TWI406940B - Matrix array nanobiosensor - Google Patents

Matrix array nanobiosensor Download PDF

Info

Publication number
TWI406940B
TWI406940B TW94143909A TW94143909A TWI406940B TW I406940 B TWI406940 B TW I406940B TW 94143909 A TW94143909 A TW 94143909A TW 94143909 A TW94143909 A TW 94143909A TW I406940 B TWI406940 B TW I406940B
Authority
TW
Taiwan
Prior art keywords
electrode
biological entity
carbon nanotube
sensor
array
Prior art date
Application number
TW94143909A
Other languages
Chinese (zh)
Other versions
TW200632095A (en
Inventor
Prabhu Soundarrajan
Valerie Ginsberg
Zvi Yaniv
Original Assignee
Nano Proprietary Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/011,645 external-priority patent/US20050244811A1/en
Application filed by Nano Proprietary Inc filed Critical Nano Proprietary Inc
Publication of TW200632095A publication Critical patent/TW200632095A/en
Application granted granted Critical
Publication of TWI406940B publication Critical patent/TWI406940B/en

Links

Description

矩陣列奈米生物感測器Matrix column nano biosensor

本發明大體上係關於生物感測器,尤其是以矩陣列配置的生物感測器。The present invention generally relates to biosensors, particularly biosensors configured in a matrix array.

同步監測多重分析物(液體及氣體)具有在多種領域中的多樣性應用,如新陳代謝的監測,化學、生物晶圓的偵測,氣體檢測,等等。大部份的現今感測器在監測一種以上的分析物時,因為交叉敏感性及其他化合物干擾的問題,而有很多限制。這種限制對於連續偵測多重分析物是不利的。有些多重分析物監測系統沒有足夠的微型化(miniaturization)來供活體內應用或其他敏感的應用。現今沒有可以同步監測氣體及液體的聯合感測器陣列。Simultaneous monitoring of multiple analytes (liquids and gases) has diverse applications in a variety of fields, such as metabolic monitoring, chemistry, biowafer detection, gas detection, and more. Most current sensors have many limitations when monitoring more than one analyte due to cross-sensitivity and other compound interference problems. This limitation is detrimental to the continuous detection of multiple analytes. Some multiplex analyte monitoring systems do not have sufficient miniaturization for in vivo applications or other sensitive applications. There is no joint sensor array that can simultaneously monitor gases and liquids.

在利用不同方法的生物感測器陣列的發展上已有數個研究報告。一種用於以酵素為基礎的生物感測器陣列來監測水果品質的常見生物感測器形式已見於報告(請參見Biosensors & Bioelectronics(2003),18(12),1429-1437)。該等感測器係以果膠作為固定基質,但其固定方法為「滴乾機制(drop and dry mechanism)」,無法產生良好的敏感性。There have been several research reports on the development of biosensor arrays using different methods. A common biosensor format for enzyme-based biosensor arrays to monitor fruit quality has been reported (see Biosensors & Bioelectronics (2003), 18(12), 1429-1437). These sensors use pectin as a fixed substrate, but the fixing method is "drop and dry mechanism", which does not produce good sensitivity.

一種用於廢水特性化的二酵素生物感測器將經酪胺酸酶及辣根過氧化酶(HRP)或膽鹼酯酶改質的電極結合在同一陣列上(請參見Analytical and Bioanalytical Chemistry,Vol.376,Issue 7,2003,p.1098)。其中討論了批次模式(batch mode)與流動注射系統(flow-injection system)的雙酵素生物感測器陣列的性能。A two-enzyme biosensor for characterization of wastewater combines tyrosinase and horseradish peroxidase (HRP) or cholinesterase-modified electrodes on the same array (see Analytical and Bioanalytical Chemistry, Vol. 376, Issue 7, 2003, p. 1098). It discusses the performance of a double enzyme biosensor array in batch mode and flow-injection system.

有報告指出一種以電化學發光(ECL)偵測酶催化產生之過氧化氫為基礎的多功能生物感測晶片(請參見Marquette,Christophe A.;Degiuli,Agnes;Blum,Loic J.,Biosensors & Bioelectronics(2003),19(5),433-439)。其中將對膽鹼、葡萄糖、麩胺酸鹽、乳酸鹽、離胺酸和尿酸鹽具有特異性的六種不同氧化酶非共價地固定在陣列感測器上,但其偵測範圍僅止於過氧化氫。A multi-functional biosensing wafer based on hydrogen peroxide generated by electrochemiluminescence (ECL) detection enzymes has been reported (see Marquette, Christophe A.; Degiuli, Agnes; Blum, Loic J., Biosensors & Bioelectronics (2003), 19(5), 433-439). Among them, six different oxidases specific for choline, glucose, glutamate, lactate, lysine and urate are non-covalently immobilized on the array sensor, but the detection range is limited. In hydrogen peroxide.

有報告指出一種針印刷生物感測器陣列(pin printed biosensor arrays,PPBSA),其中利用針印刷經摻雜蛋白質的乾凝膠(xerogels)(請參見Cho,Eun Jeong;Tao,Zunyu;Tehan,Elizabeth C.;Bright,Frank V.,Analytical Chemistry(2002),74(24),6177-6184)。該感測器可同時偵測葡萄糖和氧。其總陣列對陣列回應(array-to-array response)重製性在12%左右,這限制了該感測器的長期穩定性。It has been reported that a pin printed biosensor arrays (PPBSA) in which needle-printed protein-coated xerogels are used (see Cho, Eun Jeong; Tao, Zunyu; Tehan, Elizabeth) C.; Bright, Frank V., Analytical Chemistry (2002), 74(24), 6177-6184). The sensor detects glucose and oxygen simultaneously. Its total array-to-array response reproducibility is around 12%, which limits the long-term stability of the sensor.

為更完整瞭解本發明及其優點,現將參照下文及所附圖式作說明。For a more complete understanding of the present invention and its advantages, reference will now be made to the accompanying drawings.

在下文的說明中,詳述了許多具體細節(例如具體的記憶陣列配置等等)以提供對本發明的徹底瞭解。然而,對熟習此技藝者顯而易知的是,本發明可不依此等具體細節實施。在其他的情況中,習知的電路係以方塊圖形式顯示,以免以不必要的細節混淆了本發明。在大多數的情況下,有關計時等等的細節已省略,因為此等細節非為完全瞭解本發明所需,且係在相關技術領域中具有通常知識者的技藝範圍之內。In the following description, numerous specific details are set forth, such as specific memory array configurations and the like, to provide a thorough understanding of the invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known circuits are shown in block diagram form in order to avoid obscuring the invention in unnecessary detail. In most cases, details regarding timing and the like have been omitted since such details are not required to fully understand the present invention and are within the skill of the ordinary skill in the art.

現將參照附圖作說明,在該等附圖中所示之元件不一定依比例顯示,且其中類似元件在數個圖中係以相同編號標記。The elements shown in the drawings are not necessarily to scale, and the like elements are in the

在圖1-2中所示之本發明體系係為一種供監測九種分析物的矩陣列奈米生物感測器,其包含奈米碳管、傳導性聚合物、生物酶、奈米粒子及其他奈米級材料作為感測器元件(工作電極)而建置在一個三電極電化學系統中。感測器元件係經足夠微型化以便於以極少量的分析物操作並可用於敏感的應用。基板的製備係使用成本低廉的光刻製造程序,而且該感測器具有可耦合九個個別電極以供有效偵測的微型化電子構造。The system of the invention shown in Figures 1-2 is a matrix column nanobiosensor for monitoring nine analytes comprising a carbon nanotube, a conductive polymer, a biological enzyme, a nanoparticle and Other nanoscale materials are built into the sensor element (working electrode) in a three-electrode electrochemical system. The sensor elements are sufficiently miniaturized to operate with very small amounts of analyte and can be used in sensitive applications. The substrate is prepared using a low cost lithography fabrication process, and the sensor has a miniaturized electronic configuration that can couple nine individual electrodes for efficient detection.

該感測器可用於例如下列的領域:新陳代謝監測(葡萄糖、乳糖、果糖、尿素、尿酸、苯酚、醇類、抗壞血酸、過氧化氫、磷脂和其他代謝物),化學戰偵測(沙林(sarin)、太奔(tabun,即二甲胺氰磷酸乙酯)、索曼(soman)、氰化氫、氯化氰、芥、氯和其他化學戰劑),生物戰劑(蓖麻毒素、多肽和其他者),潛在生化戰劑(PCB’s如有機磷酸鹽類、DMMP、馬拉松、乙硫磷、巴拉松、巴拉歐種(paraozon)和其他者),DNA雜交,氣體監測(毒性氣體如CO、SO2 、NO、NO2 、NH3 、H2 S和其他者),以及金屬(汞、砷和其他者)。該矩陣奈米生物感測器可用以偵測氣體及液體多重分析物。The sensor can be used, for example, in the following areas: metabolic monitoring (glucose, lactose, fructose, urea, uric acid, phenol, alcohols, ascorbic acid, hydrogen peroxide, phospholipids, and other metabolites), chemical warfare detection (salin ( Sarin), tabun (ie dimethyl cyanoacrylate), soman, hydrogen cyanide, cyanogen chloride, mustard, chlorine and other chemical warfare agents, biological warfare agents (ricin, Peptides and others), potential biochemical agents (PCB's such as organophosphates, DMMP, marathon, ethion, balason, paraozon and others), DNA hybridization, gas monitoring (toxic gases) Such as CO, SO 2 , NO, NO 2 , NH 3 , H 2 S and others), as well as metals (mercury, arsenic and others). The matrix nano biosensor can be used to detect gas and liquid multiplex analytes.

矩陣奈米生物感測器的光刻製造:Lithography fabrication of matrix nano biosensors:

參照圖1,利用化學蒸氣沈積法(CVD)將1微米的二氧化矽沈積在矽晶圓上(步驟a)。將具有所需圖案之陰影遮罩置於基板上(步驟b),並藉由電子束蒸鍍法(electron beam deposition)沈積100埃()的鉻及隨後之500埃的金(步驟c)。移除陰影遮罩(步驟d)。藉由CVD法沈積0.3微米的氮化矽(步驟e)。以光阻劑塗覆基板(步驟f)。利用遮罩(步驟g),以光刻法將基板圖案化(步驟h)。經由反應性離子蝕刻(RIE)移除經曝光的氮化矽(Si3 N4 )圖案(步驟i)。移除光阻劑(步驟j),並將Ag/AgCl糊料(得自Gwent Electronic Materials Ltd,U.K.)網板印刷至參考電極圖案上(步驟k)。該Ag/AgCl亦可經由定電位(potentiostatic)法在-200毫伏下電沈積一層銀,隨後在+200毫伏下電沈積一氯化物層而得。然後將電接頭焊接在各電極上(步驟1)。Referring to Figure 1, 1 micron cerium oxide is deposited on a germanium wafer by chemical vapor deposition (CVD) (step a). A shadow mask having a desired pattern is placed on the substrate (step b), and 100 angstroms are deposited by electron beam deposition (electron beam deposition) Chromium and then 500 angstroms of gold (step c). Remove the shadow mask (step d). 0.3 μm of tantalum nitride was deposited by a CVD method (step e). The substrate is coated with a photoresist (step f). The substrate is patterned by photolithography using a mask (step g) (step h). The exposed tantalum nitride (Si 3 N 4 ) pattern is removed via reactive ion etching (RIE) (step i). The photoresist was removed (step j), and an Ag/AgCl paste (available from Gwent Electronic Materials Ltd, UK) was screen printed onto the reference electrode pattern (step k). The Ag/AgCl can also be obtained by electrodeposition of a layer of silver at -200 mV by a potentiostatic method followed by electrodeposition of a chloride layer at +200 mV. The electrical connector is then soldered to each electrode (step 1).

感測器的製造:Sensor manufacturing:

圖1(h)中所述藉光刻製造而顯影該矩陣奈米生物感測器基板的步驟,顯示於圖2之步驟(1)中,其中有九個個別的工作電極201,一個參考電極203(經網板印刷的Ag/AgCl糊料),及一個相對電極202(金)。The step of developing the matrix nano biosensor substrate by photolithography in FIG. 1(h) is shown in step (1) of FIG. 2, wherein there are nine individual working electrodes 201 and one reference electrode. 203 (web-printed Ag/AgCl paste), and a counter electrode 202 (gold).

在步驟2(圖2)中,利用適合的遮罩(未顯示於圖中)將奈米碳管(CNT)204分配(噴霧或網板印刷)在該九個工作電極201上。In step 2 (Fig. 2), a carbon nanotube (CNT) 204 is dispensed (sprayed or screen printed) onto the nine working electrodes 201 using a suitable mask (not shown).

藉由在研缽和杵中混合50重量%之奈米碳管與43重量%之有機(或無機)媒液和7重量%之玻璃料30分鐘,接著在三輥磨機中予以碾磨20分鐘以分散混合物中的團塊,而製備奈米碳管糊料電極(0.5平方公分)。該無機媒液係購自Cotronics Corp.,Brooklyn,NY,USA。然後於烘箱中100℃下烘烤基板10分鐘並於室溫下冷卻之。亦可使用不同重量百分比的奈米碳管來製備電極。可將所製得之奈米碳管糊料電極加熱(熱烤)以移除有機媒液,並利用膠帶使其活化。By mixing 50% by weight of carbon nanotubes with 43% by weight of organic (or inorganic) vehicle and 7% by weight of glass frit in mortar and pestle for 30 minutes, followed by milling in a three-roll mill 20 The carbon nanotube paste electrode (0.5 square centimeter) was prepared by dispersing the agglomerates in the mixture in minutes. The inorganic vehicle was purchased from Cotronics Corp., Brooklyn, NY, USA. The substrate was then baked in an oven at 100 ° C for 10 minutes and cooled at room temperature. Electrodes can also be prepared using different weight percentages of carbon nanotubes. The prepared carbon nanotube paste electrode can be heated (hot baked) to remove the organic vehicle and activated by tape.

藉由將已知數量之奈米碳管(如0.1克)溶於20毫升異丙醇中,隨後以超音波處理5分鐘,並將所得溶液噴霧在基板上(矽基板,經抽真空蒸鍍20埃之鉻及500埃之金),而製備奈米碳管噴霧電極(0.5平方公分)。然後於烘箱中100℃下烘烤該噴霧電極10分鐘並於室溫下冷卻之。By dissolving a known amount of carbon nanotubes (eg, 0.1 g) in 20 ml of isopropanol, followed by ultrasonic treatment for 5 minutes, and spraying the resulting solution onto the substrate (矽 substrate, vacuum evaporation) A carbon nanotube spray electrode (0.5 square centimeter) was prepared with 20 angstroms of chromium and 500 angstroms of gold. The spray electrode was then baked in an oven at 100 ° C for 10 minutes and cooled at room temperature.

可用於本發明中之奈米碳管亦可藉由包括觸媒(如鎳、銅、鈷、鐵)和碳來源(如乙炔、乙烯、甲烷和其他碳氫化合物)的化學蒸氣沈積法製備,或藉由熟習此技藝者所知的其他方法製備。The carbon nanotubes which can be used in the present invention can also be prepared by chemical vapor deposition including a catalyst such as nickel, copper, cobalt, iron and a carbon source such as acetylene, ethylene, methane and other hydrocarbons. Or prepared by other methods known to those skilled in the art.

在步驟3(圖2)中,係利用苯胺(0.1M)的氧化作用及在pH7.0緩衝液中含有0.2M H2 SO4 之溶液中的1毫克/毫升不同生物酶205(註:對不同的酶,其酶溶液的製備會根據在特定pH下的酶活性而有所改變),繼續在原位上對奈米碳管電極進行電化學聚合及酵素的固定(適用於所有前述的電極)。在該等電聚合及酵素固定中,使用-1伏至1伏的電位窗及50毫伏/秒之掃瞄速率作10個循環。用於九個感測器元件201的不同酶205可依下表1中的特定分析物來選定,但可用於矩陣奈米生物感測器的酵素系統並不限於下表1中者。In step 3 (Fig. 2), the oxidation of aniline (0.1M) and 1 mg/ml of different biological enzymes in a solution containing 0.2 MH 2 SO 4 in a pH 7.0 buffer are used. Enzyme, the preparation of the enzyme solution will change according to the enzyme activity at a specific pH), continue to electrochemically polymerize the carbon nanotube electrode in situ and immobilize the enzyme (applicable to all the aforementioned electrodes) . In the electropolymerization and enzyme immobilization, a potential window of -1 volt to 1 volt and a scan rate of 50 millivolts per second were used for 10 cycles. The different enzymes 205 for the nine sensor elements 201 can be selected according to the specific analytes in Table 1, but the enzyme systems that can be used for the matrix nanobiosensor are not limited to those in Table 1 below.

聚吡咯和這些酵素的電聚合及酵素固定化係在相同的電化學條件下利用在pH7.0緩衝液中含有0.1M NaClO4 之溶液中的吡咯(0.1M)氧化作用來進行。然後以水清洗電極並予風乾。其他傳導性聚合物亦可用於這些矩陣奈米生物感測器中。此外,其他的生物實體諸如抗體、核酸、適合體(aptamers)等等也可利用類似方法固定在奈米管上。The electropolymerization and enzyme immobilization of polypyrrole and these enzymes were carried out under the same electrochemical conditions by oxidation of pyrrole (0.1 M) in a solution containing 0.1 M NaClO 4 in a pH 7.0 buffer. The electrode was then rinsed with water and air dried. Other conductive polymers can also be used in these matrix nano biosensors. In addition, other biological entities such as antibodies, nucleic acids, aptamers, and the like can be immobilized on the nanotubes using similar methods.

在步驟4(圖2)中,該感測器元件係置於適合的電子外套中並經由電極206耦合至外部電子構造。該感測器元件也填充有基於待偵測分析物(液體或氣態)之特定電化學反應所需的電解質。該等九個工作電極201、相對電極202及參考電極203係耦合至驅動電子構造(述於下文中),該驅動電子構造係任何三電極電化學系統所需的定電位電路。In step 4 (FIG. 2), the sensor element is placed in a suitable electronics housing and coupled to an external electronic configuration via electrode 206. The sensor element is also filled with an electrolyte required for a particular electrochemical reaction based on the analyte (liquid or gaseous) to be detected. The nine working electrodes 201, the opposing electrode 202, and the reference electrode 203 are coupled to a drive electronics configuration (described below) that is a constant potential circuit required for any three-electrode electrochemical system.

電子驅動組合:Electronic drive combination:

參照圖3,所提出之連接於前述陣列的電子構造係由多路感測器驅動器所構成。其係可以脈衝式或連續式掃瞄模式操作、使用低功率微處理器且係可程式化的。該處理器驅動信號輸出至驅動所有感測器的一個數位類比轉換器(D/A converter)及讀取感測器輸出的一個數位類比轉換器。對每一感測器有一個經控制阻抗的運算放大器,其加上多工器,輪流處理每一感測器的定期讀取。處理器中的軟體計算目前的背景電流並執行演算法以偵測在預期背景值之上的峰值。在先對化學引發之峰值偏移作校正之後,將該峰值與已知分析物的模式相比較。其結果以定性及定量輸出通路呈現。在最終系統中,定性通路將是選擇性的,若分析物存在,則以LED顯示器或其他適合的裝置顯示。由於在分析物之唯一氧化還原電位的峰值電流係為相對於單純電阻基礎感測器陣列的大幅改善,故可有效消除假正值/負值。該電子組合的組件可為下列者:Referring to Figure 3, the proposed electronic configuration coupled to the aforementioned array is comprised of a multiplexer driver. It can be operated in either pulsed or continuous scan mode, using a low power microprocessor and is programmable. The processor drive signal is output to a digital analog converter (D/A converter) that drives all of the sensors and a digital analog converter that reads the output of the sensor. For each sensor there is a controlled impedance op amp that is multiplexed to handle the periodic reading of each sensor in turn. The software in the processor calculates the current background current and performs an algorithm to detect peaks above the expected background value. After correcting the chemically induced peak shift, the peak is compared to the pattern of known analytes. The results are presented in qualitative and quantitative output pathways. In the final system, the qualitative pathway will be selective, and if the analyte is present, it will be displayed as an LED display or other suitable device. Since the peak current of the only redox potential of the analyte is a significant improvement over the simple resistive base sensor array, false positive/negative values can be effectively eliminated. The components of the electronic combination can be the following:

(a)靜電計(a) Electrometer

靜電計電路301測量參考電極203與工作電極201之間的電壓差。其輸出具有兩個主要功能:其係在定電位電路中的回饋信號,且其係每當需要胞電壓時所測量的信號。一個理想的靜電計係具有零輸入電流及無限輸入阻抗。流經參考電極203的電流會改變其電位。但實際上,所有現代的靜電計均具有足夠接近零的輸入電流,故這種影響通常可忽略。靜電計的兩個重要特徵為其帶寬及其輸入電容。靜電計帶寬將靜電計301由低阻抗驅動時其可測量的AC頻率特徵化。靜電計帶寬係高於定電位電路中其他電子組件的帶寬。靜電計輸入電容與參考電極電阻形成RC濾波器。若此濾波器的時間常數太大,會限制靜電計的有效帶寬,造成系統的不穩定性。較小的輸入電容意謂著較穩定的操作及對高阻抗參考電極的較大容忍度。The electrometer circuit 301 measures the voltage difference between the reference electrode 203 and the working electrode 201. Its output has two main functions: it is a feedback signal in a constant potential circuit, and it is a signal that is measured whenever a cell voltage is required. An ideal electrometer has zero input current and unlimited input impedance. The current flowing through the reference electrode 203 changes its potential. But in reality, all modern electrometers have input currents close enough to zero, so this effect is usually negligible. Two important characteristics of an electrometer are its bandwidth and its input capacitance. The electrometer bandwidth characterizes the measurable AC frequency when the electrometer 301 is driven by a low impedance. The electrometer bandwidth is higher than the bandwidth of other electronic components in the constant potential circuit. The electrometer input capacitance forms a RC filter with the reference electrode resistance. If the time constant of this filter is too large, it will limit the effective bandwidth of the electrometer and cause system instability. Smaller input capacitance means more stable operation and greater tolerance to high impedance reference electrodes.

(b)電流電壓轉換器(b) Current and voltage converter

在該簡圖中的電流電壓(I/E)轉換器302測量胞電流。其迫使胞電流通過電流測量電阻器Rm。橫越Rm的電壓降即為胞電流的量度。在電腦控制下可將數個不同的Rm電阻器轉接至I/E電路302。如此可測量廣泛變化的電流,其中每一電流可利用適合的電阻器予以測量。通常使用一種「I/E自動範圍化(I/E autoranging)」演算法來選擇適當的電阻器數值。I/E轉換器的帶寬主要取決於其敏感性。小電流的測量需要大Rm值。在該I/E轉換器302中的雜散(不要的)電容會與Rm形成RC濾波器,而限制了I/E帶寬。The current-voltage (I/E) converter 302 in this diagram measures the cell current. It forces the cell current through the current measuring resistor Rm. The voltage drop across Rm is a measure of the cell current. Several different Rm resistors can be transferred to the I/E circuit 302 under computer control. This allows measurement of widely varying currents, each of which can be measured using a suitable resistor. An "I/E autoranging" algorithm is usually used to select the appropriate resistor value. The bandwidth of the I/E converter is mainly determined by its sensitivity. Small current measurements require large Rm values. The stray (unwanted) capacitance in the I/E converter 302 forms an RC filter with Rm, limiting the I/E bandwidth.

(c)控制放大器(c) Control amplifier

控制放大器303係為一種伺服放大器。其將所測得之胞電壓與所要的電壓比較,並驅動電流至胞中,以迫使電壓相同。應注意的是所測得之電壓係輸入至控制放大器303的負輸入端。在所測得之電壓中的正微擾(perturbation)會產生負的控制放大器輸出。該負輸出反制初始的微擾。這種控制組合係為習知的負反饋(negative feedback)。在正常條件下,胞電壓係經控制為與信號源電壓相同。Control amplifier 303 is a servo amplifier. It compares the measured cell voltage to the desired voltage and drives the current into the cell to force the voltage to be the same. It should be noted that the measured voltage is input to the negative input of the control amplifier 303. A positive perturbation in the measured voltage produces a negative control amplifier output. This negative output counteracts the initial perturbation. This combination of controls is a conventional negative feedback. Under normal conditions, the cell voltage is controlled to be the same as the signal source voltage.

(d)信號(d) signal

信號電路304係為電腦控制的電壓源。其一般為數位類比(D/A)轉換器(請參見圖15中的DAC)的輸出,數位類比轉換器將電腦產生的數字轉換為電壓。適當選擇數字序列可使電腦產生恆定電壓、電壓斜坡(ramp)、甚至信號電路輸出的正弦波。當使用D/A轉換器來產生波形諸如正弦波或斜坡時,該波形係為相同類比波形的數位近似。其包含小的電壓步級(voltage step)。這些步級的大小係由D/A轉換器的解析度及新數字更新的速率來控制。Signal circuit 304 is a computer controlled voltage source. It is typically the output of a digital analog (D/A) converter (see the DAC in Figure 15), which converts the computer-generated digital to voltage. Proper selection of the digital sequence allows the computer to generate a constant voltage, a voltage ramp, or even a sine wave of the signal circuit output. When a D/A converter is used to generate a waveform such as a sine wave or ramp, the waveform is a digital approximation of the same analog waveform. It contains a small voltage step. The size of these steps is controlled by the resolution of the D/A converter and the rate at which new digital updates are made.

感測機構:Sensing agency:

其中一種感測機構為如前文所述之以電化學為基礎者。定性感測係藉由將唯一電流氧化電位特徵化的循環伏安法(cyclic voltammetry)來達成。該定性感測係藉由在循環伏安法所測定的固定特徵電位下的計時電流(chronoamperometric)測量來進行。液相感測器僅需少量的分析物(微莫耳範圍),而氣相感測器則備有疏水性薄膜及液體或固體電解質。固體電解質可為任何的陰離子交換薄膜(如納菲薄膜(nafion))、奈米孔二氧化矽(如乾凝膠、水凝膠)。One of the sensing mechanisms is electrochemical based as previously described. The stereometric system is achieved by cyclic voltammetry which characterizes the unique current oxidation potential. The stereometric measurement is performed by a chronoamperometric measurement at a fixed characteristic potential as determined by cyclic voltammetry. The liquid phase sensor requires only a small amount of analyte (micro-mole range), while the gas phase sensor is provided with a hydrophobic film and a liquid or solid electrolyte. The solid electrolyte can be any anion exchange membrane (such as nafion), nanoporous ceria (such as xerogel, hydrogel).

可利用循環伏安法(CV)技術將酵素固定至奈米管上(在此電壓係步級改變,通常在-1伏與+1伏之間拂掠並反轉一個迴路)。可利用CV將九種不同酵素(E)固定在感測器元件上以形成感測器陣列。該九種不同酵素係經選擇以具有與九種不同分析物(A)的唯一反應〔例如:葡萄糖氧化酶(E)對葡萄糖(A)〕。當分析物與感測器接觸時,藉由電子構造啟動矩陣(在該電子構造中的背景電化學程序為CV),而CV對各分析物具有來自酵素(E)對分析物(A)反應的唯一氧化還原峰值。軟體根據所得之各分析物的氧化還原峰值來校正分析物的濃度水準。Cyclic voltammetry (CV) techniques can be used to immobilize enzymes onto the nanotubes (in this voltage system step change, typically between -1 volt and +1 volt and sweeping a loop). Nine different enzymes (E) can be immobilized on the sensor elements using CV to form a sensor array. The nine different enzymes are selected to have a unique response to nine different analytes (A) [eg glucose oxidase (E) versus glucose (A)]. When the analyte is in contact with the sensor, the matrix is initiated by an electronic structure (the background electrochemical procedure in the electronic configuration is CV), and the CV has a reaction from the enzyme (E) to the analyte (A) for each analyte. The only redox peak. The soft body corrects the concentration level of the analyte based on the resulting redox peak of each analyte.

藉由將恆定電壓固定而操作計時電流測定法(chronoamperometry),並得出電流對時間的作圖。將先前執行CV所得之各分析物的特徵電壓固定。此技術的優點在於可進行即時的測量且比CV的掃瞄方法更快。The chronoamperometry is operated by fixing the constant voltage, and the current versus time is plotted. The characteristic voltage of each analyte obtained from the previous execution of CV was fixed. The advantage of this technology is that it can be measured on the fly and is faster than the CV scan method.

該矩陣奈米生物感測器對過氧化氫的回應示於下示方程式(1)。作為實例,茲例示十種酵素系統。由其中可看到過氧化氫是方程式(2)至(6)中之酵素反應的副產物。The response of the matrix nanobiosensor to hydrogen peroxide is shown in equation (1) below. As an example, ten enzyme systems are exemplified. From this it can be seen that hydrogen peroxide is a by-product of the enzyme reaction in equations (2) to (6).

2H2 O2 → 2H2 O+O2 +2e ---(1)2H 2 O 2 → 2H 2 O+O 2 +2e - ---(1)

所用縮語為:α-KG=α-氧代戊二酸鹽L-Glu=L-麩胺酸鹽β-NADH=β-菸醯胺腺嘌呤二核苷酸,還原形式β-NAD=β-菸醯胺腺嘌呤二核苷酸,氧化形式---(8) The abbreviations used are: α-KG=α-oxoglutarate L-Glu=L-glutaminate β-NADH=β-nicotamine adenine dinucleotide, reduced form β-NAD=β - nicotinamide adenine dinucleotide, oxidized form---(8)

該矩陣奈米生物感測器的九個個別元件對過氧化氫的回應示於圖4中。雖然原始的奈米碳管可氧化過氧化氫,但對本發明的酵素性生物感測應用而言,酵素及傳導性聚合物的存在為必要條件。如由圖中可見的,在峰值回應及電流氧化電壓上有小變化,但陽極氧化電位仍遠低於文獻中所述者。先前有報告指出藉由將鈀、銅、銥或釕及葡萄糖氧化酶加入碳糊料電極而發展出葡萄糖感測器(Sylvia A.Miscoria,Gustavo D.Barrera,Gustavo A.Rivas,“Analytical Performace of a Glucose Biosensor Prepared by Immobilization of Glucose Oxidase and Different Metals into a Carbon Paste Electrode”,Electroanalysis,14,No.14 2002,pp.981-987)以及將銥微粒和多酚氧化酶併入碳糊料基質而得苯酚感測器(M.D.Rubianea,G.A.Rivas,Electroanalysis ,12,1159)。然而這些方法並沒有包含傳導性聚合物基質,而且涉及將酵素機械混合至碳糊料基質中。The response of the nine individual components of the matrix nanobiosensor to hydrogen peroxide is shown in Figure 4. Although the original carbon nanotubes oxidize hydrogen peroxide, the presence of enzymes and conductive polymers is essential for the enzyme biosensing applications of the present invention. As can be seen from the figure, there is a small change in peak response and current oxidation voltage, but the anodization potential is still much lower than that described in the literature. It has previously been reported that glucose sensors have been developed by adding palladium, copper, ruthenium or osmium and glucose oxidase to carbon paste electrodes (Sylvia A. Miscoria, Gustavo D. Barrera, Gustavo A. Rivas, "Analytical Performace of a Glucose Biosensor Prepared by Immobilization of Glucose Oxidase and Different Metals into a Carbon Paste Electrode", Electroanalysis, 14, No. 14 2002, pp. 981-987) and incorporation of ruthenium particles and polyphenol oxidase into the carbon paste matrix A phenol sensor (MDRubianea, GARivas, Electroanalysis , 12, 1159) was obtained. However, these methods do not include a conductive polymer matrix and involve mechanical mixing of the enzyme into the carbon paste matrix.

方程式(7)至(10)中所例示的酵素系統沒有因為生化反應而釋出過氧化氫,但可藉由監測其他產物,亦即去氫抗壞血酸(抗壞血酸氧化酶,方程式7)、麩胺酸鹽(L-麩胺酸去氫酶,方程式8)、CO2 (甲酸去氫酶,方程式9)、苯醌(多酚氧化酶,方程式10),而偵測分析物。本發明並不限於該等反應系統所例示的十種酵素或表1中所示者,而是可實施於任何具氧化還原活性的酵素系統。作為實例,茲將苯胺(在0.2M H2 SO4 中0.1M)在原位上的聚合與抗壞血酸(方程式(7))固定至奈米碳管電極上的循環伏安圖(cyclic voltammogram)示於圖5中。因抗壞血酸氧化成去氫抗壞血酸所致之峰值回應電流(0.6伏)的回應圖示於圖6中。感測器的選擇性例示於圖7中,其中過氧化氫的氧化峰值可清楚區別。這去除了抗壞血酸的干擾,而且提供較高的選擇性。The enzyme system exemplified in equations (7) to (10) does not release hydrogen peroxide due to biochemical reactions, but can be monitored by monitoring other products, namely dehydroascorbic acid (ascorbate oxidase, equation 7), glutamic acid Salt (L-glutamic acid dehydrogenase, Equation 8), CO 2 (formate dehydrogenase, Equation 9), benzoquinone (polyphenol oxidase, Equation 10), and analytes were detected. The present invention is not limited to the ten enzymes exemplified in the reaction systems or those shown in Table 1, but can be applied to any enzyme system having redox activity. As an example, a cyclic voltammogram of the in situ polymerization of aniline (0.1 M in 0.2 MH 2 SO 4 ) and ascorbic acid (equation (7)) is fixed to the carbon nanotube electrode. Figure 5. A response plot of peak response current (0.6 volts) due to oxidation of ascorbic acid to dehydroascorbic acid is shown in Figure 6. The selectivity of the sensor is illustrated in Figure 7, where the oxidation peaks of hydrogen peroxide are clearly distinguishable. This removes the interference of ascorbic acid and provides a higher selectivity.

對其他酵素系統亦獲得類似結果。雖然不同的酵素被固定在九個個別的元件上,但該矩陣奈米生物感測器並沒有受到連續感測器元件的干擾。Similar results were obtained for other enzyme systems. Although the different enzymes were immobilized on nine individual components, the matrix nanobiosensor was not disturbed by the continuous sensor elements.

矩陣奈米生物感測器的穩定性:Matrix nano biosensor stability:

該矩陣奈米生物感測器陣列在多次測定(超過百次測定)中均為穩定的,感測器壽命係為酵素活性的函數。在奈米生物感測器中的傳導性聚合物矩陣提供了對奈米管矩陣的良好穩定性。基於酵素生化活性的具體酵素安定性示於表2中。酵素的安定可延長感測器壽命。The matrix nanobiosensor array is stable in multiple measurements (more than one hundred measurements) and the sensor lifetime is a function of enzyme activity. The conductive polymer matrix in the nanobiosensor provides good stability to the nanotube matrix. The specific enzyme stability based on the biochemical activity of the enzyme is shown in Table 2. The stability of the enzyme extends the life of the sensor.

矩陣奈米生物感測器用於偵測毒性氣體:一氧化碳(CO)感測器:其中工作電極是由奈米結構化的鉑材料所構成,即鉑奈米粒或鍍有鉑奈米粒的奈米碳管。使用鉑作為工作電極的主要理由在於其已知的一氧化碳催化氧化作用。將鉑奈米粒塗覆在奈米碳管上會增加工作電極對CO的表面催化活性,產生較高的敏感性。相對電極係由金屬(如鉑、金、等等)和參考電極(如Ag/AgCl)所構成。電解質係為強酸性電解質(如5M H2 SO4 ),且感測器係封閉在親水性半透膜中。Matrix nano biosensors are used to detect toxic gases: carbon monoxide (CO) sensors: the working electrode is made up of nanostructured platinum material, ie platinum nanoparticles or carbon nanotubes coated with platinum nanoparticles. . The main reason for using platinum as a working electrode is its known catalytic oxidation of carbon monoxide. Coating the platinum nanoparticles on the carbon nanotubes increases the surface catalytic activity of the working electrode on CO, resulting in higher sensitivity. The opposite electrode is composed of a metal such as platinum, gold, or the like and a reference electrode such as Ag/AgCl. The electrolyte is a strongly acidic electrolyte (such as 5M H 2 SO 4 ), and the sensor is enclosed in a hydrophilic semipermeable membrane.

利用該感測器偵測一氧化碳所涉及的電化學反應為:在感測電極上的反應:CO+H2 O→CO2 +2H +2e 在相對電極上的反應:1/2O2 +2H +2e →H2 O總反應:CO+1/2O2 →CO2 The electrochemical reaction involved in detecting carbon monoxide using the sensor is: reaction on the sensing electrode: CO + H 2 O → CO 2 + 2H + + 2e - reaction on the opposite electrode: 1/2O 2 + 2H + + 2e - → H 2 O total reaction: CO + 1/2 O 2 → CO 2

使用該感測器而在鉑電極上發生的CO氧化作用的循環伏安圖示於圖8中,其中下方的曲線因為沒有CO存在而沒有顯示特徵峰值。當CO曝露於感測器時,在約0.85伏處有一特徵氧化峰值。該所提出之使用奈米碳管-鉑奈米粒複合物的方法,會具有比用過氧化氫感測器所觀察到者較高的敏感性及較低的氧化電位。圖9說明該感測器對CO曝露的計時電流回應。因為由鉑催化的CO氧化作用具有0.85伏氧化峰值的特徵,所以該感測器具有迅速的回應時間並提供可靠的測量。The cyclic voltammogram of CO oxidation occurring on the platinum electrode using this sensor is shown in Figure 8, where the lower curve does not show characteristic peaks because there is no CO present. When CO is exposed to the sensor, there is a characteristic oxidation peak at about 0.85 volts. The proposed method using the carbon nanotube-platinum nanoparticle composite will have higher sensitivity and lower oxidation potential than those observed with a hydrogen peroxide sensor. Figure 9 illustrates the timing current response of the sensor to CO exposure. Because the platinum-catalyzed CO oxidation has a characteristic of a 0.85 volt oxidation peak, the sensor has a fast response time and provides reliable measurements.

上述的體系說明了供發展奈米生物感測器用之九元件矩陣的製造。先前設計的電子構造包含各電子元件及參考和相對電極的個別驅動。雖然這種設計對單一元件生物感測器而言是很好的發展成果,但將這種設計延伸至發展n x n感測器元件則有些困難。該先前設計亦包含一平面結構,其中參考、相對和工作電極均在定向於X-Y平面上的矽晶片中。若生物感測器基板為線性的,則可將奈米生物感測器擴展至偵測數百種分析物。因此需要最佳化的設計及電子驅動來擴展奈米生物感測器的多樣性。The above system illustrates the fabrication of a nine-element matrix for use in developing nano biosensors. Previously designed electronic configurations included individual drives of individual electronic components and reference and opposing electrodes. While this design is a good development for single-element biosensors, extending this design to the development of n x n sensor components is somewhat difficult. The prior design also included a planar structure in which the reference, opposing, and working electrodes were all in a tantalum wafer oriented in the X-Y plane. If the biosensor substrate is linear, the nanobiosensor can be extended to detect hundreds of analytes. Therefore, an optimized design and electronic drive are needed to expand the diversity of nano biosensors.

下列體系提供奈米生物感測器的選擇性設計。在此所揭示者為:1)三電極系統(工作、相對、參考電極)的線性設計方法。The following systems provide selective design of nano biosensors. The disclosure herein is: 1) A linear design method for a three-electrode system (working, opposing, reference electrodes).

2)在單一元件和矩陣列形式中將參考電極特定地設置於極鄰近工作電極之處。2) The reference electrode is specifically placed in the vicinity of the working electrode in a single element and matrix column form.

3)在相對電極的區域上有一半滲透疏水性薄膜的設計,以及在與該薄膜分開的電解質中將相對電極設置於極鄰近參考和工作電極處之設計。這對於發展電化學氣體感測器極為重要。3) A design in which one half of the opposite electrode is permeable to the hydrophobic film, and the opposite electrode is placed in the electrolyte separate from the film at a position close to the reference and working electrodes. This is extremely important for the development of electrochemical gas sensors.

4)發展能驅動線性及矩陣列元件的微型化電子構造。該感測器電子構造能在感測器中進行循環伏安測量及計時電流測量而不需標準實驗室定電位電路。4) Develop miniaturized electronic structures that can drive linear and matrix column elements. The sensor electronics are capable of performing cyclic voltammetry and chronoamperometry in the sensor without the need for a standard laboratory constant potential circuit.

5)設計供奈米生物感測器應用的主動矩陣(類似於液晶顯示裝置的主動矩陣),其能促成在小區域中的n x n感測器元件的發展。本發明是首先揭示發展供電化學(三電極)系統用之主動矩陣系統者。該為主動矩陣所發展之電子構造使用一移位暫存器,並可驅動所有在主動矩陣中的感測器元件。5) Design an active matrix for nano biosensor applications (similar to the active matrix of liquid crystal display devices) that can contribute to the development of n x n sensor elements in small areas. The present invention first reveals the development of active matrix systems for power chemistry (three-electrode) systems. The electronic construction developed for the active matrix uses a shift register and can drive all of the sensor elements in the active matrix.

具有三電極系統(工作、相對及參考電極)的電化學感測器係在與外部定電位電路(請參見圖3)耦合之電解質中操作。對於以電化學為基礎之感測器已有報導多種設計,但少有致力於發展多重分析物之偵測用的以陣列為基礎的感測器。多感測器陣列的難題在於來自其他化合物的交叉干擾、感測器元件的穩定性、等等。已有報導使用捕獲劑(capture reagent)的生物感測器。利用具有捕獲劑的生物感測器來偵測分析物的裝置及方法可見於世界專利WO 0138873(2001),但其受限於偵測單一分析物。雖然不同的奈米級材料,如奈米管、奈米線、奈米粒,已被用作基質或黏合劑,但仍缺乏一種統一的方法以發展能進行多重分析物偵測之矩陣奈米生物感測器。與利用光學、介電質、電容、電阻為基礎的技術相比,電化學生物感測技術在準確偵測液體及氣體分析物上具有優異多樣性。在所揭示的發明中,可以電化學方式隨時間監測分析物與生物劑的特異性交互作用。An electrochemical sensor with a three-electrode system (working, opposing, and reference electrodes) operates in an electrolyte coupled to an external potentiometric circuit (see Figure 3). A variety of designs have been reported for electrochemical-based sensors, but there are few array-based sensors dedicated to the development of detection of multiple analytes. The challenges of multi-sensor arrays are cross-interference from other compounds, stability of sensor elements, and the like. Biosensors using capture reagents have been reported. Apparatus and methods for detecting analytes using biosensors with capture agents are found in World Patent WO 0138873 (2001), but are limited to detecting a single analyte. Although different nanoscale materials, such as nanotubes, nanowires, and nanoparticles, have been used as matrix or binders, there is still a lack of a uniform approach to the development of matrix nano-organisms capable of multiple analyte detection. Sensor. Compared to technologies based on optical, dielectric, capacitive, and electrical resistance, electrochemical biosensing technology has excellent diversity in accurately detecting liquid and gas analytes. In the disclosed invention, the specific interaction of the analyte with the biological agent can be monitored electrochemically over time.

美國專利第6,656,712號中揭示藉由培育(不攪拌)將蛋白質接著至奈米碳管。在溶液中的生物大分子在適當的溫度及pH條件下,接著至奈米碳管的近尾端處。本發明係利用一種包括與傳導性聚合物基質進行電聚合的方法,來進行大分子、酵素、蛋白質、抗體、適合體、核酸、抗原、DNA、核糖體的接著。一個陣列的此類感測器可在幾分鐘內完成,並對電化學/生物化學反應提供穩定的架構。本發明亦提供一種利用疏水性半透膜而同時偵測氣體及液體分析物的高效率方法。電解質可為溼式(液相)或乾式(納菲薄膜、奈米結構化二氧化矽、水凝膠及其他者)以用於偵測化學、生物戰劑,氣體偵測,新陳代謝監測及其他應用。It is disclosed in U.S. Patent No. 6,656,712 that the protein is subsequently passed to a carbon nanotube by incubation (without agitation). The biomacromolecule in solution is then at the appropriate temperature and pH conditions, then to the near end of the carbon nanotube. The present invention utilizes a method comprising electropolymerization with a conductive polymer matrix for the subsequent attachment of macromolecules, enzymes, proteins, antibodies, aptamers, nucleic acids, antigens, DNA, ribosomes. An array of such sensors can be completed in a matter of minutes and provides a stable architecture for electrochemical/biochemical reactions. The present invention also provides a highly efficient method for simultaneously detecting gas and liquid analytes using a hydrophobic semipermeable membrane. The electrolyte can be wet (liquid phase) or dry (nifepene film, nanostructured cerium oxide, hydrogel and others) for detection of chemical, biological warfare agents, gas detection, metabolic monitoring and others. application.

線性陣列奈米生物感測器:Linear Array Nano Biosensor:

本發明一個體系的線性奈米生物感測器的設計示於圖10,11A及11B中。圖11A和11B分別為圖10所例示之電極組合中其中一個的俯視圖和部份橫剖面圖。如前所述,感測器元件係由奈米碳管1100、傳導性聚合物及生物酶1101所構成。感測元件為受載於矽基板1110上的工作電極1104;也可使用其他基板,如塑膠(聚合性)、玻璃、陶瓷、ITO、聚醯亞胺膜(kapton)及印刷電路板。用於裸基板上的一層絕緣層可為金屬氮化物、金屬氧化物、聚合物、等等。參考電極1103可由Ag/AgCl(銀,氯化銀)、SCE(標準甘汞電極)、SHE(標準氫電極)或其他標準參考電極所製成。相對電極1102可為一傳導性層,如金、銀、銅、鈦、鉑、鉻、鋁、等等。在線性結構中,可提供絕緣載體(未顯示於圖中)來分開參考電極1103、工作電極1104及相對電極1102,因為該三種電極在電化學程序期間必需彼此分開。本發明提供一種偵測液體和氣體分析物的有效方式。氣體感測器可使用封閉的疏水性半透膜(未顯示於圖中),該膜亦可為滲透選擇性的,以區別不同氣體(電子予體及電子受體)。該膜可併在相對/工作電極上或與系統分開。該膜的目的在於使氣體單方向進入至工作電極以進行電化學反應。應瞭解的是,在該三電極系統中的參考電極1103的目的係為在工作電極1104的周邊維持穩定的電位。The design of a linear nanobiosensor of one system of the present invention is shown in Figures 10, 11A and 11B. 11A and 11B are a plan view and a partial cross-sectional view, respectively, of one of the electrode combinations illustrated in Fig. 10. As previously mentioned, the sensor elements are comprised of a carbon nanotube 1100, a conductive polymer, and a biological enzyme 1101. The sensing element is a working electrode 1104 that is carried on the germanium substrate 1110; other substrates such as plastic (polymerizable), glass, ceramic, ITO, kapton, and printed circuit board can also be used. An insulating layer for the bare substrate may be a metal nitride, a metal oxide, a polymer, or the like. The reference electrode 1103 can be made of Ag/AgCl (silver, silver chloride), SCE (standard calomel electrode), SHE (standard hydrogen electrode) or other standard reference electrode. The opposite electrode 1102 can be a conductive layer such as gold, silver, copper, titanium, platinum, chromium, aluminum, or the like. In a linear configuration, an insulating carrier (not shown) may be provided to separate the reference electrode 1103, the working electrode 1104, and the opposing electrode 1102 because the three electrodes must be separated from each other during the electrochemical procedure. The present invention provides an efficient way to detect liquid and gas analytes. The gas sensor can use a closed hydrophobic semipermeable membrane (not shown) which can also be selectively permeable to distinguish between different gases (electron and electron acceptors). The film can be on the opposing/working electrode or separate from the system. The purpose of the membrane is to allow the gas to enter the working electrode in a single direction for electrochemical reaction. It will be appreciated that the purpose of the reference electrode 1103 in the three-electrode system is to maintain a stable potential around the working electrode 1104.

在圖10,11A及11B所提供的設計中,相對電極1102係置於線性系統之上。一般較佳的是將相對電極1102遠離工作電極1104,並相隔至少十倍於工作電極面積的面積區域。In the designs provided in Figures 10, 11A and 11B, the opposing electrode 1102 is placed over a linear system. It is generally preferred to position the opposing electrode 1102 away from the working electrode 1104 and at least ten times the area of the working electrode area.

主動矩陣列奈米生物感測器:Active Matrix Lenami Biosensor:

主動矩陣電路先前已用於液晶顯示裝置(Azuma,Seiichiro,“Fabrication of Thin-Film Transistor for Active-Matrix Liquid-Crystal Display, ”Patent:JP 2003100639,2003;Hebiguchi,Hiroyuki,“Active Matrix Type LCD In Which a Pixel Electrodes Width Along a Scanning Line is Three Times lts Data Line Side Width, ”U.S.Patent No.6,249,326,2001)。可藉由使用能發展以成本效益和微型化方式製造的n x n 矩陣的列-行可定址陣列(row-column addressable array)來提高矩陣奈米生物感測器的有效性。圖12顯示一個包含九個工作電極(W1 1 至W3 3 )(如前文有關圖11所述者)之範例3 x 3矩陣列的俯視圖,其中每一工作電極組態係由一個列及一個行驅動器所驅動(請參見圖14)。例如,工作電極W1 1 是由列1(R1)及行1(C1)所驅動。感測器元件(即各工作電極組態)亦包含一主動元件(AC)以供列-行定址,其中應「打開」R1和C1以啟動工作電極W1 1 。該主動矩陣列設計能同時驅動多個工作電極,這是線性陣列設計所無法達成的。例如,在循環伏安程序中50毫伏/秒掃瞄速率下-1伏至1伏的電壓拂掠對一個電極需80秒。而其中工作電極以線性方式配置的圖2中的設計,則需12分鐘來讀取九種分析物的回應。這在多重分析物的感測上是很大的缺點。圖14說明一種主動矩陣組態,其中工作電極的同時驅動大幅縮短偵測時間(例如,在50毫伏/秒掃瞄速率下-1伏至1伏的電壓拂掠內伏安法操作僅需80秒)。這種設計對感測器的多工制及以微型裝配技術將數以百計之感測器微型化方面提供很大的空間。主動元件(AC)係形成在電路上,該電路如圖13所示可包含不同組態。該主動電路可包含兩個二極體(圖13a),連接至電容器的一個二極體和一個電阻器(圖13b),或一個電晶體(圖13c)。本發明並不限於上述的主動矩陣組件,而是可以擴展至可對矩陣列奈米生物感測器進行列-行定址操作的任何「主動」電子電路。對圖13中所示的任何工作電極組態(Wx y )而言,該主動矩陣應如圖12所示連接至列(Rx )及行(Cy )。Active matrix circuits have previously been used in liquid crystal display devices (Azuma, Seiichiro, " Fabrication of Thin-Film Transistor for Active-Matrix Liquid-Crystal Display, " Patent: JP 2003100639, 2003; Hebiguchi, Hiroyuki, " Active Matrix Type LCD In Which a Pixel Electrodes Width Along a Scanning Line is Three Times lts Data Line Side Width, "US Patent No. 6 , 249 , 326, 2001). The effectiveness of the matrix nanobiosensor can be improved by using a row-column addressable array that can develop nxn matrices that are manufactured cost-effectively and miniaturized. Figure 12 shows a top view of an exemplary 3 x 3 matrix column comprising nine working electrodes (W 1 1 to W 3 3 ) (as described above with respect to Figure 11), wherein each working electrode configuration is comprised of a column and Driven by a row driver (see Figure 14). For example, the working electrode W 1 1 is driven by column 1 (R1) and row 1 (C1). Sensor elements (ie, the working electrode configuration) also includes an active device (AC) for the column - row addressing, which should be "open" R1 and C1 to start working electrode W 1 1. The active matrix column design can drive multiple working electrodes simultaneously, which is not possible with linear array design. For example, a voltage of -1 volt to 1 volt at a scan rate of 50 millivolts per second in a cyclic voltammetry procedure would take 80 seconds for an electrode. The design of Figure 2, in which the working electrodes are arranged in a linear fashion, takes 12 minutes to read the responses of the nine analytes. This is a big disadvantage in the sensing of multiple analytes. Figure 14 illustrates an active matrix configuration in which the simultaneous driving of the working electrode significantly reduces the detection time (for example, a voltage of -1 volt to 1 volt at a sweep rate of 50 mV/sec. 80 seconds). This design provides a lot of room for the multiplexer of the sensor and the miniaturization of hundreds of sensors with micro-assembly technology. An active component (AC) is formed on the circuit, which can include different configurations as shown in FIG. The active circuit can include two diodes (Fig. 13a) connected to a diode of a capacitor and a resistor (Fig. 13b), or a transistor (Fig. 13c). The invention is not limited to the active matrix components described above, but can be extended to any "active" electronic circuit that can perform column-to-row addressing operations on a matrix column nano biosensor. For any of the working electrode configurations (W x y ) shown in Figure 13, the active matrix should be connected to columns (R x ) and rows (C y ) as shown in Figure 12.

該等主動工作電極組件應結合參考和相對電極(請參見圖11)以供電化學反應。電化學技術包括但不限於循環伏安法、計時電流法、微分脈波伏安法、線性掃瞄伏安法、剝除伏安法、AC伏安法、AC阻抗、等等。感測器亦可藉由電流測定法、電位測定法、電導測定法、伏安法或它們的組合而用於偵測分析物。圖14顯示帶有列驅動器1401和行驅動器1402之n x n陣列矩陣奈米生物感測器的截面圖。該結構包含n x n陣列的工作電極1104,其中每一元件如前文所述包含特定的奈米碳管1100、傳導性聚合物、酵素組合1101。本發明並不限於上述組件的已述混合,而是可使用碳(所有形式)、貴金屬(金、鉑、等等)和蛋白質、抗體、核酸(DNA、RNA)、肽、適合體、適合體酶(aptazyme)、以及不同的傳導性聚合物組合。These active working electrode assemblies should be combined with reference and opposing electrodes (see Figure 11) to supply a chemical reaction. Electrochemical techniques include, but are not limited to, cyclic voltammetry, chronoamperometry, differential pulse voltammetry, linear sweep voltammetry, stripping voltammetry, AC voltammetry, AC impedance, and the like. The sensor can also be used to detect analytes by amperometry, potentiometry, conductance assay, voltammetry, or a combination thereof. Figure 14 shows a cross-sectional view of an n x n array matrix nano biosensor with column driver 1401 and row driver 1402. The structure comprises an n x n array of working electrodes 1104, each of which comprises a specific carbon nanotube 1100, a conductive polymer, an enzyme combination 1101 as previously described. The present invention is not limited to the above-described mixing of the above components, but carbon (all forms), precious metals (gold, platinum, etc.) and proteins, antibodies, nucleic acids (DNA, RNA), peptides, suitable bodies, and suitable bodies can be used. An aptazyme, and a combination of different conductive polymers.

驅動電子構造:Drive electronics construction:

矩陣列奈米生物感測器的驅動電子構造示於圖15中。該主動矩陣列奈米生物感測器包含耦合至n x n 陣列工作電極1104的移位暫存器1401,該移位暫存器另亦耦合至數據輸入端、時鐘及一致能(enable)。工作電極陣列係耦合至電流電壓(I/E)轉換器1402,參考電極耦合至靜電計電路1403,靜電計電路則耦合至連接於相對電極1102的控制放大器1404。線性陣列感測器之電子電路的不同組件則類似於圖3中所示者。圖中所示之參考電極1103係與工作電極1104交叉配置,但也可使用不同的組態而不限於本發明中所示者。通常使用的電壓拂掠為約-1伏至+1伏,掃瞄速率為50毫伏,步級為1毫伏,但其他的電壓窗、掃瞄速率及步級大小亦可用於循環伏安法測量。來自該n x n陣列的多通路輸出係耦合至顯示裝置(未示於圖中)或警報器(未示於圖中)以顯示分析物的存在。圖15中所示之設計可變更為藉由對每一感測器元件建置微型化電路系統(靜電計、I/E轉換器、控制放大器)而同時驅動n x n個感測器元件。圖14中所示之列及行驅動器係可對感測器矩陣中任何的X-Y元件定址。每一個主動元件1405(AC)均可透過列-行定址藉由開闢1406予以控制。The drive electronics configuration of the matrix Lenami biosensor is shown in FIG. The active matrix Lenami biosensor includes a shift register 1401 coupled to the nxn array working electrode 1104, the shift register being coupled to a data input, a clock, and an enable. The working electrode array is coupled to a current voltage (I/E) converter 1402, the reference electrode is coupled to an electrometer circuit 1403, and the electrometer circuit is coupled to a control amplifier 1404 coupled to the opposing electrode 1102. The different components of the electronic circuitry of the linear array sensor are similar to those shown in FIG. The reference electrode 1103 shown in the drawing is arranged to cross the working electrode 1104, but different configurations may be used without being limited to those shown in the present invention. The commonly used voltage sweep is about -1 volt to +1 volt, the scan rate is 50 millivolts, and the step is 1 millivolt, but other voltage windows, scan rates, and step sizes can also be used for cyclic voltammetry. measuring. The multi-pass output from the nxn array is coupled to a display device (not shown) or an alarm (not shown) to show the presence of the analyte. The design shown in Fig. 15 can be used to simultaneously drive nxn sensor elements by constructing miniaturized circuitry (electrometer, I/E converter, control amplifier) for each sensor element. The column and row drivers shown in Figure 14 can address any X-Y component in the sensor matrix. Each active component 1405 (AC) can be controlled by column-row addressing by opening 1406.

雖然本發明及其優點已詳述於此,但應瞭解的是在不偏離後附之申請專利範圍所定義之本發明精神及範圍的情況下,可達成多種變化、取代及變更。Although the present invention and its advantages are described in detail, it is understood that various changes, substitutions and changes can be made without departing from the spirit and scope of the invention as defined by the appended claims.

在圖2及3中:In Figures 2 and 3:

201...工作電極201. . . Working electrode

202...相對電極202. . . Relative electrode

203...參考電極203. . . Reference electrode

205...生物酶205. . . Enzyme

301...靜電計301. . . Electrometer

302...I/E轉換器302. . . I/E converter

303...控制放大器303. . . Control amplifier

304...信號304. . . signal

Rm ...電阻器R m . . . Resistor

在圖10至15中:In Figures 10 to 15:

1100...奈米碳管1100. . . Carbon nanotube

1101...酵素1101. . . Enzyme

1102...相對電極1102. . . Relative electrode

1103...參考電極1103. . . Reference electrode

1104...工作電極1104. . . Working electrode

1110...基板1110. . . Substrate

1401...列驅動器(圖14),移位暫存器(圖15)1401. . . Column driver (Figure 14), shift register (Figure 15)

1402...行驅動器(圖14),I/E轉換器(圖15)1402. . . Row driver (Figure 14), I/E converter (Figure 15)

1403...靜電計1403. . . Electrometer

1404...控制放大器1404. . . Control amplifier

1405...主動元件1405. . . Active component

1406...開闢1406. . . open up

AC...主動元件AC. . . Active component

W1 1 ~W3 3 ...工作電極W 1 1 ~ W 3 3 . . . Working electrode

R1 ~R4 ...列1至4R 1 ~R 4 . . . Columns 1 to 4

C1 ~C4 ...行1至4C 1 ~ C 4 . . . Lines 1 to 4

Wx y ...工作電極W x y . . . Working electrode

Rx ...列xR x . . . Column x

Cy ...行yC y . . . Line y

圖1顯示本發明的一個體系。Figure 1 shows a system of the invention.

圖2顯示本發明的一個體系。Figure 2 shows a system of the invention.

圖3顯示本發明體系中資訊輸入及輸出的電子電路。Figure 3 shows the electronic circuitry for information input and output in the system of the present invention.

圖4顯示來自九個感測器的回應。Figure 4 shows the responses from nine sensors.

圖5顯示本發明體系的回應。Figure 5 shows the response of the system of the invention.

圖6顯示一矩陣生物感測器對抗壞血酸的回應。Figure 6 shows the response of a matrix biosensor to ascorbic acid.

圖7顯示本發明一範例體系的回應圖。Figure 7 shows a response diagram of an exemplary system of the present invention.

圖8至9顯示依據本發明配置之感測器的操作圖。8 through 9 show operational diagrams of a sensor configured in accordance with the present invention.

圖10顯示本發明的另一體系。Figure 10 shows another system of the invention.

圖11A和11B顯示本發明另一體系的進一步細節。Figures 11A and 11B show further details of another system of the present invention.

圖12顯示本發明的矩陣列體系。Figure 12 shows a matrix column system of the present invention.

圖13顯示供本發明體系用於陣列的主動電路。Figure 13 shows an active circuit for use in an array of the present invention.

圖14顯示依據本發明體系的矩陣列配置。Figure 14 shows a matrix column configuration in accordance with the system of the present invention.

圖15顯示本發明的另一體系。Figure 15 shows another system of the invention.

Claims (6)

一種利用一個陣列的奈米生物感測器偵測多重分析物的方法,其中在該陣列中的多數個奈米生物感測器具有藉由電化學聚合及生物實體固定而利用傳導性聚合物固定在奈米碳管上的唯一生物實體(unique biological entities),其中該多數個奈米生物感測器的第一個具有固定在奈米碳管上的第一種生物實體,且其中該多數個奈米生物感測器的第二個具有固定在奈米碳管上的第二種生物實體,該第一種生物實體相對於該第二種生物實體為唯一的,且其中每一個奈米生物感測器包括具有固定在奈米碳管上之生物實體的工作電極,參考電極,及相對電極。 A method for detecting multiple analytes using an array of nanobiosensors, wherein a plurality of nanobiosensors in the array have fixed by conductive polymer by electrochemical polymerization and biological entity immobilization a unique biological entity on a carbon nanotube, wherein the first of the plurality of nanobiosensors has a first biological entity immobilized on a carbon nanotube, and wherein the plurality The second of the nano biosensor has a second biological entity immobilized on the carbon nanotube, the first biological entity being unique relative to the second biological entity, and each of the nano organisms The sensor includes a working electrode having a biological entity immobilized on a carbon nanotube, a reference electrode, and an opposite electrode. 如申請專利範圍第1項之方法,其中該等電極係連接至電路系統以掃瞄每一個奈米生物感測器。 The method of claim 1, wherein the electrodes are connected to circuitry to scan each of the nanobiosensors. 一種用於偵測多重分析物的裝置,其包含一個陣列的奈米生物感測器,每一個該感測器包含利用傳導性聚合物而固定在奈米碳管上的生物實體,其中該陣列中的多數個奈米生物感測器具有唯一的生物實體,其中該多數個奈米生物感測器的第一個具有固定在奈米碳管上的第一種生物實體,且其中該多數個奈米生物感測器的第二個具有固定在奈米碳管上的第二種生物實體,該第一種生物實體相對於該第二種生物實體為唯一的,且其中每一個奈米生物感測器包括具有固定在奈米碳管 上之生物實體的工作電極,參考電極,及相對電極。 A device for detecting multiple analytes comprising an array of nanobiosensors, each of the sensors comprising a biological entity immobilized on a carbon nanotube using a conductive polymer, wherein the array Most of the nano biosensors have a unique biological entity, wherein the first of the plurality of nano biosensors has a first biological entity immobilized on a carbon nanotube, and the majority The second of the nano biosensor has a second biological entity immobilized on the carbon nanotube, the first biological entity being unique relative to the second biological entity, and each of the nano organisms The sensor includes a fixed carbon nanotube The working electrode of the biological entity, the reference electrode, and the opposite electrode. 如申請專利範圍第3項之裝置,其中該等電極係連接至電路系統以掃瞄每一個奈米生物感測器。 The device of claim 3, wherein the electrodes are connected to the circuitry to scan each of the nanobiosensors. 如申請專利範圍第3項之裝置,其中參考電極係極鄰近個別的工作電極,且係配置於主動矩陣組態中。 The device of claim 3, wherein the reference electrode system is in close proximity to the individual working electrodes and is configured in an active matrix configuration. 如申請專利範圍第3項之裝置,其中組態於主動矩陣中的多個工作電極可被同時驅動以偵測多重分析物。 The apparatus of claim 3, wherein the plurality of working electrodes configured in the active matrix are simultaneously driven to detect multiple analytes.
TW94143909A 2004-12-14 2005-12-12 Matrix array nanobiosensor TWI406940B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/011,645 US20050244811A1 (en) 2003-12-15 2004-12-14 Matrix array nanobiosensor

Publications (2)

Publication Number Publication Date
TW200632095A TW200632095A (en) 2006-09-16
TWI406940B true TWI406940B (en) 2013-09-01

Family

ID=49626726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94143909A TWI406940B (en) 2004-12-14 2005-12-12 Matrix array nanobiosensor

Country Status (1)

Country Link
TW (1) TWI406940B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086335A1 (en) * 1994-12-08 2002-07-04 Meso Scale Technology Llp Graphitic nanotubes in luminescence assays
US20030134267A1 (en) * 2001-08-14 2003-07-17 Kang Seong-Ho Sensor for detecting biomolecule using carbon nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086335A1 (en) * 1994-12-08 2002-07-04 Meso Scale Technology Llp Graphitic nanotubes in luminescence assays
US20030134267A1 (en) * 2001-08-14 2003-07-17 Kang Seong-Ho Sensor for detecting biomolecule using carbon nanotubes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cai et al., "Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection"Analytical and Bioanalytical Chemistry, 2003, vol. 375, pages 287-293 *
Sotiropoulou et al., "Carbon nanotube array-based biosensor"Analytical and Bioanalytical Chemistry, 2003, vol. 375, pages 103-105 *

Also Published As

Publication number Publication date
TW200632095A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
JP2007513357A (en) Matrix array nanobiosensor
Huang et al. Nano biosensors: properties, applications and electrochemical techniques
CN100457887C (en) Biological identification system with integrated sensor chip
Wisitsoraat et al. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor
Fukuda et al. Electrochemical determination of uric acid in urine and serum with uricase/carbon nanotube/carboxymethylcellulose electrode
Zen et al. Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode
Wang et al. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes
Park et al. A novel glucose biosensor using bi-enzyme incorporated with peptide nanotubes
Sun et al. Amperometric immunosensor based on deposited gold nanocrystals/4, 4′-thiobisbenzenethiol for determination of carbofuran
Power et al. Electroanalytical sensor technology
Lin et al. An electrochemical biosensor for determination of hydrogen peroxide using nanocomposite of poly (methylene blue) and FAD hybrid film
JP4863398B2 (en) Biosensor using carbon nanotubes
Nellaiappan et al. Electrocatalytic oxidation and flow injection analysis of isoniazid drug using a gold nanoparticles decorated carbon nanofibers-chitosan modified carbon screen printed electrode in neutral pH
Fang et al. A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection
JP4566064B2 (en) Biosensor using bamboo carbon nanotube
O’Reilly et al. Chronocoulometric determination of urea in human serum using an inkjet printed biosensor
Roy et al. 3-D printed electrode integrated sensing chip and a PoC device for enzyme free electrochemical detection of blood urea
Lai et al. Differential labeling of closely spaced biosensor electrodes via electrochemical lithography
Zhang et al. Electrode surface roughness greatly enhances the sensitivity of electrochemical non-enzymatic glucose sensors
US20190064100A1 (en) Novel Biosensing Technology Based on Enzymatic Electrochemical Impedance Measurement
Wang et al. Enzyme deposition by polydimethylsiloxane stamping for biosensor fabrication
TWI406940B (en) Matrix array nanobiosensor
Lai Folding-and dynamics-based electrochemical DNA sensors
Juřík et al. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
US20220341901A1 (en) Electrodes Employing Aptamer-Based Recognition for Colorimetric Visualization

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees