TWI411815B - A design method and system for computational optical imaging - Google Patents

A design method and system for computational optical imaging Download PDF

Info

Publication number
TWI411815B
TWI411815B TW97128452A TW97128452A TWI411815B TW I411815 B TWI411815 B TW I411815B TW 97128452 A TW97128452 A TW 97128452A TW 97128452 A TW97128452 A TW 97128452A TW I411815 B TWI411815 B TW I411815B
Authority
TW
Taiwan
Prior art keywords
optical
point spread
spread function
module
digital
Prior art date
Application number
TW97128452A
Other languages
Chinese (zh)
Other versions
TW201000953A (en
Inventor
Hsin Yueh Sung
Chir Wei Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US12/491,557 priority Critical patent/US8331712B2/en
Publication of TW201000953A publication Critical patent/TW201000953A/en
Application granted granted Critical
Publication of TWI411815B publication Critical patent/TWI411815B/en

Links

Landscapes

  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

The invention discloses a digital optical imaging system, comprising at least an optical module and an image recovery module, and the design method comprises a step of setting re-set target, a design step of optical module, and a design step of image recovery module, wherein optimized criterion is carried out by using the similarity and fuzzy minimum value of point spread function produced by the optical module and the similarity and fuzzy minimum value of point spread function outputted by the image recovery module, and the design step of optical module and the design step of image recovery module are carried out individually or sequentially, and simultaneously the design of the optical imaging system is carried out by means of a computer software product.

Description

數位光學成像之設計方法與系統Digital optical imaging design method and system

本發明係有關於一種數位光學成像之設計方法與系統,特別是指一種將光學模組以及影像處理模組加以個別設計及模組化的系統與方法。The present invention relates to a digital optical imaging design method and system, and more particularly to a system and method for individually designing and modularizing an optical module and an image processing module.

在光學產業中雖然類似於傳統產業,但卻具有較高的毛利率;再者,光學產業在製造過程以及參數控制等,必須高度依賴技術人員的經驗累積,方能將光學產品製作的盡善盡美,因此,相較於資訊產品,光學產品通常具有較長的開發期。Although it is similar to traditional industries in the optical industry, it has a high gross profit margin; in addition, the optical industry must rely heavily on the experience of technicians in the manufacturing process and parameter control to make the optical products perfect. Therefore, optical products usually have a longer development period than information products.

目前採用整合光學模組與影像還原模組之混合式數位光學成像系統1,如圖1所示,係表示習知之混合式數位光學成像系統的設計流程圖,其設計方法係使用前級光學模組1A以及後級影像還原模組1B,且必須依序地進行設計,意即後級影像還原模組1B必須在前級光學模組1A產生一點擴散函數(point spread function,PSF) P之後,再依據前及光學模組所產生的點擴散函數PSF以輸出影像矩陣IB進行設計,若是未達到設計者標準而要進行最佳化者,再重新回到前級光學模組1A,以重複上述步驟進行設計。At present, a hybrid digital optical imaging system 1 using an integrated optical module and an image restoration module, as shown in FIG. 1, is a flow chart showing the design of a conventional hybrid digital optical imaging system. The design method uses a pre-stage optical mode. The group 1A and the post-image restoration module 1B must be designed in sequence, that is, the post-image restoration module 1B must generate a point spread function (PSF) P after the pre-stage optical module 1A. Then, according to the point spread function PSF generated by the front and the optical module, the output image matrix IB is designed. If it is not optimized by the designer standard, then it is returned to the front optical module 1A to repeat the above. The steps are designed.

後級影像還原模組(例如還原濾波器)必須依據前級光學模組(例如鏡頭架構)的結果才能進行設計,意即若要設計後級影像還原模組,必須先完成前級光學模組的設 計,否則後級影像還原模組即無所依據、無所比較。The post-image restoration module (such as the reduction filter) must be designed according to the results of the pre-stage optical module (such as the lens architecture), that is, to design the post-image restoration module, the pre-stage optical module must be completed. Design Count, otherwise the post-image restoration module has no basis and no comparison.

而類似如此的結構,可參考在美國公開專利號US20050197809,其係揭露一種用以最佳化光學及數位影像設計的系統與方法,其用以判斷數位光學影像系統如何的規則,係根據一最終值而加以估計。一般而言,此一最終值係參考影像與還原影像的均方差(mean square error,MSE)。For such a structure, reference is made to U.S. Patent No. US20050197809, which discloses a system and method for optimizing optical and digital image design, which is used to determine the rules of the digital optical imaging system. Estimated by value. In general, this final value is the mean square error (MSE) of the reference image and the restored image.

另外,在美國公開專利號US20070239417,係揭露一種用以設計相機的方法,相機係包括用以在一電子影像感測器上形成一模糊影像的若干物鏡組件,以及用以形成復原上述模糊影像(de-blurred image)的虛擬鏡片(virtual lens)。虛擬鏡片的功用係與數位濾波器(即前述的還原濾波器)相同。此一方法包括定義物鏡組件的設計,以及決定數位濾波器的係數。一輸入影像係依序經由物鏡組件的設計以及數位濾波器係數的決定等過程,以便產生相機模擬操作的輸出影像。此一輸出影像的顯示係由相機的設計者所估算出來的。在真實的物鏡組件的設計限制,係藉由虛擬鏡片的使用而放寬,猶如光學設計系統具有一額外的光學元件合併在設計中,以達到像差校正(aberration correction)的目的。In addition, in US Patent No. US20070239417, a method for designing a camera includes a plurality of objective lens assemblies for forming a blurred image on an electronic image sensor, and for reconstructing the blurred image ( De-blurred image) of a virtual lens. The function of the virtual lens is the same as that of the digital filter (ie, the aforementioned reduction filter). This method includes defining the design of the objective lens assembly and determining the coefficients of the digital filter. An input image is sequentially processed through the design of the objective lens assembly and the determination of the digital filter coefficients to generate an output image of the camera simulation operation. The display of this output image is estimated by the camera designer. The design constraints of the real objective lens assembly are relaxed by the use of virtual lenses, as if the optical design system had an additional optical component incorporated into the design for the purpose of aberration correction.

而上述習知的技術係可能產生下列問題或困難:1.成像的光學模組與影像處理模組,僅能整合一起進行設計;2.對前級光學模組並無特別有效且快速的設計方法;3.影像計算費時,且最佳化的速度極慢; 4.不易達到客觀的影像評價;5.前級光學模組與後級影像還原模組得分工不明。The above-mentioned techniques may cause the following problems or difficulties: 1. The optical module and the image processing module of the imaging can only be integrated and designed; 2. There is no particularly effective and rapid design for the pre-stage optical module. Method; 3. Image calculation is time consuming, and the speed of optimization is extremely slow; 4. It is difficult to achieve objective image evaluation; 5. The scores of the pre-stage optical module and the post-stage image restoration module are unknown.

所以,如何能單獨地設計光學模組以及影像處理模組,以減少影像計算的時間,並提升最佳化的速度,是目前在設計影像處理系統上,一個刻不容緩的課題。Therefore, how to design the optical module and the image processing module separately to reduce the time of image calculation and improve the speed of optimization is an urgent task in designing an image processing system.

有鑑於此,本發明係提供一種數位光學成像之設計方法與系統,係將光學模組及數位影像模組個別模組化,並各自加以最佳化,以還原成最佳的數位影像。In view of the above, the present invention provides a method and system for designing digital optical imaging by separately modularizing optical modules and digital image modules and optimizing them to restore optimal digital images.

本發明之一目的,係提供一種數位光學成像之設計方法,包含:一期望目標設定步驟;一光學模組設計步驟;以及一數位影像還原模組設計步驟;其中,該光學模組設計步驟及該數位影像還原模組設計步驟,係同步或依序進行。An object of the present invention is to provide a digital optical imaging design method comprising: a desired target setting step; an optical module design step; and a digital image restoration module design step; wherein the optical module design step and The digital image restoration module design steps are performed synchronously or sequentially.

另外,本發明之另一目的,係提供一種數位光學成像系統,包含:一光學模組,具有一光學臨界值與一光學點擴散函數,以及一影像還原模組,具有一影像還原臨界值與一影像還原點擴散函數;其中,該光學模組係藉由該光學點擴散函數的相似性與該光學臨界值的比較,以進行最佳化,該影像還原模組係藉由該影像還原點擴散函數的相似性與該影像還原臨界值的比較,以進行最佳化。In addition, another object of the present invention is to provide a digital optical imaging system comprising: an optical module having an optical threshold and an optical point spread function, and an image restoration module having an image reduction threshold and An image restoration point spread function; wherein the optical module is optimized by comparing the similarity of the optical point spread function with the optical threshold value, and the image restoration module is used to restore the image point The similarity of the diffusion function is compared to the image reduction threshold for optimization.

較佳者,該光學模組更可藉由該光學點擴散函數的模糊最小值與該光學臨界值的比較,以進行最佳化;該影像還原模組更可藉由該影像還原點擴散函數的模糊最小值與 該影像還原臨界值的比較,以進行最佳化。Preferably, the optical module can be optimized by comparing the fuzzy minimum value of the optical point spread function with the optical threshold value; and the image restoration module can further restore the point spread function by using the image. Fuzzy minimum The image restores a comparison of threshold values for optimization.

因此,本發明藉由上述之結構與方法,可單獨地且個別地設計光學模組與數位影像模組,再進行相互搭配,以達到個別最佳化以及模組化個別匹配的作用,藉以節省成本。Therefore, according to the above structure and method, the optical module and the digital image module can be separately and individually designed, and then matched with each other to achieve individual optimization and modularized individual matching, thereby saving cost.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖示,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。The detailed features and advantages of the present invention are described in detail in the embodiments of the present invention, which are to be understood by those of ordinary skill in the art. The objects and advantages associated with the present invention can be readily understood by those skilled in the art.

茲配合圖式將本發明較佳實施例詳細說明如下。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described in detail below with reference to the drawings.

請參考圖2,係表示本發明數位光學成像之流程方塊圖;本實施例的數位光學成像之系統2,包括一光學模組2A(例如,鏡片組結構)以及影像還原模組2B(例如,還原濾波器);光學模組2A與影像還原模組2B係可個別地運作,或者是同時運作。Please refer to FIG. 2, which is a block diagram showing the digital optical imaging of the present invention. The digital optical imaging system 2 of the present embodiment includes an optical module 2A (for example, a lens group structure) and an image restoration module 2B (for example, The reduction filter); the optical module 2A and the image restoration module 2B can operate individually or simultaneously.

而光學模組2A可產生一光學點擴散函數(point spread function,PSF) PO,影像還原模組可輸出一影像可還原點擴散函數PI;而藉由比較點擴散函數的相似性,或者是光學轉換函數(optical transfer function,OTF)的相似性,即可個別地設計出光學模組2A以及數位影像模組2B。從數學的觀點來看,光學轉換函數係為點擴散函數的傅立葉轉換。因此,光學轉換函數係等同為點擴散函數。 而分析器An進行點擴散函數相似性的比較方法,係包括擬真度(Fidelity)、相關性(Correlation)以及希伯特空間投射角(Hilbert Space Projected Angle),其方程式分列如下: 擬真度: The optical module 2A can generate an optical point spread function (PSF) PO, and the image restoration module can output an image reductible point spread function PI; and by comparing the similarity of the point spread function, or optical The optical module 2A and the digital image module 2B can be individually designed by the similarity of the optical transfer function (OTF). From a mathematical point of view, the optical transfer function is a Fourier transform of the point spread function. Therefore, the optical transfer function is equivalent to a point spread function. The comparison method of the similarity of the point spread function by the analyzer An includes Fidelity, Correlation and Hilbert Space Projected Angle. The equations are as follows: degree:

相關性: Correlation:

希伯特空間投射角: Hibbert space projection angle:

其中,式中的PSF1係光學模組2A或影像還原模組2B先前一次產生或輸出的點擴散函數,PSF2係光學模組2A或影像還原模組2B下一次產生或輸出的點擴散函數;其詳細的設計步驟,將於後詳述。Wherein, the PSF1 optical module 2A or the image restoration module 2B previously generates or outputs a point spread function, and the PSF2 optical module 2A or the image restoration module 2B generates or outputs a point spread function next time; Detailed design steps will be detailed later.

請參考圖3,係表示本發明第一實施方式的方塊圖。本實施方式的系統3包含一光學模組3A及一影像還原模組3B,且本實施方式係說明光學模組3A搭配影像還原模組 3B同時設計,其設計步驟包括:步驟SA2:設計一光學模組3A;以及步驟SA3:設計一數位影像模組3B。Referring to Figure 3, there is shown a block diagram of a first embodiment of the present invention. The system 3 of the present embodiment includes an optical module 3A and an image restoration module 3B, and the embodiment is an optical module 3A with an image restoration module. 3B is designed at the same time, and the design steps include: step SA2: designing an optical module 3A; and step SA3: designing a digital image module 3B.

在設計光學模組與設計數位影像模組之前,設計者可先設定一期望目標(步驟SA1),係包含一預定的點擴散函數PD及所欲達到影像最佳化的臨界值T。Before designing the optical module and designing the digital image module, the designer can first set a desired target (step SA1), which includes a predetermined point spread function PD and a threshold value T for which image optimization is desired.

步驟SA2中,更包括:步驟SB1:從光學模組3A產生一光學點擴散函數PO;步驟SB2:比較光學點擴散函數PO與預定點擴散函數PD的相似性;步驟SB3:當光學點擴散函數PO與預定點擴散函數PD之相似性等於或大於臨界值T時,輸出光學模組的參數;以及步驟SB4:當光學點擴散函數PO與預定點擴散函數PD之相似性小於臨界值T時,將光學模組最佳化並重覆步驟SB1。In step SA2, the method further includes: step SB1: generating an optical point spread function PO from the optical module 3A; step SB2: comparing the similarity between the optical point spread function PO and the predetermined point spread function PD; step SB3: when the optical point spread function When the similarity between PO and the predetermined point spread function PD is equal to or greater than the critical value T, the parameters of the optical module are output; and step SB4: when the similarity between the optical point spread function PO and the predetermined point spread function PD is less than the critical value T, The optical module is optimized and step SB1 is repeated.

步驟SA3中,更包括:步驟SC1:從影像還原模組3B產生一影像還原點擴散函數PI;步驟SC2:比較影像還原點擴散函數PI與預定點擴散函數PD之相似性;步驟SC3:當影像還原點擴散函數PI與預定點擴散函數PD之相似性等於或大於臨界值T時,輸出數位影像還原模組的參數;以 及步驟SC4:當影像還原點擴散函數PI與預定點擴散函數PD之相似性小於臨界值T時,將數位影像還原模組最佳化並重覆步驟SC1。Step SA3 further includes: step SC1: generating an image restoration point spread function PI from the image restoration module 3B; step SC2: comparing the similarity between the image restoration point spread function PI and the predetermined point spread function PD; step SC3: when the image When the similarity between the reduction point spread function PI and the predetermined point spread function PD is equal to or greater than the threshold value T, the parameters of the digital image restoration module are output; And step SC4: when the similarity between the image restoration point spread function PI and the predetermined point spread function PD is less than the threshold value T, the digital image restoration module is optimized and the step SC1 is repeated.

在步驟SB2中,其比較相似性的方式包括前述的擬真度、相關性以及希伯特空間投射角;而除了比較相似性之外,更包括比較光學點擴散函數的模糊最小值(blur minimization) MIO;且在步驟SC2中,更包括比較影像還原點擴散函數的模糊最小值MID。In step SB2, the manner of comparing similarities includes the aforementioned fidelity, correlation, and Hibbert space projection angle; and in addition to comparing similarities, it also includes blur minimization of comparing optical point spread functions (blur minimization) MIO; and in step SC2, further includes comparing the fuzzy minimum MID of the image restoration point spread function.

再者,在步驟SB3中所輸出的參數,包含一折射率、一曲率、一厚度值以及一非球面係數,或其組合;而步驟SC3中所輸出的參數,包含一調控參數、正則化參數(regularization parameter)以及訊號雜訊比參數(signal to noise ratio parameter)。Furthermore, the parameter outputted in step SB3 includes a refractive index, a curvature, a thickness value, and an aspherical coefficient, or a combination thereof; and the parameter outputted in step SC3 includes a control parameter and a regularization parameter. (regularization parameter) and signal to noise ratio parameter.

在步驟SA2及步驟SA3個別地完成之後,更包括一步驟SA4,即輸出一光學影像及一數位還原影像。After the steps SA2 and SA3 are individually completed, a step SA4 is further included, that is, an optical image and a digital restored image are output.

請參考圖4,係表示本發明第二實施方式的方塊圖。本實施方式係說明光學模組3A單獨地且個別地進行最佳化設計;其步驟包括:步驟SF1:從光學模組3A產生至少二光學點擴散函數PO1、PO2;以及步驟SF2:藉由分析光學模組3A產生的至少二光學點擴散函數PO1、PO2,以將光學模組3A進行最佳化。Referring to Figure 4, there is shown a block diagram of a second embodiment of the present invention. This embodiment illustrates that the optical module 3A is individually and individually optimized; the steps include: step SF1: generating at least two optical point spread functions PO1, PO2 from the optical module 3A; and step SF2: by analyzing At least two optical point spread functions PO1, PO2 generated by the optical module 3A are used to optimize the optical module 3A.

於步驟SF1中,可利用不同的物距或不同的位置以產生不同的光學點擴散函數。In step SF1, different object distances or different positions may be utilized to generate different optical point spread functions.

步驟SF2係利用比較光學點擴散函數的相似性是否大於、等於臨界值T(步驟SF3),若是大於、等於一臨界值T者,即輸出光學結果,例如光學參數(步驟SF4),若是小於臨界值T者,即重複步驟SF1(步驟SF5)。Step SF2 uses whether the similarity of the comparative optical point spread function is greater than or equal to the critical value T (step SF3). If it is greater than or equal to a critical value T, the optical result is output, such as an optical parameter (step SF4), if it is less than the critical value. For the value T, step SF1 is repeated (step SF5).

而且在步驟SF2中,其分析的方法包括比較光學點擴散函數的模糊最小值。Also in step SF2, the method of analysis includes comparing the fuzzy minimum of the optical point spread function.

請參考圖5,係表示本發明第三實施方式的方塊圖。本實施方式係說明影像還原模組3B單獨地且個別地進行最佳化設計;其步驟包括:步驟SG1:從影像還原模組3B產生至少二影像還原點擴散函數PI1、PI2;以及步驟SG2:藉由分析影像還原模組3B產生的至少二影像還原點擴散函數PI1、PI2,以將影像還原模組3B進行最佳化。Referring to Figure 5, there is shown a block diagram of a third embodiment of the present invention. In this embodiment, the image restoration module 3B is separately and individually optimized; the steps include: step SG1: generating at least two image restoration point spread functions PI1, PI2 from the image restoration module 3B; and step SG2: The image restoration module 3B is optimized by analyzing at least two image restoration point spread functions PI1, PI2 generated by the image restoration module 3B.

於步驟SG1中,可利用不同雜訊(noise)以產生不同的影像還原點擴散函數。In step SG1, different noises can be utilized to generate different image reduction point spread functions.

步驟SG2係利用比較影像還原點擴散函數的相似性是否大於、等於臨界值T(步驟SG3),若是大於等於一臨界值T者,即輸出影像還原結果,例如調控參數值(步驟SG4),若是小於臨界值T者,即重複步驟SG1(步驟SG5)。Step SG2 is to use the comparison image to restore whether the similarity of the point spread function is greater than or equal to the threshold value T (step SG3). If it is greater than or equal to a threshold value T, the image restoration result is output, for example, the control parameter value (step SG4), if If it is smaller than the critical value T, the step SG1 is repeated (step SG5).

而且在步驟SG2中,更包括比較影像還原點擴散函數的模糊最小值。Moreover, in step SG2, the fuzzy minimum value of the image reduction point spread function is further included.

請參考圖6,係表示本發明第四實施方式的方塊圖。 本實施方式係說明光學模組3A在單獨地且個別地最佳化設計完成之後,再與影像還原模組3B進行搭配;其步驟包括:步驟SD1:由數位影像還原模組3B提供一固定的影像還原點擴散函數PIF;步驟SD2:由光學模組3A產生一光學點擴散函數PO;步驟SD3:比較光學點擴散函數PO與固定的影像還原點擴散函數PIF之相似性;步驟SD4:當光學點擴散函數PO與固定的影像還原點擴散函數PIF之相似性等於或大於一臨界值T時,輸出光學模組3A的參數;以及步驟SD5:當光學點擴散函數PO與固定的影像還原點擴散函數PIF之相似性小於臨界值T時,將光學模組3A最佳化並重覆步驟SD2。Referring to Figure 6, there is shown a block diagram of a fourth embodiment of the present invention. In this embodiment, the optical module 3A is matched with the image restoration module 3B after being individually and individually optimized. The steps include: Step SD1: providing a fixed image by the digital image restoration module 3B. Image restoration point spread function PIF; step SD2: generating an optical point spread function PO by the optical module 3A; step SD3: comparing the similarity between the optical point spread function PO and the fixed image reduction point spread function PIF; step SD4: when optical The parameter of the output optical module 3A when the similarity between the point spread function PO and the fixed image reduction point spread function PIF is equal to or greater than a critical value T; and step SD5: when the optical point spread function PO and the fixed image restore point spread When the similarity of the function PIF is less than the critical value T, the optical module 3A is optimized and the step SD2 is repeated.

於步驟SD3中,除了比較光學點擴散函數與固定的影像還原點擴散函數之相似性之外,更包含比較光學點擴散函數與固定的影像還原點擴散函數之模糊最小值。In step SD3, in addition to comparing the similarity between the optical point spread function and the fixed image reduction point spread function, the fuzzy minimum value of the comparison optical point spread function and the fixed image reduction point spread function is further included.

而在步驟SD4中所輸出的參數,包括一折射率、一曲率、一厚度值及一非球面係數,或者其組合。The parameters output in step SD4 include a refractive index, a curvature, a thickness value, and an aspheric coefficient, or a combination thereof.

請參考圖7,係表示本發明第五實施方式的方塊圖。本實施方式係說明影像還原模組3B在單獨地且個別地最佳化設計完成之後,再與光學模組3A進行搭配;其步驟包括:步驟SE1:由光學模組3A提供一固定的光學點擴散函數POF; 步驟SE2:由數位影像還原模組3B產生一影像還原點擴散函數PI;步驟SE3:比較固定的光學點擴散函數POF與影像還原點擴散函數PI之相似性;步驟SE4:當固定的光學點擴散函數POF與影像還原點擴散函數PI之相似性等於或大於一臨界值T時,輸出數位影像還原模組3B的參數;以及步驟SE5:當固定的光學點擴散函數POF與影像還原點擴散函數PI之相似性小於臨界值時,將數位影像還原模組3B進行最佳化並重覆步驟SE2。Referring to Fig. 7, there is shown a block diagram of a fifth embodiment of the present invention. In this embodiment, the image restoration module 3B is matched with the optical module 3A after being individually and individually optimized. The steps include: Step SE1: providing a fixed optical point by the optical module 3A. Diffusion function POF; Step SE2: an image restoration point spread function PI is generated by the digital image restoration module 3B; step SE3: comparing the similarity between the fixed optical point spread function POF and the image reduction point spread function PI; step SE4: when the fixed optical point spreads When the similarity between the function POF and the image restoration point spread function PI is equal to or greater than a critical value T, the parameters of the digital image restoration module 3B are output; and step SE5: when the fixed optical point spread function POF and the image reduction point spread function PI When the similarity is less than the critical value, the digital image restoration module 3B is optimized and the step SE2 is repeated.

於步驟SE3中,除了比較影像還原點擴散函數與固定的光學點擴散函數之相似性之外,更包含比較影像還原點擴散函數與固定的光學點擴散函數之模糊最小值。In step SE3, in addition to comparing the similarity between the image reduction point spread function and the fixed optical point spread function, the fuzzy minimum value of the comparison image reduction point spread function and the fixed optical point spread function is further included.

而在步驟SE4中所輸出的參數,包括一調控參數、一正則化參數以及一訊號雜訊比參數,或者其組合。The parameters output in step SE4 include a control parameter, a regularization parameter, and a signal noise ratio parameter, or a combination thereof.

請參考圖8,係表示本發明第六實施方式的方塊圖。本實施方式係說明由於光學模組與數位影像模組的模組化,因此而可以進行模組的互換。本實施方式中,包括具有一第一光學模組MO1及一第一影像還原模組MI1,以及具有一第二光學模組MO2及一第二影像還原模組MI2;本實施方式的步驟包括:步驟SK1:選取其中之一光學模組MO1或MO2,並取得所選取的光學模組MO1或MO2之至少一光學 點擴散函數PO;步驟SK2:選取其中之一影像還原模組MI1或MI2,並取得所選取的影像還原模組MI1或MI2之至少一影像還原點擴散函數PI;以及步驟SK3:分別地或依序地分析所選取的光學模組MO1或MO2之光學點擴散函數PO及所選取的影像還原模組MI1或MI2之影像還原點擴散函數PI的相似性,並依一預定之臨界值T,將光學模組MO1或MO1與影像還原模組MI1或MI2組成一數位光學成像系統IS。Referring to Figure 8, there is shown a block diagram of a sixth embodiment of the present invention. In the present embodiment, since the optical module and the digital image module are modularized, the modules can be interchanged. The embodiment includes a first optical module MO1 and a first image restoration module MI1, and a second optical module MO2 and a second image restoration module MI2. The steps of this embodiment include: Step SK1: Select one of the optical modules MO1 or MO2 and obtain at least one optical of the selected optical module MO1 or MO2 a point spread function PO; step SK2: selecting one of the image restoration modules MI1 or MI2, and obtaining at least one image restoration point spread function PI of the selected image restoration module MI1 or MI2; and step SK3: separately or according to Sequentially analyzing the similarity of the optical point spread function PO of the selected optical module MO1 or MO2 and the image restoration point spread function PI of the selected image restoration module MI1 or MI2, and according to a predetermined threshold T, The optical module MO1 or MO1 and the image restoration module MI1 or MI2 form a digital optical imaging system IS.

詳而言之,從第一光學模組產生一第一光學點擴散函數,從第二光學模組產生一第二光學點擴散函數,從第一影像還原模組輸出一第一影像還原點擴散函數,從第二影像還原模組輸出一第二影像還原點擴散函數;再比較第一光學點擴散函數及第一影像還原點擴散函數的相似性,及比較第二光學點擴散函數及第二影像還原點擴散函數的相似性。In detail, a first optical point spread function is generated from the first optical module, a second optical point spread function is generated from the second optical module, and a first image restore point diffusion is output from the first image restoration module. a function, outputting a second image restore point spread function from the second image restoration module; comparing the first optical point spread function with the first image restore point spread function, and comparing the second optical point spread function with the second The similarity of the image reduction point spread function.

因此,當兩者的相似性達到一預定的臨界值時,即表示第一光學模組與第二光學模組的光學性質極近相同,意即第一光學模組與第二光學模組即可相互替換,如此即可達到模組化個別匹配的目的。再者,相較於習知技術,本發明係可單獨以相同規格的光學模組作替換,而不需替換整個系統,以節省成本。Therefore, when the similarity between the two reaches a predetermined threshold, it means that the optical properties of the first optical module and the second optical module are very close, that is, the first optical module and the second optical module are Can be replaced with each other, so that the purpose of modularized individual matching can be achieved. Furthermore, the present invention can be replaced by an optical module of the same specification alone, without replacing the entire system, in order to save costs.

請參考圖9,係表示本發明應用於軟體產品的方塊圖。以本發明所呈現的軟體產品4包括: 步驟SH1:模組化一數位成像系統,包含若干光學變數定義;步驟SH2:藉由點擴散函數的相似性,最佳化數位光學系統的光學性能;以及步驟SH3:經由最佳化及重複步驟SH1,以修正光學變數。Please refer to FIG. 9, which is a block diagram showing the application of the present invention to a software product. The software product 4 presented by the present invention includes: Step SH1: modularizing a digital imaging system comprising a plurality of optical variable definitions; step SH2: optimizing optical performance of the digital optical system by similarity of a point spread function; and step SH3: optimizing and repeating steps SH1 to correct optical variables.

其中,在步驟SH1中,數位成像系統係模組化成一光學模組及一以像還原模組;其中,光學變數包括一光學模組變數及一影像還原模組變數,光學模組的變數包含一光學元件的折射率、一光學元件的尺寸、一光學元件的厚度、波長以及阿貝數(Abbe-number)等;而影像還原的變數包含濾波器參數、正則化參數以及訊號雜訊比參數等。In step SH1, the digital imaging system is modularized into an optical module and an image restoration module; wherein the optical variable includes an optical module variable and an image restoration module variable, and the optical module variable includes The refractive index of an optical component, the size of an optical component, the thickness, wavelength, and Abbe number of an optical component; and the image reduction variables include filter parameters, regularization parameters, and signal noise ratio parameters. Wait.

請同時參考圖10及圖11,係分別表示本發明最佳化前、後,以Doublet軟體模擬結果的曲線圖。而圖12係表示本發明模擬變數的列表圖。以Doublet之成像系統為範例,設計目標為期望在焦平面上,前後各0.2mm之焦深範圍內,其點擴散函數的相似性程度,相對於傳統的光學系統而言,皆能大於0.8。Please refer to FIG. 10 and FIG. 11 simultaneously, which are graphs showing the results of the Doublet software simulation before and after the optimization of the present invention. And Fig. 12 is a list showing a list of simulation variables of the present invention. Taking Doublet's imaging system as an example, the design goal is that the degree of similarity of the point spread function in the focal depth of 0.2 mm before and after the focal plane is expected to be greater than 0.8 with respect to the conventional optical system.

因此,藉由上述之結構與方法,係可達到模組化數位成像系統,即劃分成一光學模組及一影像還原模組,藉由點擴散函數的相似性以及模糊最小值,以獲得客觀性的標準;而光學模組及/或影像還原模組係可單獨地且個別地進行最佳化,再進行相互匹配,以減少影像計算的時間;並可互相替換達到相同性能的光學模組,而不需替換整個系統,以節省成本。Therefore, with the above structure and method, a modular digital imaging system can be realized, that is, divided into an optical module and an image restoration module, and the similarity of the point spread function and the fuzzy minimum value are obtained to obtain objectivity. The optical module and/or the image restoration module can be optimized individually and individually, and then matched to each other to reduce the time of image calculation; and the optical modules that achieve the same performance can be replaced with each other. There is no need to replace the entire system to save costs.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。In summary, the present invention is only described as a preferred embodiment or embodiment of the technical means for solving the problem, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.

1‧‧‧混合式數位光學成像系統1‧‧‧Hybrid digital optical imaging system

1A‧‧‧前級光學模組1A‧‧‧Pre-stage optical module

1B‧‧‧後級影像還原模組1B‧‧‧After image restoration module

2‧‧‧數位光學成像之系統2‧‧‧Digital optical imaging system

2A‧‧‧光學模組2A‧‧‧Optical module

2B‧‧‧影像還原模組2B‧‧‧Image Restoration Module

3‧‧‧數位光學成像之系統3‧‧‧Digital optical imaging system

3A‧‧‧光學模組3A‧‧‧Optical Module

3B‧‧‧影像還原模組3B‧‧‧Image Restoration Module

4‧‧‧軟體產品4‧‧‧Software products

IS‧‧‧數位光學成像系統IS‧‧‧Digital Optical Imaging System

MI1‧‧‧第一影像還原模組MI1‧‧‧First Image Restore Module

MI2‧‧‧第二影像還原模組MI2‧‧‧Second image restoration module

MIO‧‧‧光學點擴散函數的模糊最小值Fuzzy minimum of MIO‧‧‧ optical point spread function

MID‧‧‧影像還原點擴散函數的模糊最小值Fuzzy minimum of MID‧‧‧ image reduction point spread function

MO1‧‧‧第一光學模組MO1‧‧‧ first optical module

MO2‧‧‧第二光學模組MO2‧‧‧Second optical module

PD‧‧‧預定的點擴散函數PD‧‧‧predetermined point spread function

PI‧‧‧影像還原點擴散函數PI‧‧‧ image reduction point spread function

PI1‧‧‧影像還原點擴散函數PI1‧‧‧ image reduction point spread function

PI2‧‧‧影像還原點擴散函數PI2‧‧‧ image reduction point spread function

PIF‧‧‧固定的影像還原點擴散函數PIF‧‧‧Fixed image reduction point spread function

PO‧‧‧光學點擴散函數PO‧‧‧ optical point spread function

PO1‧‧‧光學點擴散函數PO1‧‧‧ optical point spread function

PO2‧‧‧光學點擴散函數PO2‧‧‧ optical point spread function

POF‧‧‧固定的光學點擴散函數POF‧‧‧Fixed optical point spread function

PSF1‧‧‧先前一次產生或輸出的點擴散函數PSF1‧‧‧ Point spread function previously generated or output

PSF2‧‧‧下一次產生或輸出的點擴散函數PSF2‧‧‧Point spread function generated or output next time

T‧‧‧臨界值T‧‧‧ threshold

步驟SA1‧‧‧設定一期望目標Step SA1‧‧‧Set a desired goal

步驟SA2‧‧‧設計一光學模組Step SA2‧‧‧ Design an optical module

步驟SA3‧‧‧設計一數位影像模組Step SA3‧‧‧ Design a digital image module

步驟SA4‧‧‧輸出一光學影像及一數位還原影像Step SA4‧‧‧ output an optical image and a digital restored image

步驟SB1‧‧‧從光學模組產生一光學點擴散函數Step SB1‧‧‧ Generate an optical point spread function from the optical module

步驟SB2‧‧‧比較光學點擴散函數與預定點擴散函數的相似性Step SB2‧‧‧Comparison of the similarity between the optical point spread function and the predetermined point spread function

步驟SB3‧‧‧當光學點擴散函數與預定點擴散函數之相似性等於或大於臨界值時,輸出光學模組的參數Step SB3‧‧‧ When the similarity between the optical point spread function and the predetermined point spread function is equal to or greater than the critical value, the parameters of the output optical module

步驟SB4‧‧‧當光學點擴散函數與預定點擴散函數之相似性小於臨界值時,將光學模組最佳化並重覆步驟Step SB4‧‧‧ When the similarity between the optical point spread function and the predetermined point spread function is less than the critical value, the optical module is optimized and the steps are repeated

步驟SC1‧‧‧從影像還原模組產生一影像還原點擴散函數Step SC1‧‧‧ Generate an image restoration point spread function from the image restoration module

步驟SC2‧‧‧比較影像還原點擴散函數與預定點擴散函數之相似性Step SC2‧‧‧Comparing the similarity between the image reduction point spread function and the predetermined point spread function

步驟SC3‧‧‧當影像還原點擴散函數與預定點擴散函數之相似性等於或大於臨界值時,輸出數位影像還原模組的參數Step SC3‧‧‧ When the similarity between the image reduction point spread function and the predetermined point spread function is equal to or greater than the critical value, the parameters of the digital image restoration module are output

步驟SC4‧‧‧當影像還原點擴散函數與預定點擴散函數之相似性小於臨界值時,將數位影像還原模 組最佳化並重覆步驟SC2Step SC4‧‧‧ When the similarity between the image reduction point spread function and the predetermined point spread function is less than the critical value, the digital image is restored Group optimization and repeat step SC2

步驟SD1‧‧‧由數位影像還原模組提供一固定的影像還原點擴散函數Step SD1‧‧‧ provides a fixed image restoration point spread function by the digital image restoration module

步驟SD2‧‧‧由光學模組產生一光學點擴散函數Step SD2‧‧‧ generates an optical point spread function from the optical module

步驟SD3‧‧‧比較光學點擴散函數與固定的影像還原點擴散函數之相似性Step SD3‧‧‧Comparison of the similarity between the optical point spread function and the fixed image reduction point spread function

步驟SD4‧‧‧當光學點擴散函數與固定的影像還原點擴散函數之相似性等於或大於一臨界值時,輸出光學模組的參數Step SD4‧‧‧ When the similarity between the optical point spread function and the fixed image reduction point spread function is equal to or greater than a critical value, the parameters of the output optical module

步驟SD5‧‧‧當光學點擴散函數與固定的影像還原點擴散函數之相似性小於臨界值時,將光學模組最佳化並重覆步驟SD2Step SD5‧‧‧ When the similarity between the optical point spread function and the fixed image reduction point spread function is less than the critical value, the optical module is optimized and the step SD2 is repeated.

步驟SE1‧‧‧由光學模組提供一固定的光學點擴散函數;Step SE1‧‧‧ provides a fixed optical point spread function by the optical module;

步驟SE2‧‧‧由數位影像還原模組產生一影像還原點擴散函數Step SE2‧‧‧ Generate an image restoration point spread function by the digital image restoration module

步驟SE3‧‧‧比較固定的光學點擴散函數與影像還原點擴散函數之相似性Step SE3‧‧‧Comparison of the similarity between fixed optical point spread function and image reduction point spread function

步驟SE4‧‧‧當固定的光學點擴散函數與影像還原點擴散函數之相似性等於或大於一臨界值時,輸出數位影像還原模組的參數Step SE4‧‧‧ When the similarity between the fixed optical point spread function and the image reduction point spread function is equal to or greater than a critical value, the parameters of the digital image restoration module are output.

步驟SE5‧‧‧當固定的光學點擴散函數與影像還原點擴散函數之相似性小於臨界值時,將數位影像還原模組進行最佳化並重覆步驟SE2Step SE5‧‧‧ When the similarity between the fixed optical point spread function and the image reduction point spread function is less than the critical value, the digital image restoration module is optimized and the step SE2 is repeated.

步驟SF1‧‧‧從光學模組產生至少二光學點擴散函數Step SF1‧‧‧ Generate at least two optical point spread functions from the optical module

步驟SF2‧‧‧藉由分析光學模組產生的至少二光學點擴 散函數,以將光學模組進行最佳化Step SF2‧‧‧ at least two optical point spreads generated by analyzing the optical module Dispersion function to optimize optical modules

步驟SF3‧‧‧比較光學點擴散函數的相似性是否大於、等於臨界值TStep SF3‧‧‧Compared whether the similarity of the optical point spread function is greater than or equal to the critical value T

步驟SF4‧‧‧若是大於、等於一臨界值T者,即輸出光學結果,例如光學參數Step SF4‧‧‧ If it is greater than or equal to a critical value T, the output optical result, such as optical parameters

步驟SF5‧‧‧若是小於臨界值T者,即重複步驟SF1Step SF5‧‧‧ If it is less than the critical value T, repeat step SF1

步驟SG1‧‧‧從影像還原模組產生至少二影像還原點擴散函數Step SG1‧‧‧ Generate at least two image restoration point spread functions from the image restoration module

步驟SG2‧‧‧藉由分析影像還原模組產生的至少二影像還原點擴散函數,以將影像還原模組進行最佳化Step SG2‧‧‧ Optimize the image restoration module by analyzing at least two image restoration point spread functions generated by the image restoration module

步驟SG3‧‧‧比較影像還原點擴散函數的相似性是否大於、等於臨界值TStep SG3‧‧‧Compared whether the similarity of the image reduction point spread function is greater than or equal to the critical value T

步驟SG4‧‧‧若是大於等於一臨界值T者,即輸出影像還原結果,例如調控參數值Step SG4‧‧‧ If it is greater than or equal to a critical value T, output image restoration results, such as control parameter values

步驟SG5‧‧‧若是小於臨界值T者,即重複步驟SG1Step SG5‧‧‧ If it is less than the critical value T, repeat step SG1

步驟SH1‧‧‧模組化一數位成像系統,包含若干光學變數定義Step SH1‧‧‧Modular digital imaging system with several optical variable definitions

步驟SH2‧‧‧藉由點擴散函數的相似性,最佳化數位光學系統的光學性能Step SH2‧‧‧ Optimize the optical performance of the digital optical system by the similarity of the point spread function

步驟SH3‧‧‧經由最佳化及重複步驟SH1,以修正光學變數Step SH3‧‧‧ to optimize the optical variable by optimizing and repeating step SH1

圖1 係表示習知之混合式數位光學成像系統的設計流程圖;圖2 係表示本發明數位光學成像之流程方塊圖;圖3 係表示本發明第一實施方式的方塊圖;圖4 係表示本發明第二實施方式的方塊圖;圖5 係表示本發明第三實施方式的方塊圖;圖6 係表示本發明第四實施方式的方塊圖;圖7 係表示本發明第五實施方式的方塊圖;圖8 係表示本發明第六實施方式的方塊圖;圖9 係表示本發明應用於軟體產品的方塊圖;圖10 係表示最佳化前,以Doublet軟體模擬結果的曲線圖;圖11 係表示最佳化後,以Doublet軟體模擬結果的曲線圖;以及圖12 係表示本發明模擬變數的列表圖。1 is a flow chart showing the design of a conventional hybrid digital optical imaging system; FIG. 2 is a block diagram showing the digital optical imaging of the present invention; FIG. 3 is a block diagram showing a first embodiment of the present invention; FIG. 5 is a block diagram showing a third embodiment of the present invention; FIG. 6 is a block diagram showing a fourth embodiment of the present invention; and FIG. 7 is a block diagram showing a fifth embodiment of the present invention; Figure 8 is a block diagram showing a sixth embodiment of the present invention; Figure 9 is a block diagram showing the application of the present invention to a software product; Figure 10 is a graph showing a simulation result of the Doublet software before optimization; Figure 11 A graph showing the results of the Doublet software simulation after optimization; and FIG. 12 is a list of the simulation variables of the present invention.

3‧‧‧數位光學成像之系統3‧‧‧Digital optical imaging system

3A‧‧‧光學模組3A‧‧‧Optical Module

3B‧‧‧影像還原模組3B‧‧‧Image Restoration Module

PD‧‧‧預定的點擴散函數PD‧‧‧predetermined point spread function

PI‧‧‧影像還原點擴散函數PI‧‧‧ image reduction point spread function

PO‧‧‧光學點擴散函數PO‧‧‧ optical point spread function

T‧‧‧臨界值T‧‧‧ threshold

步驟SA1‧‧‧設定一期望目標Step SA1‧‧‧Set a desired goal

步驟SA2‧‧‧設計一光學模組Step SA2‧‧‧ Design an optical module

步驟SA3‧‧‧設計一數位影像模組Step SA3‧‧‧ Design a digital image module

步驟SA4‧‧‧輸出一光學影像及一數位還原影像Step SA4‧‧‧ output an optical image and a digital restored image

步驟SB1‧‧‧從光學模組產生一光學點擴散函數Step SB1‧‧‧ Generate an optical point spread function from the optical module

步驟SB2‧‧‧比較光學點擴散函數與預定點擴散函數的相似性Step SB2‧‧‧Comparison of the similarity between the optical point spread function and the predetermined point spread function

步驟SB3‧‧‧當光學點擴散函數與預定點擴散函數之相似性等於或大於臨界值時,輸出光學模組的參數Step SB3‧‧‧ When the similarity between the optical point spread function and the predetermined point spread function is equal to or greater than the critical value, the parameters of the output optical module

步驟SB4‧‧‧當光學點擴散函數與預定點擴散函數之相似性小於臨界值時,將光學模組最佳化並重覆步驟Step SB4‧‧‧ When the similarity between the optical point spread function and the predetermined point spread function is less than the critical value, the optical module is optimized and the steps are repeated

步驟SC1‧‧‧從影像還原模組產生一影像還原點擴散函數Step SC1‧‧‧ Generate an image restoration point spread function from the image restoration module

步驟SC2‧‧‧比較影像還原點擴散函數與預定點擴散函數之 相似性Step SC2‧‧‧Compared image reduction point spread function with predetermined point spread function Similarity

步驟SC3‧‧‧當影像還原點擴散函數與預定點擴散函數之相似性等於或大於臨界值時,輸出數位影像還原模組的參數Step SC3‧‧‧ When the similarity between the image reduction point spread function and the predetermined point spread function is equal to or greater than the critical value, the parameters of the digital image restoration module are output

步驟SC4‧‧‧當影像還原點擴散函數與預定點擴散函數之相似性小於臨界值時,將數位影像還原模組最佳化並重覆步驟SC2Step SC4‧‧‧ When the similarity between the image reduction point spread function and the predetermined point spread function is less than the critical value, the digital image restoration module is optimized and the step SC2 is repeated

Claims (21)

一種數位光學成像之設計方法,其步驟包含:A.一期望目標設定步驟;B.一光學模組設計步驟,該光學模組設計步驟係包含:B1.由一光學模組產生一光學點擴散函數;B2.比較該光學點擴散函數與該預定點擴散函數之相似性;B3.當該光學點擴散函數與該預定點擴散函數之相似性等於或大於該臨界值時,輸出該光學模組的參數;以及B4.當該光學點擴散函數與該預定點擴散函數之相似性小於該臨界值時,最佳化該光學模組並重覆步驟B1;以及C.一數位影像還原模組設計步驟,該數位影像還原模組設計步驟包含:C1.由一數位影像還原模組產生一影像還原點擴散函數;C2.比較該影像還原點擴散函數與該預定點擴散函數之相似性;C3.當該影像還原點擴散函數與該預定點擴散函數之相似性等於或大於該臨界值時,輸出該數位影像還原模組的參數;以及C4.當該影像還原點擴散函數與該預定點擴散函數之相似性小於該臨界值時,優化該數位影像還原模組並重覆步驟C1;其中該光學模組設計步驟及該數位影像還原模組設計步 驟,係同步或依序進行。 A digital optical imaging design method, the steps comprising: A. a desired target setting step; B. an optical module design step, the optical module design step comprises: B1. generating an optical point spread by an optical module a function; B2. comparing the similarity between the optical point spread function and the predetermined point spread function; B3. outputting the optical module when the similarity between the optical point spread function and the predetermined point spread function is equal to or greater than the critical value And B4. when the similarity between the optical point spread function and the predetermined point spread function is less than the critical value, optimizing the optical module and repeating step B1; and C. a digital image restoration module design step The digital image restoration module design step comprises: C1. generating an image restoration point diffusion function by a digital image restoration module; C2. comparing the similarity between the image reduction point diffusion function and the predetermined point diffusion function; C3. And outputting the parameter of the digital image restoration module when the similarity between the image reduction point spread function and the predetermined point spread function is equal to or greater than the threshold value; and C4. The point spread is smaller than the threshold value to the predetermined similarity function of the point spread function, the digital image optimization module and repeat the step of reducing a C1; design wherein the step of the optical module and the module design digital image restoration step The synchronization is performed sequentially or sequentially. 依據申請專利範圍第1項所述之數位光學成像之設計方法,其中,該期望目標設定步驟係提供一預定點擴散函數及一臨界值(threshold)。 The digital optical imaging design method according to claim 1, wherein the desired target setting step provides a predetermined point spread function and a threshold. 依據申請專利範圍第2項所述之數位光學成像之設計方法,其中,該步驟B2更包括比較該光學點擴散函數與該預定點擴散函數之模糊度最小化。 The design method of digital optical imaging according to claim 2, wherein the step B2 further comprises comparing the blur minimization of the optical point spread function with the predetermined point spread function. 依據申請專利範圍第2項所述之數位光學成像之設計方法,其中,該光學模組的參數至少包括一折射率、一曲率值、一厚度值以及非球面係數。 The design method of digital optical imaging according to claim 2, wherein the parameters of the optical module include at least a refractive index, a curvature value, a thickness value, and an aspheric coefficient. 依據申請專利範圍第2項所述之數位光學成像之設計方法,其中,該步驟C2更包括比較該光學點擴散函數與該預定點擴散函數之模糊度最小化。 The design method of digital optical imaging according to claim 2, wherein the step C2 further comprises comparing the blur minimization of the optical point spread function with the predetermined point spread function. 依據申請專利範圍第5項所述之數位光學成像之設計方法,其中,該數位影像還原模組的參數至少包括一調控參數值。 The digital optical imaging design method according to claim 5, wherein the parameter of the digital image restoration module includes at least one control parameter value. 一種數位光學成像之設計方法,其步驟包含:D1.由一數位影像還原模組提供一固定的影像還原點擴散函數;D2.由一光學模組產生一光學點擴散函數;D3.比較該光學點擴散函數與該固定的影像還原點擴散函數之相似性;D4.當該光學點擴散函數與該固定的影像還原點擴散函數之相似性等於或大於一臨界值時,輸出該光學模組的參數;以及 D5.當該光學點擴散函數與該固定的影像還原點擴散函數之相似性小於該臨界值時,優化該光學模組並重覆步驟D2。 A digital optical imaging design method includes the steps of: D1. providing a fixed image reduction point spread function by a digital image restoration module; D2. generating an optical point spread function by an optical module; D3. comparing the optical a similarity between the point spread function and the fixed image reduction point spread function; D4. outputting the optical module when the similarity between the optical point spread function and the fixed image reduction point spread function is equal to or greater than a critical value Parameters; D5. When the similarity between the optical point spread function and the fixed image reduction point spread function is less than the critical value, the optical module is optimized and step D2 is repeated. 依據申請專利範圍第7項所述之數位光學成像之設計方法,其中,該步驟D3更包括比較該光學點擴散函數與該固定的影像還原點擴散函數之模糊度最小化。 According to the design method of digital optical imaging described in claim 7, wherein the step D3 further comprises comparing the blurring degree minimization of the optical point spread function and the fixed image reduction point spread function. 依據申請專利範圍第7項所述之數位光學成像之設計方法,其中,該光學模組的參數至少包括一折射率、一曲率值、一厚度值以及非球面係數。 The design method of digital optical imaging according to claim 7, wherein the parameters of the optical module include at least a refractive index, a curvature value, a thickness value, and an aspheric coefficient. 一種數位光學成像之設計方法,其步驟包含:E1.由一光學模組提供一固定的光學點擴散函數;E2.由一數位影像還原模組產生一影像還原點擴散函數;E3.比較該固定的光學點擴散函數與該影像還原點擴散函數之相似性;E4.當該固定的光學點擴散函數與該影像還原點擴散函數之相似性等於或大於一臨界值時,輸出該數位影像還原模組的參數;以及E5.當該固定的光學點擴散函數與該影像還原點擴散函數之相似性小於該臨界值時,優化該數位影像還原模組並重覆步驟E2。 A digital optical imaging design method, the steps comprising: E1. providing a fixed optical point spread function by an optical module; E2. generating an image reduction point spread function by a digital image restoration module; E3. comparing the fixed The similarity between the optical point spread function and the image reduction point spread function; E4. when the fixed optical point spread function and the image reduction point spread function have a similarity equal to or greater than a critical value, output the digital image reduction mode The parameter of the group; and E5. When the similarity between the fixed optical point spread function and the image reduction point spread function is less than the critical value, the digital image restoration module is optimized and step E2 is repeated. 依據申請專利範圍第10項所述之數位光學成像之設計方法,其中,該步驟E3更包括比較該固定的光學點擴散函數與該影像還原點擴散函數之模糊度最小化。 The method of designing digital optical imaging according to claim 10, wherein the step E3 further comprises comparing the fixed optical point spread function with the ambiguity minimization of the image reduction point spread function. 依據申請專利範圍第10項所述之數位光學成像之設計方法,其中,該數位影像還原模組的參數至少包括一調 控參數值。 According to the digital optical imaging design method described in claim 10, wherein the parameters of the digital image restoration module include at least one tone Control parameter values. 一種數位光學成像系統的組合方法,該數位光學成像系統包含若干光學模組與若干數位影像還原模組,其方法包括:選取該等光學模組其中之一,並取得該光學模組之至少一點擴散函數;選取該等影像還原模組其中之一,並取得該影像還原模組之至少一點擴散函數;以及分別地或依序地分析該光學模組及該影像還原模組的點擴散函數之相似性,並依一預定之臨界值,將該光學模組與該影像還原模組成該數位光學成像系統。 A method for combining a digital optical imaging system, the digital optical imaging system comprising a plurality of optical modules and a plurality of digital image restoration modules, the method comprising: selecting one of the optical modules, and obtaining at least one of the optical modules a diffusion function; selecting one of the image restoration modules, and obtaining at least one diffusion function of the image restoration module; and separately or sequentially analyzing the point spread function of the optical module and the image restoration module The optical module and the image reduction mode are combined to form the digital optical imaging system according to a similarity threshold. 依據申請專利範圍第13項所述之數位光學成像之系統的組合方法,更包括取得該光學模組織至少一點擴散函數模糊度最小化的數值,以及取得該影像還原模組之至少一點擴散函數模糊度最小化的數值,當該光學模組的點擴散函數模糊度最小化數值與該影像還原模組的擴散函數模糊度最小化數值大致相等,或者大於、等於一預定的臨界值時,將該光學模組與該影像還原模組成該數位光學成像系統。 The method for combining the digital optical imaging system according to claim 13 of the patent application scope, further comprising: obtaining a minimum value of the ambiguity of the at least one diffusion function of the optical mode structure, and obtaining at least a point of the diffusion function blur of the image restoration module The minimum value of the degree, when the point spread function ambiguity minimization value of the optical module is substantially equal to the diffusion function ambiguity minimization value of the image restoration module, or is greater than or equal to a predetermined threshold value, The optical module and the image reduction mode constitute the digital optical imaging system. 一種數位光學成像之設計方法,其步驟包含:F1.由一光學模組產生至少二光學點擴散函數;F2.比較該等光學點擴散函數的相似性;F3.當該等光學點擴散函數之相似性等於或大於一臨界值時,輸出該光學模組的參數;以及F4.當該等光學點擴散函數之相似性小於該臨界值時,優 化該光學模組並重覆步驟F1。 A digital optical imaging design method, the method comprising: F1. generating at least two optical point spread functions by an optical module; F2. comparing similarities of the optical point spread functions; F3. when the optical point spread functions are When the similarity is equal to or greater than a critical value, the parameters of the optical module are output; and F4. When the similarity of the optical point spread functions is less than the critical value, The optical module is replaced and step F1 is repeated. 依據申請專利範圍第15項所述之數位光學成像之設計方法,其中,該步驟F2更包括比較該等光學點擴散函數之模糊度最小化。 The method of designing digital optical imaging according to claim 15 wherein the step F2 further comprises comparing the blur minimization of the optical point spread functions. 依據申請專利範圍第15項所述之數位光學成像之設計方法,其中,該光學模組的參數至少包括一折射率、一曲率值、一厚度值以及非球面係數。 The design method of digital optical imaging according to claim 15, wherein the parameters of the optical module include at least a refractive index, a curvature value, a thickness value, and an aspheric coefficient. 一種數位光學成像之設計方法,其步驟包含:G1.由一數位影像還原模組產生至少二影像還原點擴散函數;G2.比較該等影像還原點擴散函數的相似性;G3.當該等影像還原點擴散函數之相似性等於或大於一臨界值時,輸出該數位影像還原模組的參數;以及G4.當該等影像還原點擴散函數之相似性小於該臨界值時,優化該數位影像還原模組並重覆步驟G1。 A digital optical imaging design method, the method comprising: G1. generating a diffusion function of at least two image reduction points by a digital image restoration module; G2. comparing similarities of the diffusion functions of the image reduction points; G3. When the similarity of the reduction point spread function is equal to or greater than a critical value, the parameters of the digital image restoration module are output; and G4. when the similarity of the image reduction point spread function is less than the critical value, the digital image restoration is optimized. Module and repeat step G1. 依據申請專利範圍第18項所述之數位光學成像之設計方法,其中,該步驟G2更包括比較該等影像還原點擴散函數之模糊度最小化。 According to the design method of digital optical imaging described in claim 18, the step G2 further includes comparing the blur minimization of the image reduction point spread function. 依據申請專利範圍第18項所述之數位光學成像之設計方法,其中,該數位影像還原模組的參數至少包括一調控參數值。 The digital optical imaging design method according to claim 18, wherein the parameter of the digital image restoration module includes at least one control parameter value. 一種電腦軟體產品,至少包含一非暫態 電腦可讀媒體,該媒體中含有電腦程式指令,該等指令在為至少一電腦讀取時使該至少一電腦執行一種數位光學成像之設計方法,該方法至少包含下列步驟: H1.設定一目標以提供一預定點擴散函數及一臨界值;H2.設計一光學模組,包括從該光學模組產生光學之一點擴散函數、比較光學之該點擴散函數與該預定點擴散函數的相似性、當光學之該點擴散函數與該預定點擴散函數的相似性係等於或大於該臨界值時,係輸出該光學模組的至少一變數;以及當光學之該點擴散函數與該預定點擴散函數的相似性係校於該臨界值時,最佳化該光學模組並回到從該光學模組產生光學之一點擴散函數的該步驟;以及H3.設計一影像還原模組;其中,設計一光學模組的該步驟以及設計一影像還原模組的該步驟係同步地或依序地操作。A computer software product comprising at least one non-transitory computer readable medium, wherein the medium includes computer program instructions, wherein the instructions cause the at least one computer to perform a digital optical imaging design method when reading at least one computer, The method comprises at least the following steps: H1. setting a target to provide a predetermined point spread function and a threshold value; H2. designing an optical module, comprising generating an optical point spread function from the optical module, and comparing the point spread of the optical And a similarity between the function and the predetermined point spread function, when the similarity between the point spread function of the optical point and the predetermined point spread function is equal to or greater than the threshold value, outputting at least one variable of the optical module; and when optical The similarity between the point spread function and the predetermined point spread function is to optimize the optical module and return to the step of generating an optical point spread function from the optical module when the threshold value is corrected; and H3. Designing an image restoration module; wherein the step of designing an optical module and the step of designing an image restoration module are performed synchronously or sequentially
TW97128452A 2008-06-25 2008-07-25 A design method and system for computational optical imaging TWI411815B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/491,557 US8331712B2 (en) 2008-06-25 2009-06-25 Method for designing computational optical imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7547008P 2008-06-25 2008-06-25

Publications (2)

Publication Number Publication Date
TW201000953A TW201000953A (en) 2010-01-01
TWI411815B true TWI411815B (en) 2013-10-11

Family

ID=41494608

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128452A TWI411815B (en) 2008-06-25 2008-07-25 A design method and system for computational optical imaging

Country Status (2)

Country Link
CN (2) CN101614875B (en)
TW (1) TWI411815B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867709B (en) * 2010-05-17 2012-06-06 哈尔滨工业大学 Spherical imaging device and imaging method thereof
US9098147B2 (en) 2011-12-29 2015-08-04 Industrial Technology Research Institute Ranging apparatus, ranging method, and interactive display system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197809A1 (en) * 2003-12-01 2005-09-08 Dowski Edward R.Jr. System and method for optimizing optical and digital system designs
TW200536386A (en) * 2004-04-16 2005-11-01 Hon Hai Prec Ind Co Ltd An method for auto-adjusting the focus of the digital camera
TW200808041A (en) * 2006-03-31 2008-02-01 Blur Technologies Ltd D Digital filtering with noise gain limit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672912B1 (en) * 2003-01-16 2012-03-14 DigitalOptics Corporation International Method for producing an optical system including an electronic image enhancement processor
US7343271B2 (en) * 2003-10-27 2008-03-11 International Business Machines Corporation Incorporation of a phase map into fast model-based optical proximity correction simulation kernels to account for near and mid-range flare
CN1991643B (en) * 2005-12-30 2012-01-11 财团法人工业技术研究院 Method and system for designing and making lens module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197809A1 (en) * 2003-12-01 2005-09-08 Dowski Edward R.Jr. System and method for optimizing optical and digital system designs
TW200536386A (en) * 2004-04-16 2005-11-01 Hon Hai Prec Ind Co Ltd An method for auto-adjusting the focus of the digital camera
TW200808041A (en) * 2006-03-31 2008-02-01 Blur Technologies Ltd D Digital filtering with noise gain limit

Also Published As

Publication number Publication date
TW201000953A (en) 2010-01-01
CN101614875B (en) 2011-10-12
CN102122071B (en) 2013-04-17
CN102122071A (en) 2011-07-13
CN101614875A (en) 2009-12-30

Similar Documents

Publication Publication Date Title
TWI539184B (en) Design method of a freeform imaging lens
US8310481B2 (en) Computer aided design method for enhancement of local refinement through T-splines
CN102472621B (en) Image processing apparatus and image processing method
CN112750168B (en) Calibration method and device for internal parameters of event camera, computer equipment and storage medium
KR20200101444A (en) Optical design method for imaging system and optical system designed therefrom
CN110928605B (en) Beam adjustment method hardware accelerator based on Zynq FPGA
TWI411815B (en) A design method and system for computational optical imaging
CN111239977B (en) Low-distortion industrial projection lens
CN112215079A (en) Global multistage target tracking method
CN116330667A (en) Toy 3D printing model design method and system
CN116385369A (en) Depth image quality evaluation method and device, electronic equipment and storage medium
CN109102476B (en) Multispectral image defocusing fuzzy kernel estimation method based on circle of confusion fitting
CN115115600A (en) Coated lens flaw detection method, device, equipment and storage medium
Lee et al. AI-guided optical-model-based superresolution for semiconductor CD metrology
US20090324101A1 (en) Method for designing computational optical imaging system
CN112734016A (en) Training method of neural network for detecting smoothness of surface of steel bar
CN101477583A (en) Computer-aided design method for cam curve of three-component zooming system
Ahmed et al. Enhancement of depth map through weighted combination of guided image filters in shape-from-focus
CN114694063B (en) Hardware implementation method and system for extracting and selecting feature points of video stream in real time
JP7076598B1 (en) 3D information generator from moving images or multiple images
CN117576095B (en) Metal surface defect detection and classification method for multi-scale learning task
JP2008083083A (en) Tolerance determining device, tolerance determining method, program, and recording medium
CN116109627B (en) Defect detection method, device and medium based on migration learning and small sample learning
AU2022200296B2 (en) Method for simulating an optical image
CN116342455B (en) Efficient multi-source image fusion method, system and medium

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees