, wherein the first transistor region 12 is used to form the first conductivity type. The active region of the transistor, that is, the transistor disposed in the first transistor region 12 is in a first conductivity type, such as an N-type MOS transistor; and the second transistor region 14 is used to form a second region. The active area of the conductive type of transistor, that is, set in the second The transistor in transistor region 14 is of a second conductivity type, such as a P-type MOS transistor. The following embodiments will be exemplified by the fact that the transistor on the first transistor region 12 is N-type and the transistor on the second transistor region 14 is P-type.

接著進行一非晶矽化製程,例如以一全面性(blanket)單一離子佈植製程,使用氙(xenon;Xe)、氬(argon;Ar)或鍺(germanium;Ge)等離子,全面性地同時佈植第一電晶體區12與第二電晶體區14。其中,進行此單一離子的佈植製程時,所使用之氙離子、氬離子或鍺離子之濃度為大於1E14,其能量為大於10kev。Then an amorphous deuteration process is performed, for example, by a single ion implantation process using a xenon (Xe), argon (argon) or germanium (Ge) plasma. The first transistor region 12 and the second transistor region 14 are implanted. Wherein, when the single ion implantation process is performed, the concentration of cesium ions, argon ions or cesium ions used is greater than 1E14, and the energy thereof is greater than 10 keV.

然後,如第2圖所示,於基底10之第一電晶體區12與第二電晶體區14上分別形成一第一應力層18和一第二應力層20。第一應力層18包含一第一矽氧層22和一第一氮化矽層24,其中第一氮化矽層24具有一伸張應力,且位於第一矽氧層22上,而第一矽氧層22之功用在於作為蝕刻停止層或緩衝層,避免第一氮化矽層24中的應力過大,造成基底10的結構損壞。根據不同的產品要求,第一矽氧層22可選擇性的形成。也就是說,第一應力層18亦可以只包含第一氮化矽層24。同樣的,第二應力層20包含一第四矽氧層26和一第二氮化矽層28,其中第二氮化矽層28具有一壓縮應力。第四矽氧層26之功用亦在於避免第二氮化矽層28中的應力過大,造成基底10的結構損 壞或作為第二氮化矽層28的蝕刻停止層,再者,如同第一矽氧層22,第四矽氧層26也可以選擇性的形成。此外,第一氮化矽層24和第二氮化矽層28的形成方式可以為例如,先在基底10上形成一矽氧層,然後全面形成一具有一伸張應力的第一氮化矽層24,再經由微影、蝕刻步驟,將在第二電晶體區14上的第一氮化矽層24加以去除,由於在去除第一氮化矽層24的過程中會利用前述矽氧層作為蝕刻停止層而蝕刻了第二電晶體區14上的部分矽氧層,因此便形成了第一電晶體區12上的未受蝕刻的第一矽氧層22及第二電晶體區14上受過蝕刻的第二矽氧層。接著,在第一氮化矽層24和第二矽氧層上全面形成一第三矽氧層作為另一蝕刻停止層,然後,形成具有壓縮應力的第二氮化矽層28全面覆蓋在第一氮化矽層24和第二矽氧層上的第三矽氧層,之後,利用微影、蝕刻步驟將在第一氮化矽層24上的第二氮化矽層28移除,而餘留在第二電晶體區14上的第二矽氧層和第三矽氧層,由於皆為相同材料,因此在第2圖上將第二矽氧層和第三矽氧層視做一第四矽氧層26。補充說明的是:在第一氮化矽層24上的第二氮化矽層28也可以不移除,也就是說,不用形成在前述步驟中所述的第三矽氧層,直接在第一氮化矽層24和第二矽氧層上形成第二氮化矽層28即可,而第二氮化矽層28會同時覆蓋第一氮化矽層24和第二矽氧層。再者,第一氮化矽層24的厚度應加以設計使得第一電晶體區12所受到的總 應力為第一氮化矽層24所提供的應力。Then, as shown in FIG. 2, a first stressor layer 18 and a second stressor layer 20 are formed on the first transistor region 12 and the second transistor region 14 of the substrate 10, respectively. The first stressor layer 18 includes a first silicon oxide layer 22 and a first tantalum nitride layer 24, wherein the first tantalum nitride layer 24 has a tensile stress and is located on the first silicon oxide layer 22, and the first germanium layer The function of the oxygen layer 22 is to serve as an etch stop layer or a buffer layer to prevent excessive stress in the first tantalum nitride layer 24, resulting in structural damage of the substrate 10. The first silicon oxide layer 22 can be selectively formed according to different product requirements. That is, the first stressor layer 18 may also include only the first tantalum nitride layer 24. Similarly, the second stressor layer 20 includes a fourth silicon oxide layer 26 and a second tantalum nitride layer 28, wherein the second tantalum nitride layer 28 has a compressive stress. The function of the fourth silicon oxide layer 26 is also to avoid excessive stress in the second tantalum nitride layer 28, resulting in structural damage of the substrate 10. Bad or as an etch stop layer of the second tantalum nitride layer 28, further, like the first silicon oxide layer 22, the fourth silicon oxide layer 26 may also be selectively formed. In addition, the first tantalum nitride layer 24 and the second tantalum nitride layer 28 may be formed by, for example, forming an antimony oxide layer on the substrate 10 and then forming a first tantalum nitride layer having a tensile stress. 24, further removing the first tantalum nitride layer 24 on the second transistor region 14 via a lithography and etching step, since the foregoing silicon oxide layer is utilized as a process for removing the first tantalum nitride layer 24 Etching the stop layer to etch a portion of the germanium oxide layer on the second transistor region 14, thereby forming the unetched first germanium oxide layer 22 and the second transistor region 14 on the first transistor region 12 Etched second silicon oxide layer. Next, a third silicon oxide layer is formed on the first tantalum nitride layer 24 and the second tantalum oxide layer as another etching stop layer, and then the second tantalum nitride layer 28 having compressive stress is formed to be completely covered. a tantalum nitride layer 24 and a third tantalum oxide layer on the second tantalum oxide layer, after which the second tantalum nitride layer 28 on the first tantalum nitride layer 24 is removed by a lithography, etching step, and The second silicon oxide layer and the third silicon oxide layer remaining on the second transistor region 14 are the same material, so the second silicon oxide layer and the third silicon oxide layer are regarded as one in FIG. The fourth oxygen layer 26 is. It is added that the second tantalum nitride layer 28 on the first tantalum nitride layer 24 may not be removed, that is, the third silicon oxide layer described in the foregoing step is not formed, directly in the first The second tantalum nitride layer 28 may be formed on the tantalum nitride layer 24 and the second tantalum oxide layer, and the second tantalum nitride layer 28 covers the first tantalum nitride layer 24 and the second tantalum oxide layer simultaneously. Furthermore, the thickness of the first tantalum nitride layer 24 should be designed such that the total area of the first transistor region 12 is received. The stress is the stress provided by the first tantalum nitride layer 24.

此外,第一矽氧層22和第一氮化矽層24可以在同一個腔室中形成;而第四矽氧層26和第二氮化矽層28可以在同一個腔室中形成,也就是說,可以避免基底由於變換腔室需要離開真空狀態的情形。此外,應力的調整可藉由沉積製程參數的匹配或施以離子佈植、回火、紫外光(UV)等表面處理達成,此皆為熟習該項技藝者與通常知識者所熟知,故不多加以贅述。In addition, the first silicon oxide layer 22 and the first tantalum nitride layer 24 may be formed in the same chamber; and the fourth silicon oxide layer 26 and the second tantalum nitride layer 28 may be formed in the same chamber, That is, it is possible to avoid the situation in which the substrate needs to leave the vacuum state due to the transformation chamber. In addition, the adjustment of the stress can be achieved by matching the deposition process parameters or by surface treatment such as ion implantation, tempering, ultraviolet light (UV), etc., which are familiar to those skilled in the art and those of ordinary knowledge, so Repeat more.

如第3圖所示,進行一回火製程,同時使基底10表層之矽原子依照第一應力層18和第二應力層20所提供的伸張/壓縮方向重新排列,以於第一電晶體區12與第二電晶體區14下方之基底10中,分別形成一第一應變矽層30和一第二應變矽層32。至此完成利用應力記憶技術(stress memorization technique;SMT)在基底10內分別形成一具有伸張應力第一應變矽層30和一具有壓縮應力的第二應變矽層32。接著,移除第一應力層18和第二應力層20並形成圖案化(patterned)之光阻34,曝露出第一電晶體區12和部分的淺溝渠絶緣結構16,接著進行摻雜井離子佈植製程,利用P型摻質在第一電晶體區12內的基底10中形成一P型摻雜井36。As shown in FIG. 3, a tempering process is performed while the germanium atoms in the surface layer of the substrate 10 are rearranged according to the stretching/compression directions provided by the first stress layer 18 and the second stress layer 20 to form the first transistor region. A first strained layer 30 and a second strained layer 32 are formed in the substrate 10 below the second and second transistor regions 14, respectively. Thus, a stress straining technique (SMT) is used to form a first strain enthalpy layer 30 having a tensile stress and a second strain enthalpy layer 32 having a compressive stress, respectively, in the substrate 10. Next, the first stressor layer 18 and the second stressor layer 20 are removed and a patterned photoresist 34 is formed, exposing the first transistor region 12 and a portion of the shallow trench isolation structure 16, followed by doping well ions The implantation process utilizes a P-type dopant to form a P-type doping well 36 in the substrate 10 within the first transistor region 12.

接著,如第4圖所示,移除光阻34後,另形成一圖案化之光阻38以曝露出第二電晶體區14和部分的淺溝渠隔離結構16,接著進行摻雜井離子佈植製程利用N型摻質在第二電晶體區14內的基底10中形成一N型摻雜井40。Next, as shown in FIG. 4, after the photoresist 34 is removed, a patterned photoresist 38 is formed to expose the second transistor region 14 and a portion of the shallow trench isolation structure 16, followed by doping the ion cloth. The implant process utilizes an N-type dopant to form an N-type doped well 40 in the substrate 10 within the second transistor region 14.

如5圖所示,進行一高溫熱製程,例如一回火製程,以趨入及活化P型摻雜井36和N型摻雜井40內之摻質。接著,分別在P型摻雜井36和N型摻雜井40上形成閘極42、44和相對應之N型源極/汲極摻雜區46與P型源極/汲極摻雜區48。至此,本發明之具有應變矽層的CMOS電晶體,如N型電晶體50和P型電晶體52業已完成。As shown in FIG. 5, a high temperature thermal process, such as a tempering process, is performed to entangle and activate the dopants in the P-type doping well 36 and the N-type doping well 40. Next, gates 42, 44 and corresponding N-type source/drain doping regions 46 and P-type source/drain doping regions are formed on P-type well 36 and N-type well 40, respectively. 48. Thus far, the CMOS transistors having the strained germanium layer of the present invention, such as the N-type transistor 50 and the P-type transistor 52, have been completed.

請參考第6圖至第9圖,第6圖至第9圖為本發明第二較佳實施例之製作電晶體之製程示意圖。其中具有相同功能的元件仍沿用與第一較佳實施例相同的符號來表示。Please refer to FIG. 6 to FIG. 9 . FIG. 6 to FIG. 9 are schematic diagrams showing a process for fabricating a transistor according to a second preferred embodiment of the present invention. Elements having the same function are still denoted by the same reference numerals as the first preferred embodiment.

如第6圖所示,首先提供一基底10,其上具有一第一電晶體區12與一第二電晶體區14,接著於基底10中形成淺溝隔離結構(STI)16等之絕緣物加以隔離電晶體區12、14,其中淺溝隔離結構16之製程方式在第一實施例中已有描述,在此不再贅述。此外,第一電晶體區12係為用來形成第一導電型態之電晶體的主動區域,也就是說,設置在第一電晶體區12內的電晶體為第一導電型態,例如N型 MOS電晶體;第二電晶體區14係為用來形成第二導電型態的電晶體,例如P型MOS電晶體。As shown in FIG. 6, first, a substrate 10 having a first transistor region 12 and a second transistor region 14 is provided thereon, and then an insulator such as a shallow trench isolation structure (STI) 16 is formed in the substrate 10. The transistor regions 12, 14 are isolated. The process of the shallow trench isolation structure 16 has been described in the first embodiment and will not be described herein. In addition, the first transistor region 12 is an active region of a transistor for forming a first conductivity type, that is, the transistor disposed in the first transistor region 12 is in a first conductivity type, such as N. type The MOS transistor; the second transistor region 14 is a transistor for forming a second conductivity type, such as a P-type MOS transistor.

接著形成圖案化之光阻34,曝露出第一電晶體區12和部分的淺溝渠隔離結構16,接著進行一第一非晶矽化製程,以離子佈植製程佈植第一電晶體區12,其中離子佈植所使用的離子包含氙離子、氬離子和鍺離子等,然後,繼續以光阻34作為遮罩,進行一第一摻雜井離子佈植製程,例如利用P型摻質以在第一電晶體區12內的基底10中形成一P型摻雜井36。根據本發明之另一較佳實施例,前述之第一非晶矽化製程和第一摻雜井離子佈植製程之製程順序可以交換,例如,先進行第一摻雜井離子佈植製程以形成P型摻雜井36,再進行第一非晶矽化製程,但都以圖案化之光阻34當作遮罩。Then forming a patterned photoresist 34, exposing the first transistor region 12 and a portion of the shallow trench isolation structure 16, and then performing a first amorphous deuteration process to implant the first transistor region 12 by the ion implantation process. The ions used in ion implantation include strontium ions, argon ions, strontium ions, etc., and then, using the photoresist 34 as a mask, a first doping well ion implantation process is performed, for example, using a P-type dopant. A P-type doping well 36 is formed in the substrate 10 in the first transistor region 12. According to another preferred embodiment of the present invention, the processing sequence of the first amorphous germanium forming process and the first doping well ion implantation process may be exchanged, for example, the first doping well ion implantation process is first performed to form The P-type doping well 36 is further subjected to a first amorphous deuteration process, but both are patterned with a photoresist 34 as a mask.

如第7圖所示,移除光阻34,另形成一圖案化之光阻38以曝露出第二電晶體區14和部分的淺溝渠隔離結構16,然後進行第二非晶矽化製程,以離子佈植製程佈植第二電晶體區14。同樣的,離子佈植所使用的離子包含氙離子、氬離子和鍺離子等,而此兩次的非晶矽化製程所使用之氙離子、氬離子或鍺之濃度分別為大於1E14,其能量為大於10Kev。然後,繼續以圖案化之光阻38作為遮罩,進行一第二摻雜井離子佈植製程,例如利用N型摻質在第二 電晶體區14內的基底10中形成一N型摻雜井40。根據本發明之另一較佳實施例,同樣的,前述之第二非晶矽化製程和第二摻進井離子佈植製程之製程順序可以交換,但仍皆以圖案化之光阻38當作遮罩。As shown in FIG. 7, the photoresist 34 is removed, and a patterned photoresist 38 is formed to expose the second transistor region 14 and a portion of the shallow trench isolation structure 16, and then a second amorphous germanium formation process is performed. The ion implantation process implants a second transistor region 14. Similarly, the ions used in ion implantation include strontium ions, argon ions, and strontium ions, and the concentrations of strontium ions, argon ions, or krypton used in the two amorphous crystallization processes are respectively greater than 1E14, and the energy is More than 10Kev. Then, using the patterned photoresist 38 as a mask, a second doping well ion implantation process is performed, for example, using N-type dopants in the second An N-type doping well 40 is formed in the substrate 10 within the transistor region 14. According to another preferred embodiment of the present invention, in the same manner, the processing sequence of the second amorphous germanium forming process and the second doped ion ion implantation process may be exchanged, but still patterned with the photoresist 38 as Mask.

本發明之第二較佳實施例的第6圖至第7圖之步驟若稍加改變,即可變為一第三較佳實施例:首先在光阻34未形成之前,先於第一電晶體區12和第二電晶體區14內全面性進行非晶矽化製程,之後,如第6圖所示,形成光阻34以在第一電晶體區12內進行第一摻雜井離子佈植製程,以形成P型摻雜井36,接著如第7圖所示,移除光阻34,另形成光阻38,在第二電晶體區14內進行第二摻雜井離子佈植製程,以形成N型摻雜井40。而第三較佳實施例的後續步驟則與第二較佳實施例相同。The steps of the sixth to seventh embodiments of the second preferred embodiment of the present invention can be changed to a third preferred embodiment if it is slightly changed: first before the photoresist 34 is formed, before the first Amorphous deuteration process is performed in the crystal region 12 and the second transistor region 14, and then, as shown in FIG. 6, a photoresist 34 is formed to perform ion implantation in the first doping well in the first transistor region 12. The process is to form a P-type doping well 36, and then, as shown in FIG. 7, the photoresist 34 is removed, a photoresist 38 is formed, and a second doping well ion implantation process is performed in the second transistor region 14, To form an N-type doping well 40. The subsequent steps of the third preferred embodiment are the same as those of the second preferred embodiment.

如第8圖所示,於基底10之第一電晶體區12與第二電晶體區14上分別形成一第一應力層18和一第二應力層20。第一應力層18包含一第一矽氧層22和一第一氮化矽層24,其中第一氮化矽層24具有一伸張應力,且位於第一矽氧層22上。根據不同的產品要求,第一矽氧層22選擇性的形成。同樣的,第二應力層20包含一第四矽氧層26和一第二氮化矽層28,其中第二氮化矽層28具有一壓縮應力。再者,如同第一矽氧層22,第四矽氧層26也可 以選擇性的形成。此外,第一矽氧層22、第四矽氧層26、第一氮化矽層24和第二氮化矽層28之形成方式如同第一較佳實施例中所描述,在此不再贅述。As shown in FIG. 8, a first stressor layer 18 and a second stressor layer 20 are formed on the first transistor region 12 and the second transistor region 14 of the substrate 10, respectively. The first stressor layer 18 includes a first silicon oxide layer 22 and a first tantalum nitride layer 24, wherein the first tantalum nitride layer 24 has a tensile stress and is located on the first silicon oxide layer 22. The first silicon oxide layer 22 is selectively formed according to different product requirements. Similarly, the second stressor layer 20 includes a fourth silicon oxide layer 26 and a second tantalum nitride layer 28, wherein the second tantalum nitride layer 28 has a compressive stress. Furthermore, like the first silicon oxide layer 22, the fourth silicon oxide layer 26 can also Formed selectively. In addition, the first oxygen layer 22, the fourth silicon oxide layer 26, the first tantalum nitride layer 24, and the second tantalum nitride layer 28 are formed in the same manner as in the first preferred embodiment, and are not described herein again. .

如9圖所示,進行一高溫熱製程,例如一回火製程,以趨入及活化P型摻雜井36和N型摻雜井40內之摻質,並且同時在第一電晶體區12與第二電晶體區14下方之基底10中,分別形成一第一應變矽層30和一第二應變矽層32。然後,移除第一應力層18與第二應力層20之後,再分別於P型摻雜井36和N型摻雜井40上形成閘極42、44和N型源極/汲極摻雜區46、P型源極/汲極摻雜區48。至此,本發明之具有應變矽層的CMOS電晶體,如N型電晶體50和P型電晶體52已經完成。As shown in FIG. 9, a high temperature thermal process, such as a tempering process, is performed to entangle and activate the dopants in the P-type doping well 36 and the N-type doping well 40, and simultaneously in the first transistor region. A first strained layer 30 and a second strained layer 32 are formed in the substrate 10 below the second and second transistor regions 14, respectively. Then, after removing the first stress layer 18 and the second stress layer 20, the gates 42 and 44 and the N-type source/drain doping are formed on the P-type doping well 36 and the N-type doping well 40, respectively. Region 46, P-type source/drain doping region 48. To this end, the CMOS transistors having the strained germanium layer of the present invention, such as the N-type transistor 50 and the P-type transistor 52, have been completed.

第10a圖繪示的是本發明第一較佳實施例之步驟的流程圖,第10b圖繪示的是本發明第二較佳實施例之步驟流程圖。第10c圖繪示的是本發明第三較佳實施例之步驟流程圖。Figure 10a is a flow chart showing the steps of the first preferred embodiment of the present invention, and Figure 10b is a flow chart showing the steps of the second preferred embodiment of the present invention. Figure 10c is a flow chart showing the steps of the third preferred embodiment of the present invention.

綜合上述說明,以及第10a、10b和10c圖中顯示,本發明之第一實施例、第二實施例和第三實施例的特徵在於非晶矽製程係實施於淺溝渠隔離結構完成之後,及開始製作電晶體之前進行,如此一來,可以在電晶體區的基底上 全面形成應變矽層。With reference to the above description, and the figures 10a, 10b and 10c, the first embodiment, the second embodiment and the third embodiment of the present invention are characterized in that the amorphous germanium process is implemented after the shallow trench isolation structure is completed, and Before starting the fabrication of the transistor, so that it can be on the substrate of the transistor region The strain enthalpy layer is fully formed.

此外,本發明之第二實施例的優點在於在進行第一非晶矽化製程和第一高濃度離子佈植製程時係使用同一個圖案化光阻,而進行第二非晶矽化製程和第二高濃度離子佈植製程時係使用另一相同之圖案化光阻。再者,趨入及活化摻雜井之摻質以及形成第一應變矽層和一第二應變矽層係使用同一個回火製程,並且可在同一個腔室進行,因此不需要離開真空狀態。再者,如第10b圖所示,若將於第一電晶體區內進行非晶矽製程和摻雜井佈植製程之順序交換,且將於第二電晶體區內進行非晶矽製程和進行的摻雜井佈植製程之順序交換,即可變化成本發明之另一應變矽電晶體之製程步驟。In addition, an advantage of the second embodiment of the present invention is that the same amorphous photoresist is used in performing the first amorphous germanium process and the first high-concentration ion implantation process, and the second amorphous germanium process and the second are performed. Another high-density ion implantation process uses another identical patterned photoresist. Furthermore, the doping and activation of the doping well and the formation of the first strained layer and the second strained layer use the same tempering process and can be performed in the same chamber, so there is no need to leave the vacuum state . Furthermore, as shown in FIG. 10b, if the amorphous germanium process and the doping well implant process are sequentially exchanged in the first transistor region, the amorphous germanium process and the second transistor region are performed. The sequential exchange of the doped well implant process can change the process steps of another strained transistor of the invention.

請參考第11圖至第13圖,第11圖至第13圖為本發明第四較佳實施例之製作電晶體之製程示意圖。Please refer to FIG. 11 to FIG. 13 . FIG. 11 to FIG. 13 are schematic diagrams showing a process for fabricating a transistor according to a fourth preferred embodiment of the present invention.

如第11圖所示,首先提供一基底110包含有一電晶體區112,接著於基底110中形成如淺溝隔離結構(STI)116等之絕緣物環繞電晶體區112,淺溝隔離結構(STI)116之形成方式如第一較佳實施例中所描述,在此不再贅述。其中電晶體區112可以用來形成一特定導電型態之電晶體的主動區域,也就是說,設置在電晶體區112內的電晶體可為第一導電型態,例如:P型或N型。As shown in FIG. 11, first, a substrate 110 is provided with an oxide region 112, and then an insulator such as a shallow trench isolation structure (STI) 116 is formed in the substrate 110 to surround the transistor region 112, and the shallow trench isolation structure (STI) The manner of forming 116 is as described in the first preferred embodiment, and details are not described herein again. The transistor region 112 can be used to form an active region of a transistor of a particular conductivity type, that is, the transistor disposed in the transistor region 112 can be of a first conductivity type, such as a P-type or an N-type. .

接著,進行一非晶矽化製程,例如以一全面性單一離子佈植製程,使用氙、氬或鍺離子等,全面性地佈植電晶體區112。其中,進行此單一離子的佈植製程時,所使用之氙離子、氬離子或鍺離子之濃度分別為大於1E14,其能量為大於10Kev。Next, an amorphous deuteration process is performed, for example, in a comprehensive single ion implantation process, using a helium, argon or helium ion, etc., to fully implant the transistor region 112. Wherein, when the single ion implantation process is performed, the concentration of the cesium ion, the argon ion or the strontium ion used is greater than 1E14, and the energy thereof is greater than 10Kev.

如第12圖所示,於基底110之電晶體區112上形成一應力層118,應力層118可包含一矽氧層122和一氮化矽層124。若第一導電型態為N型,則將氮化矽層124調整為具有伸張應力,若第二導電型態為P型,則將氮化矽層124調整為具有壓縮應力,其中應力的調整可藉由沉積製程參數的匹配或施以離子佈植、回火、紫外光(UV)等表面處理達成,此皆為熟習該項技藝者與通常知識者所熟知,故不多加以贅述。根據本發明之另一較佳實施例,應力層118亦可以只包含氮化矽層124,而矽氧層122可以選擇性的形成。再者,矽氧層122和氮化矽層124可以利用同一個腔室中依續沉積形成。As shown in FIG. 12, a stress layer 118 is formed on the transistor region 112 of the substrate 110. The stress layer 118 may include a germanium oxide layer 122 and a tantalum nitride layer 124. If the first conductivity type is N-type, the tantalum nitride layer 124 is adjusted to have a tensile stress, and if the second conductivity type is a P-type, the tantalum nitride layer 124 is adjusted to have a compressive stress, wherein the stress is adjusted. It can be achieved by matching the deposition process parameters or by surface treatment such as ion implantation, tempering, ultraviolet light (UV), etc., which are well known to those skilled in the art and those of ordinary knowledge, and therefore will not be described in detail. According to another preferred embodiment of the present invention, the stressor layer 118 may also include only the tantalum nitride layer 124, and the silicon oxide layer 122 may be selectively formed. Furthermore, the germanium oxide layer 122 and the tantalum nitride layer 124 can be formed by successive deposition in the same chamber.

如第13圖所示,進行一回火製程,同時使矽原子依照應力層118所提供的伸張/壓縮方向重新排列,以於電晶體區112下方之基底110中,形成一應變矽層130。至此完成利用應力記憶技術(SMT)在基底110內形成一應變矽層 130。需要說明的是:若第一導電型態為N型則應變矽層130為伸張應變;若第二導電型態為P型則應變矽層130為壓縮應變。As shown in FIG. 13, a tempering process is performed while the germanium atoms are rearranged in accordance with the stretch/compression direction provided by the stressor layer 118 to form a strained germanium layer 130 in the substrate 110 below the transistor region 112. So far, a strain enthalpy layer is formed in the substrate 110 by using a stress memory technique (SMT). 130. It should be noted that if the first conductivity type is N-type, the strain enthalpy layer 130 is a tensile strain; and if the second conductivity type is a P-type, the strain enthalpy layer 130 is a compressive strain.

然後,於電晶體區112內,接著進行摻進井離子佈植製程,利用N型或P型摻質在電晶體區112內的基底110中形成一摻雜井136。隨後,進行一高溫熱製程,例如一回火製程,以趨入及活化摻雜井136中之摻質。接著,在摻雜井136上形成一閘極142和一源極/汲極摻雜區146。至此,本發明之具有應變矽層的MOS電晶體150業已完成。Then, in the transistor region 112, a well ion implantation process is then performed to form a doping well 136 in the substrate 110 in the transistor region 112 using N-type or P-type dopants. Subsequently, a high temperature thermal process, such as a tempering process, is performed to entangle and activate the dopant in the doping well 136. Next, a gate 142 and a source/drain doping region 146 are formed over the doping well 136. So far, the MOS transistor 150 having the strained germanium layer of the present invention has been completed.

請參考第14圖至第16圖,第14圖至第16圖為本發明第五較佳實施例之製作電晶體之製程示意圖。其中具有相同功能的元件仍沿用與第四較佳實施例相同的符號來表示。Please refer to FIG. 14 to FIG. 16 . FIG. 14 to FIG. 16 are schematic diagrams showing a process for fabricating a transistor according to a fifth preferred embodiment of the present invention. Elements having the same functions are still denoted by the same reference numerals as the fourth preferred embodiment.

如第14圖所示,首先提供一基底110包含有一電晶體區112,接著於基底110中形成如淺溝隔離結構(STI)116等之絕緣物環繞電晶體區112,其中電晶體區112可以用來形成一特定導電型態之電晶體的主動區域,也就是說,設置在電晶體區112內的電晶體為第一導電型態電晶體,例如:PMOS或NMOS。As shown in FIG. 14, first, a substrate 110 is provided with an oxide region 112, and then an insulator such as a shallow trench isolation structure (STI) 116 is formed in the substrate 110 to surround the transistor region 112, wherein the transistor region 112 can be The active region of the transistor used to form a particular conductivity type, that is, the transistor disposed within the transistor region 112 is a first conductivity type transistor, such as a PMOS or NMOS.

然後,形成圖案化之光阻134,於電晶體區112內,接著進行一非晶矽化製程,以離子佈植製程佈植電晶體區112,其中離子佈植所使用的離子包含氙離子、氬離子和鍺離子等,所使用之氙離子、氬離子或鍺離子之濃度分別為大於1E14,其能量為大於10Kev。隨後,繼續以光阻134作為遮罩,進行一摻雜井離子佈植製程,利用摻質在電晶體區112內的基底110中形成一摻雜井136,值得注意的是:若第一導電型態電晶體為NMOS,則高濃度離子佈植所植入的離子為P型;若第二導電型態電晶體為PMOS,則高濃度離子佈植所植入的離子為N型。根據本發明之另一較佳實施例,前述之非晶矽化製程和高濃度離子佈植製程之製程順序可以交換,例如,先進行摻雜井離子佈植製程以形成摻雜井136,再進行非晶矽化製程,但都以圖案化之光阻134當作遮罩。Then, a patterned photoresist 134 is formed in the transistor region 112, followed by an amorphous germanium process to implant the transistor region 112 by ion implantation, wherein the ions used for ion implantation comprise helium ions and argon. The ions, cesium ions, etc., have a concentration of cerium ions, argon ions or cerium ions of greater than 1E14, respectively, and an energy of more than 10 KeV. Subsequently, the doping well ion implantation process is continued with the photoresist 134 as a mask, and a doping well 136 is formed in the substrate 110 in the transistor region 112 by using the dopant, notably: if the first conductive If the type transistor is an NMOS, the ions implanted in the high-concentration ion implantation are P-type; if the second conductivity type transistor is a PMOS, the ions implanted in the high-concentration ion implantation are N-type. According to another preferred embodiment of the present invention, the process sequence of the amorphous dimination process and the high concentration ion implantation process may be exchanged, for example, the doping well ion implantation process is first performed to form the doping well 136, and then The amorphous deuteration process, but with the patterned photoresist 134 as a mask.

本發明之第五較佳實施例的第14圖之步驟若稍加改變,即可變為一第六較佳實施例:首先,在光阻134未形成之前,先於電晶體區112內全面性進行非晶矽化製程,之後,再形成光阻134,以在電晶體區112內進行摻雜井離子佈植製程,以形成摻雜井136。而第六較佳實施例的後續步驟則與第五較佳實施例相同。The step of Fig. 14 of the fifth preferred embodiment of the present invention can be changed to a sixth preferred embodiment if it is slightly changed. First, before the photoresist 134 is formed, it is comprehensive before the transistor region 112. The amorphous germanium forming process is performed, and then a photoresist 134 is formed to perform a doping well ion implantation process in the transistor region 112 to form a doping well 136. The subsequent steps of the sixth preferred embodiment are the same as those of the fifth preferred embodiment.

如第15圖所示,於基底110之電晶體區112上形成一 應力層118,應力層118包含一矽氧層122和一氮化矽層124,若第一導電型態為N型則將氮化矽層124調整為具有伸張應力;若第二導電型態為P型則將氮化矽層124調整為具有壓縮應力。根據本發明之另一較佳實施例,應力層118亦可以只包含氮化矽層124,而矽氧層122可以選擇性的形成。再者,矽氧層122和氮化矽層124可以利用同一個腔室連續沉積形成。As shown in FIG. 15, a transistor region 112 is formed on the substrate 110. The stress layer 118 includes a tantalum layer 122 and a tantalum nitride layer 124. If the first conductivity type is N type, the tantalum nitride layer 124 is adjusted to have a tensile stress; if the second conductivity type is The P-type adjusts the tantalum nitride layer 124 to have a compressive stress. According to another preferred embodiment of the present invention, the stressor layer 118 may also include only the tantalum nitride layer 124, and the silicon oxide layer 122 may be selectively formed. Furthermore, the tantalum layer 122 and the tantalum nitride layer 124 can be formed by continuous deposition using the same chamber.

如第16圖所示,進行一回火製程,使矽原子依照應力層118所提供的伸張/壓縮方向重新排列,以於電晶體區112下方之基底110中,形成一應變矽層130,並同時趨入及活化摻雜井136內之摻質。至此完成利用應力記憶技術在基底110內形成一應變矽層130,然後移除應力層118。需要說明的是:若第一導電型態為N型則應變矽層130為伸張應變;若第二導電型態為P型則應變矽層130為壓縮應變。接著,在摻雜井136上形成一閘極142和一源極/汲極摻雜區146。至此,本發明之具有應變矽層的MOS電晶體150已經完成。As shown in FIG. 16, a tempering process is performed to rearrange the germanium atoms in accordance with the stretching/compression direction provided by the stress layer 118 to form a strained layer 130 in the substrate 110 below the transistor region 112, and At the same time, the dopant in the doping well 136 is infiltrated and activated. So far, a strain enthalpy layer 130 is formed in the substrate 110 by using a stress memory technique, and then the stress layer 118 is removed. It should be noted that if the first conductivity type is N-type, the strain enthalpy layer 130 is a tensile strain; and if the second conductivity type is a P-type, the strain enthalpy layer 130 is a compressive strain. Next, a gate 142 and a source/drain doping region 146 are formed over the doping well 136. So far, the MOS transistor 150 having the strained germanium layer of the present invention has been completed.

第17a圖繪示的是本發明第四較佳實施例之步驟的流程圖,第17b圖繪示的是本發明第五較佳實施例之步驟流程圖,第17c圖繪示的是本發明第六較佳實施例之步驟流程圖。Figure 17a is a flow chart showing the steps of the fourth preferred embodiment of the present invention, Figure 17b is a flow chart showing the steps of the fifth preferred embodiment of the present invention, and Figure 17c is a view of the present invention. A flow chart of the steps of the sixth preferred embodiment.

由第17a圖、第17b、第17c圖以及上述說明可知,本發明之第四實施例、第五實施例和第六實施例的特徵在於非晶矽製程實施於淺溝渠隔離結構完成之後,及開始製作電晶體之前進行,如此一來,可以在電晶體區的基底上全面形成應變矽層。From the 17th, 17b, 17c and the above description, the fourth, fifth and sixth embodiments of the present invention are characterized in that the amorphous germanium process is implemented after the shallow trench isolation structure is completed, and This is done before the fabrication of the transistor, so that a strained layer can be formed over the substrate of the transistor region.

此外,本發明之第五實施例的優點在於在進行非晶矽化製程和高濃度離子佈植製程時係使用同一個圖案化光阻。再者,趨入及活化摻雜井之摻質以及形成應變矽層係使用同一個回火製程,並且可在同一個腔室進行,因此不需要離開真空狀態。並且,如第17b圖所示,若將其中的非晶矽製程和摻雜井佈植製程之順序交換,即可變化成本發明之另一應變矽電晶體之製程步驟。Further, an advantage of the fifth embodiment of the present invention is that the same patterned photoresist is used in performing the amorphous deuteration process and the high concentration ion implantation process. Furthermore, the doping and activation of the doping well and the formation of the strained layer use the same tempering process and can be performed in the same chamber, so there is no need to leave the vacuum state. Moreover, as shown in FIG. 17b, if the order of the amorphous germanium process and the doping well implant process is exchanged, the process steps of another strained transistor of the invention can be changed.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧基底10‧‧‧Base

12‧‧‧第一電晶體區12‧‧‧First transistor area

14‧‧‧第二電晶體區14‧‧‧Second transistor area

16‧‧‧淺溝渠隔離結構16‧‧‧Shallow trench isolation structure

18‧‧‧第一應力層18‧‧‧First stress layer

20‧‧‧第二應力層20‧‧‧Second stress layer

22‧‧‧第一矽氧層22‧‧‧First oxygen layer

24‧‧‧第一氮化矽層24‧‧‧First tantalum layer

26‧‧‧第四矽氧層26‧‧‧ fourth oxygen layer

28‧‧‧第二氮化矽層28‧‧‧Second tantalum layer

30‧‧‧第一應變矽層30‧‧‧First strain layer

32‧‧‧第二應變矽層32‧‧‧Second strain layer

34‧‧‧光阻34‧‧‧Light resistance

36‧‧‧P型摻雜井36‧‧‧P type doping well

38‧‧‧光阻38‧‧‧Light resistance

40‧‧‧N型摻雜井40‧‧‧N type doping well

42‧‧‧閘極42‧‧‧ gate

44‧‧‧閘極44‧‧‧ gate

46‧‧‧N型源極/汲極摻雜區46‧‧‧N type source/drain doping area

48‧‧‧P型源極/汲極摻雜區48‧‧‧P type source/drain doping area

50‧‧‧N型電晶體50‧‧‧N type transistor

52‧‧‧P型電晶體52‧‧‧P type transistor

110‧‧‧基底110‧‧‧Base

112‧‧‧電晶體區112‧‧‧Optocrystalline area

16‧‧‧淺溝渠隔離結構16‧‧‧Shallow trench isolation structure

118‧‧‧第一應力層118‧‧‧First stress layer

122‧‧‧第一矽氧層122‧‧‧First oxygen layer

124‧‧‧第一氮化矽層124‧‧‧First tantalum nitride layer

130‧‧‧第一應變矽層130‧‧‧First strain layer

134‧‧‧光阻134‧‧‧Light resistance

136‧‧‧摻雜井136‧‧‧Doped well

142‧‧‧閘極142‧‧‧ gate

146‧‧‧源極/汲極摻雜區146‧‧‧ source/drain doping

150‧‧‧電晶體150‧‧‧Optoelectronics

第1圖至第5圖為本發明第一較佳實施例之製作電晶體之製程示意圖。1 to 5 are schematic views showing a process for fabricating a transistor according to a first preferred embodiment of the present invention.

第6圖至第9圖為本發明第二較佳實施例之製作電晶體之 製程示意圖。6 to 9 are diagrams showing the fabrication of a transistor according to a second preferred embodiment of the present invention. Process schematic.

第10a圖繪示的是本發明第一較佳實施例之步驟的流程圖。Figure 10a is a flow chart showing the steps of the first preferred embodiment of the present invention.

第10b圖繪示的是本發明第二較佳實施例之步驟流程圖。Figure 10b is a flow chart showing the steps of the second preferred embodiment of the present invention.

第10c圖繪示的是本發明第三較佳實施例之步驟流程圖。Figure 10c is a flow chart showing the steps of the third preferred embodiment of the present invention.

第11圖至第13圖為本發明第四較佳實施例之製作電晶體之製程示意圖。11 to 13 are schematic views showing a process for fabricating a transistor according to a fourth preferred embodiment of the present invention.

第14圖至第16圖為本發明第五較佳實施例之製作電晶體之製程示意圖。14 to 16 are schematic views showing the process of fabricating a transistor according to a fifth preferred embodiment of the present invention.

第17a圖繪示的是本發明第四較佳實施例之步驟的流程圖。Figure 17a is a flow chart showing the steps of a fourth preferred embodiment of the present invention.

第17b圖繪示的是本發明第五較佳實施例之步驟流程圖。Figure 17b is a flow chart showing the steps of the fifth preferred embodiment of the present invention.

第17c圖繪示的是本發明第六較佳實施例之步驟流程圖。Figure 17c is a flow chart showing the steps of the sixth preferred embodiment of the present invention.

10‧‧‧基底10‧‧‧Base

16‧‧‧淺溝隔離結構16‧‧‧Shallow trench isolation structure

36‧‧‧P型摻雜井36‧‧‧P type doping well

40‧‧‧N型摻雜井40‧‧‧N type doping well

42‧‧‧閘極42‧‧‧ gate

44‧‧‧閘極44‧‧‧ gate

46‧‧‧源極/汲極摻雜區46‧‧‧ source/drain doping

48‧‧‧源極/汲極摻雜區48‧‧‧ source/drain doping

50‧‧‧N型電晶體50‧‧‧N type transistor

52‧‧‧P型電晶體52‧‧‧P type transistor

Claims (21)

一種應變矽電晶體的製作方法,包含有:提供一基底,其上具有一第一電晶體區、一第二電晶體區以及一絕緣物位於該第一電晶體區和該第二電晶體區之間;於該第一電晶體區之該基底內形成一第一應變矽層;於該第二電晶體區之該基底內形成一第二應變矽層,其中形成該第一應變矽層和該第二應變矽層之步驟包含:形成一第一應力層覆蓋該第一電晶體區;形成一第二應力層覆蓋該第二電晶體區,該第一應力層和該第二應力層的應力分別為一伸張應力和一壓縮應力其中之一者,且彼此不同;於該第一應變矽層上形成一第一導電型態的電晶體;以及於該第二應變矽層上形成一第二導電型態的電晶體。 A method for fabricating a strained germanium crystal, comprising: providing a substrate having a first transistor region, a second transistor region, and an insulator in the first transistor region and the second transistor region Forming a first strain 矽 layer in the substrate of the first transistor region; forming a second strain 矽 layer in the substrate of the second transistor region, wherein the first strain 矽 layer is formed and The step of forming the second strain layer includes: forming a first stress layer covering the first transistor region; forming a second stress layer covering the second transistor region, the first stress layer and the second stress layer The stress is one of a tensile stress and a compressive stress, respectively, and is different from each other; forming a first conductive type of transistor on the first strained layer; and forming a first layer on the second strained layer A two-conducting type of transistor. 如申請專利範圍第1項中所述的製作方法,其中該第一導電型態為N型,該第二導電型態為P型。 The manufacturing method as described in claim 1, wherein the first conductivity type is an N type, and the second conductivity type is a P type. 如申請專利範圍第2項中所述的製作方法,其中形成該第一應變矽層和該第二應變矽層之步驟另包含:在形成該第一應力層和該第二應力層之前,於該第一電晶體區及該第二電晶體區內進行一非晶矽化製程; 進行一第一回火製程,同時於該第一電晶體區與該第二電晶體區之該基底內分別形成該第一應變矽層與該第二應變矽層;以及移除該第一應力層和該第二應力層。 The manufacturing method as described in claim 2, wherein the forming the first strained layer and the second strained layer further comprises: before forming the first stress layer and the second stress layer, Performing an amorphous deuteration process in the first transistor region and the second transistor region; Performing a first tempering process, respectively forming the first strained layer and the second strained layer in the substrate of the first transistor region and the second transistor region; and removing the first stress a layer and the second stressor layer. 如申請專利範圍第3項中所述的製作方法,在移除該第一應力層和該第二應力層之後,形成該等電晶體之前,另包含:於該第一電晶體區內形成一第一摻雜井;於該第二電晶體區內形成一第二摻雜井;以及進行一第二回火製程,以活化該第一摻雜井和該第二摻雜井內之摻質。 The manufacturing method described in claim 3, after the first stress layer and the second stress layer are removed, before the forming the transistor, further comprising: forming a region in the first transistor region a first doping well; forming a second doping well in the second transistor region; and performing a second tempering process to activate dopants in the first doping well and the second doping well . 如申請專利範圍第1項中所述的製作方法,其中該第一應力層和該第二應力層分別包含氮化矽。 The manufacturing method as described in claim 1, wherein the first stress layer and the second stress layer respectively comprise tantalum nitride. 如申請專利範圍第1項中所述的製作方法,其中該第一應力層和該第二應力層包含一下層為矽氧層,上層為氮化矽層之結構。 The manufacturing method as described in claim 1, wherein the first stress layer and the second stress layer comprise a structure in which a lower layer is a germanium oxide layer and an upper layer is a tantalum nitride layer. 如申請專利範圍第1項中所述的製作方法,其中該第一應力層具有一伸張應力,且該第二應力層具有一壓縮應力。 The manufacturing method as described in claim 1, wherein the first stress layer has a tensile stress and the second stress layer has a compressive stress. 如申請專利範圍第3項中所述的製作方法,其中該非晶矽化製程為離子佈植製程,且該離子佈植製程包含植入氙離子、氬離子或鍺離子。 The manufacturing method as described in claim 3, wherein the amorphous deuteration process is an ion implantation process, and the ion implantation process comprises implanting cerium ions, argon ions or cerium ions. 如申請專利範圍第2項中所述的製作方法,其中形成該第一應變矽層和該第二應變矽層之步驟另包含:於該第一電晶體區內形成一第一摻雜井;於該第一電晶體區內進行一第一非晶矽化製程;於該第二電晶體區內形成一第二摻雜井;於該第二電晶體區內進行一第二非晶矽化製程;在該等摻雜井和該等非晶矽化製程之後,形成該第一應力層和該第二應力層;進行一回火製程,以形成該第一應變矽層和該第二應變矽層,並且趨入及活化該第一摻雜井和該第二摻雜井內之摻質;以及移除該第一應力層和該第二應力層。 The manufacturing method as described in claim 2, wherein the forming the first strained layer and the second strained layer further comprises: forming a first doping well in the first transistor region; Performing a first amorphous deuteration process in the first transistor region; forming a second doping well in the second transistor region; and performing a second amorphous deuteration process in the second transistor region; Forming the first stress layer and the second stress layer after the doping wells and the amorphous deuteration processes; performing a tempering process to form the first strain relief layer and the second strain relief layer, And advancing and activating the dopants in the first doping well and the second doping well; and removing the first stressor layer and the second stressor layer. 如申請專利範圍第9項中所述的製作方法,其中該等非晶矽化製程,係實施於該等摻雜井形成之後。 The manufacturing method as described in claim 9, wherein the amorphous deuteration process is performed after the formation of the doped wells. 如申請專利範圍第9項中所述的製作方法,其中該等摻雜井,係形成於該等非晶矽化製程之後。 The manufacturing method as described in claim 9, wherein the doping wells are formed after the amorphous deuteration process. 如申請專利範圍第9項中所述的製作方法,其中該第一非晶矽化製程和該第二非晶矽化製程分別包含使用氙離子、氬離子或鍺離子之離子佈植製程。 The manufacturing method as described in claim 9, wherein the first amorphous deuteration process and the second amorphous deuteration process respectively comprise an ion implantation process using helium ions, argon ions or helium ions. 一種電晶體的製作方法,包含有:提供一基底包含一電晶體區以及一絕緣物環繞於該電晶體區;於該電晶體區之該基底內形成一應變矽層,其中形成該應變矽層之步驟包含:於該電晶體區內進行一非晶矽化製程;於該非晶矽化製程之後,形成一應力層覆蓋該電晶體區;以及移除該應力層;以及於該應變矽層上形成一電晶體。 A method for fabricating a transistor, comprising: providing a substrate comprising a transistor region and an insulator surrounding the transistor region; forming a strained germanium layer in the substrate of the transistor region, wherein the strained germanium layer is formed The step of: performing an amorphous germanium forming process in the transistor region; forming a stress layer covering the transistor region after the amorphous germanium forming process; and removing the stress layer; and forming a layer on the strained germanium layer Transistor. 如申請專利範圍第13項中所述的製作方法,其中形成該應變矽層之步驟另包含:在該非晶矽化製程之後,移除該應力層之前,進行一第一回火製程,於該電晶體區之該基底內形成該應變矽層。 The manufacturing method as described in claim 13, wherein the step of forming the strained layer further comprises: performing a first tempering process after removing the stress layer after the amorphous deuteration process, The strained layer is formed in the substrate of the crystal region. 如申請專利範圍第14項中所述的製作方法,在移除該應力層之後與形成該電晶體之前,另包含:於該電晶體區內形成一摻雜井;以及 進行一第二回火製程,以活化該摻雜井內之摻質。 The manufacturing method as described in claim 14, after removing the stress layer and before forming the transistor, further comprising: forming a doping well in the transistor region; A second tempering process is performed to activate the dopant in the doped well. 如申請專利範圍第13項中所述的製作方法,其中該應力層包含氮化矽或矽氧層。 The manufacturing method as described in claim 13, wherein the stress layer comprises a tantalum nitride layer or a tantalum oxide layer. 如申請專利範圍第13項中所述的製作方法,其中該電晶體為N型電晶體,且該應力層具有一伸張應力。 The manufacturing method as described in claim 13, wherein the transistor is an N-type transistor, and the stress layer has a tensile stress. 如申請專利範圍第13項中所述的製作方法,其中該電晶體為P型電晶體,且該應力層具有一壓縮應力。 The manufacturing method as described in claim 13, wherein the transistor is a P-type transistor, and the stress layer has a compressive stress. 如申請專利範圍第13項中所述的製作方法,其中形成該應變矽層之步驟另包含,在形成該應力層之前:於該電晶體區內形成一摻雜井;以及進行一回火製程,以形成該應變矽層並且活化該摻雜井內之摻質。 The manufacturing method as described in claim 13, wherein the step of forming the strained layer further comprises: forming a doping well in the transistor region before forming the stress layer; and performing a tempering process Forming the strained layer and activating the dopant in the doped well. 如申請專利範圍第19項中所述的製作方法,其中該非晶矽化製程係實施於該摻雜井形成之後。 The manufacturing method as described in claim 19, wherein the amorphous deuteration process is performed after the doping well is formed. 如申請專利範圍第19項中所述的製作方法,其中該非晶矽化製程係實施於該摻雜井形成之前。 The fabrication method as recited in claim 19, wherein the amorphous deuteration process is performed prior to formation of the doped well.
TW97127606A 2008-07-21 2008-07-21 Method of fabricating strained silicon transistor TWI415194B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97127606A TWI415194B (en) 2008-07-21 2008-07-21 Method of fabricating strained silicon transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97127606A TWI415194B (en) 2008-07-21 2008-07-21 Method of fabricating strained silicon transistor

Publications (2)

Publication Number Publication Date
TW201005832A TW201005832A (en) 2010-02-01
TWI415194B true TWI415194B (en) 2013-11-11

Family

ID=44826452

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97127606A TWI415194B (en) 2008-07-21 2008-07-21 Method of fabricating strained silicon transistor

Country Status (1)

Country Link
TW (1) TWI415194B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508139B (en) * 2011-08-17 2015-11-11 United Microelectronics Corp Method of forming semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081382A1 (en) * 2006-09-28 2008-04-03 Chung-Heng Yang Method for reducing layout-dependent variations in semiconductor devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081382A1 (en) * 2006-09-28 2008-04-03 Chung-Heng Yang Method for reducing layout-dependent variations in semiconductor devices

Also Published As

Publication number Publication date
TW201005832A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
KR101063360B1 (en) Increasing CMOS transistor performance by inducing strain in gates and channels
TWI446453B (en) Stressed field effect transistor and methods for its fabrication
US9502530B2 (en) Method of manufacturing semiconductor devices
US8288825B2 (en) Formation of raised source/drain structures in NFET with embedded SiGe in PFET
JP5795735B2 (en) Transistor with buried Si / Ge material with reduced offset to channel region
JP5795260B2 (en) Transistor with embedded strain-inducing material having a step-shaped structure
TWI387009B (en) Technique for reducing crystal defects in strained transistors by tilted preamorphization
US7413961B2 (en) Method of fabricating a transistor structure
KR101811796B1 (en) Semiconductor devices including source/drain regions with abrupt junction profiles and methods of fabricating the same
JP5195747B2 (en) Manufacturing method of semiconductor device
JP5559639B2 (en) Semiconductor device and manufacturing method thereof
WO2007027473A2 (en) Technique for forming recessed strained drain/source in nmos and pmos transistors
US7888194B2 (en) Method of fabricating semiconductor device
US8450171B2 (en) Strained semiconductor device and method of making same
JP2006165480A (en) Semiconductor device
US9331174B2 (en) Method for improving device performance using epitaxially grown silicon carbon (SiC) or silicon-germanium (SiGe)
JP2008098396A (en) Semiconductor device and its manufacturing method
US7951662B2 (en) Method of fabricating strained silicon transistor
US20120231591A1 (en) Methods for fabricating cmos integrated circuits having metal silicide contacts
KR101131418B1 (en) Semiconductor device and method of manufacturing the same
TWI415194B (en) Method of fabricating strained silicon transistor
CN101383326A (en) Mos transistor and fabrication method thereof
US8642435B2 (en) Performing treatment on stressors
US11444195B2 (en) Method for fabricating semiconductor device with asymmetric strained source/drain structure
JP2005209980A (en) Semiconductor device and method for manufacturing the same