TWI403976B - Image enhancement using hardware-based deconvolution - Google Patents

Image enhancement using hardware-based deconvolution Download PDF

Info

Publication number
TWI403976B
TWI403976B TW096108967A TW96108967A TWI403976B TW I403976 B TWI403976 B TW I403976B TW 096108967 A TW096108967 A TW 096108967A TW 96108967 A TW96108967 A TW 96108967A TW I403976 B TWI403976 B TW I403976B
Authority
TW
Taiwan
Prior art keywords
input
pixel values
filter
image
output
Prior art date
Application number
TW096108967A
Other languages
Chinese (zh)
Other versions
TW200828183A (en
Inventor
Elchanan Rappaport
Yoav Lavi
David Drori
Uri Kinrot
Original Assignee
Digitaloptics Corp Internat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IL2006/001450 external-priority patent/WO2007072477A2/en
Application filed by Digitaloptics Corp Internat filed Critical Digitaloptics Corp Internat
Publication of TW200828183A publication Critical patent/TW200828183A/en
Application granted granted Critical
Publication of TWI403976B publication Critical patent/TWI403976B/en

Links

Landscapes

  • Image Processing (AREA)

Abstract

An image enhancement circuit (26, 60, 190, 260) includes an input interface (64, 262), which is operative to accept a stream of input pixel values belonging to pixels (32) of an input image. The input image includes a plurality of different input sub-images including respective subsets of the pixels, such that the input pixel values of the pixels in the different input sub-images are interleaved in the stream. A plurality of filter cells (92, 144, 206, 222, 238, 364) are connected in a two-dimensional array configuration and are arranged to separately filter the input pixel values of each of the input sub-images with respective two-dimensional deconvolution kernels so as produce respective output sub-images that include output pixel values. A multiplexer (88, 332) is coupled to multiplex together the output pixel values of the output sub-images so as to produce a filtered output image.

Description

利用以硬體為基礎之反摺積的影像加強Image enhancement using hardware-based deconvolution

本發明一般係相對於數位成像,且特定言之,係相對於用於加強數位相機中的影像品質之方法與系統。The present invention is generally directed to digital imaging and, in particular, to methods and systems for enhancing image quality in digital cameras.

在許多數位成像應用中,藉由成像光學設備獲得的影像會模糊不清、離焦或另外失真。例如,某些低成本及小尺寸相機的成像光學設備通常具有不可忽視的光學點擴散函數(PSF)。在該技術中已知若干方法可用於使用數位影像處理來補償非理想PSF及其他光學失真效應。In many digital imaging applications, images obtained by imaging optics may be blurred, out of focus, or otherwise distorted. For example, imaging optics for certain low cost and small size cameras typically have a non-negligible optical point spread function (PSF). Several methods are known in the art for using digital image processing to compensate for non-ideal PSF and other optical distortion effects.

例如,美國專利6,154,574(其揭示案係以引用的方式併入本文中)說明用於在影像處理系統中數位聚焦離焦影像之方法。藉由將散焦影像劃分成子影像並計算相對於每個子影像中的邊緣方向之步驟回應而獲得平均步驟回應。平均步驟回應係用於計算PSF係數,其係依次應用於決定影像復原傳輸函數。藉由將此函數乘以離焦影像頻域而獲得焦點對準影像。For example, U.S. Patent No. 6,154,574, the disclosure of which is incorporated herein by reference in its entirety in its entirety in the the the the the the the The average step response is obtained by dividing the defocused image into sub-images and calculating step responses relative to the edge directions in each sub-image. The average step response is used to calculate the PSF coefficients, which in turn are applied to determine the image restoration transfer function. The in-focus image is obtained by multiplying this function by the frequency domain of the out-of-focus image.

PCT國際公告案WO 2004/063989 A2(其揭示案係以引用的方式併入本文中)說明一電子成像相機,其包括一影像感測陣列及一影像處理器,該影像處理器將通常以反摺積濾鏡(DCF)形式的去模糊函數應用於由該陣列輸出的信號以便產生具有較小模糊的輸出影像。此模糊減小可以設計並使用具有較差內在PSF的相機光學設備,同時復原由感測陣列產生的電子影像以提供可接受的輸出影像。PCT International Publication No. WO 2004/063989 A2, the disclosure of which is hereby incorporated hereinby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety A deblurring function in the form of a convolution filter (DCF) is applied to the signal output by the array to produce an output image with less blur. This blur reduction can be designed and used with camera optics with poor intrinsic PSF while restoring the electronic image produced by the sensing array to provide an acceptable output image.

低成本彩色相機通常使用具有多色鑲嵌濾鏡覆蓋圖的單一固態影像感測器。鑲嵌濾鏡係微型彩色濾鏡元件之光罩,其中將濾鏡元件固定在影像感測器之每個偵測器元件的前面。例如,美國專利4,697,208(其揭示案係以引用的方式併入本文中)說明一彩色影像拾取器件,其具有一固態影像感測元件及一補色型鑲嵌濾鏡。具有彩色鑲嵌濾鏡之任何種類的影像感測器,不管鑲嵌中的顏色之選擇與配置,均在以下稱為"鑲嵌影像感測器"。Low cost color cameras typically use a single solid state image sensor with a multi-color mosaic filter overlay. The mosaic filter is a reticle of miniature color filter elements in which the filter elements are secured in front of each detector element of the image sensor. For example, U.S. Patent No. 4,697,208, the disclosure of which is incorporated herein by reference in its entirety, is incorporated herein by reference in its entirety in its entirety in the the the the the the the Any type of image sensor with a color mosaic filter, regardless of the color selection and configuration in the mosaic, is referred to below as a "mosaic image sensor."

鑲嵌舉濾鏡中的濾鏡元件一般在主要RGB顏色間,或在補色青、深紅與黃色之間交替。一共同類型的彩色鑲嵌濾鏡係稱為"拜耳感測器"或"拜耳鑲嵌",其具有下列一般形式(其中字母代表顏色:R表示紅色,G表示綠色以及B表示藍色): 不同彩色濾鏡具有可重疊的個別帶通。拜耳鑲嵌係說明在美國專利3,971,065中,其揭示案係以引用的方式併入本文中。The filter elements in the mosaic filter are typically alternated between the main RGB colors, or between complementary colors cyan, magenta, and yellow. A common type of color mosaic filter is called "Bayer sensor" or "Bayer mosaic", which has the following general form (where the letters represent color: R for red, G for green, and B for blue): Different color filters have individual bandpasses that can be overlapped. Bayer inlays are described in U.S. Patent No. 3,971,065, the disclosure of which is incorporated herein by reference.

處理由鑲嵌影像感測器產生影像通常包含藉由從感測器輸出擷取三個彩色信號(紅、綠及藍)而再造純色影像。一影像信號處理器(ISP)處理影像感測器輸出以便計算用於輸出影像之每個像素的光度(Y)與色度(C)數值。ISP接著以標準影像格式輸出此等數值(或對應R、G及B色值)。Processing an image produced by a mosaic image sensor typically involves reconstructing a solid color image by extracting three color signals (red, green, and blue) from the sensor output. An image signal processor (ISP) processes the image sensor output to calculate the luminosity (Y) and chrominance (C) values for each pixel of the output image. The ISP then outputs these values (or corresponding R, G, and B color values) in a standard image format.

因此依據本發明之一具體實施例,提供一影像加強電路,其包含:一輸入介面,其可運轉以接受屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包含複數個不同輸入子影像,其包含像素之個別子集,因此不同輸入子影像中的像素之輸入像素數值係在該串流中交錯;複數個濾鏡單元,其係連接在一二維陣列組態中並係配置成採用個別二維反摺積核心分離地濾波該等輸入子影像之每個的該等輸入像素數值以便產生包含輸出像素數值的個別輸出子影像;以及一多工器,其得到耦合以將該等輸出子影像之該等輸出像素數值多工在一起以便產生一濾波式輸出影像。Therefore, in accordance with an embodiment of the present invention, an image enhancement circuit is provided, comprising: an input interface operable to accept a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different inputs a sub-image comprising an individual subset of pixels, such that input pixel values of pixels in different input sub-images are interleaved in the stream; a plurality of filter elements are connected in a two-dimensional array configuration Configuring to separately filter the input pixel values of each of the input sub-images using an individual two-dimensional inverse-folding core to generate an individual output sub-image comprising the output pixel values; and a multiplexer coupled to The output pixel values of the output sub-images are multiplexed together to produce a filtered output image.

在某些具體實施例中,輸入影像具有輸入模糊,並且在採用反摺積核心濾波之後,輸出影像具有輸出模糊,其係小於輸入模糊。In some embodiments, the input image has input blur, and after the inverse deconvolution core filtering, the output image has an output blur that is less than the input blur.

在另一具體實施例中,陣列組態具有濾鏡單元之列及行,輸入介面包含一記憶體,其係配置成緩衝輸入像素數值並提供緩衝的輸入像素之連續行至濾鏡單元,而且濾鏡單元之每行係配置成傳播輸入像素數值之行至陣列組態中的濾鏡單元之下一行,以便採用反摺積核心而反摺積輸入像素數值。In another embodiment, the array configuration has columns and rows of filter cells, the input interface including a memory configured to buffer input pixel values and provide successive rows of buffered input pixels to the filter unit, and Each row of the filter unit is configured to propagate the line of input pixel values to the next row of filter elements in the array configuration to deconvolute the input pixel values using the inverse-folded core.

在另一具體實施例中,反摺積核心包含濾鏡係數,並且濾鏡單元之每個包含一乘法器,其係配置成將輸入像素數值之一乘以濾鏡係數之一以產生濾鏡單元之一輸出。乘法器可配置成於接受輸入像素所在的像素時脈之每個循環中執行兩個乘法。在另一具體實施例中,電路包括一累積器電路,其係配置成累積濾鏡單元之輸出以產生輸出像素數值。累積器係有時配置成累積接受輸入像素所在的像素時脈之兩個連續循環內的輸出。In another embodiment, the inverse-folding core includes filter coefficients, and each of the filter units includes a multiplier configured to multiply one of the input pixel values by one of the filter coefficients to produce a filter One of the units outputs. The multiplier can be configured to perform two multiplications in each cycle of the pixel clock in which the input pixel is received. In another embodiment, the circuit includes an accumulator circuit configured to accumulate the output of the filter unit to produce an output pixel value. The accumulator is sometimes configured to accumulate output within two consecutive cycles of the pixel clock at which the input pixel is received.

在一具體實施例中,陣列組態具有濾鏡單元之列及行,輸入介面係配置成提供輸入像素數值之連續行至濾鏡單元以便將每個輸入像素數值同時提供給濾鏡單元之對應列中的所有濾鏡單元,每個濾鏡單元包含一乘法器,其係配置成將所提供的輸入像素數值乘以反摺積核心之一的濾鏡係數以產生一乘法結果,並且電路包含一累積電路,其係配置成計算濾鏡單元之每行中的乘法結果之行總和,以應用延遲於行總和並組合延遲的行總和來產生輸入像素數值。In one embodiment, the array configuration has columns and rows of filter cells configured to provide successive rows of input pixel values to the filter cells to provide each input pixel value to the filter cell at the same time. All of the filter cells in the column, each filter cell comprising a multiplier configured to multiply the supplied input pixel value by the filter coefficient of one of the inversely folded cores to produce a multiplication result, and the circuit includes An accumulation circuit configured to calculate a sum of rows of multiplication results in each row of the filter unit to apply a sum of rows delayed by the sum of the rows and combined with the delay to produce an input pixel value.

在另一具體實施例中,由鑲嵌影像感測器提供輸入像素數值之串流以便由影像感測器產生輸入子影像之每個中的像素數值來回應不同個別彩色之光,並且將濾鏡單元配置成濾波輸入子影像以產生對應於個別彩色的輸出子影像。在另一具體實施例中,輸入子影像包含綠、紅及藍色子影像,並且將濾鏡單元配置在第一二維陣列中,該第一二維陣列係配置成濾波屬於綠色子影像之輸入數值;以及在第二二維陣列中,該第二二維陣列係配置成交替地濾波屬於紅及藍色子影像之輸入數值。In another embodiment, the mosaic image sensor provides a stream of input pixel values to generate pixel values in each of the input sub-images by the image sensor to respond to different individual color lights, and to filter The unit is configured to filter the input sub-images to produce an output sub-image corresponding to the individual colors. In another embodiment, the input sub-image includes green, red, and blue sub-images, and the filter unit is disposed in the first two-dimensional array, the first two-dimensional array configured to filter the green sub-images Entering a value; and in the second two-dimensional array, the second two-dimensional array is configured to alternately filter input values belonging to the red and blue sub-images.

在另一具體實施例中,反摺積核心包含濾鏡係數,濾鏡單元包含個別乘法器,其係配置成依據預定指定將輸入像素數值乘以濾鏡係數,並且電路包含選擇及累積邏輯,其係配置成分離地累積乘以屬於輸入子影像之每個的輸入像素數值之乘法器的輸出,以便產生輸出像素數值。In another embodiment, the inverse-folding core includes filter coefficients, and the filter unit includes an individual multiplier configured to multiply the input pixel value by the filter coefficient according to a predetermined designation, and the circuit includes selection and accumulation logic, It is configured to separately accumulate the output of the multiplier multiplied by the input pixel value of each of the input sub-images to produce an output pixel value.

在某些具體實施例中,將輸入影像劃分成多個區段,並且將濾鏡單元配置成使用至少第一及第二不同反摺積核心以濾波定位在輸入影像之個別至少第一及第二區域中的輸入像素之數值。在某些具體實施例中,第一及第二區段具有個別不同第一及第二尺寸,其得到個別地決定以回應第一及第二區段中的模糊之空間可變性。In some embodiments, the input image is divided into a plurality of segments, and the filter unit is configured to use at least the first and second different inversely-folded cores to filter the at least first and first portions of the input image. The value of the input pixel in the two regions. In some embodiments, the first and second segments have individually different first and second dimensions that are individually determined in response to spatial variability in blurring in the first and second segments.

在另一具體實施例中,根據輸入影像中的模糊之對稱特性將輸入影像劃分成對稱區,並且將濾鏡單元配置成使用基線反摺積核心而濾波定位在對稱區之一中的輸入像素之數值,並且使用藉由將對稱運算應用於基線核心所決定的個別反摺積核心而濾波定位在其他對稱區中的輸入像素之數值。In another embodiment, the input image is divided into symmetry regions according to the symmetry characteristic of the blur in the input image, and the filter unit is configured to filter the input pixels positioned in one of the symmetry regions using the baseline deconvolution core The value, and the value of the input pixel positioned in the other symmetry zone is filtered using the individual deconvolution kernel determined by applying the symmetric operation to the baseline core.

另外依據本發明之一具體實施例,提供一成像方法,其包含:接受屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包含複數個不同輸入子影像,其包含像素之個別子集,因此不同輸入子影像中的像素之輸入像素數值係在該串流中交錯;使用連接在二維陣列組態中的複數個硬體實施濾鏡單元,採用個別二維反摺積核心分離地濾波輸入子影像之每個的輸入數值,以便產生包含輸出像素數值的個別輸出子影像;以及乘以輸出子影像之輸出像素數值以便產生濾波輸出影像。In addition, in accordance with an embodiment of the present invention, an imaging method is provided, comprising: accepting a stream of input pixel values belonging to pixels of an input image, the input image comprising a plurality of different input sub-images including individual pixels of the pixel Set, so the input pixel values of the pixels in different input sub-images are interlaced in the stream; the filter unit is implemented using a plurality of hardware connected in the two-dimensional array configuration, and the individual two-dimensional deconvolution core is used to separate The input values of each of the input sub-images are filtered to generate an individual output sub-image containing the output pixel values; and the output pixel values of the output sub-images are multiplied to produce a filtered output image.

依據本發明之一具體實施例,亦提供一成像裝置,其包含:一鑲嵌影像感測器,其係配置成產生屬於複數個輸入子影像的輸入像素數值之一串流,每個子影像回應入射在該鑲嵌影像感測器上的不同個別彩色之光,因此不同輸入子影像中的像素之輸入像素數值係在該串流中交錯;一影像加強電路,其得到耦合以使用連接在二維陣列組態中的複數個濾鏡單元而接收並濾波輸入子影像之每個中的輸入像素數值,以便產生對應的複數個加強式輸出子影像;以及一影像信號處理器(ISP),其得到耦合以接收並組合該複數個輸出子影像以便產生一彩色輸出影像。According to an embodiment of the present invention, an imaging apparatus is further provided, comprising: a mosaic image sensor configured to generate a stream of input pixel values belonging to a plurality of input sub-images, each sub-image responding to an incident Different individual colored lights on the mosaic image sensor, so the input pixel values of the pixels in the different input sub-images are interlaced in the stream; an image enhancement circuit that is coupled to use the connection in the two-dimensional array A plurality of filter units in the configuration receive and filter input pixel values in each of the input sub-images to generate a corresponding plurality of enhanced output sub-images; and an image signal processor (ISP) coupled The plurality of output sub-images are received and combined to generate a color output image.

概述Overview

本發明之具體實施例提供用以加強由鑲嵌影像感測器產生的彩色影像之品質的方法與電路。此等方法與電路係通常在數位相機中用於補償輸入影像中由相機光學設備所引起的模糊。本文說明的方法及電路可用於減小任何適當光學系統中的模糊。特定言之,可以使用減小相機之總成本及尺寸的較簡單、較小及較低成本之光學設備來產生高品質影像。Embodiments of the present invention provide methods and circuits for enhancing the quality of color images produced by a mosaic image sensor. These methods and circuitry are typically used in digital cameras to compensate for blurring caused by camera optics in the input image. The methods and circuits described herein can be used to reduce blurring in any suitable optical system. In particular, relatively simple, small, and low cost optical devices that reduce the overall cost and size of the camera can be used to produce high quality images.

在某些具體實施例中,提供彩色輸入影像之輸入像素數值之一串流給影像加強或影像復原電路。依據所用的鑲嵌圖案,輸入串流通常包括不同彩色之像素數值的交錯圖案。影像加強電路採用分離的反摺積核心來濾波每個彩色之像素數值,以便產生用於每個彩色的單色輸出子影像。In some embodiments, one of the input pixel values of the color input image is streamed to the image enhancement or image restoration circuit. Depending on the mosaic used, the input stream typically includes a staggered pattern of pixel values of different colors. The image enhancement circuit uses a separate inverse-folded core to filter the pixel values of each color to produce a monochrome output sub-image for each color.

反摺積核心係數係通常設定成接近於引起模糊的光學設備之點擴散函數(PSF)的倒數。因此,採用反摺積核心而反摺積輸入像素數值可有效地補償由光學設備引起的失真。接著組合加強式單色子影像以產生一彩色輸出像素,其與輸入影像相比具有較小的模糊。The inversely-folded core coefficients are typically set to be close to the reciprocal of the point spread function (PSF) of the optical device that caused the blur. Therefore, the inversely-compressed input pixel values using the inverse-folded core can effectively compensate for distortion caused by the optical device. The enhanced monochrome sub-image is then combined to produce a color output pixel that has less blur than the input image.

以下說明若干替代性反摺積器組態。通常而言,反摺積器包括配置在二維陣列中的複數個乘法器。乘法器將輸入像素數值乘以適當的反摺積係數,並且累積乘法結果以產生總的反摺積結果。在某些具體實施例中,乘法器以高於像素速率的時脈速率運算,因而減小所用的乘法器之數目。Several alternative deconvolution configurations are described below. In general, a deconvolution includes a plurality of multipliers arranged in a two dimensional array. The multiplier multiplies the input pixel value by the appropriate inverse fold factor and accumulates the multiplication result to produce a total deconvolution result. In some embodiments, the multiplier operates at a clock rate higher than the pixel rate, thereby reducing the number of multipliers used.

本文說明的某些反摺積器組態使用乘法器之集區,該等乘法器係指派用於依據預定乘法方案而執行不同彩色像素之反摺積運算。在某些具體實施例中,反摺積器具有管線組態,其中橫跨乘法器陣列而傳播部分乘法結果以便減小電路中的暫存器之數目。Some of the inverse deconvolution configurations described herein use a pool of multipliers that are assigned to perform deconvolution operations of different color pixels in accordance with a predetermined multiplication scheme. In some embodiments, the deconvolution has a pipeline configuration in which partial multiplication results are propagated across the multiplier array to reduce the number of registers in the circuit.

在某些具體實施例中,影像加強電路使用輸入影像之不同區域中的不同反摺積核心。以下說明用於藉由使用對稱性來減小儲存的反摺積係數之數目。In some embodiments, the image enhancement circuit uses different deconvolution cores in different regions of the input image. The following describes the number of deconvolution coefficients used to reduce storage by using symmetry.

系統說明instructions

圖1係示意性地說明依據本發明之一具體實施例的電子成像相機20之方塊圖。相機20的組態係經由範例而在此處顯示,以便闡明本發明之原理。然而,此等原理並不限於圖1所示的組態,並可應用於減小其他類型之成像系統中的模糊,在該等成像系統中將輸入影像劃分成不同彩色之多個交錯子影像,接著組合該等子影像以產生一加強式彩色輸出影像。1 is a block diagram schematically illustrating an electronic imaging camera 20 in accordance with an embodiment of the present invention. The configuration of camera 20 is shown here by way of example to illustrate the principles of the invention. However, such principles are not limited to the configuration shown in Figure 1, and can be applied to reduce blur in other types of imaging systems in which the input image is divided into multiple interlaced sub-images of different colors. Then, the sub-images are combined to produce an enhanced color output image.

例如,相機20可適合於行動通信終端機(例如行動電話)或體內醫學成像器件。或者,相機20可以係安全系統、汽車系統或任何其他適當的系統或應用之部分。For example, camera 20 may be suitable for a mobile communication terminal (eg, a mobile phone) or an in vivo medical imaging device. Alternatively, camera 20 may be part of a security system, an automotive system, or any other suitable system or application.

在相機20中,物鏡光學設備22將來自成像景色或物件的光聚焦於鑲嵌感測器24上。感測器24可包括任何適當類型的影像感測器,例如電荷耦合器件(CCD)或互補式金氧半導體(CMOS)影像感測器。在本範例及以下說明中,假定感測器具有拜耳型鑲嵌濾鏡,因此由感測器輸出之影像信號中的每個像素32回應紅、綠或藍光。In camera 20, objective optics 22 focuses light from an imaged scene or object onto tessellation sensor 24. Sensor 24 can include any suitable type of image sensor, such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) image sensor. In this example and the following description, it is assumed that the sensor has a Bayer type mosaic filter, so each pixel 32 in the image signal output by the sensor responds to red, green or blue light.

因此,由鑲嵌感測器產生的影像可以視為包括紅、綠及藍色子影像,其係由對應感測器元件之像素數值構成。屬於不同子影像的像素數值係通常依據鑲嵌濾鏡中的彩色元素之順序而在輸出信號中交錯。感測器通常輸出一列RGRGRG...(交替紅及綠色濾鏡),然後輸出一後續列GBGBGB...(交替綠及藍色濾鏡),並在交替線中以此類推。或者,已作必要更正,可使用以下說明的方法及電路,其具有其他類型的鑲嵌感測器圖案。Thus, an image produced by a mosaic sensor can be considered to include red, green, and blue sub-images that are composed of pixel values corresponding to the sensor elements. Pixel values belonging to different sub-images are usually interleaved in the output signal in the order of the colored elements in the mosaic filter. The sensor typically outputs a list of RGRGRG... (alternating red and green filters), then outputs a subsequent column, GBGBGB... (alternating green and blue filters), and so on in alternate lines. Alternatively, as necessary to correct, the methods and circuits described below can be used with other types of damascene sensor patterns.

由數位復原電路26接收並處理由感測器24產生的影像,其係通常提供為像素數值之一串流。以下詳細地說明亦稱為影像加強電路的此復原電路之若干示範性具體實施例。像素數值藉由類比至數位轉換器(圖中未顯示)加以數位化,然後由電路26加以處理。電路26處理由感測器24產生的紅、綠及藍輸入子影像以便減小影像模糊,如以下所說明。電路26接著輸出具有較小模糊的紅、綠及藍色子影像。The image produced by sensor 24 is received and processed by digital recovery circuit 26, which is typically provided as a stream of pixel values. Several exemplary embodiments of such a recovery circuit, also referred to as image enhancement circuitry, are described in detail below. The pixel values are digitized by analog to digital converters (not shown) and then processed by circuit 26. Circuitry 26 processes the red, green, and blue input sub-images produced by sensor 24 to reduce image blur, as explained below. Circuit 26 then outputs red, green, and blue sub-images with less blur.

通常而言,電路26採用其接收來自感測器24的子影像相同之格式輸出子影像。例如,電路26可交錯輸出子影像中的像素數值以產生單一輸出串流,其中像素數值具有與來自感測器24之輸入像素數值相同的交錯。或者,電路26可配置成解多工並輸出每個子影像作為分離的資料區塊或資料串流。In general, circuit 26 outputs a sub-image in the same format that it receives sub-images from sensor 24. For example, circuit 26 may interleave pixel values in the sub-image to produce a single output stream, where the pixel values have the same interlace as the input pixel values from sensor 24. Alternatively, circuit 26 can be configured to demultiplex and output each sub-image as a separate data block or data stream.

ISP 28接收來自電路26的去模糊紅、綠及藍色輸出子影像並組合該等子影像以採用標準影像格式產生彩色輸出影像(或影像序列)。輸出影像可顯示在螢幕30上、於通信鏈路上發送及/或儲存在記憶體中。The ISP 28 receives the deblurred red, green, and blue output sub-images from the circuitry 26 and combines the sub-images to produce a color output image (or image sequence) using a standard image format. The output image can be displayed on screen 30, transmitted over a communication link, and/or stored in memory.

通常而言,復原電路26係具體化於積體電路晶片中,該積體電路晶片可包括任何適當的訂製或半訂製組件。儘管復原電路26及ISP 28係在圖1中顯示為分離的功能區塊,但是可以在單一積體電路組件中實施該復原電路及該ISP之功能。可視需要地,影像感測器24可在系統上晶片(SoC)或相機上晶片設計中與同一半導體基板上的電路26且亦可與ISP 28組合。或者,復原電路26之功能之某些或全部可實施於可程式化處理器(例如數位信號處理器)上的軟體中。此軟體可採用電子形式下載至處理器,或其可另外提供在有形媒體(例如光學、磁性或電子記憶體)上。In general, the recovery circuit 26 is embodied in an integrated circuit die, which may include any suitable custom or semi-custom component. Although the restoration circuit 26 and the ISP 28 are shown as separate functional blocks in FIG. 1, the restoration circuit and the functions of the ISP can be implemented in a single integrated circuit component. As desired, image sensor 24 can be combined with circuitry 26 on the same semiconductor substrate and also with ISP 28 in a system-on-chip (SoC) or on-camera wafer design. Alternatively, some or all of the functionality of the restoration circuit 26 may be implemented in software on a programmable processor, such as a digital signal processor. The software can be downloaded to the processor in electronic form, or it can be additionally provided on a tangible medium such as an optical, magnetic or electronic memory.

相對於相機20之運轉的某些額外方面,且特定言之,電路26之運轉,係說明在2006年11月7日申請的PCT申請案PCT/IL2006/001294中,該申請案係讓渡給本發明之受讓者並以引用的方式併入本文中。With respect to certain additional aspects of the operation of the camera 20, and in particular, the operation of the circuit 26 is illustrated in the PCT application PCT/IL2006/001294 filed on Nov. 7, 2006, the application being assigned to The assignee of the present invention is hereby incorporated by reference.

鑲嵌空間中的反摺積Deconvolution product in mosaic space

復原電路26藉由應用分離且個別的反摺積濾鏡於每個輸入子影像(即與每個不同彩色相關聯的像素數值)而減小輸入影像中的模糊。換言之,將每個輸入子影像轉換成具有較小模糊的對應輸出子影像。例如,當輸入影像包括源於拜耳鑲嵌感測器的綠、紅及藍色輸入子影像時,電路26產生對應綠、紅及藍晚輸出子影像。The restoration circuit 26 reduces blur in the input image by applying separate and individual de-convolution filters for each input sub-image (i.e., pixel values associated with each different color). In other words, each input sub-image is converted into a corresponding output sub-image with less blur. For example, when the input image includes green, red, and blue input sub-images originating from a Bayer mosaic sensor, circuit 26 produces a corresponding green, red, and blue late output sub-image.

反摺積運算藉由計算圍繞輸出像素之位置的多個輸入像素數值之權重總和而決定每個輸出像素之數值,輸入像素具有與存在疑問的輸出像素相同之彩色。通常而言,在計算在加權定位在圍繞輸出像素的正方形中的數十個像素數值。或者,亦可使用任何其他適當數目或幾何配置的像素數值。The inverse-folding operation determines the value of each output pixel by calculating the sum of the weights of the plurality of input pixel values around the position of the output pixel, the input pixel having the same color as the questionable output pixel. In general, the tens of pixel values that are located in a square surrounding the output pixel are weighted. Alternatively, any other suitable number or geometric configuration of pixel values can be used.

用於反摺積程序的加權係數形成二維濾鏡回應,其係接近光學設備22之點擴散函數(PSF)的倒數,以便補償由該光學設備引起的失真。每個濾鏡係數集亦稱為反摺積核心。通常而言,為綠、紅及藍色像素定義分離的反摺積核心。The weighting coefficients for the deconvolution procedure form a two-dimensional filter response that is close to the reciprocal of the point spread function (PSF) of the optical device 22 to compensate for the distortion caused by the optical device. Each filter coefficient set is also known as the deconvolution core. In general, separate deconvolution cores are defined for green, red, and blue pixels.

用於計算此種反摺積核心的方法係說明在(例如)上述WO 2004/063989 A2以及於2006年3月31日申請的美國專利申請案11/278,255中,該申請案係讓渡給本發明之受讓者且其揭示案係以引用的方式併入本文中。The method for calculating such a deconvolution core is described in, for example, the above-mentioned WO 2004/063989 A2 and the U.S. Patent Application Serial No. 11/278,255, filed on March 31, 2006, which is assigned to The assignee of the invention and the disclosure thereof are hereby incorporated by reference.

圖2係依據本發明之一具體實施例的綠、紅及藍色反摺積核心之示意說明。在本範例中,輸入影像源於拜耳鑲嵌感測器。因此,輸入像素依據以上說明的拜耳鑲嵌圖案在綠、紅及藍色像素之間交替。2 is a schematic illustration of green, red, and blue anti-folded cores in accordance with an embodiment of the present invention. In this example, the input image is derived from a Bayer mosaic sensor. Thus, the input pixels alternate between green, red, and blue pixels in accordance with the Bayer mosaic pattern described above.

圖2顯示參與綠、紅及藍色反摺積核心之三個不同像素集。該圖顯示貢獻特定輸出像素之反摺積的不同輸入像素之位置。例如,綠色像素係表示為G,並且根據圍繞像素40的一百一十三個綠色像素44之數值來決定特定綠色輸出像素40(第8列,第9行)之數值。Figure 2 shows three different sets of pixels participating in the green, red, and blue deconvolution cores. The figure shows the locations of the different input pixels that contribute to the inverse of the specific output pixel. For example, the green pixel is denoted as G, and the value of the particular green output pixel 40 (column 8, line 9) is determined based on the value of one hundred and thirteen green pixels 44 surrounding the pixel 40.

其餘像素可以係紅或藍色。根據圍繞像素44的同一顏色之四十九個像素52之數值來決定特定紅或藍色輸出像素48(第8列,第8行)之數值。當像素48包括一紅色像素時,表示為R/B的像素52亦包括紅色像素。在此情況下,將藍色像素表示為B/R。當像素48包括一藍色像素時,像素52包括四十九個周圍藍色像素。在此等情況下,表示為B/R的像素代表紅色像素。The remaining pixels can be red or blue. The value of the particular red or blue output pixel 48 (column 8, line 8) is determined based on the value of forty-nine pixels 52 of the same color surrounding pixel 44. When pixel 48 includes a red pixel, pixel 52, denoted R/B, also includes a red pixel. In this case, the blue pixel is represented as B/R. When pixel 48 includes a blue pixel, pixel 52 includes forty-nine surrounding blue pixels. In these cases, the pixels denoted as B/R represent red pixels.

圖3A顯示參與紅及藍色反摺積核心的像素位置。在該圖中可以看出,貢獻輸出R/B像素48之反摺積的輸入像素52係定位在每第二列及每第二行中。其餘像素包括綠色像素或B/R像素(即當像素48係紅色時的藍色像素,反之亦然)。Figure 3A shows the pixel locations participating in the red and blue deconvolution cores. As can be seen in this figure, the input pixels 52 that contribute to the inverse of the output R/B pixel 48 are located in every second column and every second row. The remaining pixels include green pixels or B/R pixels (ie, blue pixels when pixel 48 is red, and vice versa).

圖3B顯示參與綠色反摺積核心的像素位置。貢獻輸出像素40之反摺積的綠色輸入像素44係定位在每列及行中的交替位置中。Figure 3B shows the pixel locations participating in the green deconvolution core. The green input pixels 44 that contribute to the inverse of the output pixel 40 are positioned in alternating positions in each column and row.

影像復原電路組態Image restoration circuit configuration

圖4係示意性地說明一影像復原電路60之方塊圖,該電路可用作依據本發明之一具體實施例之以上圖1中的電路26。電路60包括一輸入記憶體64,其接受並緩衝由感測器24產生的輸入像素數值之串流。因此,記憶體64用作電路60之輸入介面。以某一像素時脈速率將輸入串流提供給記憶體64。電路60之運轉(尤其係記憶體64之運轉)係與像素時脈同步。4 is a block diagram schematically illustrating an image restoration circuit 60 that can be used as the circuit 26 of FIG. 1 above in accordance with an embodiment of the present invention. Circuitry 60 includes an input memory 64 that accepts and buffers the stream of input pixel values produced by sensor 24. Therefore, the memory 64 is used as an input interface to the circuit 60. The input stream is provided to memory 64 at a pixel clock rate. The operation of circuit 60 (especially the operation of memory 64) is synchronized with the pixel clock.

從頂部至底部,逐列掃描輸入影像(即寫入記憶體64中)。像素係在十五個像素之連續垂直行中從記憶體64讀出,從而在每個像素時脈循環中水平前行。換言之,若記憶體64之輸出在某一像素時脈循環中包括像素[j...j+14,i](即第j至j+14列之第i個像素),則在下一時脈循環中記憶體將輸出像素[j...j+14,i+1];即相同列之下一個十五像素行。在從記憶體60讀取第j...j+14列之最後行後,讀取在下一列起點處繼續進行,並且輸出像素[j+1...j+15,1]。記憶體60的尺度通常定為可儲存十四個像素列,儘管亦可使用任何其他適當的記憶體尺寸。From top to bottom, the input image is scanned column by column (i.e., written into memory 64). The pixels are read from the memory 64 in successive vertical lines of fifteen pixels so as to go horizontally in each pixel clock cycle. In other words, if the output of the memory 64 includes pixels [j...j+14,i] in a certain pixel clock cycle (ie, the i-th pixel from the jth to j+14th columns), the memory will be in the next clock cycle. The output pixel [j...j+14, i+1]; that is, a fifteen pixel row below the same column. After reading the last line of the jth...j+14 column from the memory 60, the reading continues at the beginning of the next column, and the pixels [j+1...j+15,1] are output. The memory 60 is typically sized to store fourteen pixel columns, although any other suitable memory size can be used.

將記憶體60之輸出提供給由時序/選擇單元76控制的綠色像素反摺積器68及紅/藍色像素反摺積器72。反摺積器68使用儲存在綠色係數記憶體80中的一百一十三個係數集來反摺積綠色子影像,即綠色輸入像素數值。反摺積器72使用儲存在R/B係數記憶體84中之四十九個係數之兩個個別集來反摺積紅及藍色子影像。以下進一步說明可用於實施反摺積器68及72的示範性反摺積組態。The output of the memory 60 is provided to a green pixel de-folder 68 and a red/blue pixel de-folder 72 controlled by the timing/selection unit 76. The inverse depreciator 68 uses the one hundred and thirteen coefficient sets stored in the green coefficient memory 80 to deconvolute the green sub-image, i.e., the green input pixel value. The inverse depreciator 72 uses the two individual sets of forty-nine coefficients stored in the R/B coefficient memory 84 to decompose the red and blue sub-images. An exemplary deconvolution configuration that can be used to implement the deconvolutions 68 and 72 is further described below.

如以上圖2及3B所示,綠色像素係定位在輸入影像及綠色反摺積核心之每行中的交替位置中。如以上圖2及3A所示,R/B像素係定位在輸入影像及R/B反摺積核心之每第二行中的固定位置中。為控制反摺積器68及72,時序/選擇單元76在兩個狀態之間觸發以回應像素時脈。在一個狀態中,單元76使反摺積器68載入並閂鎖其輸入之十五像素行中的偶數級像素數值。在第二狀態中,單元76使反摺積器68載入並閂鎖奇數級像素數值。同時,在一個狀態中,單元76使反摺積器72載入並閂鎖來自其輸入之十五像素行中的七個偶數級像素數值。在第二狀態中,單元76使反摺積器72不載入任何像素數值。可使用觸發正反器器件及/或任何其他適當的邏輯來實施單元76。As shown in Figures 2 and 3B above, the green pixels are positioned in alternating locations in each of the input image and the green deconvolution core. As shown in Figures 2 and 3A above, the R/B pixel is positioned in a fixed position in each of the second line of the input image and the R/B de-convolution core. To control the deconvolutions 68 and 72, the timing/selection unit 76 triggers between the two states in response to the pixel clock. In one state, unit 76 causes inverse depreciator 68 to load and latch the even-numbered pixel values in the fifteen pixel rows of its input. In the second state, unit 76 causes inverse depreciator 68 to load and latch odd-numbered pixel values. At the same time, in one state, unit 76 causes inverse deconvolution 72 to load and latch seven even-numbered pixel values from the fifteen pixel rows of its input. In the second state, unit 76 causes inverse deconvolution 72 to not load any pixel values. Unit 76 may be implemented using a flip-flop device and/or any other suitable logic.

由單元76同步化並控制的多工器(MUX)88於每個像素時脈循環中,在反摺積器68與72的輸出之間交替。因此,MUX 88之輸出包括輸出像素數值之一串流,其遵循輸入串流之同一拜耳鑲嵌圖案。因為藉由採用數個反摺積係數集來反摺積個別輸入子影像而產生輸出子影像,所以相對於輸入子影像減小輸出子影像中的模糊及其他光學失真之位準。A multiplexer (MUX) 88 synchronized and controlled by unit 76 alternates between the outputs of inverse depreciators 68 and 72 in each pixel clock cycle. Thus, the output of MUX 88 includes a stream of output pixel values that follow the same Bayer mosaic pattern of the input stream. Since the output sub-image is generated by decomposing the individual input sub-images by using a plurality of sets of inverse-folding coefficients, the level of blur and other optical distortions in the output sub-image is reduced relative to the input sub-image.

將輸出像素數值串流提供給ISP 28,其產生組合式彩色輸出影像,如以上說明。The output pixel value stream is provided to ISP 28, which produces a combined color output image, as explained above.

圖5A及5B係方塊圖,其示意性地說明依據本發明之一具體實施例之綠色像素反摺積器68的細節。反摺積器68包括六十四個濾鏡單元92之二維陣列。以下在圖5B中說明單元92之內部結構。六十四個濾鏡單元係配置在八列乘八行之陣列中。5A and 5B are block diagrams that schematically illustrate details of a green pixel de-folder 68 in accordance with an embodiment of the present invention. The inverse depreciator 68 includes a two-dimensional array of sixty-four filter units 92. The internal structure of unit 92 is illustrated below in Figure 5B. Sixty-four filter units are arranged in an array of eight columns by eight rows.

單元92之最左行係與反摺積器輸入連接;即接受從記憶體64讀取的十五個像素行,如以上圖4所說明。在每個像素時脈循環中,每個單元92從其左鄰近單元(或當該單元係列中的最左單元時從輸入)接受偶數或奇數像素數值,將像素數值乘以適當的反摺積係數並在其輸出埠(表示為P)中產生結果。同時,每個單元(陣列之最右行中的單元除外)將先前時脈循環中使用的像素數值傳輸至陣列中的其右鄰近單元。The leftmost line of unit 92 is connected to the inverse depreciator input; that is, the fifteen pixel rows read from memory 64 are accepted, as illustrated in Figure 4 above. In each pixel clock cycle, each cell 92 accepts even or odd pixel values from its left neighboring cell (or from the input when the leftmost cell in the cell family), multiplying the pixel value by the appropriate deconvolution product. The coefficient produces a result in its output 埠 (represented as P). At the same time, each cell (except for cells in the rightmost row of the array) transmits the pixel values used in the previous clock cycle to its right neighboring cell in the array.

每個濾鏡單元92在每個像素時脈循環中執行單一乘法。在兩個連續像素時脈循環期間執行每個綠色像素數值之反摺積。若給定的單元92在第一時脈循環期間處理一偶數級像素數值,則該單元將在第二時脈循環中處理一奇數級像素數值,且反之亦然,因為像素數值橫穿陣列。因此,總反摺積結果(即對應綠色輸出像素之數值)係等於在兩個時脈循環內合計所有單元92之所有輸出P的總和。Each filter unit 92 performs a single multiplication in each pixel clock cycle. The deconvolution of each green pixel value is performed during two consecutive pixel clock cycles. If a given unit 92 processes an even number of pixel values during the first clock cycle, the unit will process an odd number of pixel values in the second clock cycle, and vice versa, since the pixel values traverse the array. Thus, the total deconvolution result (i.e., the value corresponding to the green output pixel) is equal to the sum of all the outputs P of all cells 92 in the two clock cycles.

捲積器68包括64輸入加法器96,其匯總單元92之六十四個輸出P的輸出。在某些具體實施例中,加法器96具有一管線式內部結構,儘管可以使用任何其他適當的加法器。藉由暫存器100及加法器104累積在兩個連續時脈循環中加法器96之輸出。在第一時脈循環中,由暫存器100閂鎖加法器96之輸出(即部分反摺積結果)。在第二時脈循環中,加法器104採用暫存器100之數值來匯總加法器96之輸出以產生總反摺積結果。The convolver 68 includes a 64-input adder 96 that summarizes the output of sixty-four outputs P of unit 92. In some embodiments, adder 96 has a pipelined internal structure, although any other suitable adder can be used. The output of the adder 96 in the two consecutive clock cycles is accumulated by the register 100 and the adder 104. In the first clock cycle, the output of the adder 96 (i.e., the partial deconvolution result) is latched by the register 100. In the second clock cycle, adder 104 uses the value of register 100 to summarize the output of adder 96 to produce a total deconvolution result.

圖5B係示意性地說明依據本發明之一具體實施例的濾鏡單元92之內部結構的方塊圖。分別將偶數與奇數輸入像素數值交替地載入偶數像素鎖存器108與奇數像素鎖存器112中。像素數值係從陣列中的該單元之左鄰近單元載入,或當該單元係其列中的最右單元時從記憶體64載入。Figure 5B is a block diagram schematically illustrating the internal structure of a filter unit 92 in accordance with an embodiment of the present invention. The even and odd input pixel values are alternately loaded into the even pixel latch 108 and the odd pixel latch 112, respectively. The pixel value is loaded from the left neighboring cell of the cell in the array or from the memory 64 when the cell is the rightmost cell in its column.

對應反摺積係數係從記憶體80載入偶數係數暫存器116與奇數係數暫存器120中。任何適當的方法均可用於讀取適當的係數。由單元76控制的兩個開關124及128選擇在每個像素時脈循環中乘以偶數或奇數像素數值。開關124及128通常包括CMOS多工器。The corresponding inversely-folded coefficients are loaded from the memory 80 into the even coefficient register 116 and the odd coefficient register 120. Any suitable method can be used to read the appropriate coefficients. The two switches 124 and 128 controlled by unit 76 are selected to multiply the even or odd pixel values in each pixel clock cycle. Switches 124 and 128 typically include a CMOS multiplexer.

在某些具體實施例中,並列地執行像素數值之載入與乘法運算。在此等具體實施例中,於載入奇數級像素數值的時脈循環期間乘以偶數級像素數值,且反之亦然。乘法器132將適當的數值乘以對應反摺積係數,並在濾鏡單元之輸出P中輸出結果。乘法器以像素時脈速率運算,即在每個像素時脈循環中執行單一乘法。In some embodiments, the loading and multiplication of pixel values are performed side by side. In these particular embodiments, the even-numbered pixel values are multiplied during the clock cycle in which the odd-numbered pixel values are loaded, and vice versa. The multiplier 132 multiplies the appropriate value by the corresponding deconvolution coefficient and outputs the result in the output P of the filter unit. The multiplier operates at the pixel clock rate, which performs a single multiplication in each pixel clock cycle.

在某些具體實施例中,反摺積係數係使用有符號的10位元表示法而代表,輸入像素係使用無符號的10位元代表,並且該等乘法器包括有符號的10位元×無符號的10位元個乘法器。可使用有符號的20位元表達乘法器輸出(在此等及其他具體實施例中)。然而,在替代具體實施列中,可使用任何其他適當的量化。In some embodiments, the inverse-folding coefficients are represented using a signed 10-bit representation, the input pixels are represented by unsigned 10-bits, and the multipliers comprise signed 10-bits x An unsigned 10-bit multiplier. A signed 20-bit representation multiplier output can be used (in this and other embodiments). However, in place of specific implementations, any other suitable quantification may be used.

在某些具體實施例中,可以使用不同位元數目代表不同係數。例如,與定位成進一步遠離中心的係數比較,可採用較高精度(即較大數目的位元)代表反摺積核心之中心處的係數。在此等具體實施例中,亦可採用非統一位元數目實施乘法器。使用非統一量化能夠減小電路的尺寸與成本。In some embodiments, different numbers of bits can be used to represent different coefficients. For example, a higher precision (i.e., a larger number of bits) may be used to represent the coefficients at the center of the deconvoluted core as compared to coefficients that are positioned further away from the center. In these specific embodiments, the multiplier can also be implemented with a non-uniform number of bits. Using non-uniform quantization can reduce the size and cost of the circuit.

圖6A係示意性地說明依據本發明之一具體實施例的紅/藍色像素反摺積器72之細節的方塊圖。反摺積器72包括配置在四列乘七行之二維陣列中的二十八個濾鏡單元144。每個單元144均從其左鄰近單元或從記憶體64接受兩個R/B像素數值,將兩個像素數值乘以適當的反摺積係數,而且在其輸出埠P中輸出結果。每個單元144(在陣列之最右行中的單元除外)亦傳遞先前的輸入像素數值至其右鄰近單元。Figure 6A is a block diagram schematically illustrating details of a red/blue pixel de-folder 72 in accordance with an embodiment of the present invention. The inverse depreciator 72 includes twenty eight filter cells 144 arranged in a two-dimensional array of four columns by seven rows. Each cell 144 accepts two R/B pixel values from its left neighboring cell or from memory 64, multiplies the two pixel values by the appropriate deconvolution factor, and outputs the result in its output 埠P. Each cell 144 (except for cells in the rightmost row of the array) also passes the previous input pixel value to its right neighbor.

由單元76控制像素數值橫跨陣列的載入與傳播,如以上圖4說明。因為僅將R/B像素定位像素在影像之每第二行中,所有在兩個連續像素時脈循環期間執行每個R/B像素數值之反摺積。反摺積器72包括28輸入加法器148,其匯總單元144之二十八個輸出P的輸出。由類似於以上圖5A之暫存器100及加法器104的暫存器152及加法器156累積加法器148在兩個連續時脈循環中的輸出。在第一時脈循環中,由暫存器152閂鎖加法器148之輸出。在第二時脈循環中,由加法器156將加法器148之輸出加入暫存器152之數值中以產生總反摺積結果。The loading and propagation of pixel values across the array is controlled by unit 76, as illustrated in Figure 4 above. Since only the R/B pixel is positioned in each second line of the image, all of the inverse of the R/B pixel values is performed during the two consecutive pixel clock cycles. The inverse depreciator 72 includes a 28 input adder 148 that summarizes the output of twenty eight output P of unit 144. The register 152 and the adder 156, similar to the register 100 and adder 104 of FIG. 5A above, accumulate the output of the adder 148 in two consecutive clock cycles. In the first clock cycle, the output of adder 148 is latched by register 152. In the second clock cycle, the output of adder 148 is added by adder 156 to the value of register 152 to produce a total deconvolution result.

圖6B係示意性地說明依據本發明之一具體實施例的濾鏡單元144之內部結構的方塊圖。將兩個偶數輸入像素數值載入兩個偶數像素鎖存器160及164。不像以上圖5B之綠色像素濾鏡單元組態一樣,在本組態中同時而非交替地閂鎖兩個鎖存器。另一方面,僅在每第二個像素時脈循環中載入像素數值。像素數值係從陣列中的該單元之左鄰近單元載入,或當該單元係其列中的最左單元時從記憶體64載入。Figure 6B is a block diagram schematically illustrating the internal structure of a filter unit 144 in accordance with an embodiment of the present invention. The two even input pixel values are loaded into two even pixel latches 160 and 164. Unlike the green pixel filter cell configuration of Figure 5B above, the two latches are latched simultaneously, rather than alternately, in this configuration. On the other hand, pixel values are only loaded in every second pixel clock cycle. The pixel value is loaded from the left neighboring cell of the cell in the array or from the memory 64 when the cell is the leftmost cell in its column.

從記憶體84將對應反摺積係數載入兩個係數暫存器168及172中。任何適當的方法均可用於讀取適當的係數。由單元76控制的兩個開關176及180選擇在每個像素時脈循環中乘以兩個偶數級像素數值之一。開關176及180係類似於以上圖5B之開關124及128。乘法器184將適當的數值乘以對應反摺積係數,並在濾鏡單元之輸出P中輸出結果。乘法器184以像素時脈速率運算。The corresponding deconvolution coefficients are loaded from the memory 84 into the two coefficient registers 168 and 172. Any suitable method can be used to read the appropriate coefficients. The two switches 176 and 180 controlled by unit 76 are selected to multiply one of the two even-numbered pixel values in each pixel clock cycle. Switches 176 and 180 are similar to switches 124 and 128 of Figure 5B above. The multiplier 184 multiplies the appropriate value by the corresponding deconvolution coefficient and outputs the result in the output P of the filter unit. Multiplier 184 operates at a pixel clock rate.

圖5A、5B、6A及6B之濾鏡單元組態假定所有單元92均彼此相同,而且所有單元144均彼此相同。在替代性具體實施例中,可以簡化濾鏡單元之某些以便減小電路60之成本與尺寸。例如,反摺積器68與反摺積器72中的陣列之底部列中的濾鏡單元僅處理單一像素數值。可由僅具有單一像素鎖存器、單一係數暫存器、乘法器而無開關的濾鏡單元來取代此等濾鏡單元。The filter unit configuration of Figures 5A, 5B, 6A, and 6B assumes that all of the cells 92 are identical to each other, and that all of the cells 144 are identical to each other. In an alternative embodiment, some of the filter elements may be simplified to reduce the cost and size of the circuit 60. For example, the filter unit in the bottom column of the array in the inverse depreciator 68 and the inverse depreciator 72 processes only a single pixel value. These filter units can be replaced by filter units that have only a single pixel latch, a single coefficient register, a multiplier, and no switch.

另外舉例而言,圖5A之陣列之最右行中的濾鏡單元92亦僅處理單一像素數值。亦可使用僅包括單一像素鎖存器、單一係數暫存器、乘法器而無開關之較簡單的組態來實施此等濾鏡單元。By way of further example, the filter unit 92 in the rightmost row of the array of Figure 5A also processes only a single pixel value. These filter units can also be implemented using a simpler configuration that includes only a single pixel latch, a single coefficient register, a multiplier, and no switches.

另外,僅在50%的時間期間利用反摺積器68之底部列及最右行與反摺積器72之底部列之濾鏡單元中的乘法器。因此,此等列/行中的濾鏡單元對可以共用單一乘法器。使用此技術,反摺積器68中的乘法器之數目可以從六十四減小至五十七,並且反摺積器72中的乘法器之數目可以從二十八減小至二十五。In addition, the multiplier in the filter unit of the bottom column and the rightmost row of the inverse depreciator 68 and the bottom column of the inverse depreciator 72 is utilized only during 50% of the time. Therefore, the filter unit pairs in these columns/rows can share a single multiplier. Using this technique, the number of multipliers in the inverse depreciator 68 can be reduced from sixty-four to fifty-seven, and the number of multipliers in the inverse-folder 72 can be reduced from twenty-eight to twenty-five. .

以上說明的電路60之組態係一示範性組態。可使用任何其他適當的組態。例如,選擇記憶體64之尺寸及反摺積器68與72中的濾鏡單元92與144之數目以與所用的15x15像素反摺積核心匹配。當使用不同核心尺寸時,可以相應地修改輸入記憶體及反摺積器組態。亦可修改反摺積器組態以適合其他鑲嵌圖案。The configuration of circuit 60 described above is an exemplary configuration. Any other suitable configuration can be used. For example, the size of memory 64 and the number of filter elements 92 and 144 in inverse depreciators 68 and 72 are selected to match the 15x15 pixel anti-aliased core used. When using different core sizes, the input memory and inverse depreciator configuration can be modified accordingly. The inverse deconvolution configuration can also be modified to suit other mosaic patterns.

圖7係示意性地說明依據本發明之另一具體實施例的影像復原電路190之方塊圖。電路190之總組態係類似於以上圖4之電路60,並且像電路60一樣,電路190可用於實施以上圖1中的電路26。電路190之某些組件(例如記憶體64、80及84與MUX 88)係類似於電路60之對應組件。FIG. 7 is a block diagram schematically illustrating an image restoration circuit 190 in accordance with another embodiment of the present invention. The overall configuration of circuit 190 is similar to circuit 60 of FIG. 4 above, and like circuit 60, circuit 190 can be used to implement circuit 26 of FIG. 1 above. Certain components of circuit 190 (e.g., memories 64, 80, and 84 and MUX 88) are similar to corresponding components of circuit 60.

然而,在電路190中,反摺積器乘法器以兩倍於反摺積器68及72之乘法器的時脈速率之時脈速率而運算。因此,乘法器的數目得到減小,而且電路之成本與尺寸會相應地減小。However, in circuit 190, the inverse-folder multiplier operates at twice the clock rate of the clock rate of the multipliers of the de-folders 68 and 72. Therefore, the number of multipliers is reduced, and the cost and size of the circuit are correspondingly reduced.

電路190包括綠色像素反摺積器194及紅/藍色像素反摺積器198,其係分別在以下圖8及9中更詳細地說明。四相位時序單元202在兩個連續像素時脈循環之每個循環中產生四相位時序信號。時序信號係用於控制並同步化兩個反摺積器之較高時脈速率運算。可使用四個離散線將四相位時序信號提供給反摺積器194及198。或者,單元202可以編碼兩個線上的四個相位,或執行任何其他適當的編碼,其使反摺積器能夠區分時序信號之四個不同的相位。Circuitry 190 includes a green pixel de-folder 194 and a red/blue pixel inverse-folder 198, which are described in more detail below in Figures 8 and 9, respectively. The four phase timing unit 202 generates a four phase timing signal in each of two consecutive pixel clock cycles. The timing signal is used to control and synchronize the higher clock rate operations of the two deconvolutions. The four phase timing signals can be provided to the deconvolution 194 and 198 using four discrete lines. Alternatively, unit 202 may encode four phases on two lines, or perform any other suitable encoding that enables the deconvolution to distinguish between four different phases of the timing signal.

圖8係示意性地說明依據本發明之一具體實施例的綠色像素反摺積器194之細節的方塊圖。反摺積器194包括配置在四列乘八行之二維陣列中的三十二個濾鏡單元206。每個濾鏡單元206處理四個輸入像素數值與四個對應反摺積係數之一行。FIG. 8 is a block diagram schematically illustrating details of a green pixel de-folder 194 in accordance with an embodiment of the present invention. The inverse depreciator 194 includes thirty-two filter cells 206 arranged in a two-dimensional array of four columns by eight rows. Each filter unit 206 processes four input pixel values and one of four corresponding inversely-folded coefficients.

每個濾鏡單元206包括單一乘法器,其以兩倍的像素時脈速率運算。在由單元202提供的四相位時序信號之每相位期間,乘法器將單一輸入像素數值乘以單一係數,並在單元之輸出P中產生結果。因此,每個單元206在每兩個連續像素時脈循環期間執行乘法。與以上圖5A之濾鏡單元92比較,每個濾鏡單元206類似於兩個單元92而發揮功能。反摺積器194中的乘法器之總數係三十二,即反摺積器68中的乘法器之數目的一半。Each filter unit 206 includes a single multiplier that operates at twice the pixel clock rate. During each phase of the four phase timing signal provided by unit 202, the multiplier multiplies the single input pixel value by a single coefficient and produces a result in the output P of the unit. Thus, each unit 206 performs multiplication during every two consecutive pixel clock cycles. Each filter unit 206 functions similar to the two units 92 as compared to the filter unit 92 of Figure 5A above. The total number of multipliers in the inverse depreciator 194 is thirty-two, that is, half the number of multipliers in the inverse depreciator 68.

由32輸入加法器210匯總單元206之三十二個輸出P。配置在回授組態中的加法器214與暫存器218累積四個時脈相位期間由加法器210產生的部分總和。暫存器218係最初在第一時脈相位中清除,並接著在每個連續時脈循環中將來自加法器210的下一輸出加入暫存器218中。在第四個時脈相位結束時,加法器214之輸出係等於所需反摺積結果,即反摺積的綠色像素之數值。The thirty-two outputs P of unit 206 are summarized by a 32-input adder 210. The adder 214 and the register 218, which are configured in the feedback configuration, accumulate the partial sums produced by the adder 210 during the four clock phases. The register 218 is initially cleared in the first clock phase and then the next output from the adder 210 is added to the register 218 in each successive clock cycle. At the end of the fourth clock phase, the output of adder 214 is equal to the desired deconvolution result, i.e., the value of the decomposed green pixel.

下列表格說明加法器210、加法器214及暫存器218之累積運算: The following table illustrates the cumulative operation of adder 210, adder 214, and register 218:

圖9係示意性地說明依據本發明之一具體實施例的紅/藍色像素反摺積器198之細節的方塊圖。反摺積器198包括配置在二列乘七行之二維陣列中的十四個濾鏡單元222。每個單元222包括單一乘法器,其以兩倍的像素時脈速率運算。每個乘法器在由單元202提供的四個時脈相位期間將四個輸入像素數值乘以對應反摺積係數。與以上圖6A之反摺積器72的二十八個乘法器比較,反摺積器198中的乘法器之總數係十四。FIG. 9 is a block diagram schematically illustrating details of a red/blue pixel de-folder 198 in accordance with an embodiment of the present invention. The inverse depreciator 198 includes fourteen filter units 222 arranged in a two-dimensional array of two columns by seven rows. Each unit 222 includes a single multiplier that operates at twice the pixel clock rate. Each multiplier multiplies four input pixel values by a corresponding deconvolution factor during the four clock phases provided by unit 202. The total number of multipliers in the inverse depreciator 198 is fourteen compared to the twenty-eight multipliers of the inverse deconvolution 72 of Figure 6A above.

14輸入加法器226在四個時脈相位之每個中匯總單元222之十四個輸出P。類似於以上圖8之加法器214及暫存器218,加法器230及暫存器234累積四個部分結果以產生總反摺積結果。The 14 input adder 226 summarizes the fourteen outputs P of the unit 222 in each of the four clock phases. Similar to adder 214 and register 218 of Figure 8, above, adder 230 and register 234 accumulate four partial results to produce a total deconvolution result.

圖10係示意性地說明依據本發明之一具體實施例的反摺積濾鏡單元238之方塊圖。濾鏡單元238可用作以上圖8之反摺積器194中的單元206,或以上圖9之反摺積器198中的單元222。在單元238中,四個暫存器242閂鎖四個鄰近垂直輸入像素之數值。由單元202將奇數級像素閂鎖在四相位信號之相位1中並將偶數級像素閂鎖在四相位信號之相位3中。Figure 10 is a block diagram schematically illustrating a reverse-fold filter unit 238 in accordance with an embodiment of the present invention. Filter unit 238 can be used as unit 206 in inverse deconvolution 194 of Figure 8 above, or unit 222 in inverse deconvolution 198 of Figure 9 above. In unit 238, four registers 242 latch the values of four adjacent vertical input pixels. The odd-numbered pixels are latched in phase 1 of the four-phase signal by unit 202 and the even-numbered pixels are latched in phase 3 of the four-phase signal.

將四個對應反摺積係數儲存在係數暫存器246。任何適當的方法均可用於從記憶體80或84載入適當的係數。在單元202之時脈信號的四個相位之每個期間,兩個4輸入多工器250按順序選擇來自暫存器242的單一像素數值,以及來自暫存器246的對應係數數值。在每個相位中,將選擇的像素數值與係數數值提供給乘法器254。乘法器將像素數值乘以係數,並在單元輸出P中輸出結果。The four corresponding inversely folded coefficients are stored in the coefficient register 246. Any suitable method can be used to load the appropriate coefficients from memory 80 or 84. During each of the four phases of the clock signal of unit 202, two 4-input multiplexers 250 sequentially select a single pixel value from register 242, and a corresponding coefficient value from register 246. In each phase, the selected pixel value and coefficient value are provided to multiplier 254. The multiplier multiplies the pixel value by the coefficient and outputs the result in the unit output P.

共用之乘法器組態Shared multiplier configuration

圖11係示意性地說明依據本發明之另一具體實施例的影像復原電路260之方塊圖。不像以上說明的影像復原電路一樣,電路260中的乘法器係在綠與紅/藍色像素反摺積程序之間共用。乘法器之此共用能進一步減小乘法器之數目,並因此能進一步減小影像復原電路之成本。Figure 11 is a block diagram schematically illustrating an image restoration circuit 260 in accordance with another embodiment of the present invention. Unlike the image restoration circuit described above, the multiplier in circuit 260 is shared between the green and red/blue pixel deconvolution programs. This sharing of the multipliers further reduces the number of multipliers and thus further reduces the cost of the image restoration circuit.

如以上說明,在單一綠色像素之反摺積中執行的乘法之數目係7*7+8*8=113,並且在紅/藍色像素之反摺積中執行的乘法之數目係7*7=49。任何兩個連續像素時脈循環中的乘法之總數因此係113+49=162。As explained above, the number of multiplications performed in the deconvolution of a single green pixel is 7*7+8*8=113, and the number of multiplications performed in the deconvolution of the red/blue pixels is 7*7=49. . The total number of multiplications in any two consecutive pixel clock cycles is therefore 113 + 49 = 162.

電路260包括四十一個乘法器,其以兩倍於像素時脈速率的時脈速率運算。在每兩個連續像素時脈循環中,電路藉由指派乘法器給係數/像素對,依據預定指派方案而執行162個乘法。四十一個乘法器之每個在每兩個連續像素時脈循環中執行四個乘法。以此時脈速率,四十一係最小可行的乘法器數目,因為最高限度為(162/4)=41。Circuitry 260 includes forty-one multipliers that operate at a clock rate that is twice the pixel clock rate. In every two consecutive pixel clock cycles, the circuit performs 162 multiplications according to a predetermined assignment scheme by assigning a multiplier to the coefficient/pixel pair. Each of the forty-one multipliers performs four multiplications in every two consecutive pixel clock cycles. At this time, the 41st is the smallest feasible multiplier because the ceiling is (162/4) = 41.

輸入像素串流係儲存在輸入記憶體262中,類似於以上圖4之記憶體64,並且係在15像素垂直行中讀取。類似於以上圖7之單元202的4相位時序單元(圖中未顯示)以兩倍的像素時脈速率產生四相位時序信號。換言之,信號在每兩個像素時脈循環中於四個相位之間交替。The input pixel stream is stored in input memory 262, similar to memory 64 of Figure 4 above, and is read in a 15 pixel vertical line. A 4-phase timing unit (not shown) similar to unit 202 of Figure 7 above produces a four-phase timing signal at twice the pixel clock rate. In other words, the signal alternates between four phases in every two pixel clock cycles.

像素陣列264保持15x15像素的矩陣。像素陣列中的像素數值係時脈信號之每兩個相位(即無論何時從記憶體262讀取新像素行)偏移至右側。Pixel array 264 maintains a matrix of 15x15 pixels. The pixel values in the pixel array are offset to the right side every two phases of the clock signal (ie, whenever a new pixel row is read from memory 262).

乘法器儲存庫268包括四十一個乘法器。每個乘法器在4相位時序信號之每個相位中執行單一乘法。包括四十一個4輸入多工器的像素多工器儲存庫272在4相位時序信號之每個相位期間為每個乘法器提供來自像素陣列264的適當像素數值。亦包括四十一個4輸入多工器的係數多工器儲存庫276為每個乘法器提供對應反摺積係數。將反摺積係數數值儲存在係數記憶體280中。因此,將儲存庫268中的每個乘法器之一輸入與儲存庫272中的一乘法器連接,並將另一乘法器輸入與儲存庫276中的一乘法器連接。Multiplier repository 268 includes forty-one multipliers. Each multiplier performs a single multiplication in each phase of the 4-phase timing signal. A pixel multiplexer repository 272 comprising forty-one 4-input multiplexers provides each multiplier with appropriate pixel values from pixel array 264 during each phase of the 4-phase timing signal. A coefficient multiplexer repository 276, also including forty-one 4-input multiplexers, provides a corresponding inverse-fold factor for each multiplier. The inverse fold coefficient values are stored in the coefficient memory 280. Thus, one of each multiplier in the repository 268 is input to a multiplier in the repository 272 and another multiplier input is coupled to a multiplier in the repository 276.

在時序信號之四個相位之每個中指派四十一個乘法器之每個以將特定係數數值(其可以係綠或紅/藍色)乘以特定係數數值。可以使用對像素數值及係數之任何適當的乘法器指派。下列兩個表格說明一示範性乘法器指派方案,其簡化並最小化電路中的選路路徑,而且因此最小化電路功率消耗。該等表格規定在四個時脈相位之每個中將何像素數值(即像素陣列264中的列與行)指派給每個乘法器。該等表格亦指示每個像素是否係綠或紅/藍色。Each of the forty-one multipliers is assigned in each of the four phases of the timing signal to multiply a particular coefficient value (which may be green or red/blue) by a particular coefficient value. Any suitable multiplier assignment to pixel values and coefficients can be used. The following two tables illustrate an exemplary multiplier assignment scheme that simplifies and minimizes the routing path in the circuit and thus minimizes circuit power consumption. The tables specify which pixel values (i.e., columns and rows in pixel array 264) are assigned to each multiplier in each of the four clock phases. The tables also indicate whether each pixel is green or red/blue.

由以上兩個表格定義的多工方案假定陣列264之每列中的第一像素係綠色像素。當列中的第一像素係R/B像素時,藉由選擇右側兩行R/B像素,輕微地修改乘法器指派。The multiplex scheme defined by the above two tables assumes that the first pixel in each column of array 264 is a green pixel. When the first pixel in the column is an R/B pixel, the multiplier assignment is slightly modified by selecting the right two rows of R/B pixels.

為產生反摺積結果,應該適當地累積在四個時脈相位期間由四十一個乘法器執行的一百六十二個乘法結果。應該累積對應於綠色像素的所有乘法器輸出以產生綠色輸出像素數值。同樣地,應該累積對應於紅/藍色像素的所有輸出以產生紅/藍色輸出像素數值。To produce a deconvolution result, one hundred and sixty-two multiplication results performed by forty-one multipliers during the four clock phases should be properly accumulated. All multiplier outputs corresponding to the green pixels should be accumulated to produce a green output pixel value. Likewise, all outputs corresponding to the red/blue pixels should be accumulated to produce a red/blue output pixel value.

綠色像素選擇區塊284在四個時脈相位之每個中選擇對應於綠色像素的乘法器輸出。(在以上兩個多工表格中,將對應於綠色像素的乘法器輸出標識為"G"。)由41輸入加法器288匯總區塊284之輸出,該加法器在四個時脈相位之每個中產生綠色像素數值之部分總和。由一累積電路累積由加法器288產生的四個部分結果,該累積電路包括一加法器292、一暫存器300及一多工器296。在四個時脈相位結束時,將總反摺積綠色像素數值儲存在暫存器304中。Green pixel selection block 284 selects a multiplier output corresponding to the green pixel in each of the four clock phases. (In the above two multiplex tables, the multiplier output corresponding to the green pixel is identified as "G".) The output of block 284 is summarized by 41 input adder 288, which is at each of the four clock phases The sum of the partial values of the green pixels is generated. The four partial results produced by adder 288 are accumulated by an accumulation circuit that includes an adder 292, a register 300, and a multiplexer 296. At the end of the four clock phases, the total de-complex green pixel values are stored in the scratchpad 304.

將類似程序應用於對應於R/B像素的乘法結果。R/B像素選擇區塊308選擇對應於R/B像素的乘法器輸出(在以上多工表格中標識為"R/B"的乘法器輸出)。由33輸入加法器312匯總區塊308之輸出,該加法器在四個時脈相位之每個中產生R/B像素數值之四個部分總和。由一累積電路累積四個部分結果,該累積電路包括一加法器316、一暫存器320及一多工器324。在四個時脈相位結束時,將總反摺積R/B像素數值儲存在暫存器328中。多工器332在每個像素時脈循環中交替地選擇暫存器304及328之輸出,以產生拜耳鑲嵌輸出像素串流。A similar procedure is applied to the multiplication result corresponding to the R/B pixel. R/B pixel selection block 308 selects the multiplier output corresponding to the R/B pixel (the multiplier output identified as "R/B" in the multiplex table above). The output of block 308 is summarized by a 33 input adder 312 which produces a sum of the four portions of the R/B pixel values in each of the four clock phases. The four partial results are accumulated by an accumulation circuit including an adder 316, a register 320, and a multiplexer 324. At the end of the four clock phases, the total decomposed R/B pixel values are stored in register 328. The multiplexer 332 alternately selects the outputs of the registers 304 and 328 in each pixel clock cycle to produce a Bayer mosaic output pixel stream.

應注意儘管在圖11中加法器288包括41輸入加法器並且加法器312包括33輸入加法器,但是在損害較高複雜性多工與線路的情況下亦可以使用具有較少輸入的加法器。在以上提供的示範性乘法器指派表格中,於四個相位時序信號之每個相位中存在對應於綠色像素的至多三十九個乘法器輸出(在相位3中),以及對應於R/B像素的至多二十七個輸出(在相位2中)。因此,假定適當的多工,加法器288可包括39輸入加法器並且加法器312可包括27輸入加法器。It should be noted that although adder 288 includes 41 input adders in FIG. 11 and adder 312 includes 33 input adders, adders with fewer inputs may be used in the event of impairing higher complexity multiplexes and lines. In the exemplary multiplier assignment table provided above, there are at most thirty-nine multiplier outputs (in phase 3) corresponding to green pixels in each of the four phase timing signals, and corresponding to R/B Up to twenty-seven outputs of the pixel (in phase 2). Thus, assuming an appropriate multiplex, the adder 288 can include a 39 input adder and the adder 312 can include a 27 input adder.

概述而言,圖11之電路組態使用四十一個乘法器之儲存庫(每個乘法器以兩倍的像素時脈速率運作),實行綠與紅/藍色像素反摺積之功能。In summary, the circuit configuration of Figure 11 uses a library of forty-one multipliers (each multiplier operates at twice the pixel clock rate), implementing the deconvolution of green and red/blue pixels.

管線式反摺積器組態Pipelined deconvolution configuration

在以上說明的影像復原電路組態中,藉由將適當的輸入像素數值乘以對應反摺積係數並累積乘積來計算每個輸出像素之反摺積。將引入的輸入像素數值儲存在暫存器(例如記憶體64)中。例如,當反摺積核心之尺寸為15x15像素時,在任何給定時間將一百六十二個暫存器用於儲存輸入像素數值。In the image restoration circuit configuration described above, the inverse of each output pixel is calculated by multiplying the appropriate input pixel value by the corresponding deconvolution coefficient and accumulating the product. The incoming input pixel values are stored in a scratchpad (e.g., memory 64). For example, when the size of the deconvolution core is 15x15 pixels, one hundred and sixty registers are used to store the input pixel values at any given time.

在某些具體實施例中,藉由使用管線式反摺積器組態來減小儲存輸入像素數值所需要之暫存器的數目。減小暫存器之數目可減小晶粒面積,並因此減小影像復原電路之成本。In some embodiments, the number of registers required to store input pixel values is reduced by using a pipelined deconvolution configuration. Reducing the number of registers can reduce the die area and thus the cost of the image restoration circuit.

在以下說明的管線性組態中,反摺積器計算每行引入之像素數值對十五個部分反摺積結果的貢獻。因此,僅儲存部分反摺積結果,而非個別輸入像素數值。同時,反摺積器累積先前部分結果並且輸出總反摺積結果。In the tube linear configuration described below, the inverse-folder calculates the contribution of the pixel values introduced in each row to the fifteen partial deconvolution results. Therefore, only partial deconvolution results are stored, rather than individual input pixel values. At the same time, the inverse depreciator accumulates the previous partial results and outputs the total deconvolution result.

顯然,部分結果之數目係相當程度地小於個別像素數值之數目,因而很大程度地減小電路中之暫存器的數目。Obviously, the number of partial results is considerably less than the number of individual pixel values, thus greatly reducing the number of registers in the circuit.

圖12係示意性地說明依據本發明之一具體實施例的管線式反摺積器340之方塊圖。反摺積器340包括配置在二維四乘四陣列中的十六個乘法器。此一簡化組態係顯示用於演示並闡明管線式反摺積器之原理。Figure 12 is a block diagram schematically illustrating a pipelined de-folder 340 in accordance with an embodiment of the present invention. The inverse depreciator 340 includes sixteen multipliers arranged in a two-dimensional four by four array. This simplified configuration shows the principle used to demonstrate and clarify the pipelined deconvolution.

連續四個像素行從右側以像素時脈速率進入反摺積器。將像素數值行表示為(P0i ,P1i ,P2i ,P3i )T ,其中i=0,1,2,3...表示像素時脈循環。反摺積器使用儲存在係數暫存器344中之十六個係數的核心來濾波引入的像素數值。將係數表示為Cmn,m,n=0...3。將每個係數暫存器與以像素時脈速率運算的乘法器348耦合。Four consecutive rows of pixels enter the deconvolution at the pixel clock rate from the right. The pixel value row is represented as (P0 i , P1 i , P2 i , P3 i ) T , where i=0, 1, 2, 3... represents the pixel clock cycle. The inverse depreciator filters the introduced pixel values using the core of the sixteen coefficients stored in coefficient register 344. The coefficients are expressed as Cmn, m, n = 0...3. Each coefficient register is coupled to a multiplier 348 that operates at a pixel clock rate.

將每個引入的像素數值同時提供給其列中的所有乘法器。例如,將輸入像素數值P1i 同時提供給第二列之所有四個乘法器,即與係數C10、C11、C12及C13耦合的乘法器。在每個時脈循環中,每個乘法器將其輸入中的輸入像素數值乘以與該乘法器耦合的係數。Each introduced pixel value is simultaneously supplied to all of the multipliers in its column. For example, the input pixel value P1 i is simultaneously supplied to all four multipliers of the second column, that is, multipliers coupled to the coefficients C10, C11, C12, and C13. In each clock cycle, each multiplier multiplies the value of the input pixel in its input by the coefficient coupled to the multiplier.

由加法器352累積每個乘法器行中的乘法乘積。將陣列最左行之乘法乘積的總和表示為S0。同樣地,將其他行之累積乘法表示為S1、S2及S3。The multiplication product in each multiplier row is accumulated by adder 352. The sum of the multiplication products of the leftmost row of the array is represented as S0. Similarly, the cumulative multiplication of the other lines is expressed as S1, S2, and S3.

使用水平延遲線合計行總和,以便正確地累積每個像素之部分貢獻。(陣列同時處理屬於不同像素的像素數值。例如,當行總和S0指像素i之輸出時,下一行總和S1指像素i+1之輸出。因此,行總和S1相對於S0延遲一個時脈循環。)延遲線包括延遲線356,每個線延遲其輸入達單一像素時脈循環。延遲並匯總行總和以產生表示為OUT的反摺積結果。將延遲線356之輸出中的延遲部分結果表示為A、B及C。Use the horizontal delay line to sum the line sums so that the partial contribution of each pixel is correctly accumulated. (The array simultaneously processes pixel values belonging to different pixels. For example, when the row sum S0 refers to the output of pixel i, the next row sum S1 refers to the output of pixel i+1. Therefore, the row sum S1 is delayed by one clock cycle with respect to S0.) Delay The lines include delay lines 356, each of which delays its input by a single pixel clock cycle. Delay and summarize the row sum to produce a deconvolution result expressed as OUT. The delayed partial results in the output of delay line 356 are represented as A, B, and C.

在每個像素時脈循環中,反摺積器340計算屬於四個不同像素的部分反摺積結果。部分反摺積結果S0...S3之每個屬於不同像素。In each pixel clock cycle, the inverse depreciator 340 calculates a partial deconvolution result belonging to four different pixels. Each of the partial deconvolution results S0...S3 belongs to a different pixel.

由下列表格演示管線式反摺積器之運算,該等表格顯示六個連續像素時脈循環期間行總和S0...S3、點A、B、C及OUT之數值。該等表格中的匯總運算(表示為Σ)係在i=0...3範圍內。The operation of the pipelined deconvolution is demonstrated by the following table showing the sum of the row sums S0...S3, points A, B, C and OUT during the six consecutive pixel clock cycles. The summary operations (denoted as Σ) in these tables are in the range of i=0...3.

從該等表格可以看出,最初未定義輸出A、B、C及OUT,並且將其數值表示為X。在每個時脈循環的情況下,輸出開始填充,直至所有輸出在第四個時脈循環中產生合理數值。從此階段開始,反摺積器之輸出係等於 其中k表示引入的像素行之指數。從以上等式可以看出,OUTk 確實等於使用反摺積係數C之引入的像素P之反摺積。As can be seen from these tables, the outputs A, B, C, and OUT are not initially defined and their values are represented as X. In the case of each clock cycle, the output begins to fill until all outputs produce a reasonable value in the fourth clock cycle. From this stage, the output of the deconvolution is equal to Where k represents the index of the introduced pixel row. As can be seen from the above equation, OUT k is indeed equal to the inverse of the pixel P introduced by the inverse fold coefficient C.

圖13係示意性地說明依據本發明之一具體實施例的綠色像素管線式反摺積器360之方塊圖。反摺積器360包括十六個濾鏡單元364,每個濾鏡單元以兩倍的像素時脈速率運算並處理四個反摺積係數。因此,可以使用反摺積器360以替代以上圖7之電路190中的摺積器194。以下在圖15中說明濾鏡單元364之內部結構。FIG. 13 is a block diagram schematically illustrating a green pixel pipeline type de-folder 360 in accordance with an embodiment of the present invention. The inverse depreciator 360 includes sixteen filter units 364, each of which operates and processes four deconvolution coefficients at twice the pixel clock rate. Thus, a de-folder 360 can be used in place of the deconvener 194 in the circuit 190 of Figure 7 above. The internal structure of the filter unit 364 is explained below in FIG.

反摺積器360具有類似於以上圖12之組態的管線式組態。每個濾鏡單元364產生一部分結果(表示為PR)並將該結果提供給其行中的下一較低濾鏡單元。接受來自鄰近單元的部分結果之每個濾鏡單元將接受的部分結果加入其自己的乘法結果中,然後轉遞組合的結果至下一行的下一單元。The inverse depreciator 360 has a pipelined configuration similar to the configuration of Figure 12 above. Each filter unit 364 produces a portion of the result (denoted as PR) and provides the result to the next lower filter unit in its row. Each filter unit that accepts partial results from neighboring cells adds the accepted partial results to its own multiplication result and then forwards the combined result to the next unit of the next row.

由串列加法器368累積單元之每行的部分結果。每個串列加法器368在每兩個連續像素時脈循環之四個時脈相位期間累積其行中的單元之部分結果。每個串列加法器368將其輸出傳遞至其右側的下一串列加法器,其中將結果加入下一行之部分結果中。最右串列加法器產生總反摺積結果。The partial result of each row of the cells is accumulated by the serial adder 368. Each of the serial adders 368 accumulates partial results of the cells in its row during the four clock phases of every two consecutive pixel clock cycles. Each serial adder 368 passes its output to the next string adder on its right side, where the result is added to the partial result of the next line. The rightmost serial adder produces the total deconvolution result.

每個串列加法器368包括一多工器372、一暫存器376及一加法器380。多工器372在第一時脈相位期間將左側鄰近行之輸出發送至加法器380之第二輸入。在其他三個相位期間,多工器372將暫存器376之輸出發送至此輸入。在最左串列加法器之多工器372中,於第一相位期間將零數值發送至該加法器。鄰近串列加法器之間的管線延遲係四個相位,即兩個像素時脈循環。此延遲對應於兩個連續綠色像素之間的間隙。Each serial adder 368 includes a multiplexer 372, a register 376, and an adder 380. The multiplexer 372 transmits the output of the left adjacent row to the second input of the adder 380 during the first clock phase. During the other three phases, multiplexer 372 sends the output of register 376 to this input. In the multiplexer 372 of the leftmost serial adder, a zero value is sent to the adder during the first phase. The pipeline delay between adjacent tandem adders is four phases, a two pixel clock cycle. This delay corresponds to the gap between two consecutive green pixels.

圖14係示意性地說明依據本發明之一具體實施例的紅/藍色像素管線式反摺積器384之方塊圖。反摺積器384包括十四個濾鏡單元364,並以類似於以上圖13之反摺積器360的方式運算。Figure 14 is a block diagram schematically illustrating a red/blue pixel pipelined deconvolution 384 in accordance with an embodiment of the present invention. The inverse depreciator 384 includes fourteen filter units 364 and operates in a manner similar to the inverse deconvolution 360 of Figure 13 above.

圖15係示意性地說明在依據本發明之一具體實施例的以上圖13及14之反摺積器360及384中使用的濾鏡單元364之內部結構的方塊圖。Figure 15 is a block diagram schematically illustrating the internal structure of a filter unit 364 used in the anti-folders 360 and 384 of Figures 13 and 14 above in accordance with an embodiment of the present invention.

單元364包括係數暫存器388、多工器392及乘法器396,其類似於以上圖10說明的濾鏡單元238之係數暫存器246、多工器250及乘法器254而發揮功能。然而,在本具體實施例中,將乘法器396之輸出儲存在暫存器400中,並使用加法器404將該輸出加入從鄰近單元接受的部分結果中。將加法器404之輸出提供為單元之部分結果(PR)輸出。Unit 364 includes a coefficient register 388, a multiplexer 392, and a multiplier 396 that functions similarly to the coefficient register 246, multiplexer 250, and multiplier 254 of the filter unit 238 illustrated in FIG. However, in the present embodiment, the output of multiplier 396 is stored in scratchpad 400 and added to the partial results accepted from neighboring cells using adder 404. The output of adder 404 is provided as a partial result (PR) output of the unit.

儘管以上圖13至15之具體實施例參考以兩倍的像素時脈速率運算的綠色及R/B反摺積器,但是此等具體實施例係經由範例而顯示以便演示管線式反摺積器組態。在替代性具體實施例中,類似的管線式反摺積器可用於實施具有其他內部時脈速率之其他類型的單色(即綠色或R/B)反摺積器,例如適用於以上圖4之電路60的反摺積器。管線式組態亦可用於共用之乘法器反摺積器,例如以上圖11之電路260中的共用之乘法器反摺積器。Although the above embodiments of Figures 13 through 15 refer to green and R/B de-folders operating at twice the pixel clock rate, these embodiments are shown by way of example to demonstrate a pipelined de-folder configuration. In an alternative embodiment, a similar pipelined deconvolution device can be used to implement other types of monochromatic (ie, green or R/B) de-folders with other internal clock rates, such as for Figure 4 above. The inverse of the circuit 60. The pipeline configuration can also be used for a shared multiplier deconvolution, such as the shared multiplier deconvolution in circuit 260 of Figure 11 above.

影像分割與反摺積濾鏡對稱Image segmentation and anti-folding filter symmetry

在某些實務情況下,由光學設備22引起的模糊效應在輸入影像上並非均勻的。例如,光學設備22之PSF可能由於影像之區域而不同。因此,在某些具體實施例中,在輸入影像之不同區域中使用不同反摺積係數集。In some practical situations, the blurring effect caused by optical device 22 is not uniform across the input image. For example, the PSF of optical device 22 may vary due to the area of the image. Thus, in some embodiments, different sets of deconvolution coefficients are used in different regions of the input image.

另一方面,使用大量不同的反摺積核心會在很大程度上增加用於儲存反摺積係數的記憶體。例如,考量具有1,600行乘1,200列的1,920,000像素輸入影像。在典型的應用中,將此影像劃分成50×50像素之七百六十八區段。將每個區段映射至15×15個係數之特定反摺積核心,該等係數中二百一十一個係非零係數。在此示範性組態中,將不同核心用於每個區段需要儲存211×768=162,048個反摺積係數。On the other hand, the use of a large number of different deconvolution cores greatly increases the memory used to store the deconvolution coefficients. For example, consider a 1,920,000 pixel input image with 1,600 rows by 1,200 columns. In a typical application, this image is divided into 768 segments of 50 x 50 pixels. Each segment is mapped to a particular deconvolution kernel of 15 x 15 coefficients, of which two hundred and eleven are non-zero coefficients. In this exemplary configuration, the use of different cores for each segment requires storage of 211 x 768 = 162,048 decoupling coefficients.

然而,在許多情況下,輸入影像之模糊或其他失真係在影像中心周圍環形對稱。例如,在許多光學系統中,為光學設備22之部分的一透鏡之PSF係相對於該透鏡之軸而對稱。在此類情況下,因為透鏡係在其軸周圍對稱,所以具有離輸入影像中心的相同距離之所有PSF將係單一PSF函數之旋轉版本。However, in many cases, blur or other distortion of the input image is circularly symmetric around the center of the image. For example, in many optical systems, the PSF of a lens that is part of the optical device 22 is symmetrical with respect to the axis of the lens. In such cases, because the lens system is symmetric around its axis, all PSFs that have the same distance from the center of the input image will be a rotated version of a single PSF function.

然而,當處理定義(例如)為15×15正方形柵格的離散PSF時,若且僅若旋轉角度係45°的倍數,則給定的PSF之旋轉版本將映射至15x15正方形之其他柵格位置。However, when dealing with discrete PSFs that are defined, for example, as 15x15 square grids, if and only if the angle of rotation is a multiple of 45°, then the rotated version of a given PSF will map to other grid locations of 15x15 squares. .

當光學系統具有此類環形對稱時,可以使用相對較小的基線反摺積核心集。在具有與基線核心類似的距離但不同的旋轉角度之區域中應用的額外核心係從基線核心產生,例如藉由以45°的增量對稱地倒轉基線核心。When the optical system has such circular symmetry, a relatively small baseline deconvolution core set can be used. Additional cores applied in regions having similar distances to the baseline core but different angles of rotation are generated from the baseline core, for example by symmetrically reversing the baseline core in 45[deg.] increments.

圖16係顯示依據本發明之一具體實施例的反摺積濾鏡對稱之曲線圖。在圖16之示範性具體實施例中,將輸入影像劃分成圍繞其中心的八個扇形對稱區。將對稱區編號為1至8。區1中使用的反摺積核心係視為基線、未旋轉核心。在此等核心之每個中,如該圖所示,將左上係數表示為0,0;將右上係數表示為1,14;將左下係數表示為14,0,以及將右下係數表示為14,14。將此核心之對稱複製器用於其他七個區。Figure 16 is a graph showing the symmetry of an anti-folding filter in accordance with an embodiment of the present invention. In the exemplary embodiment of Figure 16, the input image is divided into eight sector symmetrical regions around its center. The symmetry zones are numbered 1 to 8. The deconvolution core used in Zone 1 is considered a baseline, unrotated core. In each of these cores, as shown in the figure, the upper left coefficient is represented as 0,0; the upper right coefficient is represented as 1,14; the lower left coefficient is represented as 14,0, and the lower right coefficient is represented as 14 , 14. Use this core symmetric replicator for the other seven zones.

為計算區2中的某一核心,採取下列步驟:首先,選擇對應於區2的基線核心(即區1之核心)。藉由相對於將區1與區2分離的45°軸來倒轉區2核心之位置而執行選擇適當的基線核心。然後,相對於此45°軸而倒轉選擇的基線核心,以產生所需核心。To calculate a core in zone 2, the following steps are taken: First, select the baseline core corresponding to zone 2 (ie, the core of zone 1). The selection of the appropriate baseline core is performed by reversing the position of the core of the zone 2 relative to the 45[deg.] axis separating zone 1 from zone 2. The selected baseline core is then inverted relative to this 45[deg.] axis to produce the desired core.

以類似方式產生對於其他對稱區的核心。每個核心包括其鄰近核心相對於分離兩者的軸之倒轉、對稱視圖。使用此技術,僅需要將基線核心之係數數值儲存在記憶體中。Cores for other symmetric regions are generated in a similar manner. Each core includes an inverted, symmetrical view of its adjacent core relative to the axis separating the two. With this technique, it is only necessary to store the coefficient values of the baseline core in the memory.

圖17係顯示依據本發明之一具體實施例將反摺積濾鏡對稱指派給區段的曲線圖。該圖顯示1,920,000像素影像中的對稱等效區域,假定有50×50個像素區段。圖17中的每個區段具有指以上圖16中的對稱區之範圍1...8內的一數目。Figure 17 is a graph showing symmetric assignment of an inverse-folding filter to a segment in accordance with an embodiment of the present invention. The figure shows a symmetric equivalent region in a 1,920,000 pixel image, assuming 50 x 50 pixel segments. Each segment in Fig. 17 has a number within the range 1...8 of the symmetric region in Fig. 16 above.

圖18係顯示依據本發明之一具體實施例將反摺積係數指派給一影像之區段的曲線圖。該圖顯示以上圖17之影像,其係劃分成七百六十八個50×50像素區段408。採用1...126之間的增量核心指數來標識屬於對稱區1的區段。在其他七個對稱區中,每個區段408係採用其對應基線核心之指數而標識。因此,可以使用一百二十六個不同核心而非七百六十八個核心來反摺積整個影像。Figure 18 is a graph showing the assignment of an inversely-folded coefficient to a segment of an image in accordance with an embodiment of the present invention. The figure shows the image of Figure 17 above, which is divided into seven hundred and sixty-eight 50 x 50 pixel segments 408. The segment belonging to the symmetry zone 1 is identified by an incremental core index between 1...126. In the other seven symmetrical regions, each segment 408 is identified by its index of the corresponding baseline core. Therefore, one hundred and twenty-six different cores can be used instead of seven hundred and sixty-eight cores to deconvolute the entire image.

應注意因為輸入影像係矩形而非正方形,所以八扇形45°對稱僅適用於影像之中心、正方形部分。從圖18可以看出,四個最左區段行與四個最右區段行(對應於區段指數78...125)具有90°對稱。藉由相對於垂直及/或水平軸倒轉區1中的適當基線核心而執行決定此等區域中的反摺積核心。It should be noted that because the input image is rectangular rather than square, the eight-shaped 45° symmetry only applies to the center and square of the image. As can be seen from Figure 18, the four leftmost segment rows have a 90° symmetry with the four rightmost segment rows (corresponding to segment indices 78...125). Determining the deconvolution cores in such regions is performed by inverting the appropriate baseline cores in zone 1 relative to the vertical and/or horizontal axes.

在替代性具體實施例中,可以將輸入影像劃分成不同數目的區段及/或對稱區。例如,可以將同一1,920,000像素影像劃分成100×100個像素區段,從而在每個對稱區中產生三十二個不同對稱等效的區段。In an alternative embodiment, the input image can be divided into different numbers of segments and/or symmetric regions. For example, the same 1,920,000 pixel image can be divided into 100 x 100 pixel segments, resulting in thirty-two different symmetrically equivalent segments in each symmetric region.

或者,可以將輸入影像之不同區域劃分成具有不同尺寸的區段。區段尺寸可選擇為與影像之不同區域中的PSF之空間可變性匹配。換言之,可以將其中PSF迅速地發生變化的輸入影像之區域劃分成較小區段,而可以將其中PSF較緩慢地發生變化的其他區域劃分成較大區段。Alternatively, different regions of the input image can be divided into segments having different sizes. The segment size can be selected to match the spatial variability of the PSF in different regions of the image. In other words, the area of the input image in which the PSF changes rapidly can be divided into smaller sections, and other areas in which the PSF changes more slowly can be divided into larger sections.

儘管本文說明的具體實施例主要指具有綠、紅及藍色濾鏡的鑲嵌,但是本文說明的方法及系統亦可用於其他類型的鑲嵌濾鏡。例如,此類鑲嵌可包括通常用於電荷耦合器件(CCD)影像感測器的黃、深紅、青及綠色濾鏡。Although the specific embodiments described herein primarily refer to mosaics having green, red, and blue filters, the methods and systems described herein can also be used with other types of mosaic filters. For example, such inlays may include yellow, magenta, cyan, and green filters typically used in charge coupled device (CCD) image sensors.

儘管本文說明的具體實施例解決數位相機中的影像品質加強,但是本發明之原理亦可用於其他影像處理應用,例如圖案識別應用。Although the specific embodiments described herein address image quality enhancement in digital cameras, the principles of the present invention can also be applied to other image processing applications, such as pattern recognition applications.

因此應瞭解以上說明的具體實施列係經由範例而引用,而且本發明不限於以上已經特定顯示並說明的內容。相反地,本發明之範疇包含以上說明的各種特徵之組合與次組合以及熟習技術人士在閱讀以上說明後將明白且未在先前技術中加以揭示的變動與修改。Therefore, it should be understood that the specific embodiments described above are cited by way of example, and the invention is not limited to what has been specifically shown and described above. Rather, the scope of the invention includes the combinations and sub-combinations of the various features described above, and variations and modifications which will be apparent to those skilled in the art of <RTIgt;

20...相機20. . . camera

22...光學設備twenty two. . . Optical equipment

24...感測器twenty four. . . Sensor

26...電路26. . . Circuit

28...ISP28. . . ISP

40...像素40. . . Pixel

44...像素44. . . Pixel

48...像素48. . . Pixel

52...像素52. . . Pixel

60...電路60. . . Circuit

64...記憶體64. . . Memory

68...綠色反摺積器68. . . Green anti-folding device

72...紅/藍色反摺積器72. . . Red/blue reverse folding device

76...時序/選擇單元76. . . Timing/selection unit

80...綠色係數記憶體80. . . Green coefficient memory

84...R/B係數記憶體84. . . R/B coefficient memory

88...MUX88. . . MUX

92...單元92. . . unit

96...64輸入加法器96. . . 64 input adder

100...暫存器100. . . Register

104...加法器104. . . Adder

108...偶數像素鎖存器108. . . Even pixel latch

112...奇數像素鎖存器112. . . Odd pixel latch

116...偶數係數暫存器116. . . Even coefficient register

120...奇數係數暫存器120. . . Odd coefficient register

124...開關124. . . switch

128...開關128. . . switch

132...乘法器132. . . Multiplier

144...濾鏡單元144. . . Filter unit

148...28輸入加法器148. . . 28 input adder

152...暫存器152. . . Register

156...加法器156. . . Adder

160...鎖存器160. . . Latches

164...鎖存器164. . . Latches

168...暫存器168. . . Register

172...暫存器172. . . Register

176...開關176. . . switch

180...開關180. . . switch

184...乘法器184. . . Multiplier

190...電路190. . . Circuit

194...反摺積器194. . . Anti-folder

198...反摺積器198. . . Anti-folder

202...時序單元202. . . Timing unit

206...濾鏡單元206. . . Filter unit

210...加法器210. . . Adder

214...加法器214. . . Adder

218...暫存器218. . . Register

222...濾鏡單元222. . . Filter unit

226...14輸入加法器226. . . 14 input adder

230...加法器230. . . Adder

234...暫存器234. . . Register

238...濾鏡單元238. . . Filter unit

242...暫存器242. . . Register

246...暫存器246. . . Register

250...多工器250. . . Multiplexer

254...乘法器254. . . Multiplier

260...電路260. . . Circuit

264...像素陣列264. . . Pixel array

268...儲存庫268. . . Repository

272...儲存庫272. . . Repository

276...儲存庫276. . . Repository

280...係數記憶體280. . . Coefficient memory

284...選擇區塊284. . . Select block

288...41輸入加法器288. . . 41 input adder

292...加法器292. . . Adder

296...多工器296. . . Multiplexer

300...暫存器300. . . Register

304...暫存器304. . . Register

308...選擇區塊308. . . Select block

312...33輸入加法器312. . . 33 input adder

316...加法器316. . . Adder

320...暫存器320. . . Register

324...多工器324. . . Multiplexer

328...暫存器328. . . Register

332...多工器332. . . Multiplexer

340...反摺積器340. . . Anti-folder

344...暫存器344. . . Register

348...乘法器348. . . Multiplier

352...加法器352. . . Adder

356...延遲線356. . . Delay line

360...反摺積器360. . . Anti-folder

364...濾鏡單元364. . . Filter unit

368...串列加法器368. . . Tandem adder

372...多工器372. . . Multiplexer

376...暫存器376. . . Register

380...加法器380. . . Adder

384...反摺積器384. . . Anti-folder

388...係數暫存器388. . . Coefficient register

392...多工器392. . . Multiplexer

396...乘法器396. . . Multiplier

400...暫存器400. . . Register

404...加法器404. . . Adder

408...區段408. . . Section

從本發明之具體實施例的以上詳細說明並參考圖附將更全面地瞭解本發明,在該等附圖中:圖1係示意性地說明依據本發明之一具體實施例的電子成像相機之方塊圖;圖2、3A及3B係依據本發明之一具體實施例的反摺積核心之示意說明;圖4係示意性地說明依據本發明之另一具體實施例的影像復原電路之方塊圖;圖5A及5B係示意性地說明在依據本發明之一具體實施例的圖4之電路中使用的綠色像素反摺積器之方塊圖;圖6A及6B係示意性地說明在依據本發明之一具體實施例的圖4之電路中使用的紅/藍色像素反摺積器之方塊圖;圖7係示意性地說明依據本發明之另一具體實施例的影像復原電路之方塊圖;圖8係示意性地說明在依據本發明之一具體實施例的圖7之電路中使用的綠色像素反摺積器之方塊圖;圖9係示意性地說明在依據本發明之一具體實施例的圖7之電路中使用的紅/藍色像素反摺積器之方塊圖;圖10係示意性地說明在依據本發明之一具體實施例的圖8及9之電路中使用的反摺積濾鏡單元之方塊圖;圖11係示意性地說明依據本發明之另一具體實施例的影像復原電路之方塊圖;圖12係示意性地說明依據本發明之一具體實施例的管線式反摺積器之方塊圖;圖13係示意性地說明依據本發明之一具體實施例的綠色像素管線式反摺積器之方塊圖;圖14係示意性地說明依據本發明之一具體實施例的紅/藍色像素管線式反摺積器之方塊圖;圖15係示意性地說明在依據本發明之一具體實施例的圖13及14之管線式反摺積器中使用的反摺積濾鏡單元之方塊圖;圖16係顯示依據本發明之一具體實施例的反摺積濾鏡對稱之曲線圖;圖17係顯示依據本發明之一具體實施例將反摺積濾鏡對稱指派給一影像之區段的曲線圖;及圖18係顯示依據本發明之一具體實施例將反摺積係數指派給一影像之區段的曲線圖。The invention will be more fully understood from the foregoing detailed description of the preferred embodiments of the invention and the appended drawings, in which: FIG. 1 is a schematic illustration of an electronic imaging camera in accordance with an embodiment of the present invention. 2, 3A and 3B are schematic illustrations of a deconvolution core according to an embodiment of the present invention; and FIG. 4 is a block diagram schematically illustrating an image restoration circuit according to another embodiment of the present invention; 5A and 5B are block diagrams schematically illustrating a green pixel de-folder used in the circuit of FIG. 4 in accordance with an embodiment of the present invention; FIGS. 6A and 6B are schematic illustrations in accordance with the present invention; A block diagram of a red/blue pixel de-folder used in the circuit of FIG. 4 of one embodiment; FIG. 7 is a block diagram schematically illustrating an image restoration circuit in accordance with another embodiment of the present invention; 8 is a block diagram schematically illustrating a green pixel de-folder used in the circuit of FIG. 7 in accordance with an embodiment of the present invention; FIG. 9 is a schematic illustration of an embodiment in accordance with the present invention. In the circuit of Figure 7 Block diagram of a red/blue pixel inverse-folder used; Figure 10 is a block diagram schematically illustrating a reverse-fold filter unit used in the circuits of Figures 8 and 9 in accordance with an embodiment of the present invention. Figure 11 is a block diagram schematically illustrating an image restoration circuit in accordance with another embodiment of the present invention; and Figure 12 is a block diagram schematically illustrating a pipeline-type de-folder in accordance with an embodiment of the present invention; Figure 13 is a block diagram schematically illustrating a green pixel pipeline type de-folder in accordance with an embodiment of the present invention; Figure 14 is a schematic illustration of a red/blue pixel in accordance with an embodiment of the present invention. Block diagram of a pipelined de-folding device; Figure 15 is a block diagram schematically illustrating a reverse-folding filter unit used in the pipelined de-folding apparatus of Figures 13 and 14 in accordance with an embodiment of the present invention. Figure 16 is a graph showing the symmetry of the inverse-folding filter according to an embodiment of the present invention; Figure 17 is a diagram showing the symmetric assignment of the anti-folding filter to an image segment in accordance with an embodiment of the present invention. The graph; and Figure 18 shows the basis of the present One embodiment of a section of a graph image of the product of the coefficient assigned to the fold.

60...電路60. . . Circuit

64...記憶體64. . . Memory

68...反摺積器68. . . Anti-folder

72...反摺積器72. . . Anti-folder

76...時序/選擇單元76. . . Timing/selection unit

80...記憶體80. . . Memory

84...記憶體84. . . Memory

88...MUX88. . . MUX

Claims (30)

一種影像加強電路,其包括:一輸入介面,其可運轉以接受一屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包括複數個不同輸入子影像,其包括該等像素之個別子集,因此該等不同輸入子影像中之該等像素的該等輸入像素數值係在該串流中交錯;複數個濾鏡單元,其係連接在一二維陣列組態中並經配置以採用個別之二維反摺積核心(doconvolution kernel)分離地濾波該等輸入子影像之每個該等輸入像素數值,以便產生包含輸出像素數值的個別輸出子影像;其中該複數個濾鏡單元之每一者包括一電路元件;其中該等電路元件之每一者提供一輸出,且其中該影像加強電路包括一加法器,其加總該等輸出;以及一多工器,其經耦合以將該等輸出子影像之該等輸出像素數值多工在一起,以便產生一經濾波之輸出影像。 An image enhancement circuit includes an input interface operative to receive a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different input sub-images including individual pixels a subset, such that the input pixel values of the pixels in the different input sub-images are interleaved in the stream; a plurality of filter units are coupled in a two-dimensional array configuration and configured Separatingly filtering each of the input pixel values of the input sub-images using an individual two-dimensional doconvolution kernel to generate an individual output sub-image comprising output pixel values; wherein the plurality of filter elements Each includes a circuit component; wherein each of the circuit components provides an output, and wherein the image enhancement circuit includes an adder that sums the outputs; and a multiplexer coupled to The output pixel values of the output sub-images are multiplexed together to produce a filtered output image. 如請求項1之電路,其中該輸入影像具有一輸入模糊(blur),且其中在採用該等反摺積核心濾波之後,該輸出影像具有一小於該輸入模糊之輸出模糊。 The circuit of claim 1, wherein the input image has an input blur, and wherein after the inverse deconvolution core filtering is employed, the output image has an output blur that is less than the input blur. 一種影像加強電路,其包括:一輸入介面,其可運轉以接受一屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包括複數個不同輸入子影像,其包括該等像素之個別子集,因此該等不同輸入子影像中之該等像素的該等輸入像素數值係在該 串流中交錯;複數個濾鏡單元,其係連接在一二維陣列組態中並經配置以採用個別之二維反摺積核心分離地濾波該等輸入子影像之每個該等輸入像素數值,以便產生包含輸出像素數值的個別輸出子影像;其中該複數個濾鏡單元之每一者包括一電路元件;以及一多工器,其經耦合以將該等輸出子影像之該等輸出像素數值多工在一起,以便產生一經濾波之輸出影像;其中該陣列組態具有該等濾鏡單元之列及行,其中該輸入介面包含一記憶體,其經配置以緩衝該等輸入像素數值並提供該等緩衝之輸入像素數值的連續行給該等濾鏡單元,且其中該等濾鏡單元之每行經配置以傳播該等輸入像素數值之該等行至該陣列組態中的該等濾鏡單元之下一行,以便採用該等反摺積核心來反摺積該等輸入像素數值。 An image enhancement circuit includes an input interface operative to receive a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different input sub-images including individual pixels a subset, such that the input pixel values of the pixels in the different input sub-images are Interleaving in a stream; a plurality of filter elements coupled in a two-dimensional array configuration and configured to separately filter each of the input sub-images using an individual two-dimensional de-convolution core Numerical values to produce an individual output sub-image comprising output pixel values; wherein each of the plurality of filter elements comprises a circuit component; and a multiplexer coupled to output the output sub-images Pixel values are multiplexed together to produce a filtered output image; wherein the array configuration has columns and rows of the filter elements, wherein the input interface includes a memory configured to buffer the input pixel values And providing successive rows of the buffered input pixel values to the filter cells, and wherein each row of the filter cells is configured to propagate the input pixel values to the array configuration The lower row of the filter unit is used to deconvolve the input pixel values using the deconvolution cores. 如請求項3之電路,其中該等反摺積核心包括濾鏡係數,且其中該等濾鏡單元之每一個包括一乘法器,其經配置以將該等輸入像素數值之一乘以該等濾鏡係數之一,以產生該濾鏡單元之該輸出。 The circuit of claim 3, wherein the deconvolution kernels comprise filter coefficients, and wherein each of the filter units comprises a multiplier configured to multiply one of the input pixel values by the One of the filter coefficients to produce the output of the filter unit. 如請求項4之電路,其中該乘法器經配置以於接受該等輸入像素所在之一像素時脈之每個循環中執行兩個乘法。 A circuit as claimed in claim 4, wherein the multiplier is configured to perform two multiplications in each cycle of receiving one of the pixel clocks of the input pixels. 如請求項4之電路,其包括一累積器電路,其經配置以 累積該等濾鏡單元之該等輸出,以產生該等輸出像素數值。 The circuit of claim 4, comprising an accumulator circuit configured to The outputs of the filter cells are accumulated to produce the output pixel values. 如請求項6之電路,其中該累積器經配置以於接受該等輸入像素所在之一像素時脈之兩個連續循環中累積該等輸出。 The circuit of claim 6, wherein the accumulator is configured to accumulate the outputs in two consecutive cycles of accepting one of the pixel clocks of the input pixels. 一種影像加強電路,其包括:一輸入介面,其可運轉以接受一屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包括複數個不同輸入子影像,其包括該等像素之個別子集,因此該等不同輸入子影像中之該等像素的該等輸入像素數值係在該串流中交錯;複數個濾鏡單元,其係連接在一二維陣列組態中並經配置以採用個別之二維反摺積核心分離地濾波該等輸入子影像之每個該等輸入像素數值,以便產生包含輸出像素數值的個別輸出子影像;其中該複數個濾鏡單元之每一者包括一電路元件;以及一多工器,其經耦合以將該等輸出子影像之該等輸出像素數值多工在一起,以便產生一經濾波之輸出影像;其中該陣列組態具有該等濾鏡單元之列及行,其中該輸入介面經配置以提供該等輸入像素數值之連續行給該等濾鏡單元,以便將每個輸入像素數值同時提供給該等濾鏡單元之一對應列中的所有該等濾鏡單元,其中每個濾鏡單元包括一乘法器,其經配置以將所提供之該等輸 入像素數值乘以該等反摺積核心之一的濾鏡係數,以產生一乘法結果;及包括一累積電路,其經配置以計算該等濾鏡單元之該等行之每行中之該等乘法結果的行總和,從而將延遲應用於該等行總和並組合該等延遲的行總和,以產生該等輸出像素數值。 An image enhancement circuit includes an input interface operative to receive a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different input sub-images including individual pixels a subset, such that the input pixel values of the pixels in the different input sub-images are interleaved in the stream; a plurality of filter units are coupled in a two-dimensional array configuration and configured Separatingly filtering each of the input pixel values of the input sub-images using an individual two-dimensional inverse-folding core to generate an individual output sub-image comprising output pixel values; wherein each of the plurality of filter elements comprises a circuit component; and a multiplexer coupled to multiplex the output pixel values of the output sub-images to produce a filtered output image; wherein the array configuration has the filter elements a row and a row, wherein the input interface is configured to provide successive rows of the input pixel values to the filter cells such that each input pixel value is the same All such units to provide one such filter unit filters the corresponding column, wherein each filter unit comprises a multiplier configured to those provided by the output The pixel value is multiplied by the filter coefficient of one of the deconvolution kernels to produce a multiplication result; and includes an accumulation circuit configured to calculate the row in each of the rows of the filter cells The sum of the rows of the multiplication results, such that the delay is applied to the sum of the rows and the sum of the rows of the delays is combined to produce the output pixel values. 一種影像加強電路,其包括:一輸入介面,其可運轉以接受一屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包括複數個不同輸入子影像,其包括該等像素之個別子集,因此該等不同輸入子影像中之該等像素的該等輸入像素數值係在該串流中交錯;複數個濾鏡單元,其係連接在一二維陣列組態中並經配置以採用個別之二維反摺積核心分離地濾波該等輸入子影像之每個該等輸入像素數值,以便產生包含輸出像素數值的個別輸出子影像;其中該複數個濾鏡單元之每一者包括一電路元件;以及一多工器,其經耦合以將該等輸出子影像之該等輸出像素數值多工在一起,以便產生一經濾波之輸出影像;其中由一鑲嵌影像感測器提供輸入像素數值之該串流,以便由該影像感測器產生該等輸入子影像之每個中的該等像素數值來回應一不同個別彩色之光,且其中將該等濾鏡單元經配置以濾波該等輸入子影像以產生對應於該等個別彩色的該等輸出子影像;其中該等輸入子影 像包括綠、紅及藍色子影像,且該等濾鏡單元係配置在一第一二維陣列中,該第一二維陣列經配置以濾波屬於該綠色子影像之該等輸入數值;以及在一第二二維陣列中,該第二二維陣列經配置以交替地濾波屬於該等紅及藍色子影像之該等輸入數值。 An image enhancement circuit includes an input interface operative to receive a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different input sub-images including individual pixels a subset, such that the input pixel values of the pixels in the different input sub-images are interleaved in the stream; a plurality of filter units are coupled in a two-dimensional array configuration and configured Separatingly filtering each of the input pixel values of the input sub-images using an individual two-dimensional inverse-folding core to generate an individual output sub-image comprising output pixel values; wherein each of the plurality of filter elements comprises a circuit component; and a multiplexer coupled to multiplex the output pixel values of the output sub-images to produce a filtered output image; wherein the input pixel is provided by a mosaic image sensor The stream of values is such that the image sensor produces the pixel values in each of the input sub-images in response to a different individual color of light Wherein the filter and the other filter unit is configured to generate such input sub-images corresponding to the color of these individual sub-images of such output; wherein such input sub-Movies The image includes green, red, and blue sub-images, and the filter elements are disposed in a first two-dimensional array configured to filter the input values belonging to the green sub-image; In a second two-dimensional array, the second two-dimensional array is configured to alternately filter the input values belonging to the red and blue sub-images. 如請求項9之電路,其中該等反摺積核心包括濾鏡係數,其中該等濾鏡單元包括個別乘法器,其經配置以依據一預定指定將該等輸入像素數值乘以該等濾鏡係數,並且包括選擇及累積邏輯,其經配置以分離地累積乘以屬於該等輸入子影像之每個的該等輸入像素數值之該等乘法器的輸出,以便產生該等輸出像素數值。 The circuit of claim 9, wherein the deconvolution kernels comprise filter coefficients, wherein the filter units comprise individual multipliers configured to multiply the input pixel values by the filter according to a predetermined designation The coefficients, and including selection and accumulation logic, are configured to separately accumulate the outputs of the multipliers multiplied by the input pixel values of each of the input sub-images to produce the output pixel values. 一種影像加強電路,其包括:一輸入介面,其可運轉以接受一屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包括複數個不同輸入子影像,其包括該等像素之個別子集,因此該等不同輸入子影像中之該等像素的該等輸入像素數值係在該串流中交錯;複數個濾鏡單元,其係連接在一二維陣列組態中並經配置以採用個別之二維反摺積核心分離地濾波該等輸入子影像之每個該等輸入像素數值,以便產生包含輸出像素數值的個別輸出子影像;其中該複數個濾鏡單元之每一者包括一電路元件;以及一多工器,其經耦合以將該等輸出子影像之該等輸出 像素數值多工在一起,以便產生一經濾波之輸出影像;其中將該輸入影像劃分成多個區段,且其中該等濾鏡單元經配置以使用至少一第一及一第二不同反摺積核心濾波定位在該輸入影像之個別之至少一第一及一第二區域中之該等輸入像素的該等數值;其中該等第一及第二區段具有個別不同的第一及第二尺寸,其係個別地決定以回應該等第一及第二區段中之一模糊之一空間可變性。 An image enhancement circuit includes an input interface operative to receive a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different input sub-images including individual pixels a subset, such that the input pixel values of the pixels in the different input sub-images are interleaved in the stream; a plurality of filter units are coupled in a two-dimensional array configuration and configured Separatingly filtering each of the input pixel values of the input sub-images using an individual two-dimensional inverse-folding core to generate an individual output sub-image comprising output pixel values; wherein each of the plurality of filter elements comprises a circuit component; and a multiplexer coupled to output the output sub-images The pixel values are multiplexed together to produce a filtered output image; wherein the input image is divided into a plurality of segments, and wherein the filter cells are configured to use at least a first and a second different deconvolution product The core filter positions the values of the input pixels in at least one of the first and second regions of the input image; wherein the first and second segments have individually different first and second sizes It is determined individually that one of the first and second sections should be ambiguous and one of the spatial variability is blurred. 一種影像加強電路,其包括:一輸入介面,其可運轉以接受一屬於一輸入影像之像素的輸入像素數值之串流,該輸入影像包括複數個不同輸入子影像,其包括該等像素之個別子集,因此該等不同輸入子影像中之該等像素的該等輸入像素數值係在該串流中交錯;複數個濾鏡單元,其係連接在一二維陣列組態中並經配置以採用個別之二維反摺積核心分離地濾波該等輸入子影像之每個該等輸入像素數值,以便產生包含輸出像素數值的個別輸出子影像;其中該複數個濾鏡單元之每一者包括一電路元件;以及一多工器,其經耦合以將該等輸出子影像之該等輸出像素數值多工在一起,以便產生一經濾波之輸出影像;其中根據該輸入影像中之一模糊之一對稱特性將該輸入影像劃分成對稱區,且其中該等濾鏡單元經配置以使 用基線反摺積核心濾波定位在該等對稱區之一中之該等輸入像素的該等數值,並且使用藉由將對稱運算應用於該等基線核心所決定的個別反摺積核心而濾波定位在該等其他對稱區中之該等輸入像素的該等數值。 An image enhancement circuit includes an input interface operative to receive a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different input sub-images including individual pixels a subset, such that the input pixel values of the pixels in the different input sub-images are interleaved in the stream; a plurality of filter units are coupled in a two-dimensional array configuration and configured Separatingly filtering each of the input pixel values of the input sub-images using an individual two-dimensional inverse-folding core to generate an individual output sub-image comprising output pixel values; wherein each of the plurality of filter elements comprises a circuit component; and a multiplexer coupled to multiplex the output pixel values of the output sub-images together to produce a filtered output image; wherein one of the ones of the input image is blurred A symmetrical characteristic divides the input image into symmetrical regions, and wherein the filter units are configured such that The baseline deconvolution core filter is used to locate the values of the input pixels in one of the symmetric regions, and filter positioning is performed using individual deconvolution kernels determined by applying symmetric operations to the baseline cores. The values of the input pixels in the other symmetrical regions. 一種用於成像之方法,其包括:接受一屬於一輸入影像之像素之輸入像素數值的串流,該輸入影像包括複數個不同輸入子影像,其包括該等像素之個別子集,因此該等不同輸入子影像中之該等像素的該等輸入像素數值係在該串流中交錯;使用連接至一二維陣列組態中的複數個以硬體實施之濾鏡單元,採用個別之二維反摺積核心分離地濾波該等輸入子影像之每一個的該等輸入數值,以便產生包括輸出像素數值的個別輸出子影像;其中該二維陣列組態具有該複數個濾鏡單元之列及行;其中濾波該等輸入像素數值包括傳播來自該複數個濾鏡單元之每行的該等輸入像素數值之該等行至該二維陣列組態中的該複數個濾鏡單元之下一行,以便採用該等反摺積核心來反摺積該等輸入像素數值;以及多工該等輸出子影像之該等輸出像素數值,以便產生一經濾波之輸出影像。 A method for imaging, comprising: receiving a stream of input pixel values of pixels belonging to an input image, the input image comprising a plurality of different input sub-images including individual subsets of the pixels, such The input pixel values of the pixels in different input sub-images are interleaved in the stream; using a plurality of hardware-implemented filter units connected to a two-dimensional array configuration, using individual two-dimensional The inverse-folding core separately filters the input values of each of the input sub-images to generate an individual output sub-image comprising the output pixel values; wherein the two-dimensional array configuration has the plurality of filter elements and Rowing; wherein filtering the input pixel values comprises propagating the rows of the input pixel values from each of the plurality of filter cells to a row below the plurality of filter cells in the two-dimensional array configuration, In order to use the deconvolution cores to deconvolve the input pixel values; and to multiply the output pixel values of the output sub-images to produce a filtered output Images. 如請求項13之方法,其中該輸入影像具有一輸入模糊,且其中濾波該等輸入像素數值包括使該輸出影像具有一小於該輸入模糊的輸出模糊。 The method of claim 13, wherein the input image has an input blur, and wherein filtering the input pixel values comprises causing the output image to have an output blur that is less than the input blur. 如請求項13之方法,其中接受輸入像素數值之該串流包括緩衝該等輸入像素數值並提供該等緩衝之輸入像素數值的連續行給該等濾鏡單元。 The method of claim 13, wherein the accepting the stream of input pixel values comprises buffering the input pixel values and providing successive rows of the buffered input pixel values to the filter units. 如請求項13之方法,其中該等反摺積核心包括濾鏡係數,其中該等濾鏡單元之每一個包括一乘法器,且其中濾波該等輸入像素數值包括藉由該等乘法器之每一個將該等輸入像素數值之一乘以該等濾鏡係數之一,以產生該濾鏡單元之一輸出。 The method of claim 13, wherein the deconvolution kernel comprises a filter coefficient, wherein each of the filter units comprises a multiplier, and wherein filtering the input pixel values comprises using each of the multipliers One of the input pixel values is multiplied by one of the filter coefficients to produce an output of the filter unit. 如請求項16之方法,其中將該等輸入像素數值乘以該等濾鏡係數包括於接受該等輸入像素所在之一像素時脈的每一個循環中,藉由每個乘法器執行兩個乘法。 The method of claim 16, wherein multiplying the input pixel values by the filter coefficients is included in each cycle of receiving one of the pixel clocks of the input pixels, and performing two multiplications by each multiplier . 如請求項16之方法,其中濾波該等輸入像素數值包括累積該等濾鏡單元之該等輸出,以產生該等輸出像素數值。 The method of claim 16, wherein filtering the input pixel values comprises accumulating the outputs of the filter cells to generate the output pixel values. 如請求項18之方法,其中累積該等濾鏡單元之該等輸出包括於接受該等輸入像素所在之一像素時脈的兩個連續循環中,累積該等輸出。 The method of claim 18, wherein the accumulating the outputs of the filter cells is included in two consecutive cycles of accepting one of the pixel clocks of the input pixels, accumulating the outputs. 如請求項13之方法,其中該陣列組態具有該等濾鏡單元之列與行,其中接受輸入像素數值之該串流包括提供該等輸入像素數值之連續行給該等濾鏡單元,以便將每個輸入像素數值同時提供給該等濾鏡單元之一對應列中的所有該等濾鏡單元,且其中濾波該等輸入像素數值包括在每一個濾鏡單元中將所提供之該輸入像素數值乘以該等反摺積核心之一的濾鏡係數以產生一乘法結果,計算 該等濾鏡單元之該等行之每行中之該等乘法結果的行總和,施加延遲於該等行總和並組合該等延遲的行總和,以產生該等輸出像素數值。 The method of claim 13, wherein the array configuration has columns and rows of the filter cells, wherein the stream that accepts input pixel values includes a continuous row providing the input pixel values to the filter cells such that Providing each input pixel value to all of the filter cells in a corresponding column of one of the filter cells, and wherein filtering the input pixel values includes providing the input pixel in each filter cell The value is multiplied by the filter coefficient of one of the inverse-folded cores to produce a multiplication result, which is calculated The sum of the rows of the multiplication results in each of the rows of the filter cells is applied to delay the sum of the rows and combine the sum of the rows of the delays to produce the output pixel values. 如請求項13之方法,其中接受輸入像素數值之該串流包括從一鑲嵌影像感測器接受該串流以便由該影像感測器產生該等輸入子影像之每一個中的該等輸入像素數值,以回應一不同、個別彩色之光,且其中濾波該等輸入像素數值包括濾波該等輸入子影像以產生對應於該等個別彩色的該等輸出子影像。 The method of claim 13, wherein the accepting the stream of input pixel values comprises accepting the stream from a mosaic image sensor to generate the input pixels in each of the input sub-images by the image sensor A value in response to a different, individually colored light, and wherein filtering the input pixel values comprises filtering the input sub-images to produce the output sub-images corresponding to the individual colors. 如請求項21之方法,其中該等輸入子影像包括綠、紅及藍色子影像,且其中濾波該等輸入像素數值包括使用該等濾鏡單元之一第一二維陣列來濾波屬於該綠色子影像的該等輸入數值,並使用該等濾鏡單元之一第二二維陣列來交替地濾波屬於該等紅及藍色子影像的該等輸入數值。 The method of claim 21, wherein the input sub-images comprise green, red, and blue sub-images, and wherein filtering the input pixel values comprises filtering the green color using one of the first two-dimensional arrays of the filter units The input values of the sub-images are used to alternately filter the input values belonging to the red and blue sub-images using a second two-dimensional array of the filter elements. 如請求項13之方法,其中濾波該等輸入像素數值包括依據一預定乘法器指派,使用該等濾鏡單元中的乘法器將該等輸入像素數值乘以該等反摺積核心之濾鏡係數,並且分離地累積乘以屬於該等輸入子影像之每個的該等輸入像素數值之該等乘法器的輸出,以便產生該等輸出像素數值。 The method of claim 13, wherein filtering the input pixel values comprises multiplying the input pixel values by the filter coefficients of the deconvolution cores using multipliers in the filter units according to a predetermined multiplier assignment And separately accumulating the outputs of the multipliers multiplied by the input pixel values of each of the input sub-images to produce the output pixel values. 如請求項13之方法,其中濾波該等輸入像素數值包括將該輸入影像劃分成多個區段,並使用至少一第一及一第二不同反摺積核心以濾波分別定位在該輸入影像之個別 至少一第一及一第二區域中之該等輸入像素的該等數值。 The method of claim 13, wherein filtering the input pixel values comprises dividing the input image into a plurality of segments, and using at least one of the first and second different inverse-folding cores to filter and respectively locate the input image individual The values of the input pixels in at least one of the first and second regions. 如請求項24之方法,其中劃分該輸入影像包括分別為該等第一及第二區段選擇不同的第一及第二尺寸,以回應該等第一及第二區段中之一模糊之一空間可變性。 The method of claim 24, wherein dividing the input image comprises selecting different first and second sizes for the first and second segments, respectively, to wait for one of the first and second segments to be blurred. A spatial variability. 如請求項13之方法,其中濾波該等輸入像素數值包括根據該輸入影像之一模糊之一對稱特性,將該輸入影像劃分成對稱區,使用基線反摺積核心來濾波定位在該等對稱區之一中之該等輸入像素的該等數值,以及使用藉由施加對稱運算於該等基線核心所決定的個別反摺積核心來濾波定位在該等其他對稱區中之該等輸入像素的該等數值。 The method of claim 13, wherein filtering the input pixel values comprises dividing the input image into a symmetric region according to a symmetry characteristic of one of the input images, and filtering the positioning in the symmetric region using a baseline deconvolution kernel The values of the input pixels in one of the plurality of input pixels, and the individual deconvolution kernels determined by applying the symmetric operations to the baseline cores to filter the input pixels positioned in the other symmetric regions Wait for the value. 一種成像裝置,其包括:一鑲嵌(mosaic)影像感測器,其經配置以產生一屬於複數個輸入子影像之輸入像素數值的串流,每個子影像回應於入射在該鑲嵌影像感測器上之一不同、個別彩色之光,使得該等不同輸入子影像中之該等像素的該等輸入像素數值係在該串流中交錯;一影像加強電路,其經耦合以使用連接在一二維陣列組態中的複數個濾鏡單元來接收並濾波該等輸入子影像之每一個中的該等輸入像素數值,以便產生對應之複數個加強式輸出子影像;其中該二維陣列組態具有該複數個濾鏡單元之列及行;其中該複數個濾鏡單元之每一個之每行經配置以傳播 該等輸入像素數值之該等行至該二維陣列組態中的該等濾鏡單元之下一行,以便採用該等反摺積核心來反摺積該等輸入像素數值;以及一影像信號處理器(ISP),其經耦合以接收並組合該複數個輸出子影像,以產生一彩色輸出影像。 An imaging apparatus comprising: a mosaic image sensor configured to generate a stream of input pixel values belonging to a plurality of input sub-images, each sub-image being responsive to being incident on the mosaic image sensor a different, individually colored light such that the input pixel values of the pixels in the different input sub-images are interlaced in the stream; an image enhancement circuit coupled to use the connection in a second And a plurality of filter units in the array configuration to receive and filter the input pixel values in each of the input sub-images to generate a corresponding plurality of enhanced output sub-images; wherein the two-dimensional array configuration Having the columns and rows of the plurality of filter cells; wherein each of the plurality of filter cells is configured to propagate The lines of the input pixel values are to the next row of the filter elements in the two-dimensional array configuration to recombine the input pixel values using the deconvolution cores; and an image signal processing An ISP is coupled to receive and combine the plurality of output sub-images to produce a color output image. 如請求項27之成像裝置,其中該等輸入子影像之每一者具有一輸入模糊,且其中在採用該等反摺積核心濾波之後,該等輸出影像之每一者具有一小於該輸入模糊的輸出模糊。 The imaging device of claim 27, wherein each of the input sub-images has an input blur, and wherein after the deconvolution core filtering is employed, each of the output images has a smaller than the input blur The output is blurred. 如請求項27之成像裝置,其中該等反摺積核心包括濾鏡係數,其中該複數個濾鏡單元之每一個包括一乘法器,其經配置以將該等輸入像素數值之一乘以該等濾鏡係數之一,以產生該濾鏡單元之一輸出。 The imaging device of claim 27, wherein the deconvolution kernels comprise filter coefficients, wherein each of the plurality of filter cells comprises a multiplier configured to multiply one of the input pixel values by the multiplier One of the filter coefficients is equal to produce one of the output of the filter unit. 如請求項29之成像裝置,其中該乘法器經配置以於接受該等輸入像素所在之一像素時脈之每個循環中執行兩個乘法。 The imaging device of claim 29, wherein the multiplier is configured to perform two multiplications in each cycle of receiving one of the pixel clocks of the input pixels.
TW096108967A 2006-12-17 2007-03-15 Image enhancement using hardware-based deconvolution TWI403976B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL2006/001450 WO2007072477A2 (en) 2005-12-21 2006-12-17 Image enhancement using hardware-based deconvolution

Publications (2)

Publication Number Publication Date
TW200828183A TW200828183A (en) 2008-07-01
TWI403976B true TWI403976B (en) 2013-08-01

Family

ID=44839708

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096108967A TWI403976B (en) 2006-12-17 2007-03-15 Image enhancement using hardware-based deconvolution

Country Status (1)

Country Link
TW (1) TWI403976B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564977B2 (en) * 2010-02-22 2014-08-06 ソニー株式会社 Image signal processing circuit, imaging apparatus, image signal processing method, and program
TWI639135B (en) 2017-11-16 2018-10-21 國立高雄科技大學 Restoration method for blurred image

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154574A (en) * 1997-11-19 2000-11-28 Samsung Electronics Co., Ltd. Digital focusing method and apparatus in image processing system
US20030122055A1 (en) * 2002-01-03 2003-07-03 Fujifilm Electronic Imaging Ltd. Compensation of lens field curvature
WO2004063989A2 (en) * 2003-01-16 2004-07-29 D-Blur Technologies Ltd. Camera with image enhancement functions
US20050121596A1 (en) * 2002-03-13 2005-06-09 Yeda Research And Development Company Ltd. Auto-focusing method and device
TW200525877A (en) * 2003-10-09 2005-08-01 Teac America Inc Method, apparatus, and system for synthesizing an audio performance using convolution at multiple sample rates
US7135698B2 (en) * 2002-12-05 2006-11-14 Lockheed Martin Corporation Multi-spectral infrared super-pixel photodetector and imager

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154574A (en) * 1997-11-19 2000-11-28 Samsung Electronics Co., Ltd. Digital focusing method and apparatus in image processing system
US20030122055A1 (en) * 2002-01-03 2003-07-03 Fujifilm Electronic Imaging Ltd. Compensation of lens field curvature
US20050121596A1 (en) * 2002-03-13 2005-06-09 Yeda Research And Development Company Ltd. Auto-focusing method and device
US7135698B2 (en) * 2002-12-05 2006-11-14 Lockheed Martin Corporation Multi-spectral infrared super-pixel photodetector and imager
WO2004063989A2 (en) * 2003-01-16 2004-07-29 D-Blur Technologies Ltd. Camera with image enhancement functions
TW200525877A (en) * 2003-10-09 2005-08-01 Teac America Inc Method, apparatus, and system for synthesizing an audio performance using convolution at multiple sample rates

Also Published As

Publication number Publication date
TW200828183A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
US8154636B2 (en) Image enhancement using hardware-based deconvolution
EP2967294B1 (en) Super resolution and color motion artifact correction in a pulsed color imaging system
JP5719986B2 (en) Image processing apparatus and image processing method
US8817141B2 (en) Image processing device and method, recording medium, and imaging device
US11949995B2 (en) Universal and adaptive de-mosaicing (CFA) system
US9438827B2 (en) Imaging systems and methods for generating binned high-dynamic-range images
CN109417613B (en) Image sensor method and apparatus having multiple successive infrared filtering units
WO2008140971A1 (en) Method and apparatus for improving low-light performance for small pixel image sensors
CN116405747A (en) Multi-aperture imaging system and method for acquiring images through multi-aperture imaging system
EP2690873A1 (en) Color imaging element, imaging device, and imaging program
JP4991907B2 (en) Image processing apparatus and method for controlling image processing apparatus
JP2005012692A (en) Image signal processor
JP2006311314A (en) Color isolation processing method and color isolation processing circuit
CN115131191A (en) Application processor, operation method thereof and image processing system
US20070296841A1 (en) Method and apparatus for manufacturing color image pickup device
TWI403976B (en) Image enhancement using hardware-based deconvolution
EP2800376B1 (en) Imaging device, method for controlling imaging device, and control program
JP2002150281A (en) Image compression processing device and method
JP2004193911A (en) Image processing apparatus, its method and digital still camera
US20050147315A1 (en) Mean filter device and filtering method
Baranov et al. High-quality uhd demosaicing on low-cost fpga
WO2013100097A1 (en) Imaging device, control method for imaging device, and control program
Azgin et al. A high performance alternating projections image demosaicing hardware
JP2019029913A (en) Imaging apparatus
JP5375163B2 (en) Imaging apparatus and imaging element output control method