TWI410615B - Ir detective device - Google Patents
Ir detective device Download PDFInfo
- Publication number
- TWI410615B TWI410615B TW99121982A TW99121982A TWI410615B TW I410615 B TWI410615 B TW I410615B TW 99121982 A TW99121982 A TW 99121982A TW 99121982 A TW99121982 A TW 99121982A TW I410615 B TWI410615 B TW I410615B
- Authority
- TW
- Taiwan
- Prior art keywords
- infrared detector
- electrode
- detecting element
- carbon nanotube
- area
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 100
- 239000002041 carbon nanotube Substances 0.000 claims description 97
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 97
- 238000005286 illumination Methods 0.000 claims description 64
- 239000000758 substrate Substances 0.000 claims description 35
- 238000001514 detection method Methods 0.000 claims description 11
- -1 polyethylene terephthalate Polymers 0.000 claims description 6
- 239000002109 single walled nanotube Substances 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 3
- 230000005676 thermoelectric effect Effects 0.000 claims description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims description 2
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 238000005452 bending Methods 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 229920000767 polyaniline Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 229920000647 polyepoxide Polymers 0.000 claims 1
- 229940088594 vitamin Drugs 0.000 claims 1
- 229930003231 vitamin Natural products 0.000 claims 1
- 235000013343 vitamin Nutrition 0.000 claims 1
- 239000011782 vitamin Substances 0.000 claims 1
- 239000002238 carbon nanotube film Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 14
- 239000012528 membrane Substances 0.000 description 13
- 239000012212 insulator Substances 0.000 description 11
- 230000016615 flocculation Effects 0.000 description 7
- 238000005189 flocculation Methods 0.000 description 7
- 239000011810 insulating material Substances 0.000 description 6
- 238000005411 Van der Waals force Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
本發明涉及一種紅外探測器。 The invention relates to an infrared detector.
紅外輻射係波長介於可見光與微波之間的電磁波,人眼察覺不到。要察覺這種輻射的存在並測量其強弱,必須把它轉變成可以察覺和測量的其他物理量。紅外探測器係將紅外線訊號轉換為電訊號輸出的器件,可用於探測紅外線的存在或者紅外線能量的大小,廣泛應用於醫療、探礦、軍事及生活領域,因其價格低廉、技術性能穩定,成為越來越多人研究的熱點。 Infrared radiation is an electromagnetic wave with a wavelength between visible light and microwave that is not visible to the human eye. To perceive the existence of such radiation and measure its strength, it must be transformed into other physical quantities that can be detected and measured. Infrared detector is a device that converts infrared signals into electrical signal output. It can be used to detect the presence of infrared rays or infrared energy. It is widely used in medical, prospecting, military and life fields. Because of its low price and stable technical performance, it becomes more and more The more people come to research hotspots.
紅外探測器可以分為主動紅外探測器和被動紅外探測器。主動探測器由紅外發射機、紅外接收機和報警系統組成,當有人或有物體經過紅外發射機發射出的紅外線時,紅外接收機產生訊號變化,從而使報警器報警。被動紅外探測器本身不包括紅外發射源,當外部有紅外訊號產生並被其接收時,便會產生一定的訊號,從而探測出紅外線的存在和能量大小。一個紅外探測器,無論係主動紅外探測器還係被動紅外探測器,均應包括至少一個對紅外輻射產生敏感效應的物體,可稱為探測元件。先前的紅外探測器通常利用光電效應,即, 在光的照射下,光激發所產生的載流子(自由電子或空穴)在物質內部運動,使物質的電導率發生變化或產生光生伏特的現象。利用光效效應的紅外探測器需要將探測元件全部暴露於紅外線中,利用光電效應,產生電訊號,從而探測紅外線。然而,由於在探測元件全部暴露與紅外線的情況下,利用光電效應使光轉換為電的效率較低,導致該紅外探測器僅可探測能量密度較大的紅外線,靈敏度較低。 Infrared detectors can be divided into active infrared detectors and passive infrared detectors. The active detector is composed of an infrared transmitter, an infrared receiver and an alarm system. When someone or an object passes through the infrared light emitted by the infrared transmitter, the infrared receiver generates a signal change, thereby causing the alarm to alarm. The passive infrared detector itself does not include an infrared source. When an external infrared signal is generated and received by it, a certain signal is generated to detect the presence of infrared light and the amount of energy. An infrared detector, whether it is an active infrared detector or a passive infrared detector, should include at least one object that is sensitive to infrared radiation and can be referred to as a detector element. Previous infrared detectors typically utilized photoelectric effects, ie, Under the illumination of light, the carriers (free electrons or holes) generated by the light excitation move inside the substance, causing the conductivity of the substance to change or the phenomenon of photovoltaicity to occur. Infrared detectors that utilize the effects of light effects need to expose all of the detector elements to the infrared rays, and use the photoelectric effect to generate electrical signals to detect infrared rays. However, since the efficiency of converting light into electricity by the photoelectric effect is low in the case where the detecting element is entirely exposed to infrared rays, the infrared detector can detect only infrared rays having a large energy density, and the sensitivity is low.
有鑒於此,有必要提供一種靈敏度較高的紅外探測器。 In view of this, it is necessary to provide a highly sensitive infrared detector.
一種紅外探測器,包括:一第一電極;一第二電極;以及一設置於該第一電極與該第二電極之間的探測元件;其中,該探測元件包括一覆蓋結構,該覆蓋結構覆蓋該探測元件一部分而使探測元件分成一光照區域及一非光照區域,所述第一電極與所述探測元件的光照區域電連接,所述第二電極與所述探測元件的非光照區域電連接。 An infrared detector comprising: a first electrode; a second electrode; and a detecting element disposed between the first electrode and the second electrode; wherein the detecting element comprises a covering structure, the covering structure covers The detecting element is divided into a light-emitting area and a non-illuminated area, the first electrode is electrically connected to the illumination area of the detecting element, and the second electrode is electrically connected to the non-illuminated area of the detecting element. .
一種紅外探測器,包括:一第一電極;一第二電極;以及一具有溫差電效應的探測元件,設置於該第一電極與該第二電極之間;其中,該探測元件包括一光照區域及一非光照區域,所述第一電極與所述探測元件的光照區域電連接,所述第二電極與所述探測元件的非光照區域電連接,所述光照區域用於接收紅外光訊號,所述非光照區域用於隔絕紅外光訊號。 An infrared detector includes: a first electrode; a second electrode; and a detecting element having a thermoelectric effect disposed between the first electrode and the second electrode; wherein the detecting element includes an illumination region And a non-illuminated area, the first electrode is electrically connected to an illumination area of the detecting element, the second electrode is electrically connected to a non-illuminated area of the detecting element, and the illumination area is configured to receive an infrared light signal, The non-illuminated area is used to isolate infrared light signals.
相較於先前技術,本發明所提供的紅外探測器的探測元件分 為光照區域和非光照區域,通過光照區域吸收紅外線並產生高溫,與非光照區域之間形成溫度差,利用溫差發電原理,在光照強度較小的情況下,也可以產生較大的電勢差訊號或者電流訊號,因此,可以能量密度較小的紅外線,因此,該紅外探測器具有較高的靈敏度較高。 Compared with the prior art, the detecting element of the infrared detector provided by the present invention is divided into For the illuminated area and the non-illuminated area, the infrared light is absorbed by the illumination area and the high temperature is generated, and a temperature difference is formed between the non-illuminated area and the non-illuminated area. With the principle of temperature difference power generation, a large potential difference signal can be generated even in the case of a small illumination intensity or The current signal, therefore, can be infrared light with a lower energy density, and therefore, the infrared detector has a higher sensitivity.
10,20,30,40,50,60‧‧‧紅外探測器 10,20,30,40,50,60‧‧‧Infrared detector
102,502,602‧‧‧第一電極 102,502,602‧‧‧first electrode
104,204,504,604‧‧‧第二電極 104,204,504,604‧‧‧second electrode
106,206,306,406,506,606‧‧‧探測元件 106,206,306,406,506,606‧‧‧Detection elements
1062,3062,4062,5062‧‧‧光照區域 1062,3062,4062,5062‧‧‧Lighting area
1064,4064,5064‧‧‧非光照區域 1064,4064,5064‧‧‧Non-illuminated area
108,208,408,608‧‧‧覆蓋結構 108,208,408,608‧‧‧ Coverage structure
112‧‧‧電壓測試表 112‧‧‧Voltage test table
114‧‧‧電流測試表 114‧‧‧current test table
4082‧‧‧上基板 4082‧‧‧Upper substrate
4084‧‧‧下基板 4084‧‧‧lower substrate
4086‧‧‧開孔區 4086‧‧‧Opening area
110,310‧‧‧基底 110,310‧‧‧Base
510‧‧‧絕緣體 510‧‧‧Insulator
5102‧‧‧第一表面 5102‧‧‧ first surface
5104‧‧‧第二表面 5104‧‧‧ second surface
500‧‧‧反射膜 500‧‧‧Reflective film
6082‧‧‧第一蓋板 6082‧‧‧first cover
6084‧‧‧第二蓋板 6084‧‧‧second cover
第1圖係本發明第一實施例提供的紅外探測器的結構示意圖。 FIG. 1 is a schematic structural view of an infrared detector provided by a first embodiment of the present invention.
第2圖係沿圖1中II-II線的剖面示意圖。 Fig. 2 is a schematic cross-sectional view taken along line II-II of Fig. 1.
第3圖係圖1中紅外探測器工作時的示意圖。 Figure 3 is a schematic diagram of the infrared detector of Figure 1 when it is in operation.
第4圖係圖1紅外探測器在不同強度的紅外線的照射下光照區域的溫度與照射時間的關係圖。 Fig. 4 is a graph showing the relationship between the temperature of the illumination region and the irradiation time of the infrared detector of Fig. 1 under the irradiation of infrared rays of different intensities.
第5圖係圖1紅外探測器在不同強度的紅外線的照射下第一電極和第二電極之間的電勢差與照射時間的關係圖。 Fig. 5 is a graph showing the relationship between the potential difference between the first electrode and the second electrode and the irradiation time of the infrared detector of Fig. 1 under irradiation of infrared rays of different intensities.
第6圖係本發明第二實施例提供的紅外探測器的結構示意圖。 FIG. 6 is a schematic structural view of an infrared detector provided by a second embodiment of the present invention.
第7圖係沿圖6中VII-VII線的剖面示意圖。 Fig. 7 is a schematic cross-sectional view taken along line VII-VII of Fig. 6.
第8圖係本發明第三實施例提供的紅外探測器的結構示意圖。 FIG. 8 is a schematic structural view of an infrared detector according to a third embodiment of the present invention.
第9圖係沿圖8中IX-IX線的剖面示意圖。 Fig. 9 is a schematic cross-sectional view taken along line IX-IX of Fig. 8.
第10圖係本發明第四實施例提供的紅外探測器的側視結構剖 面圖。 Figure 10 is a side cross-sectional view of the infrared detector provided by the fourth embodiment of the present invention. Surface map.
第11圖係圖10中的紅外探測器的覆蓋結構的結構示意圖。 Figure 11 is a schematic view showing the structure of the covering structure of the infrared detector in Figure 10.
第12圖係本發明第五實施例提供的紅外探測器的結構示意圖。 Figure 12 is a schematic view showing the structure of an infrared detector according to a fifth embodiment of the present invention.
第13圖係本發明第六實施例提供的紅外探測器的側視結構示意圖。 Figure 13 is a side elevational view showing the infrared detector provided by the sixth embodiment of the present invention.
以下將結合附圖詳細說明本技術方案提供的紅外探測器。以下各實施例中,不同實施例之間具有相同結構的相同元部件的標號使用相同的阿拉伯數字表示,不同的元部件或者具有不同結構的相同元部件則使用不同的阿拉伯數字表示。 The infrared detector provided by the present technical solution will be described in detail below with reference to the accompanying drawings. In the following embodiments, the same reference numerals are used for the same elements in the different embodiments, and the same elements are used. The different elements or the same elements having different structures are represented by different Arabic numerals.
請一併參閱圖1和圖2,本發明第一實施例提供了一種紅外探測器10。該紅外探測器10包括一第一電極102,一第二電極104、一設置於該第一電極102與該第二電極104之間的探測元件106及一覆蓋結構108。該紅外探測器10進一步包括一基底110,該探測元件106設置於該基底110的表面。該第一電極102和第二電極104分別與探測元件106電連接。該探測元件106包括一光照區域1062及一非光照區域1064。該覆蓋結構108覆蓋該非光照區域1064。 Referring to FIG. 1 and FIG. 2 together, a first embodiment of the present invention provides an infrared detector 10. The infrared detector 10 includes a first electrode 102, a second electrode 104, a detecting element 106 disposed between the first electrode 102 and the second electrode 104, and a covering structure 108. The infrared detector 10 further includes a substrate 110 disposed on a surface of the substrate 110. The first electrode 102 and the second electrode 104 are electrically connected to the detecting element 106, respectively. The detecting element 106 includes an illumination area 1062 and a non-illuminated area 1064. The overlay structure 108 covers the non-illuminated area 1064.
所述基底110用於支撐探測元件106,可以理解,當探測元件106為一自支撐結構時,該基底110可以省略。所述基底110的材料為絕緣材料,可以為玻璃、陶瓷、聚合物或木質材料 。所述基底110的材料還可以為表面塗覆有絕緣材料的導電金屬材料等。優選地,該基底110的材料應基本不吸收紅外線或者完全不吸收紅外線。該基底110的厚度不限,優選為1毫米至2厘米,本實施例中,基底110的厚度為5毫米。所述探測元件106可以直接設置於該基底110的表面。 The substrate 110 is used to support the detecting element 106. It can be understood that the substrate 110 can be omitted when the detecting element 106 is a self-supporting structure. The material of the substrate 110 is an insulating material, which may be glass, ceramic, polymer or wood material. . The material of the substrate 110 may also be a conductive metal material or the like whose surface is coated with an insulating material. Preferably, the material of the substrate 110 should not substantially absorb infrared rays or absorb infrared rays at all. The thickness of the substrate 110 is not limited, and is preferably 1 mm to 2 cm. In the present embodiment, the substrate 110 has a thickness of 5 mm. The detecting element 106 can be disposed directly on the surface of the substrate 110.
所述探測元件106的光照區域1062用於接收紅外線,並將紅外線能量轉換為熱能,使光照區域1062的溫度升高,從而在光照區域1062和非光照區域1064之間產生溫度差,利用溫差電效應,在第一電極102和第二電極104之間產生電勢差,根據電勢差的大小可以確定紅外線的強度。所述探測元件106的材料應滿足溫差電轉換係數較大、具有較強的紅外線吸收性能及具有較小的熱容。所述探測元件106可以為一面狀結構或線狀結構。進一步的,該面狀結構可以包括複數個微孔形成網狀結構。該探測元件106可以為一奈米碳管層,該奈米碳管層為由複數個均勻分佈的奈米碳管組成的層狀結構。該奈米碳管層包括複數個微孔,因此具有較大的比表面積,具有較強的紅外線吸收性能。奈米碳管為絕對的黑體,因此,具有非常強的紅外線吸收特性。該奈米碳管層為一純的奈米碳管結構。該奈米碳管可以選自單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或幾種。由於單壁奈米碳管具有半導體性,溫差電轉換吸收較大,該奈米碳管層優選為一單壁奈米碳管層。所述奈米碳管層中的奈米碳管之間可以通過凡得瓦力(Van der Waals attractive force)緊密結 合。該奈米碳管層中的奈米碳管為無序或有序排列。這裏的無序排列指奈米碳管的排列方向無規律,這裏的有序排列指至少多數奈米碳管的排列方向具有一定規律。具體地,當奈米碳管層包括無序排列的奈米碳管時,奈米碳管相互纏繞或者各向同性排列;當奈米碳管層包括有序排列的奈米碳管時,奈米碳管沿一個方向或者複數個方向擇優取向排列。所述奈米碳管層的厚度為100奈米至5毫米。所述奈米碳管層的單位面積熱容可以小於2×10-4焦耳每平方厘米開爾文,甚至可以小於等於1.7×10-6焦耳每平方厘米開爾文。由於奈米碳管的熱容較小,所以該奈米碳管層狀結構具有較快的熱回應速度,即在吸收紅外線的能量之後能快速的升溫。 The illumination region 1062 of the detecting element 106 is configured to receive infrared rays and convert the infrared energy into thermal energy to increase the temperature of the illumination region 1062, thereby generating a temperature difference between the illumination region 1062 and the non-illumination region 1064, using the thermoelectric difference The effect is that a potential difference is generated between the first electrode 102 and the second electrode 104, and the intensity of the infrared ray can be determined according to the magnitude of the potential difference. The material of the detecting element 106 should satisfy the large temperature difference electric conversion coefficient, have strong infrared absorption performance and have a small heat capacity. The detecting element 106 may be a one-sided structure or a linear structure. Further, the planar structure may include a plurality of micropores forming a network structure. The detecting element 106 can be a carbon nanotube layer, which is a layered structure composed of a plurality of uniformly distributed carbon nanotubes. The carbon nanotube layer includes a plurality of micropores, and thus has a large specific surface area and has strong infrared absorption performance. The carbon nanotubes are absolutely black bodies and therefore have very strong infrared absorption properties. The carbon nanotube layer is a pure carbon nanotube structure. The carbon nanotubes may be selected from one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. Since the single-walled carbon nanotube is semiconducting and the thermoelectric conversion is relatively large, the carbon nanotube layer is preferably a single-walled carbon nanotube layer. The carbon nanotubes in the carbon nanotube layer can be tightly bonded by a Van der Waals attractive force. The carbon nanotubes in the carbon nanotube layer are disordered or ordered. The disordered arrangement here means that the arrangement direction of the carbon nanotubes is irregular, and the ordered arrangement here means that at least most of the arrangement of the carbon nanotubes has a certain regularity. Specifically, when the carbon nanotube layer includes a disorderly arranged carbon nanotube, the carbon nanotubes are entangled or isotropically aligned; when the carbon nanotube layer includes an ordered arrangement of carbon nanotubes, The carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. The carbon nanotube layer has a thickness of from 100 nm to 5 mm. The carbon nanotube layer may have a heat capacity per unit area of less than 2 x 10 -4 joules per square centimeter Kelvin, and may even be less than or equal to 1.7 x 10 -6 joules per square centimeter Kelvin. Since the carbon nanotube has a small heat capacity, the carbon nanotube layered structure has a faster heat response speed, that is, a rapid temperature rise after absorbing infrared energy.
該探測元件106還可以為一由上述奈米碳管層和其他材料形成的奈米碳管複合材料層。所述奈米碳管複合材料層包括上述奈米碳管層以及一基體材料滲透於該奈米碳管層中。該基體材料為一高分子材料,該高分子材料可為纖維素、聚對苯二甲酸乙酯、壓克力樹脂、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、酚醛樹脂、環氧樹脂、聚苯胺、矽膠及聚酯等中的一種或複數種。 The detecting element 106 can also be a layer of carbon nanotube composite material formed from the above-described carbon nanotube layer and other materials. The carbon nanotube composite layer includes the above-mentioned carbon nanotube layer and a matrix material penetrating into the carbon nanotube layer. The base material is a polymer material, which may be cellulose, polyethylene terephthalate, acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, phenolic resin, epoxy. One or more of a resin, a polyaniline, a silicone, a polyester, and the like.
所述奈米碳管層可包括至少一層奈米碳管膜。當奈米碳管層包括多層奈米碳管膜時,該多層奈米碳管膜可層疊設置或者並列設置。所述奈米碳管膜可以為一奈米碳管拉膜。該奈米碳管拉膜為從奈米碳管陣列中直接拉取獲得的一種奈米碳管膜。每一奈米碳管膜係由若干奈米碳管組成的自支撐結構。 所述若干奈米碳管為基本沿同一方向擇優取向排列。所述擇優取向係指在奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管膜的表面。進一步地,所述奈米碳管膜中多數奈米碳管係通過凡得瓦力首尾相連。具體地,所述奈米碳管膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈米碳管膜中大多數奈米碳管的整體取向排列構成明顯影響。所述自支撐為奈米碳管膜不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米碳管膜置於(或固定於)間隔一固定距離設置的兩個支撐體上時,位於兩個支撐體之間的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾相連延伸排列的奈米碳管而實現。 The carbon nanotube layer may include at least one layer of carbon nanotube film. When the carbon nanotube layer includes a plurality of layers of carbon nanotube film, the multilayered carbon nanotube film may be stacked or arranged in parallel. The carbon nanotube film may be a carbon nanotube film. The carbon nanotube film is a carbon nanotube film obtained by directly pulling from a carbon nanotube array. Each nanocarbon film is a self-supporting structure composed of several carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along substantially the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and the carbon nanotubes adjacent in the extending direction are connected end to end by van der Waals force. Of course, there are a few randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are disposed at a fixed distance, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film.
具體地,所述奈米碳管膜中基本朝同一方向延伸的多數奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者並非完全按照延伸方向上排列,可以適當的偏離延伸方向。因此,不能排除奈米碳管膜的基本朝同一方向延伸的多數奈米碳管中並列的奈米碳管之間可能存在部分接觸。 Specifically, most of the carbon nanotube membranes extending substantially in the same direction in the same direction are not absolutely linear, and may be appropriately bent; or may not be completely aligned in the extending direction, and may be appropriately deviated from the extending direction. Therefore, partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending substantially in the same direction of the carbon nanotube film cannot be excluded.
所述奈米碳管拉膜的厚度為0.5奈米至100微米,寬度與拉取該奈米碳管拉膜的奈米碳管陣列的尺寸有關,長度不限。 The thickness of the carbon nanotube film is 0.5 nm to 100 μm, and the width is related to the size of the carbon nanotube array for pulling the carbon nanotube film, and the length is not limited.
當所述奈米碳管層狀結構採用奈米碳管拉膜時,其可以包括層疊設置的多層奈米碳管拉膜,且相鄰兩層奈米碳管拉膜中的奈米碳管之間沿各層中奈米碳管的軸向形成一交叉角度α,α大於等於0度小於等於90度(0°≦α≦90°)。所述複數個奈米碳管拉膜之間或一個奈米碳管拉膜之中的相鄰的奈米碳管之間具有間隙,從而在奈米碳管結構中形成複數個微孔,微孔的孔徑約小於10微米。 When the carbon nanotube layered structure adopts a carbon nanotube film, it may comprise a stacked multi-layer carbon nanotube film, and the carbon nanotubes in the adjacent two layers of carbon nanotube film A cross angle α is formed along the axial direction of the carbon nanotubes in each layer, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0° ≦ α ≦ 90°). a gap is formed between the plurality of carbon nanotube films or between adjacent carbon nanotubes in a carbon nanotube film, thereby forming a plurality of micropores in the carbon nanotube structure. The pores have a pore size of less than about 10 microns.
所述奈米碳管膜還可以為一奈米碳管絮化膜。所述奈米碳管絮化膜為通過一絮化方法形成的奈米碳管膜。該奈米碳管絮化膜包括相互纏繞且均勻分佈的奈米碳管。所述奈米碳管之間通過凡得瓦力相互吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜各向同性。所述奈米碳管絮化膜的長度和寬度不限。由於在奈米碳管絮化膜中,奈米碳管相互纏繞,因此該奈米碳管絮化膜具有很好的柔韌性,且為一自支撐結構,可以彎曲折疊成任意形狀而不破裂。所述奈米碳管絮化膜的面積及厚度均不限,厚度為1微米至1毫米。 The carbon nanotube membrane may also be a carbon nanotube flocculation membrane. The carbon nanotube flocculation membrane is a carbon nanotube membrane formed by a flocculation method. The carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The carbon nanotubes are attracted and entangled with each other by van der Waals force to form a network structure. The carbon nanotube flocculation membrane is isotropic. The length and width of the carbon nanotube film are not limited. Since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without breaking. . The area and thickness of the carbon nanotube film are not limited, and the thickness is from 1 micrometer to 1 millimeter.
所述奈米碳管膜還可以為通過碾壓一奈米碳管陣列形成的奈米碳管碾壓膜。該奈米碳管碾壓膜包括均勻分佈的奈米碳管,奈米碳管沿同一方向或不同方向擇優取向排列。奈米碳管也可以係各向同性的。所述奈米碳管碾壓膜中的奈米碳管相互部分交疊,並通過凡得瓦力相互吸引,緊密結合。所述奈米碳管碾壓膜中的奈米碳管與形成奈米碳管陣列的生長基底的表面形成一夾角β,其中,β大於等於0度且小於等於15 度(0≦β≦15°)。依據碾壓的方式不同,該奈米碳管碾壓膜中的奈米碳管具有不同的排列形式。當沿同一方向碾壓時,奈米碳管沿一固定方向擇優取向排列。可以理解,當沿不同方向碾壓時,奈米碳管可沿複數個方向擇優取向排列。該奈米碳管碾壓膜厚度不限,優選為為1微米至1毫米。該奈米碳管碾壓膜的面積不限,由碾壓出膜的奈米碳管陣列的大小決定。當奈米碳管陣列的尺寸較大時,可以碾壓制得較大面積的奈米碳管碾壓膜。本實施例中,所述探測元件106為一純的奈米碳管層,該奈米碳管層由單壁奈米碳管構成,厚度為1mm。 The carbon nanotube film may also be a carbon nanotube rolled film formed by rolling an array of carbon nanotubes. The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are arranged in the same direction or in different directions. The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotube rolled film partially overlap each other and are attracted to each other by van der Waals force and tightly combined. The carbon nanotubes in the carbon nanotube rolled film form an angle β with the surface of the growth substrate forming the carbon nanotube array, wherein β is greater than or equal to 0 degrees and less than or equal to 15 Degree (0≦β≦15°). The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. When rolled in the same direction, the carbon nanotubes are arranged in a preferred orientation along a fixed direction. It can be understood that when crushed in different directions, the carbon nanotubes can be arranged in a preferred orientation in a plurality of directions. The carbon nanotube film is not limited in thickness, and is preferably from 1 μm to 1 mm. The area of the carbon nanotube rolled film is not limited, and is determined by the size of the carbon nanotube array that is rolled out of the film. When the size of the carbon nanotube array is large, a large area of the carbon nanotube rolled film can be crushed. In this embodiment, the detecting element 106 is a pure carbon nanotube layer, and the carbon nanotube layer is composed of a single-walled carbon nanotube having a thickness of 1 mm.
所述探測元件106被分為兩個區域,分別為光照區域1062和非光照區域1064。所述光照區域1062和非光照區域1064的大小不限,光照區域1062的面積可以大於、小於或等於非光照區域1064的面積。優選地,光照區域1062的面積小於非光照區域1064的面積。光照區域1062為吸收紅外線吸收區域,可直接暴露於紅外線中,用於吸收紅外線。非光照區域1064被覆蓋結構108所覆蓋,防止非光照區域1064吸收紅外線。本實施例中,光照區域1062的面積大約為探測元件106五分之三,非光照區域1064的面積大約為探測元件106的五分之二。 The detection element 106 is divided into two regions, an illumination region 1062 and a non-illumination region 1064. The size of the illumination area 1062 and the non-illumination area 1064 is not limited, and the area of the illumination area 1062 may be greater than, less than, or equal to the area of the non-illuminated area 1064. Preferably, the area of the illuminated area 1062 is smaller than the area of the non-illuminated area 1064. The illumination area 1062 is an absorption infrared absorption area that can be directly exposed to infrared rays for absorbing infrared rays. The non-illuminated area 1064 is covered by the cover structure 108 to prevent the non-illuminated area 1064 from absorbing infrared light. In this embodiment, the area of the illumination area 1062 is approximately three-fifths of the detection elements 106, and the area of the non-illuminated area 1064 is approximately two-fifths of the detection elements 106.
該第一電極102、第二電極104均為為線狀或帶狀結構,分別設置於探測元件106的兩端。該第一電極102、第二電極104可以設置於該探測元件106的表面,分別與探測元件106的兩 個邊齊平。該第一電極102、第二電極104也可以設置於該探測元件106的側面。該第一電極102、第二電極104可以分別為一層導電膜。該導電膜的材料可以為金屬、合金、銦錫氧化物(ITO)、銻錫氧化物(ATO)、導電銀膠、導電聚合物或導電性奈米碳管等。該金屬或合金材料可以為鋁、銅、鎢、鉬、金、鈦、釹、鈀、銫或其任意組合的合金。本實施例中,第一電極102和第二電極104分別為導電銀漿印刷形成的線狀結構,形成於該探測元件106的表面。第一電極102位於光照區域1062,第二電極104位於非光照區域1064。 Each of the first electrode 102 and the second electrode 104 has a linear or strip-like structure and is disposed at each end of the detecting element 106. The first electrode 102 and the second electrode 104 may be disposed on the surface of the detecting component 106, respectively, and the detecting component 106 The sides are flush. The first electrode 102 and the second electrode 104 may also be disposed on the side of the detecting element 106. The first electrode 102 and the second electrode 104 may each be a conductive film. The material of the conductive film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ATO), conductive silver paste, conductive polymer or conductive carbon nanotube. The metal or alloy material may be an alloy of aluminum, copper, tungsten, molybdenum, gold, titanium, rhodium, palladium, iridium or any combination thereof. In this embodiment, the first electrode 102 and the second electrode 104 are respectively formed into a linear structure formed by printing of conductive silver paste, and are formed on the surface of the detecting element 106. The first electrode 102 is located in the illumination region 1062 and the second electrode 104 is located in the non-illuminated region 1064.
所述覆蓋結構108用於覆蓋非光照區域1064,防止非光照區域1064吸收紅外線。覆蓋結構108的大小應確保其不會覆蓋探測元件106的光照區域。所述覆蓋結構108的材料不限,可以為絕緣材料也可以為導電材料。所述覆蓋結構108的材料可選擇為導電材料,如金屬,也可為絕緣材料,如塑膠、塑膠等。所述金屬包括不銹鋼、碳鋼、銅、鎳、鈦、鋅及鋁等中的一種或複數種。可以理解的係,當覆蓋結構108的材料為絕緣材料時,其可與探測元件106直接接觸,覆蓋結構108可直接覆蓋在探測元件106的非光照區域1064的表面。當覆蓋結構108的材料為導電材料時,應確保覆蓋結構108與探測元件106間隔絕緣設置。本實施例中,所述覆蓋結構108為具有一容置空間的罩體。覆蓋結構108的四周固定於基底110的表面。所述探測元件106的非光照區域1064設置於該覆蓋結構108的容置空間內部,並與該覆蓋結構108間隔一定距離設 置。所述覆蓋結構108的固定方式不限,可通過扣合、夾緊、螺栓、黏結、鉚接等方式固定,本實施例中,覆蓋結構108通過四個螺孔(圖未示)固定於基底110上。由於該覆蓋結構108與探測元件106間隔一定空間設置,所以,該覆蓋結構108的材料可以為導電材料。 The cover structure 108 is used to cover the non-illuminated area 1064 to prevent the non-illuminated area 1064 from absorbing infrared light. The cover structure 108 is sized to ensure that it does not cover the illuminated area of the detector element 106. The material of the covering structure 108 is not limited and may be an insulating material or a conductive material. The material of the covering structure 108 can be selected from a conductive material such as a metal or an insulating material such as plastic or plastic. The metal includes one or more of stainless steel, carbon steel, copper, nickel, titanium, zinc, and aluminum. It will be appreciated that when the material of the cover structure 108 is an insulating material, it can be in direct contact with the detector element 106, which can directly cover the surface of the non-illuminated region 1064 of the detector element 106. When the material of the cover structure 108 is a conductive material, it should be ensured that the cover structure 108 is spaced from the detector element 106 in an insulating arrangement. In this embodiment, the cover structure 108 is a cover body having an accommodating space. The periphery of the cover structure 108 is fixed to the surface of the substrate 110. The non-illuminated area 1064 of the detecting component 106 is disposed inside the accommodating space of the covering structure 108 and is spaced apart from the covering structure 108 by a certain distance. Set. The fixing structure of the covering structure 108 is not limited, and can be fixed by fastening, clamping, bolting, bonding, riveting, etc. In the embodiment, the covering structure 108 is fixed to the base 110 through four screw holes (not shown). on. Since the cover structure 108 is spaced apart from the detecting element 106, the material of the cover structure 108 may be a conductive material.
該紅外探測器20可進一步包括一第一電極引線(圖未示)及一第二電極引線(圖未示)。第一電極引線與第一電極102電連接。第二電極引線與第二電極104電連接。第二電極引線一部分位於覆蓋結構108內部,一部分延伸至覆蓋結構108的外部,方便第二電極104與外部電連接。 The infrared detector 20 can further include a first electrode lead (not shown) and a second electrode lead (not shown). The first electrode lead is electrically connected to the first electrode 102. The second electrode lead is electrically connected to the second electrode 104. A portion of the second electrode lead is located inside the cover structure 108 and a portion extends to the outside of the cover structure 108 to facilitate electrical connection of the second electrode 104 to the outside.
所述紅外探測器10可進一步包括一電壓測試表112,該電壓測試表112與第一電極102、探測元件106及第二電極104構成一回路。該電壓測試表112用於探測第一電極102和第二電極104之間的電勢差。所述紅外探測器10可進一步包括一電流測試表114,該電流測試表114與第一電極102、探測元件106及第二電極104構成一回路。該電流測試表114用於探測該回路中的電流。 The infrared detector 10 can further include a voltage test table 112 that forms a loop with the first electrode 102, the detecting element 106, and the second electrode 104. The voltage test table 112 is for detecting a potential difference between the first electrode 102 and the second electrode 104. The infrared detector 10 can further include a current test table 114 that forms a loop with the first electrode 102, the detecting element 106, and the second electrode 104. The current test table 114 is used to detect the current in the loop.
請參見圖3,該紅外探測器10的工作原理如下:當探測元件106的光照區域1062接收到紅外線R的照射時,探測元件106的光照區域1062吸收紅外線的能量,溫度升高,非光照區域1064由於不會吸收紅外線的能量,溫度不變,因此,光照區域1062與非光照區域1064之間產生溫差,故,根據熱電效應,第一電極102和第二電極104之間產生電勢差。在探測元件 106的光照區域1062的面積一定的情況下,第一電極102和第二電極104之間的電勢差的大小與紅外線的能量密度成正比。 Referring to FIG. 3, the infrared detector 10 works as follows: when the illumination area 1062 of the detection element 106 receives the illumination of the infrared ray R, the illumination area 1062 of the detection element 106 absorbs the energy of the infrared ray, and the temperature rises, and the non-illuminated area Since 1064 does not absorb the energy of infrared rays, the temperature does not change. Therefore, a temperature difference is generated between the illumination region 1062 and the non-illumination region 1064. Therefore, a potential difference is generated between the first electrode 102 and the second electrode 104 according to the thermoelectric effect. Detecting component In the case where the area of the illumination region 1062 is constant, the magnitude of the potential difference between the first electrode 102 and the second electrode 104 is proportional to the energy density of the infrared rays.
本實施例中,當採用10束不同能量密度的紅外線照射光照區域1062,該10束紅外線的能量密度分別為5.709mW/cm2、25.394mW/cm2、45.079mW/cm2、64.764mW/cm2、84.449mW/cm2、104.134mW/cm2、123.819mW/cm2、143.504mW/cm2、163.189mW/cm2。圖4係光照區域1062的溫度與照射時間的關係圖,由圖4可以看出,當切換兩束不同能量密度的紅外線照射光照區域1062時,光照區域1062的溫度反應速度非常快,且升高的溫度也比較高。圖5係第一電極和第二電極之間的電勢差與照射時間的關係圖。由於奈米碳管層為空穴導電層,因此,第一電極102和第二電極104之間的電勢差為負值,即第一電極102的電勢小於第二電極104的電勢,當在時間為600秒時停止採用紅外線照射光照區域1062時,第一電極102的電勢小於第二電極104的電勢迅速恢復為零。由圖5可以看出,為當紅外線R的強度變化時,第一電極102和第二電極104之間的電勢差也會發生快速和明顯的變化,即使在紅外線能量密度較小的情況下,也可以產生較大的電勢差,具有較強的靈敏度。 In this embodiment, when 10 infrared light irradiation regions 1062 of different energy densities are used, the energy density of the 10 infrared rays is 5.709mW/cm2, 25.394mW/cm2, 45.079mW/cm2, 64.764mW/cm2, and 84.449mW, respectively. /cm2, 104.134 mW/cm2, 123.819 mW/cm2, 143.504 mW/cm2, 163.189 mW/cm2. 4 is a graph showing the relationship between the temperature of the illumination region 1062 and the illumination time. As can be seen from FIG. 4, when two infrared radiation illumination regions 1062 of different energy densities are switched, the temperature response speed of the illumination region 1062 is very fast and increases. The temperature is also relatively high. Fig. 5 is a graph showing the relationship between the potential difference between the first electrode and the second electrode and the irradiation time. Since the carbon nanotube layer is a hole conducting layer, the potential difference between the first electrode 102 and the second electrode 104 is a negative value, that is, the potential of the first electrode 102 is smaller than the potential of the second electrode 104, when the time is When the infrared illuminating illumination region 1062 is stopped at 600 seconds, the potential of the first electrode 102 is less than the potential of the second electrode 104 and rapidly returns to zero. As can be seen from FIG. 5, in order to change the intensity of the infrared ray R, the potential difference between the first electrode 102 and the second electrode 104 also changes rapidly and significantly, even in the case where the infrared energy density is small. It can produce a large potential difference and has a strong sensitivity.
本發明所提供的紅外探測器10的探測元件106分為光照區域1062和非光照區域1064,通過光照區域1062吸收紅外線並產生高溫,與非光照區域1064之間形成溫度差,利用溫差發電 原理,在光照強度較小的情況下,也可以產生較大的電勢差訊號或者電流訊號,因此,可以能量密度較小的紅外線,因此,該紅外探測器10具有較高的靈敏度。 The detecting element 106 of the infrared detector 10 provided by the present invention is divided into an illumination area 1062 and a non-illuminated area 1064, which absorbs infrared rays through the illumination area 1062 and generates a high temperature, and forms a temperature difference with the non-illuminated area 1064, and generates electricity by using a temperature difference. In principle, in the case where the illumination intensity is small, a large potential difference signal or a current signal can be generated, and therefore, infrared rays having a small energy density can be used. Therefore, the infrared detector 10 has high sensitivity.
請參見圖6及圖7,本發明第二實施例提供了一種紅外探測器20。本實施例所提供的紅外探測器20與第一實施例所提供的紅外探測器10的不同之處在於,覆蓋結構208與第一實施例的覆蓋結構108不同,從而本實施例的紅外探測器20不需要單獨的基底。 Referring to FIG. 6 and FIG. 7, a second embodiment of the present invention provides an infrared detector 20. The infrared detector 20 provided in this embodiment is different from the infrared detector 10 provided in the first embodiment in that the cover structure 208 is different from the cover structure 108 of the first embodiment, so that the infrared detector of the embodiment 20 does not require a separate substrate.
所述覆蓋結構208為一U型框體,具有兩個平行間隔的蓋板和位於兩個蓋板之間的一敞開的容置空間。所述探測元件206的非光照區域2064設置於該U型框體的容置空間內,並貼設於覆蓋結構208的一個蓋板的內表面上,同時與另一蓋板具有一定間距。第二電極204也設置於該U型框體內部。該覆蓋結構208的整體形狀不限,可以為立方體、圓柱體、多棱體或者橢球體等等。本實施例中,所述覆蓋結構208為一長方體結構。 The cover structure 208 is a U-shaped frame having two parallel spaced cover plates and an open receiving space between the two cover plates. The non-illuminated area 2064 of the detecting element 206 is disposed in the accommodating space of the U-shaped frame and is attached to the inner surface of one cover of the covering structure 208 while being spaced apart from the other cover. The second electrode 204 is also disposed inside the U-shaped frame. The overall shape of the cover structure 208 is not limited and may be a cube, a cylinder, a polygon or an ellipsoid or the like. In this embodiment, the cover structure 208 is a rectangular parallelepiped structure.
請參見圖8及圖9,本發明第三實施例提供了一種紅外探測器30。本實施例所提供的紅外探測器30與第一實施例所提供的紅外探測器10的不同之處在於,所述紅外探測器30進一步包括一反射膜500。 Referring to FIG. 8 and FIG. 9, a third embodiment of the present invention provides an infrared detector 30. The infrared detector 30 provided in this embodiment is different from the infrared detector 10 provided in the first embodiment in that the infrared detector 30 further includes a reflective film 500.
所述反射膜500設置於探測元件306的光照區域3062與基底310之間,用於反射探測元件306的光照區域3062所產生的熱 量和紅外線,防止該熱量和部分紅外線的能量被基底310吸收,影響紅外探測器30的靈敏度。所述反射膜500對紅外線和遠紅外線具有較高的反射效率。所述反射膜500的材料為絕緣材料,可以為TiO2-Ag-TiO2、ZnS-Ag-ZnS、AINO-Ag-AIN、Ta2O3-SiO2或Nb2O3-SiO2。該反射膜500通過塗敷或濺射的方式形成於基底310的表面。所述反射膜500的厚度不限,本實施例中,反射膜500的厚度為10微米至500微米。 The reflective film 500 is disposed between the illumination region 3062 of the detecting component 306 and the substrate 310 for reflecting heat and infrared rays generated by the illumination region 3062 of the detecting component 306 to prevent the heat and part of the infrared energy from being absorbed by the substrate 310. Affects the sensitivity of the infrared detector 30. The reflective film 500 has a high reflection efficiency for infrared rays and far infrared rays. The material of the reflective film 500 is an insulating material and may be TiO 2 -Ag-TiO 2 , ZnS-Ag-ZnS, AINO-Ag-AIN, Ta 2 O 3 -SiO 2 or Nb 2 O 3 -SiO 2 . The reflective film 500 is formed on the surface of the substrate 310 by coating or sputtering. The thickness of the reflective film 500 is not limited. In the embodiment, the reflective film 500 has a thickness of 10 micrometers to 500 micrometers.
請參見圖10及11,本發明第四實施例提供了一種紅外探測器40。本實施例所提供的紅外探測器40與第一實施例所提供的紅外探測器10的不同之處在於,本實施例的覆蓋結構408與第一實施例的覆蓋結構108不同,從而本實施例的紅外探測器40不需要單獨的基底。 Referring to Figures 10 and 11, a fourth embodiment of the present invention provides an infrared detector 40. The infrared detector 40 provided in this embodiment is different from the infrared detector 10 provided in the first embodiment in that the covering structure 408 of the present embodiment is different from the covering structure 108 of the first embodiment, so that the embodiment The infrared detector 40 does not require a separate substrate.
所述覆蓋結構408為一具有中空結構的外殼,該探測元件406設置於該覆蓋結構408內部。該覆蓋結構408包括一開孔區4086,該探測元件406的光照區域4062正對該開孔區4086設置,並可以通過該開孔區4086接受紅外線照射。該探測元件406的非光照區域4064設置於該覆蓋結構408的內部,並被覆蓋結構408所覆蓋,即,在將該紅外探測器40設置於紅外線環境中時,覆蓋結構408防止該非光照區域4064接受光照。所述覆蓋結構408的整體形狀不限,可以係中空的立方體、球體或圓柱體等等。 The cover structure 408 is a housing having a hollow structure, and the detecting component 406 is disposed inside the cover structure 408. The cover structure 408 includes an aperture region 4068 through which the illumination region 4062 of the detection element 406 is disposed and can receive infrared illumination through the aperture region 4068. The non-illuminated area 4064 of the detecting element 406 is disposed inside the covering structure 408 and covered by the covering structure 408, that is, the covering structure 408 prevents the non-illuminated area 4064 when the infrared detector 40 is disposed in the infrared environment. Accept the light. The overall shape of the covering structure 408 is not limited, and may be a hollow cube, a sphere or a cylinder, or the like.
具體的,本實施例中,請參見圖11,該覆蓋結構408為一立 方體結構,其包括一上基板4082、一下基板4084及四個側板(圖未標)。所述探測元件406設置於該下基板4084的表面,並正對上基板4082。所述上基板4082包括一開孔區4086,該開孔區4086的面積小於該上基板4082。所述開孔區4086正對該探測元件406的光照區域4062。該開孔區4086可以為一個大的開口,也可以由複數個小的開口組成。本實施例中,所述開孔區4086為一柵網結構,包括複數個網孔。所述探測元件406的光照區域4062通過該複數個網孔接受紅外線照射。 Specifically, in this embodiment, referring to FIG. 11, the cover structure 408 is a stand. The square structure comprises an upper substrate 4082, a lower substrate 4084 and four side plates (not shown). The detecting component 406 is disposed on a surface of the lower substrate 4084 and faces the upper substrate 4082. The upper substrate 4082 includes an opening area 4068, and the area of the opening area 4084 is smaller than the upper substrate 4082. The aperture area 4068 is facing the illumination area 4062 of the detection element 406. The opening area 4084 can be a large opening or a plurality of small openings. In this embodiment, the opening area 4084 is a grid structure including a plurality of meshes. The illumination region 4062 of the detecting element 406 receives infrared radiation through the plurality of meshes.
請參見圖12,本發明第五實施例提供了一種紅外探測器50。該紅外探測器50包括一第一電極502,一第二電極504、一設置於該第一電極502與該第二電極504之間的探測元件506及一絕緣體510。該探測元件506經過彎折形成一光照區域5062及一非光照區域5064,該光照區域5062和非光照區域5064彎折後的夾角小於等於90度,比如彎折成U型或L型或者U型和L型之間的任意角度的形狀。此時,紅外線照射探測元件506的光照區域5062時,該非光照區域5064被光照區域5062擋住,從而紅外線無法照射該非光照區域。該絕緣體510設置在該光照區域5062和非光照區域5064之間,其形狀可配合探測元件506的彎曲形狀。當探測元件506不能自己保持一定形狀時,該絕緣體510可以作為基底來支撐該探測元件506和第一、第二電極等。本實施例中,絕緣體510為一基底結構,所述第一電極502、第二電極504及探測元件506設置於該絕緣 體510的表面。 Referring to FIG. 12, a fifth embodiment of the present invention provides an infrared detector 50. The infrared detector 50 includes a first electrode 502, a second electrode 504, a detecting element 506 disposed between the first electrode 502 and the second electrode 504, and an insulator 510. The detecting element 506 is bent to form an illumination area 5062 and a non-illumination area 5064. The angle between the illumination area 5062 and the non-illumination area 5064 is less than or equal to 90 degrees, such as bending into a U-shaped or L-shaped or U-shaped. The shape of any angle between the L and the L. At this time, when the infrared ray illuminates the illumination area 5062 of the detecting element 506, the non-illuminated area 5064 is blocked by the illumination area 5062, so that the infrared ray cannot illuminate the non-illuminated area. The insulator 510 is disposed between the illumination region 5062 and the non-illuminated region 5064 and is shaped to match the curved shape of the detector element 506. When the detecting element 506 cannot maintain a certain shape by itself, the insulator 510 can serve as a substrate to support the detecting element 506 and the first and second electrodes and the like. In this embodiment, the insulator 510 is a base structure, and the first electrode 502, the second electrode 504, and the detecting component 506 are disposed on the insulating layer. The surface of the body 510.
所述絕緣體510包括一第一表面5102及一第二表面5104,第一表面5102與第二表面5104之間所形成一夾角α,α大於等於0度小於等於90度。α大於0度小於90度。當α等於0度時,第一表面5102和第二表面5104係兩個相對的表面,即可以理解為,第二表面5104為第一表面5102的背面,此時探測元件506可以彎折成U型設置於絕緣體510的第一表面5102和第二表面5104。本實施例中,α等於45度。所述探測元件506的光照區域5062設置於絕緣體510的第一表面5102上,所述非光照區域5064設置於絕緣體510的第二表面5104。 The insulator 510 includes a first surface 5102 and a second surface 5104. An angle α is formed between the first surface 5102 and the second surface 5104, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees. α is greater than 0 degrees and less than 90 degrees. When α is equal to 0 degrees, the first surface 5102 and the second surface 5104 are two opposite surfaces, that is, it can be understood that the second surface 5104 is the back surface of the first surface 5102, and the detecting element 506 can be bent into U. The first surface 5102 and the second surface 5104 of the insulator 510 are disposed. In this embodiment, α is equal to 45 degrees. The illumination region 5062 of the detection element 506 is disposed on the first surface 5102 of the insulator 510, and the non-illumination region 5064 is disposed on the second surface 5104 of the insulator 510.
本實施例所提供的紅外探測器50在應用時,可使用紅外光R直接照射光照區域5062,由於光照區域5062設置於絕緣體510的第一表面5102上,非光照區域5064設置於絕緣體510的第二表面5104,第一表面5102與第二表面5104之間所形成的α大於等於0度小於等於90度,因此,紅外光不會照射到非光照區域5064。 The infrared detector 50 provided in this embodiment can directly illuminate the illumination region 5062 by using the infrared light R. The illumination region 5062 is disposed on the first surface 5102 of the insulator 510, and the non-illumination region 5064 is disposed on the insulator 510. The two surfaces 5104, α formed between the first surface 5102 and the second surface 5104 are greater than or equal to 0 degrees and less than or equal to 90 degrees, and therefore, the infrared light does not illuminate the non-illuminated region 5064.
請參見圖13,本發明第六實施例提供了一種紅外探測器60。本實施例所提供的紅外探測器60與第一實施例所提供的紅外探測器10的不同之處在於,覆蓋結構608與第一實施例的覆蓋結構108不同,從而本實施例的紅外探測器60不需要單獨的基底。 Referring to FIG. 13, a sixth embodiment of the present invention provides an infrared detector 60. The infrared detector 60 provided in this embodiment is different from the infrared detector 10 provided in the first embodiment in that the cover structure 608 is different from the cover structure 108 of the first embodiment, so that the infrared detector of the embodiment 60 does not require a separate substrate.
所述覆蓋結構608為一U型外殼,具有兩個平行間隔的第一蓋 板6082、第二蓋板6084和位於兩個蓋板之間的一敞開的容置空間。該U型外殼具有一U型內表面,所述探測元件606並貼設於覆蓋結構608的U型內表面上,從而使該探測元件606彎折成一U型結構。第一電極602和第二電極604設置於該探測元件606的兩端,由於該探測元件606彎折成一U型結構,第一電極602和第二電極604均位於紅外探測器60的整體結構的一端,有利於儀錶電連接設置。所述第一蓋板6082和第二蓋板6084中至少一個包括複數個通孔,使設置於該第一蓋板6082表面或者第二蓋板6084表面的部分探測元件606接收紅外線。當該第一蓋板6082包括複數個通孔時,設置於該第一蓋板6082表面的探測元件606可以接收紅外線;當該第二蓋板6084包括複數個通孔時,使設置於該第二蓋板6084表面探測元件606可以接收紅外線。本實施例中,第一蓋板6082和第二蓋板6084均包括複數個通孔。該覆蓋結構608包括該覆蓋結構208的整體形狀不限,可以為立方體、圓柱體、多棱體或者橢球體等等。本實施例中,所述覆蓋結構208為一具有一開口的長方體結構。 The cover structure 608 is a U-shaped outer casing having two first covers spaced apart in parallel The plate 6082, the second cover 6084 and an open accommodating space between the two covers. The U-shaped outer casing has a U-shaped inner surface, and the detecting element 606 is attached to the U-shaped inner surface of the covering structure 608, so that the detecting element 606 is bent into a U-shaped structure. The first electrode 602 and the second electrode 604 are disposed at two ends of the detecting element 606. Since the detecting element 606 is bent into a U-shaped structure, the first electrode 602 and the second electrode 604 are both located in the overall structure of the infrared detector 60. One end is beneficial to the instrument electrical connection settings. At least one of the first cover plate 6082 and the second cover plate 6084 includes a plurality of through holes, so that the partial detecting elements 606 disposed on the surface of the first cover plate 6082 or the surface of the second cover plate 6084 receive infrared rays. When the first cover plate 6082 includes a plurality of through holes, the detecting element 606 disposed on the surface of the first cover plate 6082 can receive infrared rays; when the second cover plate 6084 includes a plurality of through holes, the first cover plate 6084 is disposed at the first The second cover 6084 surface detecting element 606 can receive infrared rays. In this embodiment, the first cover plate 6082 and the second cover plate 6084 each include a plurality of through holes. The cover structure 608 includes the overall shape of the cover structure 208, and may be a cube, a cylinder, a polygon or an ellipsoid, or the like. In this embodiment, the cover structure 208 is a rectangular parallelepiped structure having an opening.
本實施例所提供的紅外探測器60在使用時,當紅外線朝向第一蓋板6082傳播時,由於第一蓋板6082包括複數個通孔,則設置於該第一蓋板6082表面的部分探測元件606為光照區域,設置於U型外殼側面和第二蓋板6084表面的部分探測元件606為非光照區域;當紅外線朝向第二蓋板6084傳播時,由於第二蓋板6084包括複數個通孔,則設置於該第二蓋板6084 表面的部分探測元件606為光照區域,設置於U型外殼側面和第一蓋板6082表面的部分探測元件606為非光照區域。本實施例所提供的紅外探測器60可以探測來自不同方向的紅外線,具有較大的探測範圍。 When the infrared detector 60 provided in this embodiment is used, when the infrared ray is propagating toward the first cover plate 6082, since the first cover plate 6082 includes a plurality of through holes, a part of the surface of the first cover plate 6082 is detected. The element 606 is an illumination area, and the partial detecting element 606 disposed on the side of the U-shaped casing and the surface of the second cover 6084 is a non-illuminated area; when the infrared ray is propagating toward the second cover 6084, since the second cover 6084 includes a plurality of passes a hole is disposed in the second cover 6084 The partial detecting element 606 of the surface is an illumination area, and the partial detecting elements 606 disposed on the side of the U-shaped housing and the surface of the first cover 6082 are non-illuminated areas. The infrared detector 60 provided in this embodiment can detect infrared rays from different directions and has a large detection range.
可以理解,本發明所提供的紅外探測器在探測紅外線的時候可以產生電勢差,所以該紅外探測器還可以用作光電電池。 It can be understood that the infrared detector provided by the present invention can generate a potential difference when detecting infrared rays, so the infrared detector can also be used as a photovoltaic cell.
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.
10‧‧‧紅外探測器 10‧‧‧Infrared detector
102‧‧‧第一電極 102‧‧‧First electrode
1062‧‧‧光照區域 1062‧‧‧Lighting area
108‧‧‧覆蓋結構 108‧‧‧ Coverage structure
110‧‧‧基底 110‧‧‧Base
112‧‧‧電壓測試表 112‧‧‧Voltage test table
114‧‧‧電流測試表 114‧‧‧current test table
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99121982A TWI410615B (en) | 2010-07-05 | 2010-07-05 | Ir detective device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99121982A TWI410615B (en) | 2010-07-05 | 2010-07-05 | Ir detective device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201202674A TW201202674A (en) | 2012-01-16 |
TWI410615B true TWI410615B (en) | 2013-10-01 |
Family
ID=46756193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99121982A TWI410615B (en) | 2010-07-05 | 2010-07-05 | Ir detective device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI410615B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10571339B2 (en) | 2018-01-11 | 2020-02-25 | Tsinghua University | Plane source blackbody |
TWI690696B (en) * | 2018-01-11 | 2020-04-11 | 鴻海精密工業股份有限公司 | Cavity blackbody radiation source |
TWI690695B (en) * | 2018-01-11 | 2020-04-11 | 鴻海精密工業股份有限公司 | Blackbody radiation source |
US10782189B2 (en) | 2018-01-11 | 2020-09-22 | Tsinghua University | Blackbody radiation source |
US10921192B2 (en) | 2018-01-11 | 2021-02-16 | Tsinghua University | Plane source blackbody |
US11002608B2 (en) | 2018-01-11 | 2021-05-11 | Tsinghua University | Blackbody radiation source |
US11047740B2 (en) | 2018-01-11 | 2021-06-29 | Tsinghua University | Plane source blackbody |
US11079284B2 (en) | 2018-01-11 | 2021-08-03 | Tsinghua University | Plane source blackbody |
US11125626B2 (en) | 2018-01-11 | 2021-09-21 | Tsinghua University | Cavity blackbody radiation source and method of making the same |
US11204284B2 (en) | 2018-01-11 | 2021-12-21 | Tsinghua University | Blackbody radiation source |
US11204283B2 (en) | 2018-01-11 | 2021-12-21 | Tsinghua University | Cavity blackbody radiation source and method of making the same |
US11460345B2 (en) | 2018-01-11 | 2022-10-04 | Tsinghua University | Cavity blackbody radiation source and method of making the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113029361A (en) * | 2019-12-25 | 2021-06-25 | 清华大学 | Infrared detector and infrared imager based on carbon nanotube structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005001938A (en) * | 2003-06-11 | 2005-01-06 | Fujikura Ltd | Method of manufacturing carbon nanotube |
JP2007320810A (en) * | 2006-06-01 | 2007-12-13 | Nagaoka Univ Of Technology | Method and apparatus for producing carbon nanotube |
JP2008044911A (en) * | 2006-08-21 | 2008-02-28 | Misaki Miura | Warm temperature-regulating cataplasm |
TW200941716A (en) * | 2007-03-12 | 2009-10-01 | Nantero Inc | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
TW201009308A (en) * | 2008-08-29 | 2010-03-01 | Hon Hai Prec Ind Co Ltd | Infrared detector |
US20100065829A1 (en) * | 2008-05-01 | 2010-03-18 | The Regents Of The University Of Michigan | Polymer wrapped carbon nanotube near-infrared photovoltaic devices |
-
2010
- 2010-07-05 TW TW99121982A patent/TWI410615B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005001938A (en) * | 2003-06-11 | 2005-01-06 | Fujikura Ltd | Method of manufacturing carbon nanotube |
JP2007320810A (en) * | 2006-06-01 | 2007-12-13 | Nagaoka Univ Of Technology | Method and apparatus for producing carbon nanotube |
JP2008044911A (en) * | 2006-08-21 | 2008-02-28 | Misaki Miura | Warm temperature-regulating cataplasm |
TW200941716A (en) * | 2007-03-12 | 2009-10-01 | Nantero Inc | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
US20100065829A1 (en) * | 2008-05-01 | 2010-03-18 | The Regents Of The University Of Michigan | Polymer wrapped carbon nanotube near-infrared photovoltaic devices |
TW201009308A (en) * | 2008-08-29 | 2010-03-01 | Hon Hai Prec Ind Co Ltd | Infrared detector |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10571339B2 (en) | 2018-01-11 | 2020-02-25 | Tsinghua University | Plane source blackbody |
TWI690696B (en) * | 2018-01-11 | 2020-04-11 | 鴻海精密工業股份有限公司 | Cavity blackbody radiation source |
TWI690695B (en) * | 2018-01-11 | 2020-04-11 | 鴻海精密工業股份有限公司 | Blackbody radiation source |
US10782189B2 (en) | 2018-01-11 | 2020-09-22 | Tsinghua University | Blackbody radiation source |
US10921192B2 (en) | 2018-01-11 | 2021-02-16 | Tsinghua University | Plane source blackbody |
US11002608B2 (en) | 2018-01-11 | 2021-05-11 | Tsinghua University | Blackbody radiation source |
US11047740B2 (en) | 2018-01-11 | 2021-06-29 | Tsinghua University | Plane source blackbody |
US11079284B2 (en) | 2018-01-11 | 2021-08-03 | Tsinghua University | Plane source blackbody |
US11125626B2 (en) | 2018-01-11 | 2021-09-21 | Tsinghua University | Cavity blackbody radiation source and method of making the same |
US11204284B2 (en) | 2018-01-11 | 2021-12-21 | Tsinghua University | Blackbody radiation source |
US11204283B2 (en) | 2018-01-11 | 2021-12-21 | Tsinghua University | Cavity blackbody radiation source and method of making the same |
US11226238B2 (en) | 2018-01-11 | 2022-01-18 | Tsinghua University | Blackbody radiation source |
US11454547B2 (en) | 2018-01-11 | 2022-09-27 | Tsinghua University | Cavity blackbody radiation source |
US11460345B2 (en) | 2018-01-11 | 2022-10-04 | Tsinghua University | Cavity blackbody radiation source and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
TW201202674A (en) | 2012-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI410615B (en) | Ir detective device | |
CN101871818B (en) | Infrared detector | |
CN101894903B (en) | Photoelectric conversion device | |
US8796537B2 (en) | Carbon nanotube based solar cell | |
US20110056928A1 (en) | Wall mounted electric heater | |
EP2580788A2 (en) | Optical antennas with enhanced fields and electron emission | |
CN211877253U (en) | Infrared detector and infrared imager based on carbon nanotube structure | |
JP5096392B2 (en) | Solar heat collection system | |
JP2009260355A (en) | Photovoltaic cell | |
CN101656298B (en) | Infrared detector | |
Huang et al. | Flexible infrared detectors based on p–n junctions of multi-walled carbon nanotubes | |
US10236431B2 (en) | Thermoelectric conversion element and thermoelectric conversion module | |
Wang et al. | A paradigm-shift self-powered optical sensing system enabled by the rotation driven instantaneous discharging triboelectric nanogenerator (RDID-TENG) | |
JP5243332B2 (en) | Solar collector and solar heat collecting system using the same | |
CN100356148C (en) | Infrared laser power detector based on disordered multi-wall nano carbon tube | |
CN110514307B (en) | Infrared detector and system based on two-dimensional material photoelectric and thermal effects | |
TWI397701B (en) | Device and method for detecting electromagnetic wave | |
TWI477694B (en) | Light-electric conversion device | |
TWI467091B (en) | Light-electric conversion device | |
KR20120033841A (en) | Radiation detector and method for detecting radiation | |
CN110687358B (en) | Capacitive electromagnetic wave detector and system based on thermoelectric material | |
WO2012115502A1 (en) | A photovoltaic device with an integrated sensor | |
US11895429B2 (en) | Infrared detector and infrared imager based on carbon nanotube | |
US20190088741A1 (en) | High Efficiency Room Temperature Infrared Sensor | |
RU2247411C1 (en) | Semiconductor detector for recording charged-particle associated neutrons in static-vacuum neutron generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |