TWI409880B - Method for manufacturing a semiconductor device - Google Patents

Method for manufacturing a semiconductor device Download PDF

Info

Publication number
TWI409880B
TWI409880B TW97132710A TW97132710A TWI409880B TW I409880 B TWI409880 B TW I409880B TW 97132710 A TW97132710 A TW 97132710A TW 97132710 A TW97132710 A TW 97132710A TW I409880 B TWI409880 B TW I409880B
Authority
TW
Taiwan
Prior art keywords
layer
titanium
barrier layer
vapor deposition
conductive
Prior art date
Application number
TW97132710A
Other languages
Chinese (zh)
Other versions
TW201009934A (en
Inventor
Tuung Luoh
Chin Ta Su
Ta Hung Yang
Kuang Chao Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW97132710A priority Critical patent/TWI409880B/en
Publication of TW201009934A publication Critical patent/TW201009934A/en
Application granted granted Critical
Publication of TWI409880B publication Critical patent/TWI409880B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for manufacturing a semiconductor device is disclosed. A semiconductor substrate such as bare silicon is provided, and a dielectric layer is formed over the semiconductor substrate. An opening is provided within the dielectric layer by removing a portion of the dielectric layer. A conformal first conductive layer is formed over the dielectric layer and the opening. A conformal second conductive layer is formed over the first conductive layer. A conformal barrier is formed over the second conductive layer.

Description

一種用來製造半導體裝置的方法Method for manufacturing a semiconductor device

本發明係關於一種半導體裝置的製造方法,特別係關於製造半導體裝置之接觸窗阻障層的方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a contact window barrier layer of a semiconductor device.

於半導體產業中,過去的趨勢在於晶圓封裝密度的提升,而高度整合的半導體積體電路乃是藉由縮小裝置的尺寸來達成。與積體電路製程的其他方面相同,製造接觸窗的技術也需要不斷改進以跟上製程的發展。In the semiconductor industry, the past trend has been in the increase in wafer packing density, and the highly integrated semiconductor integrated circuit has been achieved by reducing the size of the device. As with other aspects of the integrated circuit process, the technology for making contact windows also needs to be continuously improved to keep up with the development of the process.

半導體積體電路中的接觸窗提供了金屬導體與電路元件之間的電性連接。於一般積體電路製程中,介電層係形成於半導體基材上。將介電層蝕刻至半導體基材則可形成接觸窗開口。之後,接觸窗開口乃以導電材料(如鈦)填充,以提供金屬導體與電路元件之間的電性連接。為了防止金屬導體與基材間或金屬導體間產生化學反應,通常會在導電層上沉積一阻障層(如氮化鈦層)來作為阻隔。The contact window in the semiconductor integrated circuit provides an electrical connection between the metal conductor and the circuit component. In a general integrated circuit process, a dielectric layer is formed on a semiconductor substrate. The contact opening can be formed by etching the dielectric layer to the semiconductor substrate. Thereafter, the contact opening is filled with a conductive material such as titanium to provide an electrical connection between the metal conductor and the circuit component. In order to prevent a chemical reaction between the metal conductor and the substrate or between the metal conductors, a barrier layer (such as a titanium nitride layer) is usually deposited on the conductive layer as a barrier.

用來沉積金屬薄膜的公知方法為化學氣相沉積法(CVD)。形成接觸窗的一個常用方法乃是先利用化學氣相沉積法來沉積鈦(Ti),再利用化學氣相沉積法來沉積氮化鈦(TiN)。由於CVD鈦沉積製程係於高溫下進行(如約500℃至650℃),故鈦沉積後會立刻形成矽化鈦(TiSi2 )。第1A圖與第1B圖可說明製造接觸窗的方法,如第1A圖所示,先提供具有介電層104與開口106之半導體基材102。之後,如第1B圖所示,乃利用電漿輔助化學氣相沉積法(PECVD)來沉積鈦層110。接著,在沉積如鋁或鎢組成的某種金屬導體116之前,先利用化學氣相沉積法來沉積氮化鈦阻障層114。透過鈦與矽的反應,可形成矽化鈦區域112。A known method for depositing a metal thin film is chemical vapor deposition (CVD). A common method of forming contact windows is to deposit titanium (Ti) by chemical vapor deposition and then deposit titanium nitride (TiN) by chemical vapor deposition. Since the CVD titanium deposition process is performed at a high temperature (e.g., about 500 ° C to 650 ° C), titanium oxide (TiSi 2 ) is formed immediately after titanium deposition. FIGS. 1A and 1B illustrate a method of fabricating a contact window. As shown in FIG. 1A, a semiconductor substrate 102 having a dielectric layer 104 and an opening 106 is provided first. Thereafter, as shown in FIG. 1B, the titanium layer 110 is deposited by plasma assisted chemical vapor deposition (PECVD). Next, a titanium nitride barrier layer 114 is deposited by chemical vapor deposition prior to depositing a certain metal conductor 116 composed of aluminum or tungsten. The titanium telluride region 112 can be formed by the reaction of titanium with niobium.

本發明一實施例揭露了一種半導體裝置的製造方法。先提供半導體基材(如裸矽),並在半導體基材上形成介電層。藉由移除部分介電層,可在介電層中提供開口。共形之第一導電層乃形成於介電層與開口上,共形之第二導電層乃形成於第一導電層上,共形之阻障層乃形成於第二導電層上。An embodiment of the invention discloses a method of fabricating a semiconductor device. A semiconductor substrate (such as bare bristles) is first provided and a dielectric layer is formed over the semiconductor substrate. An opening can be provided in the dielectric layer by removing a portion of the dielectric layer. The conformal first conductive layer is formed on the dielectric layer and the opening, the conformal second conductive layer is formed on the first conductive layer, and the conformal barrier layer is formed on the second conductive layer.

於本發明的另一個實施例中,係提供半導體基材(如裸矽),並在半導體基材上形成介電層。藉由移除部分介電層,可在介電層中提供開口。共形之第一導電層乃形成於介電層與開口上,選擇性阻障層乃形成於第一導電層上,共形之第二導電層乃形成於選擇性阻障層上,共形之阻障層乃形成於第二導電層上。In another embodiment of the invention, a semiconductor substrate (e.g., bare) is provided and a dielectric layer is formed over the semiconductor substrate. An opening can be provided in the dielectric layer by removing a portion of the dielectric layer. The conformal first conductive layer is formed on the dielectric layer and the opening, the selective barrier layer is formed on the first conductive layer, and the conformal second conductive layer is formed on the selective barrier layer, conformal The barrier layer is formed on the second conductive layer.

於本發明的另一個實施例中,係提供半導體基材(如裸矽),並在半導體基材上形成介電層。藉由移除部分介電層,可在介電層中提供開口。共形之第一導電層乃形成於介電層與開口上,選擇性阻障層乃形成於第一導電層上,共形之阻障層乃形成於選擇性阻障層上。In another embodiment of the invention, a semiconductor substrate (e.g., bare) is provided and a dielectric layer is formed over the semiconductor substrate. An opening can be provided in the dielectric layer by removing a portion of the dielectric layer. The conformal first conductive layer is formed on the dielectric layer and the opening, the selective barrier layer is formed on the first conductive layer, and the conformal barrier layer is formed on the selective barrier layer.

以下謹配合圖式說明本發明之代表性實施例,且圖式中相同或相類似的元件乃以相同的元件符號來代表。第2A-2C圖係用以說明本發明製造接觸窗之方法的第一實施例,其係先利用物理氣相沉積法(PVD)來形成第一鈦層,之後再利用電漿輔助化學氣相沉積法(PECVD)來沉積第二鈦層,並利用化學氣相沉積法(CVD)來形成氮化鈦(TiN)層,以達成具有良好共形步階覆蓋性質且沒有突懸形成的接觸窗阻障層。以下乃詳細說明此種接觸窗之製造方法。Representative embodiments of the present invention are described in the following, and the same or similar elements are represented by the same reference numerals. 2A-2C is a first embodiment for explaining the method of manufacturing a contact window of the present invention, which first uses physical vapor deposition (PVD) to form a first titanium layer, and then uses plasma to assist the chemical vapor phase. A second titanium layer is deposited by deposition (PECVD) and a titanium nitride (TiN) layer is formed by chemical vapor deposition (CVD) to achieve a contact window with good conformal step coverage and no overhang formation. Barrier layer. The following is a detailed description of the manufacturing method of such a contact window.

請參見第2A圖,其中,半導體基材202係可先進行離子佈植,以形成高度摻雜區域(圖未示),如P+ 井。介電層204乃沉積或形成於半導體基材202上。半導體基材202通常是裸矽,但其也可以是矽鍺(SiGe)或其他半導體材料。可選擇性移除部分的介電層204以在介電層204中提供開口206,且開口206可利用各種微影製程於介電層204上圖案化。Referring to FIG. 2A, the semiconductor substrate 202 can be ion implanted first to form highly doped regions (not shown), such as P + wells. Dielectric layer 204 is deposited or formed on semiconductor substrate 202. Semiconductor substrate 202 is typically bare, but it can also be germanium (SiGe) or other semiconductor materials. A portion of the dielectric layer 204 can be selectively removed to provide openings 206 in the dielectric layer 204, and the openings 206 can be patterned on the dielectric layer 204 using various lithography processes.

於提供開口206後,將半導體裝置放入物理氣相沉積(PVD)製程之腔室中。於某些實施例中,PVD製程之腔室可以是離子化金屬電漿(IMP)PVD製程之腔室或自行離子化電漿(SIP)PVD製程之腔室。如第2A圖所示,乃形成第一導電層208(舉例來說,第一鈦層208),且其厚度可介於如約5至30埃。於其他實施例中,第一鈦層208之厚度可介於5至20埃或10至15埃之間。第一鈦層208係利用IMP PVD製程(即IMP PVD之鈦製程)形成於介電層204與開口206上。第一鈦層208的形成係於如0℃至400℃的環境下進行,或是在如25℃至300℃的環境下進行。根據不同的應用,欲達成共形之導電層208,此製程溫度可隨著導電層208厚度之不同而有所改變。After the opening 206 is provided, the semiconductor device is placed in a chamber of a physical vapor deposition (PVD) process. In some embodiments, the chamber of the PVD process can be a chamber of an ionized metal plasma (IMP) PVD process or a chamber of a self-ionizing plasma (SIP) PVD process. As shown in FIG. 2A, a first conductive layer 208 (for example, a first titanium layer 208) is formed and may have a thickness of, for example, about 5 to 30 angstroms. In other embodiments, the first titanium layer 208 may have a thickness between 5 and 20 angstroms or between 10 and 15 angstroms. The first titanium layer 208 is formed on the dielectric layer 204 and the opening 206 by an IMP PVD process (i.e., a titanium process of IMP PVD). The formation of the first titanium layer 208 is performed in an environment such as 0 ° C to 400 ° C or in an environment such as 25 ° C to 300 ° C. Depending on the application, to achieve a conformal conductive layer 208, the process temperature can vary with the thickness of the conductive layer 208.

相較於利用CVD製程(即CVD之鈦製程)來沉積鈦層,在PVD製程中,矽化鈦(TiSi2 )層並不與鈦層同時形成。換言之,在PVD製程之溫度下,鈦與矽之間的反應並不一定會像CVD之鈦製程中相對應的反應般強烈。因此,共形之第一鈦層208將形成於介電層204上。與CVD之鈦製程相比,IMP PVD之鈦製程可利用相對簡單的控制沉積製程而達到較為一致的接觸電阻。Compared to the deposition of a titanium layer by a CVD process (i.e., a CVD titanium process), a titanium telluride (TiSi 2 ) layer is not formed simultaneously with the titanium layer in the PVD process. In other words, at the temperature of the PVD process, the reaction between titanium and tantalum does not necessarily be as strong as the corresponding reaction in the titanium process of CVD. Thus, a conformal first titanium layer 208 will be formed over dielectric layer 204. Compared to the CVD titanium process, the IMP PVD titanium process achieves a consistent contact resistance with a relatively simple controlled deposition process.

當半導體裝置的尺寸繼續降低至次微米等級時,接觸窗之深寬比(即接觸窗之深度與接觸窗之寬度之比例)會增加,且步階覆蓋性質(即接觸窗底部的薄膜厚度與接觸窗側面的薄膜厚度之比例)相關的問題也會成為瓶頸,為了改善步階覆蓋性質並減少突懸現象(即沉積於接觸窗頂角材料的數量,其會限制可沉積於接觸窗內材料的多寡),第二導電層210(舉例來說,第二鈦層210)係形成於第一導電層208上,如第2圖所示。為了要形成第二鈦層210,半導體裝置乃從PVD腔室中移到化學氣相沉積(CVD)腔室中(如電漿輔助化學氣相沉積(PECVD)之腔室)。由於真空狀態已不存在,第一鈦層208之表面將暴露於空氣中,而氧化的結果將增加第一鈦層208的表面電阻。因此,積體電路裝置的RC值將會增加。然而,於此實施例中,在CVD製程後形成之第二鈦層210中的鈦會吸收空氣中的氧,進而使第二鈦層210具有較穩定的性質(如薄膜電阻、較佳的厚度及共形性)。As the size of the semiconductor device continues to decrease to the sub-micron level, the aspect ratio of the contact window (ie, the ratio of the depth of the contact window to the width of the contact window) increases, and the step coverage properties (ie, the thickness of the film at the bottom of the contact window) The problem associated with the ratio of the thickness of the film on the side of the contact window will also become a bottleneck. In order to improve the step coverage and reduce the overhang phenomenon (ie the amount of material deposited in the contact window apex, it will limit the material that can be deposited in the contact window). The second conductive layer 210 (for example, the second titanium layer 210) is formed on the first conductive layer 208 as shown in FIG. To form the second titanium layer 210, the semiconductor device is moved from the PVD chamber to a chemical vapor deposition (CVD) chamber (such as a plasma assisted chemical vapor deposition (PECVD) chamber). Since the vacuum state is no longer present, the surface of the first titanium layer 208 will be exposed to the air, and the result of the oxidation will increase the surface resistance of the first titanium layer 208. Therefore, the RC value of the integrated circuit device will increase. However, in this embodiment, the titanium in the second titanium layer 210 formed after the CVD process absorbs oxygen in the air, thereby making the second titanium layer 210 have more stable properties (such as sheet resistance, better thickness). And conformality).

在第二鈦層210的形成過程中,氣體源(如TiCl4 )乃導入CVD腔室中,第二鈦層210形成之厚度可以介於約5-400埃之間,且較佳係介於5-200埃之間或50-100埃之間。在第二鈦層210的形成過程中,溫度可控制於約350℃至650℃之間,且較佳係控制於500℃至650℃之間。於某些代表性實施例中,溫度可介於600℃至650℃之間,端視其應用而定。由於用來形成第二鈦層210的CVD製程係在高溫下進行,部分的第一鈦層208可與基材之材料反應,進而在半導體基材202由開口206所暴露處形成低電阻的矽化鈦(TiSi2 )層212。因此,藉由鈦(來自第一鈦層208)與矽(來自半導體基材202)之惰性反應,矽化鈦層212的形成將可具有較大的製程裕度,因而增進矽化鈦層212的熱穩定性。During the formation of the second titanium layer 210, a gas source (such as TiCl 4 ) is introduced into the CVD chamber, and the second titanium layer 210 may be formed to a thickness of between about 5 and 400 angstroms, and preferably between Between 5 and 200 angstroms or between 50 and 100 angstroms. During the formation of the second titanium layer 210, the temperature can be controlled between about 350 ° C and 650 ° C, and preferably between 500 ° C and 650 ° C. In certain representative embodiments, the temperature can be between 600 ° C and 650 ° C depending on the application. Since the CVD process for forming the second titanium layer 210 is performed at a high temperature, a portion of the first titanium layer 208 can react with the material of the substrate to form a low resistance deuteration at the semiconductor substrate 202 exposed by the opening 206. Titanium (TiSi 2 ) layer 212. Thus, by inert reaction of titanium (from the first titanium layer 208) and germanium (from the semiconductor substrate 202), the formation of the titanium telluride layer 212 will have a greater process margin, thereby increasing the heat of the titanium telluride layer 212. stability.

為了防止金屬導體與基材間或金屬導體間產生化學反應,阻障層214可利用CVD製程形成於第二鈦層210上來作為阻隔,如第2C圖所示。於一實施例中,作為鈦源氣體的氯化鈦(TiCl4 )與作為反應氣體的氨(NH3 )乃以一定流速供應,進而形成作為阻障層214的氮化鈦(TiN)層。藉此,氮化鈦乃透過氯化鈦與氨的反應而形成。於另一實施例中,若利用TaCl5 作為鈦源,則生成的氮化鉭(TaN)層也可作為阻障層214。於其他實施例中,氮化鎢(WN)層或鎢化鈦(TiW)層亦可作為阻障層214。於一實施例中,阻障層214之厚度介於約5至500埃之間。於其他實施例中,阻障層214之厚度可介於50至200埃之間或70至150埃之間。於一實施例中,CVD製程可在350℃至700℃之溫度下進行。於其他實施例中,CVD製程則可在400℃至650℃之溫度下進行,且較佳係在600℃至650℃下進行。應注意的是,阻障層214之厚度以及形成溫度可視其應用而調整或進行最佳化。In order to prevent a chemical reaction between the metal conductor and the substrate or between the metal conductors, the barrier layer 214 may be formed on the second titanium layer 210 by a CVD process as a barrier, as shown in FIG. 2C. In one embodiment, the titanium source gas, the titanium chloride (TiCl 4) and (NH 3) are based on a flow rate of ammonia supplied as a reaction gas, thereby forming (TiN) layer, titanium nitride barrier layer 214. Thereby, titanium nitride is formed by the reaction of titanium chloride with ammonia. In another embodiment, if TaCl 5 is used as the titanium source, the resulting tantalum nitride (TaN) layer can also function as the barrier layer 214. In other embodiments, a tungsten nitride (WN) layer or a titanium tungsten (TiW) layer may also serve as the barrier layer 214. In one embodiment, the barrier layer 214 has a thickness between about 5 and 500 angstroms. In other embodiments, the barrier layer 214 may have a thickness between 50 and 200 angstroms or between 70 and 150 angstroms. In one embodiment, the CVD process can be performed at a temperature of from 350 ° C to 700 ° C. In other embodiments, the CVD process can be carried out at a temperature of from 400 ° C to 650 ° C, and preferably from 600 ° C to 650 ° C. It should be noted that the thickness of the barrier layer 214 and the formation temperature may be adjusted or optimized depending on its application.

如第2A-2C圖所示,第一鈦層208乃利用PVD製程形成於介電層204與開口206上,且第二鈦層210乃利用CVD製程形成於第一鈦層208上。之後,乃利用CVD製程將阻障層214(如氮化鈦或氮化鉭層)形成於第二鈦層210上。此種材料層的組合可提供較佳的底部覆蓋以及共形之氮化鈦/氮化鉭層覆蓋。請參照第2C圖,金屬層216乃形成於阻障層214上以填充開口206。As shown in FIGS. 2A-2C, the first titanium layer 208 is formed on the dielectric layer 204 and the opening 206 by a PVD process, and the second titanium layer 210 is formed on the first titanium layer 208 by a CVD process. Thereafter, a barrier layer 214 such as a titanium nitride or tantalum nitride layer is formed on the second titanium layer 210 by a CVD process. This combination of material layers provides better bottom coverage and conformal titanium nitride/tantalten nitride layer coverage. Referring to FIG. 2C, a metal layer 216 is formed on the barrier layer 214 to fill the opening 206.

在阻障層214形成後,可選擇性地進行熱處理(如快速熱製程處理(RTP))。半導體裝置可放入填充有氮氣、溫度介於500℃至700℃之間的腔室中。於不同實施例中,腔室內的溫度可為550℃至650℃或600℃至650℃之間。於一實施例中,進行熱處理的時間約為20至180秒。於其他實施例中,進行熱處理的時間為30至120秒或40至60秒。After the barrier layer 214 is formed, a heat treatment (such as rapid thermal process (RTP)) may be selectively performed. The semiconductor device can be placed in a chamber filled with nitrogen and having a temperature between 500 ° C and 700 ° C. In various embodiments, the temperature within the chamber can be between 550 ° C and 650 ° C or between 600 ° C and 650 ° C. In one embodiment, the heat treatment is performed for a time of about 20 to 180 seconds. In other embodiments, the heat treatment is carried out for a period of 30 to 120 seconds or 40 to 60 seconds.

欲提升阻障層214的效能,可於第一導電層208與第二導電層210之間形成一額外的選擇性阻障層218,如第3圖所示之本發明第二實施例。於一實施例中,乃利用金屬有機化學氣相沉積法(MOCVD),在350℃至550℃之溫度下,使前驅物如四(二乙基胺)化鈦(TDEAT)、四(二甲基胺)化鈦(TDMAT)、四(乙基甲基胺)化鈦(TEMAT)或其混合物與氨進行反應來沉積氮化鈦。透過將氦氣以一定速率導入腔室中,並施加約500至1000瓦特之射頻能量來產生電漿,選擇性阻障層218還可施以氮氣電漿處理(可參見http://www.patentstorm.us/patents6514850-description.html)或氦氣電漿處理。抑或是可利用自行離子化電漿法,在400℃之溫度下以鈦與氮分別作為氣體源與反應源來對氮化鈦沉積進行濺鍍。第3A圖為本發明一實施例中半導體裝置之接觸窗阻障層的掃描電子顯微鏡照片,其中可看出來接觸窗阻障層包括厚度約為80埃的IMP PVD之鈦層、厚度約25埃的MOCVD之氮化鈦層以及厚度約160埃的TiCl4 CVD之氮化鈦層,而TiCl4 CVD之氮化鈦層更包括一柱狀結構。此外,上述之接觸窗阻障層係可選擇性地在650℃之溫度下施以快速熱製程處理。To enhance the performance of the barrier layer 214, an additional selective barrier layer 218 can be formed between the first conductive layer 208 and the second conductive layer 210, such as the second embodiment of the present invention shown in FIG. In one embodiment, the precursors such as tetrakis(diethylamine)titanate (TDEAT) and tetrakis are used by metal organic chemical vapor deposition (MOCVD) at a temperature of 350 ° C to 550 ° C. Titanium nitride (TDMAT), tetrakis(ethylmethylamine)titanium (TEMAT) or a mixture thereof is reacted with ammonia to deposit titanium nitride. The plasma is selectively applied to the chamber by introducing helium into the chamber at a rate and applying about 500 to 1000 watts of RF energy. The selective barrier layer 218 can also be treated with nitrogen plasma (see http://www. Patentstorm.us/patents6514850-description.html) or helium plasma treatment. Alternatively, the titanium nitride deposition may be sputtered by using a self-ionizing plasma method at a temperature of 400 ° C using titanium and nitrogen as gas sources and reaction sources, respectively. 3A is a scanning electron micrograph of a contact window barrier layer of a semiconductor device according to an embodiment of the present invention, wherein the contact window barrier layer comprises a titanium layer of IMP PVD having a thickness of about 80 angstroms and a thickness of about 25 angstroms. The titanium nitride layer of MOCVD and the titanium nitride layer of TiCl 4 CVD having a thickness of about 160 angstroms, and the titanium nitride layer of TiCl 4 CVD further comprises a columnar structure. In addition, the contact window barrier layer described above can be selectively subjected to a rapid thermal process at a temperature of 650 °C.

於本發明之第三實施例中,如第4圖所示,可利用PVD製程將第一導電層208形成於介電層204與開口206上,來形成厚度介於約10至400埃(較佳係介於約200至300埃)的共形之阻障層214。In a third embodiment of the present invention, as shown in FIG. 4, a first conductive layer 208 may be formed on the dielectric layer 204 and the opening 206 by a PVD process to form a thickness of about 10 to 400 angstroms. A conformal barrier layer 214 of between about 200 and 300 angstroms is preferred.

因此,在形成阻障層214前,先以自行離子化電漿濺鍍製程或金屬有機化學氣相沉積法來在第一導電層208上形成厚度為5至100埃(較佳係介於10至50埃)的選擇性阻障層218。Therefore, a thickness of 5 to 100 angstroms is formed on the first conductive layer 208 by a self-ionizing plasma sputtering process or a metal organic chemical vapor deposition process before forming the barrier layer 214 (preferably 10 A selective barrier layer 218 of up to 50 angstroms.

在選擇性阻障層218形成之後,可選擇性地進行熱處理(如快速熱製程處理(RTP))。半導體裝置可放入填充有氮氣、溫度介於500℃至700℃之間的腔室中。於不同實施例中,腔室內的溫度可為550℃至650℃或600℃至650℃之間。After the selective barrier layer 218 is formed, a heat treatment (such as rapid thermal process (RTP)) may be selectively performed. The semiconductor device can be placed in a chamber filled with nitrogen and having a temperature between 500 ° C and 700 ° C. In various embodiments, the temperature within the chamber can be between 550 ° C and 650 ° C or between 600 ° C and 650 ° C.

接著,利用CVD製程在選擇性阻障層218上形成阻障層214(如氮化鈦或氮化鉭層)。阻障層214之厚度可介於20至200埃之間或40至100埃之間。此種材料層的組合可產生平滑的底部覆蓋,因而提供共形之阻障層。接著,在阻障層214上形成金屬層216以填充開口206。Next, a barrier layer 214 (such as a titanium nitride or tantalum nitride layer) is formed on the selective barrier layer 218 by a CVD process. The barrier layer 214 may have a thickness between 20 and 200 angstroms or between 40 and 100 angstroms. The combination of such material layers produces a smooth bottom coverage, thus providing a conformal barrier layer. Next, a metal layer 216 is formed over the barrier layer 214 to fill the opening 206.

第5圖為本發明一實施例之接觸電阻分布圖,其中,x軸代表接觸電阻(以歐姆為單位)、y軸代表分布(以百分比表示)。Figure 5 is a diagram showing the contact resistance distribution of an embodiment of the present invention, wherein the x-axis represents contact resistance (in ohms) and the y-axis represents distribution (expressed as a percentage).

如第5圖所示,與區域510相比,區域520內的曲線代表P+/N電阻乃增加以形成相對較長的尾形。曲線512代表的是本發明一實施例所得到的電阻,其中乃利用IMP PVD製程來形成厚度5至30埃的第一鈦層208,利用PECVD製程來在第一鈦層208上形成厚度5至400埃的第二鈦層210,並在第二鈦層210上形成厚度5至500埃的氮化鈦阻障層214。As shown in FIG. 5, the curve in region 520 represents an increase in P+/N resistance to form a relatively long tail shape as compared to region 510. Curve 512 represents a resistor obtained in accordance with an embodiment of the present invention, wherein an IMP PVD process is used to form a first titanium layer 208 having a thickness of 5 to 30 angstroms, and a thickness 5 is formed on the first titanium layer 208 by a PECVD process. A second titanium layer 210 of 400 angstroms is formed, and a titanium nitride barrier layer 214 having a thickness of 5 to 500 angstroms is formed on the second titanium layer 210.

雖然本發明係已參照實施例來加以描述,然本發明創作並未受限於其詳細描述內容。替換方式及修改樣式係已於先前描述中所建議,且其他替換方式及修改樣式將為熟習此項技藝之人士所思及。特別是,所有具有實質上相同於本發明之構件結合而達成與本發明實質上相同結果者,皆不脫離本發明之精神範疇。因此,所有此等替換方式及修改樣式係意欲落在本發明於隨附申請專利範圍及其均等物所界定的範疇之中。Although the present invention has been described with reference to the embodiments, the present invention is not limited by the detailed description thereof. Alternatives and modifications are suggested in the foregoing description, and other alternatives and modifications will be apparent to those skilled in the art. In particular, all combinations of components that are substantially identical to the invention can achieve substantially the same results as the present invention without departing from the spirit of the invention. Therefore, all such alternatives and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents.

104、204...介電層104, 204. . . Dielectric layer

102、202...半導體基材102, 202. . . Semiconductor substrate

512...曲線512. . . curve

112...矽化鈦區域112. . . Titanium telluride region

212...矽化鈦層212. . . Titanium telluride layer

216...金屬層216. . . Metal layer

116...金屬導體116. . . Metal conductor

214...阻障層214. . . Barrier layer

218...選擇性阻障層218. . . Selective barrier layer

510、520...區域510, 520. . . region

208...第一導電層208. . . First conductive layer

210...第二導電層210. . . Second conductive layer

114...氮化鈦阻障層114. . . Titanium nitride barrier layer

106、206...開口106, 206. . . Opening

110...鈦層110. . . Titanium layer

前述之發明內容與實施方式可配合參考圖式以利理解本發明之精神,惟應注意的是,本發明並不僅限於圖式中的排列方式或結構細節。The foregoing summary and embodiments of the invention may be understood by reference to the embodiments of the invention.

第1A圖與第1B圖係用以說明先前技術中製造接觸窗方法的剖面圖。1A and 1B are cross-sectional views for explaining a method of manufacturing a contact window in the prior art.

第2A-2C圖係用以說明本發明第一實施例中製造半導體裝置之接觸窗阻障層方法的剖面圖。2A-2C is a cross-sectional view for explaining a method of manufacturing a contact barrier layer of a semiconductor device in the first embodiment of the present invention.

第3圖係用以說明本發明第二實施例中製造半導體裝置之接觸窗阻障層方法的剖面圖。Figure 3 is a cross-sectional view for explaining a method of manufacturing a contact barrier layer of a semiconductor device in a second embodiment of the present invention.

第3A圖為本發明一實施例中半導體裝置之接觸窗阻障層的掃描電子顯微鏡照片。3A is a scanning electron micrograph of a contact window barrier layer of a semiconductor device in accordance with an embodiment of the present invention.

第4圖係用以說明本發明第三實施例中製造半導體裝置之接觸窗阻障層方法的剖面圖。Fig. 4 is a cross-sectional view for explaining a method of manufacturing a contact barrier layer of a semiconductor device in a third embodiment of the present invention.

第5圖為本發明一實施例之接觸電阻分布圖。Fig. 5 is a diagram showing the distribution of contact resistance according to an embodiment of the present invention.

202...半導體基材202. . . Semiconductor substrate

204...介電層204. . . Dielectric layer

208...第一導電層208. . . First conductive layer

210...第二導電層210. . . Second conductive layer

212...矽化鈦層212. . . Titanium telluride layer

214...阻障層214. . . Barrier layer

216...金屬層216. . . Metal layer

218...選擇性阻障層218. . . Selective barrier layer

Claims (32)

一種半導體裝置的製造方法,該方法包括:提供一基材;於該基材上形成一介電層;於該介電層內提供一開口;於該介電層與該開口上形成一第一導電鈦層;於該第一導電鈦層上形成一第二導電鈦層;以及於該第二導電鈦層上形成一阻障層。 A method of fabricating a semiconductor device, the method comprising: providing a substrate; forming a dielectric layer on the substrate; providing an opening in the dielectric layer; forming a first layer on the dielectric layer and the opening a conductive titanium layer; forming a second conductive titanium layer on the first conductive titanium layer; and forming a barrier layer on the second conductive titanium layer. 如申請專利範圍第1項所述之方法,其中形成該第一導電鈦層之步驟包括使用一物理氣相沉積、一離子化金屬電漿物理氣相沉積以及一自行離子化物理氣相沉積之至少一者。 The method of claim 1, wherein the step of forming the first conductive titanium layer comprises using a physical vapor deposition, an ionized metal plasma physical vapor deposition, and a self-ionizing physical vapor deposition. At least one. 如申請專利範圍第1項所述之方法,其中該第一導電鈦層具有一介於約5至30埃之厚度。 The method of claim 1, wherein the first conductive titanium layer has a thickness of between about 5 and 30 angstroms. 如申請專利範圍第1項所述之方法,其中於該介電層內提供該開口之步驟包括移除部分該介電層。 The method of claim 1, wherein the step of providing the opening in the dielectric layer comprises removing a portion of the dielectric layer. 如申請專利範圍第1項所述之方法,其中該阻障層包括氮化鈦、氮化鉭、氮化鎢以及鎢化鈦或其組合之至少一者。 The method of claim 1, wherein the barrier layer comprises at least one of titanium nitride, tantalum nitride, tungsten nitride, and titanium tungsten or a combination thereof. 如申請專利範圍第1項所述之方法,其中形成該阻障層之步驟包括以氯化鈦與氨形成該阻障層。 The method of claim 1, wherein the step of forming the barrier layer comprises forming the barrier layer with titanium chloride and ammonia. 如申請專利範圍第1項所述之方法,更包括於一含有氮氣之腔室中回火該阻障層。 The method of claim 1, further comprising tempering the barrier layer in a chamber containing nitrogen. 如申請專利範圍第1項所述之方法,更包括於該第一導電 鈦層與該第二導電鈦層間形成一選擇性阻障層。 The method of claim 1, further comprising the first conductive A selective barrier layer is formed between the titanium layer and the second conductive titanium layer. 如申請專利範圍第8項所述之方法,其中形成該選擇性阻障層之步驟包括使用一自行離子化電漿法以及一金屬有機化學氣相沉積法之一者形成厚度約5至100埃之該選擇性阻障層。 The method of claim 8, wherein the step of forming the selective barrier layer comprises forming a thickness of about 5 to 100 angstroms using one of a self-ionizing plasma method and a metal organic chemical vapor deposition method. The selective barrier layer. 如申請專利範圍第8項所述之方法,其中該選擇性阻障層包括氮化鈦。 The method of claim 8, wherein the selective barrier layer comprises titanium nitride. 如申請專利範圍第9項所述之方法,其中該自行離子化電漿法係於具有一鈦靶、溫度約50℃至400℃之環境下進行。 The method of claim 9, wherein the self-ionizing plasma method is carried out in an environment having a titanium target at a temperature of about 50 ° C to 400 ° C. 如申請專利範圍第9項所述之方法,其中該自行離子化電漿法係以鈦作為氣體源、氮氣作為反應源。 The method of claim 9, wherein the self-ionizing plasma method uses titanium as a gas source and nitrogen as a reaction source. 如申請專利範圍第9項所述之方法,其中該金屬有機化學氣相沉積法係使用包括四(二乙基胺)化鈦、四(二甲基胺)化鈦、四(乙基甲基胺)化鈦以及其混合物之至少一者之前驅物。 The method of claim 9, wherein the metal organic chemical vapor deposition method comprises using titanium tetrakis(diethylamine), titanium tetrakis(dimethylamine), and tetrakis(ethylmethyl). At least one of the precursors of titanium and a mixture thereof. 如申請專利範圍第9項所述之方法,其中該金屬有機化學氣相沉積法係於溫度約350℃至約550℃之環境下進行。 The method of claim 9, wherein the metal organic chemical vapor deposition is carried out at a temperature of from about 350 ° C to about 550 ° C. 如申請專利範圍第9項所述之方法,其中該金屬有機化學氣相沉積法係於具有氦氣或氦氣及氮氣之環境下進行。 The method of claim 9, wherein the metal organic chemical vapor deposition is carried out in an environment having helium or neon and nitrogen. 如申請專利範圍第9項所述之方法,其中以該金屬有機化學氣相沉積法形成之該選擇性阻障層係施以射頻能量約500至約1000瓦特之氮氣電漿處理或氦氣電漿處理。 The method of claim 9, wherein the selective barrier layer formed by the metal organic chemical vapor deposition method is subjected to a nitrogen plasma treatment or a helium gas with a radio frequency energy of about 500 to about 1000 watts. Slurry treatment. 如申請專利範圍第1項所述之方法,更包括於該阻障層上形成一金屬層以填充該開口。 The method of claim 1, further comprising forming a metal layer on the barrier layer to fill the opening. 如申請專利範圍第1項所述之方法,其中於該第一導電鈦層上形成一第二導電鈦層之步驟包括使用一電漿輔助化學氣相沉積。 The method of claim 1, wherein the step of forming a second conductive titanium layer on the first conductive titanium layer comprises using a plasma assisted chemical vapor deposition. 如申請專利範圍第1項所述之方法,其中於該第二導電鈦層上形成一阻障層之步驟包括進行一化學氣相沉積製程。 The method of claim 1, wherein the step of forming a barrier layer on the second conductive titanium layer comprises performing a chemical vapor deposition process. 如申請專利範圍第1項所述之方法,其中該阻障層之厚度約為5至500埃。 The method of claim 1, wherein the barrier layer has a thickness of about 5 to 500 angstroms. 如申請專利範圍第1項所述之方法,其中該阻障層包括氮化鈦、氮化鉭、氮化鎢或鎢化鈦以及其組合之至少一者。 The method of claim 1, wherein the barrier layer comprises at least one of titanium nitride, tantalum nitride, tungsten nitride or titanium tungsten, and combinations thereof. 如申請專利範圍第1項所述之方法,其中形成該阻障層之步驟包括使用氯化鈦與氨。 The method of claim 1, wherein the step of forming the barrier layer comprises using titanium chloride and ammonia. 一種半導體裝置,包括:一基材;一介電層,位於該基材上,該介電層內具有一開口;一第一導電鈦層,位於該基材上及該開口內;一第二導電鈦層,位於該第一導電鈦層上;以及一阻障層,位於該第二導電鈦層上。 A semiconductor device comprising: a substrate; a dielectric layer on the substrate, the dielectric layer having an opening; a first conductive titanium layer on the substrate and the opening; a second a conductive titanium layer on the first conductive titanium layer; and a barrier layer on the second conductive titanium layer. 如申請專利範圍第23項所述之半導體裝置,其中該阻障層包括一柱狀結構。 The semiconductor device of claim 23, wherein the barrier layer comprises a columnar structure. 如申請專利範圍第23項所述之半導體裝置,更包括一附 加阻障層,位於該第二導電鈦層與該阻障層之間。 The semiconductor device according to claim 23, further comprising an attached And a barrier layer is disposed between the second conductive titanium layer and the barrier layer. 如申請專利範圍第25項所述之半導體裝置,其中該阻障層包括以自行離子化電漿物理氣相沉積法形成之一氮化鈦層或以金屬有機化學氣相沉積法形成之一氮化鈦層。 The semiconductor device according to claim 25, wherein the barrier layer comprises a titanium nitride layer formed by self-ionized plasma physical vapor deposition or a nitrogen formed by metal organic chemical vapor deposition. Titanium layer. 如申請專利範圍第23項所述之半導體裝置,其中該第一導電鈦層包括以離子化金屬電漿物理氣相沉積法形成之一鈦層。 The semiconductor device of claim 23, wherein the first conductive titanium layer comprises a titanium layer formed by ionized metal plasma physical vapor deposition. 如申請專利範圍第23項所述之半導體裝置,其中該第二導電鈦層包括以氯化鈦形成之一鈦層。 The semiconductor device of claim 23, wherein the second conductive titanium layer comprises a titanium layer formed of titanium chloride. 如申請專利範圍第23項所述之半導體裝置,其中該阻障層包括以氯化鈦形成之一氮化鈦層。 The semiconductor device of claim 23, wherein the barrier layer comprises a titanium nitride layer formed of titanium chloride. 如申請專利範圍第23項所述之半導體裝置,其中該第一導電鈦層之厚度介於約10至400埃。 The semiconductor device of claim 23, wherein the first conductive titanium layer has a thickness of between about 10 and 400 angstroms. 如申請專利範圍第23項所述之半導體裝置,其中該第二導電鈦層之厚度介於約5至100埃。 The semiconductor device of claim 23, wherein the second conductive titanium layer has a thickness of between about 5 and 100 angstroms. 如申請專利範圍第23項所述之半導體裝置,其中該阻障層之厚度介於約20至200埃。The semiconductor device of claim 23, wherein the barrier layer has a thickness of between about 20 and 200 angstroms.
TW97132710A 2008-08-27 2008-08-27 Method for manufacturing a semiconductor device TWI409880B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97132710A TWI409880B (en) 2008-08-27 2008-08-27 Method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97132710A TWI409880B (en) 2008-08-27 2008-08-27 Method for manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
TW201009934A TW201009934A (en) 2010-03-01
TWI409880B true TWI409880B (en) 2013-09-21

Family

ID=44828018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97132710A TWI409880B (en) 2008-08-27 2008-08-27 Method for manufacturing a semiconductor device

Country Status (1)

Country Link
TW (1) TWI409880B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW510021B (en) * 2000-12-26 2002-11-11 Toshiba Corp Semiconductor device and its producing method
TWI223393B (en) * 2003-04-15 2004-11-01 Nanya Technology Corp Method of filling bit line contact via
TWI244158B (en) * 2001-03-15 2005-11-21 Chartered Semicoductor Mfg Ltd Method to improve adhesion of organic dielectrics in dual damascene interconnects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW510021B (en) * 2000-12-26 2002-11-11 Toshiba Corp Semiconductor device and its producing method
TWI244158B (en) * 2001-03-15 2005-11-21 Chartered Semicoductor Mfg Ltd Method to improve adhesion of organic dielectrics in dual damascene interconnects
TWI223393B (en) * 2003-04-15 2004-11-01 Nanya Technology Corp Method of filling bit line contact via

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. Xiao, "Introduction to Semiconductor Manufacturing Technology," 2001, Chap.11. *

Also Published As

Publication number Publication date
TW201009934A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
US11587829B2 (en) Doping control of metal nitride films
KR102542758B1 (en) Ruthenium metal feature filling for interconnects
US8026605B2 (en) Interconnect structure and method of manufacturing a damascene structure
US7026238B2 (en) Reliability barrier integration for Cu application
TWI633624B (en) Doped tantalum nitride for copper barrier applications
TWI827553B (en) Ruthenium metal feature fill for interconnects
JP2009231497A (en) Semiconductor device and manufacturing method therefor
US7411254B2 (en) Semiconductor substrate
US20110056432A1 (en) Contact barrier layer deposition process
US8519541B2 (en) Semiconductor device having plural conductive layers disposed within dielectric layer
US20070096221A1 (en) Semiconductor device comprising copper-based contact plug and a method of forming the same
JP2002280387A (en) Metal wiring forming method for semiconductor chip
JP2008060568A (en) Manufacturing apparatus of semiconductor device and method of manufacturing semiconductor device using the same
KR100504269B1 (en) IMPROVED PECVD AND CVD PROCESSES FOR WNx DEPOSITION
TWI409880B (en) Method for manufacturing a semiconductor device
JP3998937B2 (en) Method for producing TaCN barrier layer in copper metallization process
TWI497674B (en) Barrier stack structure and method for manufacturing the same
JP2004335799A (en) Metal film depositing method and metal wiring forming method
JP2008153407A (en) Semiconductor device and its manufacturing method