TWI400815B - Light assisted biochemical sensor - Google Patents

Light assisted biochemical sensor Download PDF

Info

Publication number
TWI400815B
TWI400815B TW98139918A TW98139918A TWI400815B TW I400815 B TWI400815 B TW I400815B TW 98139918 A TW98139918 A TW 98139918A TW 98139918 A TW98139918 A TW 98139918A TW I400815 B TWI400815 B TW I400815B
Authority
TW
Taiwan
Prior art keywords
light
photo
semiconductor substrate
biochemical sensor
assisted
Prior art date
Application number
TW98139918A
Other languages
Chinese (zh)
Other versions
TW201119071A (en
Inventor
lian-bi Zhang
chao-song Lai
ming-zhe Zheng
xian-qin Qiu
bo-quan Chen
yu-dong Chen
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW98139918A priority Critical patent/TWI400815B/en
Publication of TW201119071A publication Critical patent/TW201119071A/en
Application granted granted Critical
Publication of TWI400815B publication Critical patent/TWI400815B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

光輔助生化感測器 Light-assisted biochemical sensor

本發明係有關一種生化感測器,特別是指一種以光定址電位感測器為基礎之光輔助生化感測器。 The invention relates to a biochemical sensor, in particular to a light-assisted biochemical sensor based on a light-addressed potential sensor.

光定址電位感測器(Light Addressable Potentiometric Sensors,LAPS)是一種基於半導體光電效應的生化感測器,其結構如第1圖所示。 Light Addressable Potentiometric Sensors (LAPS) is a biochemical sensor based on semiconductor photoelectric effect, and its structure is shown in Figure 1.

第1圖係繪示先前技術使用傳統光定址電位感測器之pH量測系統示意圖。LAPS主要包括半導體基底101及氧化層102或氮化物層於半導體基底101上,並使用外加光源104半導體基底101背面。當半導體受到一定波長的光照射時,半導體會吸收光子,發生價帶到傳導帶的躍遷也就產生了分離的電子電洞對。在一般情況下,電子電洞對很快地再結合,在外電路中就測不到電流。如果在LAPS外加反向偏壓時(N型矽加負壓,P型矽加正壓),半導體中產生空乏區(depletion region),這時靠近空乏區的電子電洞對來不及復合就會被分離到空乏區的兩端。如果採用強度調製的光源照射,就會產生電子電洞對的交替變化,這時就可以在外電路中測量到光電流,這個光電流就反應了LAPS感測區域的響應。因此,通過量測感測區域表面電位變化引起的光電流變化,可以實現對電解質中特定離子和生物物質濃度的檢測。 Figure 1 is a schematic diagram showing a prior art pH measurement system using a conventional light addressing potential sensor. The LAPS mainly includes a semiconductor substrate 101 and an oxide layer 102 or a nitride layer on the semiconductor substrate 101, and uses the external light source 104 to back the semiconductor substrate 101. When a semiconductor is exposed to light of a certain wavelength, the semiconductor absorbs photons, and a transition from the valence band to the conduction band produces a separate pair of electron holes. Under normal circumstances, the electron hole pair is quickly recombined, and no current is detected in the external circuit. If a reverse bias is applied to the LAPS (N-type 矽 plus negative pressure, P-type 矽 plus positive pressure), a depletion region is generated in the semiconductor, and the electron hole near the depletion region is separated from the composite hole. To both ends of the depletion zone. If an intensity modulated source is used to illuminate, an alternating change in the electron hole pair is produced, at which point the photocurrent can be measured in the external circuit, which reflects the response of the LAPS sensing region. Therefore, the detection of the specific ion and biological substance concentration in the electrolyte can be achieved by measuring the photocurrent change caused by the change in the surface potential of the sensing region.

由於LAPS能連續多種參數檢測,並具有高靈敏度、高穩定性與高輸入阻抗等優點,其應用範圍非常廣泛。然而,習知LAPS進行檢測時,需要藉助光源之外加輔助,使得使用LAPS進行量測之量測系統有著較大的體積及繁瑣的操作過程,這些缺點侷限其便利性以及實用性。 Because LAPS can continuously detect a variety of parameters, and has the advantages of high sensitivity, high stability and high input impedance, its application range is very wide. However, the conventional LAPS needs to be assisted by the light source, so that the measurement system using the LAPS has a large volume and a cumbersome operation process, and these disadvantages limit its convenience and practicability.

本發明的主要目的在於提供一種光輔助生化感測器,將發光元件 與光定址電位感測器(LAPS)整合在一起,藉此可提昇LAPS的光電傳導特性,可達到高感測度、誤差小的訴求,再者,更由於積體化的特色,可使得LAPS量測系統的體積縮小、製造成本降低,便於攜帶及進行即時偵測,使用便利、操作容易,且具有應用範圍廣、測量範圍寬的優勢,可大體上解決先前技術所遇到之種種缺失。 The main object of the present invention is to provide a photo-assisted biochemical sensor that emits a light-emitting element It is integrated with the Optical Addressing Potential Sensor (LAPS), which can improve the photoelectric conduction characteristics of the LAPS, and achieve high sensitivity and small error. Moreover, due to the integrated features, the amount of LAPS can be made. The measurement system is reduced in size, reduced in manufacturing cost, easy to carry and perform real-time detection, convenient to use, easy to operate, and has the advantages of wide application range and wide measurement range, and can substantially solve various defects encountered in the prior art.

因此,為達上述目的,本發明所揭露之光輔助生化感測器,係以LAPS為基礎所製成,是將感測層先沈積於半導體基底正表面,並將發光元件直接製作固定於半導體基底之背表面,而整個元件是由封裝材料所保護,僅露出一感測區域,在操作時元件不會受到酸鹼溶液影響。當發光元件發出光線照射於矽基底,會使得矽基底的光電傳導特性增加,並藉由偏壓的加入,由於溶液中的離子或生物物質濃度會影響感測膜表面的電位,導致光電流產生變化,因此可以透過光電流偵測,而得知溶液中的離子或生物物質之濃度,藉以達到生化感測的作用。 Therefore, in order to achieve the above object, the photo-assisted biochemical sensor disclosed in the present invention is based on LAPS, which first deposits a sensing layer on the front surface of the semiconductor substrate, and directly mounts the light-emitting element to the semiconductor. The back surface of the substrate, while the entire component is protected by the encapsulating material, exposing only one sensing area, the components are not affected by the acid-base solution during operation. When the illuminating element emits light to illuminate the ruthenium substrate, the photoconductive property of the ruthenium substrate is increased, and by the addition of the bias voltage, the concentration of ions or biological substances in the solution affects the potential of the surface of the sensing film, resulting in photocurrent generation. Change, so the photocurrent detection can be used to know the concentration of ions or biological substances in the solution, so as to achieve biochemical sensing.

為使對本發明的目的、特徵及其功能有進一步的瞭解,茲配合圖式詳細說明如下: In order to further understand the purpose, features and functions of the present invention, the drawings are described in detail as follows:

請參閱第2圖,其顯示本發明之實施例使用光輔助生化感測器之量測系統之示意圖,此光輔助生化感測器是用以檢測電解質之pH值。 Referring to FIG. 2, there is shown a schematic diagram of a measurement system using a photo-assisted biochemical sensor for detecting the pH of an electrolyte in accordance with an embodiment of the present invention.

本實施例之光輔助生化感測器的結構包括半導體基底10、感測層20、作用電極40以及發光元件50。在製程中,可以選用具有直接能隙(DIRECT BAND GAP)之P型或N型半導體基底10,譬如砷化鎵基底,利用物理氣相或化學氣相沉積系統之密閉反應腔內,使用適當之氣體、壓力、及功率條件,於半導體基底10正表面,予以沉積一層由二氧化矽(SiO2)、氮化矽(Si3N2)、五氧化二鉭(Ta2O5)或稀土元素氧化物(REO)所構成之感測層20,而感測層20可以經過退火處理一段時間,將薄膜結構緻密化,以達到良好之感測,並可利用黃光製 程定義出感測區域,以做為檢測溶液離子濃度之用;另外,在半導體基底10背表面沈積鋁作為作用電極40,並直接製作發光元件50固定於半導體基底10背表面,其發光面朝向半導體基底10背表面,且發光元件50可選自發光二極體(LED)、有機發光二極體(OLED)、雷射二極體(LD)及電激發光元件(EL)所組成的群組,並利用控制元件90控制發光元件50的發光;最後,再使用譬如為環氧樹酯之封裝材料60密封,並僅露出感測層20之感測區域,使元件在操作時不受酸鹼溶液影響。 The structure of the photo-assisted biochemical sensor of the present embodiment includes a semiconductor substrate 10, a sensing layer 20, a working electrode 40, and a light-emitting element 50. In the process, a P-type or N-type semiconductor substrate 10 having a direct energy gap (DIRECT BAND GAP), such as a gallium arsenide substrate, may be used in a closed reaction chamber using a physical gas phase or a chemical vapor deposition system. Gas, pressure, and power conditions are deposited on the front surface of the semiconductor substrate 10 by cerium oxide (SiO 2 ), cerium nitride (Si 3 N 2 ), tantalum pentoxide (Ta 2 O 5 ) or rare earth elements. The sensing layer 20 is formed of oxide (REO), and the sensing layer 20 can be annealed for a period of time to densify the thin film structure to achieve good sensing, and the sensing region can be defined by a yellow light process. In addition, aluminum is used as the working electrode 40 on the back surface of the semiconductor substrate 10, and the light-emitting element 50 is directly fabricated on the back surface of the semiconductor substrate 10, and its light-emitting surface faces the back surface of the semiconductor substrate 10, and The light emitting element 50 may be selected from the group consisting of a light emitting diode (LED), an organic light emitting diode (OLED), a laser diode (LD), and an electroluminescent element (EL), and utilizes the control element 90. Controlling the illumination of the light emitting element 50; Finally, a sealing material such as epoxy resin is used, and only the sensing area of the sensing layer 20 is exposed, so that the components are not affected by the acid-base solution during operation.

本實施例進行離子或生物物質濃度之感測操作時,是將此光輔助生化感測器浸入電解質,即受測溶液80中,並需配合使用參考電極70,一併置於受測溶液80之中,用以提供穩定電位,當發光元件的光束照射於半導體基底10背表面,並加上直流偏壓,與感測層20接觸之電解質pH值之變化會導致感測層20表面電位的改變,而產生光電流之變化。因此,藉由量測流過作用電極與參考電極間光電流的變化,可以實現對電解質中pH的檢測。 In the present embodiment, when the ion or biological substance concentration sensing operation is performed, the photo-assisted biochemical sensor is immersed in the electrolyte, that is, the test solution 80, and the reference electrode 70 is used in combination with the test solution 80. In order to provide a stable potential, when the light beam of the light-emitting element is irradiated on the back surface of the semiconductor substrate 10 and a DC bias is applied, the change of the pH value of the electrolyte in contact with the sensing layer 20 may cause a change in the surface potential of the sensing layer 20. And produce a change in photocurrent. Therefore, the detection of the pH in the electrolyte can be achieved by measuring the change in the photocurrent flowing between the working electrode and the reference electrode.

另外,請參照第3圖,係繪示本發明之實施例具有發光元件陣列之光輔助生化感測器之示意圖。本實施例中,發光元件50之數量可以為複數個,並以陣列方式排列,並可利用控制元件90控制發光元件50照射半導體基底10背表面之不同區域。因此,可通過檢測不同光照區域對應的感測層20表面電位變化引起的光電流變化,從而實現對溶液中特定離子和生物物質濃度的檢測。 In addition, please refer to FIG. 3, which is a schematic diagram of a photo-assisted biochemical sensor having an array of light-emitting elements according to an embodiment of the present invention. In this embodiment, the number of the light-emitting elements 50 may be plural and arranged in an array, and the control element 90 may be used to control the light-emitting elements 50 to illuminate different regions of the back surface of the semiconductor substrate 10. Therefore, the detection of specific ions and biological substances in the solution can be detected by detecting changes in photocurrent caused by changes in the surface potential of the sensing layer 20 corresponding to different illumination regions.

此外,亦可以選用具有間接能隙(INDIRECT BAND GAP)之P型或N型半導體基底30,如第4圖所示,可以利用覆晶技術(FLIP-CHIP)將發光元件50直接製作於半導體基底30背表面。或者,如第5圖所示,利用晶片鍵合技術(WAFER BONDING)將發光元件50直接製作於半導體基底30背表面。 In addition, a P-type or N-type semiconductor substrate 30 having an INDIRECT BAND GAP may also be used. As shown in FIG. 4, the light-emitting element 50 may be directly fabricated on the semiconductor substrate by flip chip technology (FLIP-CHIP). 30 back surface. Alternatively, as shown in FIG. 5, the light-emitting element 50 is directly formed on the back surface of the semiconductor substrate 30 by a wafer bonding technique (WAFER BONDING).

綜合上述,根據本發明所揭露的光輔助生化感測器,具有依LAPS所建構之感測器基體,並整合發光元件予以模組化,能提高半導體基 底的光電傳導特性,從而提昇感測器的靈敏度,具有高檢測效能。 In summary, the photo-assisted biochemical sensor disclosed in the present invention has a sensor base constructed by LAPS, and is integrated with a light-emitting element to be modularized, thereby improving the semiconductor base. The photoelectric conduction characteristics of the bottom enhance the sensitivity of the sensor and have high detection efficiency.

並且,本發明可大幅縮小量測系統體積,可望以低成本且較簡易製程提供高感測度的感測元件,並可實現可攜帶性、可即時偵測以及操作方便等優點,應用層面非常廣泛。 Moreover, the invention can greatly reduce the volume of the measurement system, and is expected to provide a high-sensitivity sensing element at a low cost and a relatively simple process, and can realize the advantages of portability, instant detection, and convenient operation, and the application level is very widely.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

10‧‧‧半導體基底 10‧‧‧Semiconductor substrate

20‧‧‧感測層 20‧‧‧Sensor layer

30‧‧‧半導體基底 30‧‧‧Semiconductor substrate

40‧‧‧作用電極 40‧‧‧Working electrode

50‧‧‧發光元件 50‧‧‧Lighting elements

60‧‧‧封裝材料 60‧‧‧Packaging materials

70‧‧‧參考電極 70‧‧‧ reference electrode

80‧‧‧受測溶液 80‧‧‧Measured solution

90‧‧‧控制元件 90‧‧‧Control elements

101‧‧‧半導體基底 101‧‧‧Semiconductor substrate

102‧‧‧氧化層 102‧‧‧Oxide layer

104‧‧‧光源 104‧‧‧Light source

第1圖係繪示先前技術使用傳統光定址電位感測器之pH量測系統示意圖;第2圖係繪示本發明實施例使用光輔助生化感測器之pH量測系統示意圖;第3圖係繪示本發明之實施例具有發光元件陣列之光輔助生化感測器之示意圖;第4圖係繪示本發明實施例具有覆晶製作之發光元件之光輔助生化感測器;以及第5圖係繪示本發明實施例具有晶片鍵合之發光元件之光輔助生化感測器。 1 is a schematic diagram showing a prior art pH measuring system using a conventional light-addressing potential sensor; FIG. 2 is a schematic view showing a pH measuring system using a light-assisted biochemical sensor according to an embodiment of the present invention; A schematic diagram of a photo-assisted biochemical sensor having an array of light-emitting elements according to an embodiment of the present invention; and a fourth embodiment of the present invention, a photo-assisted biochemical sensor having a flip-chip fabricated light-emitting element; and a fifth The figure shows a light-assisted biochemical sensor with a wafer-bonded light-emitting element according to an embodiment of the invention.

10‧‧‧半導體基底 10‧‧‧Semiconductor substrate

20‧‧‧感測層 20‧‧‧Sensor layer

40‧‧‧作用電極 40‧‧‧Working electrode

50‧‧‧發光元件 50‧‧‧Lighting elements

60‧‧‧封裝材料 60‧‧‧Packaging materials

70‧‧‧參考電極 70‧‧‧ reference electrode

80‧‧‧受測溶液 80‧‧‧Measured solution

90‧‧‧控制元件 90‧‧‧Control elements

Claims (12)

一種光輔助生化感測器,其包含:一半導體基底,具有一正表面與一背表面;一感測層,設置於該半導體基底正表面,並具有一感測區域,用以檢測一受測溶液之特定離子或生物物質濃度;以及一發光元件,直接製作於該半導體基底背表面,用以發出一光線照射該半導體基底,而提高該感測層檢測之靈敏度。 A photo-assisted biochemical sensor comprising: a semiconductor substrate having a front surface and a back surface; a sensing layer disposed on the front surface of the semiconductor substrate and having a sensing region for detecting a measured a specific ion or biological concentration of the solution; and a light-emitting element directly formed on the back surface of the semiconductor substrate for emitting a light to illuminate the semiconductor substrate to improve sensitivity of the sensing layer. 如申請專利範圍第1項所述之光輔助生化感測器,其中該半導體基底為具有直接能隙(DIRECT BAND GAP)之之P型或N型半導體基底。 The photo-assisted biochemical sensor of claim 1, wherein the semiconductor substrate is a P-type or N-type semiconductor substrate having a direct energy gap (DIRECT BAND GAP). 如申請專利範圍第1項所述之光輔助生化感測器,其中該感測層係選自二氧化矽(SiO2)、氮化矽(Si3N2)、五氧化二鉭(Ta2O5)與稀土元素氧化物(REO)所組成的群組之一。 The photo-assisted biochemical sensor according to claim 1, wherein the sensing layer is selected from the group consisting of cerium oxide (SiO 2 ), cerium nitride (Si 3 N 2 ), and tantalum pentoxide (Ta 2 ). One of the groups consisting of O 5 ) and rare earth element oxide (REO). 如申請專利範圍第1項所述之光輔助生化感測器,其中該半導體基底為具有間接能隙(INDIRECT BAND GAP)之P型或N型半導體基底。 The photo-assisted biochemical sensor of claim 1, wherein the semiconductor substrate is a P-type or N-type semiconductor substrate having an INDIRECT BAND GAP. 如申請專利範圍第4項所述之光輔助生化感測器,其中該發光元件係以覆晶技術(FLIP-CHIP)直接製作,設置於該半導體基底該背表面。 The photo-assisted biochemical sensor of claim 4, wherein the light-emitting element is directly fabricated by flip chip technology (FLIP-CHIP) and disposed on the back surface of the semiconductor substrate. 如申請專利範圍第4項所述之光輔助生化感測器,其中該發光元件係以晶片鍵合技術(WAFERBONDING)直接製作,設置於該半導體基底該背表面。 The photo-assisted biochemical sensor according to claim 4, wherein the light-emitting element is directly fabricated by a wafer bonding technique (WAFERBONDING) and disposed on the back surface of the semiconductor substrate. 如申請專利範圍第1項所述之光輔助生化感測器,更包含一封裝材料覆蓋於該感測層、該半導體基底與該發光元件之外,並露出該感測層上之該感測區域。 The photo-assisted biochemical sensor of claim 1, further comprising a packaging material covering the sensing layer, the semiconductor substrate and the light-emitting element, and exposing the sensing on the sensing layer region. 如申請專利範圍第7項所述之光輔助生化感測器,其中該封裝材料係環氧樹脂。 The photo-assisted biochemical sensor of claim 7, wherein the encapsulating material is an epoxy resin. 如申請專利範圍第1項所述之光輔助生化感測器,更包含一參考電 極,置於該受測溶液中,用以提供一穩定電位。 The photo-assisted biochemical sensor described in claim 1 of the patent application further includes a reference power The pole is placed in the test solution to provide a stable potential. 如申請專利範圍第1項所述之光輔助生化感測器,其中該發光元件係選自發光二極體(LED)、有機發光二極體(OLED)、雷射二極體(LD)及電激發光元件(EL)所組成的群組之一。 The photo-assisted biochemical sensor according to claim 1, wherein the light-emitting element is selected from the group consisting of a light-emitting diode (LED), an organic light-emitting diode (OLED), and a laser diode (LD). One of the groups consisting of electroluminescent elements (EL). 如申請專利範圍第1項所述之光輔助生化感測器,其中該發光元件之數量係複數個,並以陣列方式排列。 The photo-assisted biochemical sensor according to claim 1, wherein the number of the light-emitting elements is plural and arranged in an array. 如申請專利範圍第1項所述之光輔助生化感測器,其中該發光元件係連接一控制元件,用以控制該發光元件之發光。 The photo-assisted biochemical sensor of claim 1, wherein the light-emitting element is coupled to a control element for controlling illumination of the light-emitting element.
TW98139918A 2009-11-24 2009-11-24 Light assisted biochemical sensor TWI400815B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98139918A TWI400815B (en) 2009-11-24 2009-11-24 Light assisted biochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98139918A TWI400815B (en) 2009-11-24 2009-11-24 Light assisted biochemical sensor

Publications (2)

Publication Number Publication Date
TW201119071A TW201119071A (en) 2011-06-01
TWI400815B true TWI400815B (en) 2013-07-01

Family

ID=44935957

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98139918A TWI400815B (en) 2009-11-24 2009-11-24 Light assisted biochemical sensor

Country Status (1)

Country Link
TW (1) TWI400815B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487902B (en) * 2013-10-24 2015-06-11 Univ Chang Gung Light addressable potentiometric sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544752B (en) * 2002-05-20 2003-08-01 Univ Nat Yunlin Sci & Tech Method for producing SnO2 gate ion sensitive field effect transistor (ISFET), and method and device for measuring the temperature parameters, drift and hysteresis values thereof
TW200306167A (en) * 2002-04-03 2003-11-16 Ntu Ventures Private Ltd Fiber optic bio-sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200306167A (en) * 2002-04-03 2003-11-16 Ntu Ventures Private Ltd Fiber optic bio-sensor
TW544752B (en) * 2002-05-20 2003-08-01 Univ Nat Yunlin Sci & Tech Method for producing SnO2 gate ion sensitive field effect transistor (ISFET), and method and device for measuring the temperature parameters, drift and hysteresis values thereof

Also Published As

Publication number Publication date
TW201119071A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
US8901678B2 (en) Light-assisted biochemical sensor
JP4762542B2 (en) Photoelectric device
Nalwa et al. Polythiophene-fullerene based photodetectors: Tuning of spectral response and application in photoluminescence based (bio) chemical sensors
TWI384666B (en) Light detection device structure
JP5093844B2 (en) Reflex coupler with integrated organic light emitting device
US9741781B2 (en) Optoelectronic component with adjustable light emission and method for producing the same
Shu et al. Highly sensitive on-chip fluorescence sensor with integrated fully solution processed organic light sources and detectors
US20090134309A1 (en) Chip for analyzing a medium comprising an integrated organic light emitter
US7408170B2 (en) Ultraviolet detector
Lefèvre et al. Integration of fluorescence sensors using organic optoelectronic components for microfluidic platform
JP2018525649A (en) Analysis equipment
Wu et al. A flexible nanocrystal photovoltaic ultraviolet photodetector on a plant membrane
Liu et al. Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode
CN103528802B (en) A kind of method utilizing electroluminescence spectrometry internal quantum efficiency of nitride
Yang et al. Detection of wavelength in the range from ultraviolet to near infrared light using two parallel PtSe 2/thin Si Schottky junctions
Zhao et al. Ultraviolet‐Sensitive OLED with Tunable Wavelength and Intensity by Integrated ZnO Nanowires Schottky Junction
TWI400815B (en) Light assisted biochemical sensor
CN109781674B (en) Gas detection device, preparation method thereof and gas monitoring system
KR20150093738A (en) Organic optoelectronic component with infrared detector
US10473613B2 (en) Light-addressable potentiometric sensing units
CN108709905B (en) Light enhancement type gas sensitive element based on non-uniform illumination
KR20130012431A (en) Photodiode and photo sensor including photodiode
Kim et al. Monolithic Perovskite–Silicon Dual‐Band Photodetector for Efficient Spectral Light Discrimination
US6137118A (en) Vapochromic photodiode
JP6456685B2 (en) Organic thin film solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees