TWI399549B - Apparatus for detecting microwave and the method thereof - Google Patents

Apparatus for detecting microwave and the method thereof Download PDF

Info

Publication number
TWI399549B
TWI399549B TW98127958A TW98127958A TWI399549B TW I399549 B TWI399549 B TW I399549B TW 98127958 A TW98127958 A TW 98127958A TW 98127958 A TW98127958 A TW 98127958A TW I399549 B TWI399549 B TW I399549B
Authority
TW
Taiwan
Prior art keywords
current
wire
ferromagnetic layer
layer
spin
Prior art date
Application number
TW98127958A
Other languages
Chinese (zh)
Other versions
TW201107762A (en
Inventor
Son Hsien Chen
Ching Ray Chang
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW98127958A priority Critical patent/TWI399549B/en
Publication of TW201107762A publication Critical patent/TW201107762A/en
Application granted granted Critical
Publication of TWI399549B publication Critical patent/TWI399549B/en

Links

Description

一種用於偵測微波的裝置及其方法Device for detecting microwave and method thereof

本發明係關於一種用於偵測微波的裝置及其方法,特別是關於偵測微波之自旋向上電流(spin up current)及自旋向下(spin down current)電流的裝置及其方法。The present invention relates to an apparatus for detecting microwaves and a method thereof, and more particularly to an apparatus and method for detecting a spin up current and a spin down current of a microwave.

“第二代”自旋電流量測裝置已經將焦點大量地放在利用同調自旋狀態(coherent spin state)和自旋在金屬與半導體內的動力機制(dynamics)。這需要去維持和控制與外部的(外加的)或內部的(本質存在的)淨磁場橫切的自旋。屬於這現象並包含同調自旋(coherent spin)和時間演進的顯著例子是自旋轉移磁矩機制(spin-transfer torque),其中被注入鐵磁性層的足夠大密度之自旋電流能:(i)切換該鐵磁層的磁性(magnetization)從一靜止狀態至另一狀態及(ii)使該鐵磁層的magnetization產生具有穩態進動磁化作用的動態狀態(dynamical situation)。Spin-transfer torque的反(倒置)效應稱之自旋釋放(spin pumping)。我們注意到在spin pumping效應中並不需要施加任何偏壓。經由微波驅動的方式,在鐵磁共鳴(FMR)條件下之單一鐵磁層吸收了微波的角動量,該鐵磁層即會發射純自旋電流(pure spin currents)至鄰近的金屬層。The "second generation" spin current measuring devices have placed a large amount of focus on the dynamics of the coherent spin state and the spins in metals and semiconductors. This requires maintaining and controlling the spin with the external (additional) or internal (essentially present) net magnetic field. A notable example of this phenomenon and the inclusion of coherent spins and time evolution is the spin-transfer torque, in which a sufficiently large density of spin current can be injected into the ferromagnetic layer: (i Switching the magnetization of the ferromagnetic layer from a rest state to another state and (ii) causing the magnetization of the ferromagnetic layer to produce a dynamical situation with steady state precession magnetization. The inverse (inversion) effect of the Spin-transfer torque is called spin pumping. We note that there is no need to apply any bias in the spin pumping effect. Via a microwave-driven method, a single ferromagnetic layer under ferromagnetic resonance (FMR) conditions absorbs the angular momentum of the microwave, which emits pure spin currents to adjacent metal layers.

藉由在非線性結構中的磁化作用力的吉勃特阻尼(Gilbert damping)的增加,早期的實驗已經可以觀察到從鐵磁性層(F)層被發射的自旋電流伴隨磁化作用。最近的實驗經由反向自旋霍爾效應(the inverse spin Hall effect),可將被發射出的自旋電流轉換成伏特信號。其他測量結構考慮了N/F/N(F-鐵磁性層、N-金屬層)多層材料,利用在不同F/N(F-鐵磁性層、N-金屬層)界面的反射所造成的回流的自旋電流,在進動鐵磁性層中(亦即被施加微波的鐵磁層),這些回流的自旋電流將轉換成可量測的電壓訊號。因為帶有頻率在GHz範圍的快速進動自旋(fast precessing spins)從鐵磁性層可發射至鄰近的金屬層,以上這些實驗建議自旋釋放(spin pumping)裝置可以當作自旋電流(spin current)的發電機來使用。該快速進動自旋(fast precessing spins)提供了新機能(new functionality)於金屬自旋電子學(metal spintronics)的應用上。而藉由此自旋電流可以量測出微波的頻率。Early experiments have observed that the spin current emitted from the ferromagnetic layer (F) layer is accompanied by magnetization by an increase in the Gilbert damping of the magnetizing force in the nonlinear structure. Recent experiments have converted the emitted spin current into a volt signal via the inverse spin Hall effect. Other measurement structures consider N/F/N (F-ferromagnetic layer, N-metal layer) multilayer materials, using reflow caused by reflection at different F/N (F-ferromagnetic layer, N-metal layer) interface The spin current is converted into a measurable voltage signal in the pre-energized ferromagnetic layer (ie, the ferromagnetic layer to which the microwave is applied). Since fast precessing spins with frequencies in the GHz range can be emitted from the ferromagnetic layer to adjacent metal layers, these experiments suggest that the spin pumping device can be used as a spin current (spin). Current) is used by the generator. The fast precessing spins provide new functionality in the application of metal spintronics. The frequency of the microwave can be measured by the spin current.

請參閱第一圖,第一圖所示為習知偵測微波的裝置圖,其中該用以偵測微波裝置係包含:一鐵磁性層101、一金屬層102,一第一導線103、一第二導線104,其中該金屬層102的一第一端耦接至該鐵磁性層101的一第一端;該金屬層102的一第二端耦接至該第一導線103的一第一端,該鐵磁性層101的一第二端耦接至該第二導線104的一第一端,此為習知用以偵測微波的裝置。Please refer to the first figure. The first figure shows a device for detecting microwaves. The device for detecting microwaves includes: a ferromagnetic layer 101, a metal layer 102, a first wire 103, and a a second wire 104, wherein a first end of the metal layer 102 is coupled to a first end of the ferromagnetic layer 101; a second end of the metal layer 102 is coupled to a first end of the first wire 103 The second end of the ferromagnetic layer 101 is coupled to a first end of the second wire 104. This is a conventional device for detecting microwaves.

當該鐵磁性層101接收一微波後,由於該鐵磁性層101本身帶有自旋(spin)及微波帶有一角動量,所以在某頻率時該鐵磁層101會不斷地吸收微波所送進來的角動量,而根據角動量守恆定律,該鐵磁性層101會將多餘的角動量以自旋(spin)的形式被釋放出去,因此我們即可量到自旋電流(spin current)。After the ferromagnetic layer 101 receives a microwave, since the ferromagnetic layer 101 itself has a spin and the microwave has an angular momentum, the ferromagnetic layer 101 continuously absorbs microwaves at a certain frequency. The angular momentum, and according to the law of conservation of angular momentum, the ferromagnetic layer 101 will release the excess angular momentum in the form of a spin, so that we can measure the spin current.

由於習知量測自旋電流的裝置,並未引進“角動量”此概念,也因此對於量測出來的電流就沒有自旋向上(spin up)電流以及自旋向下(spin down)電流觀念的引進。所以習知量測的自旋電流皆為自旋向上(spin up)電流與自旋向下(spin down)電流的總合。因此,當我們利用習知的自旋電流裝置所量測出來的電壓(習知的自旋電流裝置所量測到的電壓約為nV等級)來推得微波所打進來的頻率(f)時,所得到的值就與實際值或理想值(理想值的電壓約為μV等級)相差甚遠。當作為偵測微波的感應器時,就會造成結果不準確與不靈敏了。Because of the conventional device for measuring the spin current, the concept of "angular momentum" has not been introduced, and therefore there is no spin up current and spin down current concept for the measured current. The introduction. Therefore, the conventionally measured spin currents are the sum of the spin up current and the spin down current. Therefore, when we use the voltage measured by the conventional spin current device (the voltage measured by the conventional spin current device is about nV level) to estimate the frequency (f) that the microwave is input into. The value obtained is far from the actual value or the ideal value (the ideal voltage is about μV level). When used as a sensor to detect microwaves, it will result in inaccurate and insensitive results.

職是之故,申請人鑑於習知技術中所產生之缺失,經過悉心試驗與研究,並一本鍥而不捨之精神,終構思出本案「用於偵測微波的裝置及其方法」,能夠克服上述缺點,以下為本案之簡要說明。For the sake of the job, the applicant has been able to overcome the above-mentioned problems in the prior art, through careful experimentation and research, and a perseverance spirit, and finally conceived the "device and method for detecting microwaves". Disadvantages, the following is a brief description of the case.

本發明係為用以偵測微波裝置及其方法,為達到此目的,本發明所使用的技術手段為提供了一種裝置,其具有外接四條導線於一鐵磁性層之兩側並引進角動量之概念,以使裝置能具有高靈敏度,並可藉由此裝置量測到習知技術無法量到的μv等級的電壓。The present invention is for detecting a microwave device and a method thereof. To achieve the object, the technical means used in the present invention provides a device having four wires connected to each other on both sides of a ferromagnetic layer and introducing angular momentum. The concept is to enable the device to have high sensitivity and to measure the voltage of the μv level that cannot be measured by conventional techniques.

本發明之第一構想在於提供一種用於用以偵測微波的方法,該方法包含下列步驟:(a)提供具有一第一側與一第二側的一第一鐵磁性層、一第一組導線及一第二組導線;(b)藉由該第一鐵磁性層接收一微波,並產生一第一電流及一第二電流;以及(c)透過該第一組導線及該第二組導線來量測該第一電流及該第二電流。A first concept of the present invention is to provide a method for detecting microwaves, the method comprising the steps of: (a) providing a first ferromagnetic layer having a first side and a second side, a first a set of wires and a second set of wires; (b) receiving a microwave by the first ferromagnetic layer and generating a first current and a second current; and (c) transmitting the first set of wires and the second A set of wires is used to measure the first current and the second current.

根據上述構想,其中該第一組導線包含:具有一第一端與一第二端的一第一導線;及具有一第一端與一第二端的一第二導線;以及該第二組導線包含:具有一第一端與一第二端的一第三導線;及具有一第一端與一第二端的一第四導線。According to the above concept, the first set of wires includes: a first wire having a first end and a second end; and a second wire having a first end and a second end; and the second set of wires includes a third wire having a first end and a second end; and a fourth wire having a first end and a second end.

根據上述構想,該步驟(c)的該第一電流係為一自旋向下(spin down)的電流,該第二電流係為一自旋向上(spin up)的電流。According to the above concept, the first current of the step (c) is a spin down current, and the second current is a spin up current.

根據上述構想,該步驟(a)更包含下列步驟:(a1)提供具有一第一側與一第二側的一絕緣體層;(a2)鄰接該絕緣體層的該第一側至該第一鐵磁性層的該第一側;以及(a3)分別耦接該第一組導線及該第二組導線至該絕緣體層的該第二側與該第一鐵磁性層的該第二側。According to the above concept, the step (a) further comprises the steps of: (a1) providing an insulator layer having a first side and a second side; (a2) abutting the first side of the insulator layer to the first iron The first side of the magnetic layer; and (a3) respectively coupling the first set of wires and the second set of wires to the second side of the insulator layer and the second side of the first ferromagnetic layer.

根據上述構想,其中該步驟(a)包含下列步驟:(a1)提供一絕緣體層及具有一第一側與一第二側的一第二鐵磁性層;(a2)分別鄰接該絕緣體層兩側至該第一鐵磁性層的該第一側及該第二鐵磁性層的該第一側;以及(a3)分別耦接該第一組導線及該第二組導線至該第二鐵磁性層的該第二側及該第一鐵磁性層的該第二側。According to the above concept, the step (a) comprises the steps of: (a1) providing an insulator layer and a second ferromagnetic layer having a first side and a second side; (a2) respectively adjoining the sides of the insulator layer And the first side of the first ferromagnetic layer and the first side of the second ferromagnetic layer; and (a3) respectively coupling the first set of wires and the second set of wires to the second ferromagnetic layer The second side and the second side of the first ferromagnetic layer.

本發明之第二構想在於提供一種用於偵測微波的裝置,包含:一鐵磁性層,具有一第一側與一第二側,用以接收一微波以產生一第一電流及一第二電流;以及一第一組導線及一第二組導線,其分別耦接至該鐵磁性層的該第一側與該第二側,用以傳輸該鐵磁性層所產生的該第一電流及該第二電流。A second aspect of the present invention provides a device for detecting microwaves, comprising: a ferromagnetic layer having a first side and a second side for receiving a microwave to generate a first current and a second And a first set of wires and a second set of wires respectively coupled to the first side and the second side of the ferromagnetic layer for transmitting the first current generated by the ferromagnetic layer and The second current.

根據上述構想,其中該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的該第一端耦接至該鐵磁性層的該第一側的一第一上端;及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該鐵磁性層的該第一側的一第一下端;以及該第二組導線包含:具有一第一端與一第二端的一第三導線,該第三導線的該第一端耦接至該鐵磁性層的該第二側的一第二上端;及具有一第一端與一第二端的一第四導線,該第四導線的該第一端耦接至該鐵磁性層的該第二側的一第二下端。According to the above concept, the first set of wires includes: a first wire having a first end and a second end, the first end of the first wire being coupled to the first side of the ferromagnetic layer a first upper end; and a second wire having a first end and a second end, the first end of the second wire being coupled to a first lower end of the first side of the ferromagnetic layer; The second set of wires includes: a third wire having a first end and a second end, the first end of the third wire being coupled to a second upper end of the second side of the ferromagnetic layer; a first end and a second end of a fourth wire, the first end of the fourth wire being coupled to a second lower end of the second side of the ferromagnetic layer.

根據上述構想,更可包含:一第一金屬層,該第一組導線透過該第一金屬層與該鐵磁性層連接;以及一第二金屬層,該第二組導線透過該第二金屬層與該鐵磁性層連接。According to the above concept, the method further includes: a first metal layer, the first set of wires is connected to the ferromagnetic layer through the first metal layer; and a second metal layer, the second set of wires passing through the second metal layer Connected to the ferromagnetic layer.

根據上述構想,其中該第一電流係為一自旋向上(spin up)的電流,該第二電流係為一自旋向下(spin down)的電流。According to the above concept, the first current is a spin up current, and the second current is a spin down current.

根據上述構想,更包含具有一第一側與一第二側的一絕緣體層,該絕緣體層的該第一側鄰接於該鐵磁性層的該第一側,且該第一組導線及該第二組導線分別耦接至該絕緣體層的該第二側與該鐵磁性層的該第二側。According to the above concept, further comprising an insulator layer having a first side and a second side, the first side of the insulator layer being adjacent to the first side of the ferromagnetic layer, and the first set of wires and the first Two sets of wires are respectively coupled to the second side of the insulator layer and the second side of the ferromagnetic layer.

根據上述構想,其中該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的第一端耦接至該絕緣體層的第二側的一第一上端;及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該絕緣體層的該第二側的一第一下端;以及該第二組導線包含:具有一第一端與一第二端的一第三導線,該第三導線的該第一端耦接至該鐵磁性層的該第二側的一第二上端;及具有一第一端與一第二端的一第四導線,該第四導線的該第一端耦接至該鐵磁性層的該第二側的一第二下端。According to the above concept, the first set of wires includes: a first wire having a first end and a second end, the first end of the first wire being coupled to a first upper end of the second side of the insulator layer And a second wire having a first end and a second end, the first end of the second wire being coupled to a first lower end of the second side of the insulator layer; and the second set of wires The method includes: a third wire having a first end and a second end, the first end of the third wire being coupled to a second upper end of the second side of the ferromagnetic layer; and having a first end And a fourth wire of the second end, the first end of the fourth wire is coupled to a second lower end of the second side of the ferromagnetic layer.

根據上述構想,更包含:一第一金屬層,其中該第一組導線透過該第一金屬層與該絕緣體層連接;以及一第二金屬層,該第二組導線透過該第二金屬層與該鐵磁性層連接。According to the above concept, further comprising: a first metal layer, wherein the first set of wires are connected to the insulator layer through the first metal layer; and a second metal layer, the second set of wires passing through the second metal layer The ferromagnetic layer is connected.

本發明之第三構想在於提供一種用於偵測微波的裝置,包含:一第一鐵磁性層,具有一第一側與一第二側,用以接收一微波產生一第一電流及一第二電流;一第二鐵磁性層,具有一第一側與一第二側、一絕緣體層,其中該絕緣體層的兩側分別鄰接該第一鐵磁性層的該第一側與該第二鐵磁性層的該第一側;以及一第一組導線及一第二組導線,用以傳輸由該第一鐵磁性層所產生的該第一電流與該第二電流。A third aspect of the present invention provides a device for detecting microwaves, including: a first ferromagnetic layer having a first side and a second side for receiving a microwave to generate a first current and a first a second ferromagnetic layer having a first side and a second side, an insulator layer, wherein the two sides of the insulator layer respectively adjoin the first side of the first ferromagnetic layer and the second iron The first side of the magnetic layer; and a first set of wires and a second set of wires for transmitting the first current and the second current generated by the first ferromagnetic layer.

根據上述構想,其中該第一組導線及該第二組導線分別耦接至該第二鐵磁性層的該第二側及該第一鐵磁性層的該第二側。According to the above concept, the first set of wires and the second set of wires are respectively coupled to the second side of the second ferromagnetic layer and the second side of the first ferromagnetic layer.

根據上述構想,其中該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的該第一端耦接至該第一鐵磁性層的該第二側的一第一上端;及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該第一鐵磁性層的該第二側的一第一下端;以及該第二組導線包含:具有一第一端與一第二端的一第三導線,該第三導線的該第一端耦接至該第二鐵磁性層的該第二側的一第二上端;及具有一第一端與一第二端的一第四導線,該第四導線的該第一端耦接至該第二鐵磁性層的該第二側的一第二下端。According to the above concept, the first set of wires includes: a first wire having a first end and a second end, the first end of the first wire being coupled to the second side of the first ferromagnetic layer a first upper end; and a second wire having a first end and a second end, the first end of the second wire being coupled to a first side of the second side of the first ferromagnetic layer And the second set of wires includes: a third wire having a first end and a second end, the first end of the third wire being coupled to the second side of the second ferromagnetic layer a second upper end; and a fourth wire having a first end and a second end, the first end of the fourth wire being coupled to a second lower end of the second side of the second ferromagnetic layer.

根據上述構想,其中更包含:一第一金屬層,該第一組導線透過該第一金屬層與該第一鐵磁性層連接;以及一第二金屬層,該第二組導線透過該第二金屬層與該第二鐵磁性層連接。According to the above concept, further comprising: a first metal layer, the first set of wires being connected to the first ferromagnetic layer through the first metal layer; and a second metal layer, the second set of wires passing through the second A metal layer is coupled to the second ferromagnetic layer.

根據上述構想,其中該第一電流係為一自旋向上(spin up)的電流,該第二電流係為一自旋向下(spin down)的電流。According to the above concept, the first current is a spin up current, and the second current is a spin down current.

本發明之第四構想在於提供一種用於偵測微波的裝置,包含:一鐵磁性層,具有一第一側與一第二側,用以接收一微波產生一第一電流及一第二電流;以及一第一組導線,耦接至該鐵磁性層的該第一側,用以傳輸該鐵磁性層所產生的該第一電流及該第二電流。A fourth aspect of the present invention provides a device for detecting microwaves, comprising: a ferromagnetic layer having a first side and a second side for receiving a microwave to generate a first current and a second current And a first set of wires coupled to the first side of the ferromagnetic layer for transmitting the first current and the second current generated by the ferromagnetic layer.

根據上述構想,其中該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的該第一端耦接至該鐵磁性層的該第一側的一第一上端;以及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該鐵磁性層的該第一側的一第一下端。According to the above concept, the first set of wires includes: a first wire having a first end and a second end, the first end of the first wire being coupled to the first side of the ferromagnetic layer a first upper end; and a second wire having a first end and a second end, the first end of the second wire being coupled to a first lower end of the first side of the ferromagnetic layer.

根據上述構想,其中該第一電流係為一自旋向上(spin up)的電流,該第二電流係為一自旋向下(spin down)的電流。According to the above concept, the first current is a spin up current, and the second current is a spin down current.

以下針對本案於提升偵測微波感應裝置的靈敏度,及提供偵測微波之方法的較佳實施例進行描述,但實際之配置及所採行之方式,並不必完全符合所描述之內容,熟習本技藝者,當能在不脫離本案之實際精神及範圍的情況下,做出種種的變化及修改。熟悉本技術者,須了解下文中的說明僅係做為例證用,而不用於限制本案。The following describes the preferred embodiment of the method for improving the sensitivity of the detecting microwave sensing device and providing a method for detecting the microwave, but the actual configuration and the manner of the method are not necessarily completely in accordance with the described content. The artist can make various changes and modifications without departing from the actual spirit and scope of the case. Those skilled in the art will understand that the description below is for illustrative purposes only and is not intended to be limiting.

請參閱第二圖,其為習知偵測微波方法中的實驗室座標之結構示意圖。第二圖係為一維的模型,其藉由進動自旋(precessing spins)來詳述釋放(pumping)的基本物理現象,而可獲得對於釋放電流(pumped current)大小的一個可解析解。於第二圖中可知,我們利用該第一鐵磁性層10接收一微波,其該第一鐵磁性層10帶有一自旋(spin),該自旋繞z軸做進動的運動且與z軸有一錐角Θ。該微波具有一角動量ω,當在某個頻率時,該角動量會被該自旋吸收並於左右兩邊產生自旋電流(spin current),藉由該第一導線11以及該第三導線32將自旋電流(spin current)傳送到一伏特計、一安培計或其他用以量測電流的工具(圖中未標示)來量測電流進而推得該微波所打進來的頻率。將於下述說明如何利用理論計算之方法引進角動量的計算概念。Please refer to the second figure, which is a schematic structural diagram of a laboratory coordinate in a conventional method for detecting microwaves. The second graph is a one-dimensional model that details the basic physical phenomena of pumping by precessing spins to obtain a resolvable solution for the magnitude of the pumped current. As can be seen from the second figure, we use the first ferromagnetic layer 10 to receive a microwave, the first ferromagnetic layer 10 with a spin, the spin pre-moving motion around the z-axis and the z-axis There is a cone angle. The microwave has an angular momentum ω. When the frequency is at a certain frequency, the angular momentum is absorbed by the spin and generates a spin current on the left and right sides, and the first wire 11 and the third wire 32 are The spin current is transmitted to a voltmeter, an ammeter, or other tool for measuring current (not shown) to measure the current and thereby derive the frequency at which the microwave is drawn. The following describes how to use the theoretical calculation method to introduce the concept of calculation of angular momentum.

首先我們介紹在F/I/F(F-鐵磁性層、I-絕緣體層)和F/I/N(F-鐵磁性層、I-絕緣體層、N-金屬層)接合中的非平衡格林函數(NEGF)方法來解釋自旋釋放(spin pumping)。我們注意到在非平衡格林函數(NEGF)能夠研究自旋釋放藉由時變場作用於有限尺寸的順磁性裝置,因此可模擬真實的實驗裝置。另外,非平衡格林函數(NEGF)方法採微觀哈米爾頓(Hamiltonian)作為輸入,這使得,(i)實驗裝置的幾何,(ii)絕緣體障礙物的性質,以及(iii)自旋翻轉(spin-flip)效應皆可被考慮到。非平衡格林函數(NEGF)方法更能經由第一原理計算得到在真實情況中在F/I(F-鐵磁性層、I絕緣體層)界面附近電子分部和磁性結構。First, we introduce unbalanced Green in F/I/F (F-ferromagnetic layer, I-insulator layer) and F/I/N (F-ferromagnetic layer, I-insulator layer, N-metal layer) bonding. The function (NEGF) method is used to explain spin pumping. We note that the non-equilibrium Green's function (NEGF) can study the spin release by acting on a finite-size paramagnetic device with a time-varying field, thus simulating a real experimental setup. In addition, the non-equilibrium Green's function (NEGF) method uses a microscopic Hamiltonian as input, which results in (i) the geometry of the experimental setup, (ii) the nature of the insulator barrier, and (iii) spin flip (spin). -flip) effects can all be considered. The Non-Equilibrium Green's Function (NEGF) method is better able to calculate the electronic fraction and magnetic structure near the F/I (F-ferromagnetic layer, I insulator layer) interface in the real world via the first principle.

此外,非平衡格林函數(NEGF)方法給出了一個簡易的物理圖示來解釋在鐵磁性多層系統中的自旋釋放(pumping)。我們利用廣泛被使用的斯托納型哈米爾頓(Stoner-type Hamiltonian),In addition, the Non-Equilibrium Green's Function (NEGF) method gives a simple physical diagram to explain the spin-up in a ferromagnetic multilayer system. We use the widely used Stoner-type Hamiltonian.

來描述研究的系統。注意到式(1)中的緊束縛哈米爾頓的基底(basis)是用原子局部軌道(atomic local orbital)表示(represent)。其中的時變場是由沿著局部的磁化方向的單位向量m (t )來描述。該時變場考慮了沿z軸方向具有一錐角Θ的穩態進動(steadily precessing)。運算子用以產生(消滅)電子(在r位置及具有電子自旋σ的能階上),而γ(如第二圖所示)為鄰近的電子跳躍能量(hopping energy)。經由材料相關交換位能Δ r 描述流動電子的耦合用以收集磁力,其中是包立矩陣(Pauli matrices)而為包立矩陣元(matrix elements)。在此,ε r (未標示於第二圖中)是在位置r的位能,它能描述位能障(potential barriers)(如同ε r l 在第二圖的另一邊),無序的外部磁場,以及閘偏壓(gate voltage)。我們考慮半無限(semi-infinite)電極(無自旋和電子的相互作用)。每個電極具有相同的電化學位能μp =EF (圖中未標示),其中EF 為費米能量(Fermi energy)。To describe the system of research. It is noted that the tightly bound Hamiltonian base in equation (1) is represented by atomic local orbital. The time-varying field is described by a unit vector m ( t ) along the local magnetization direction. This time varying field takes into account steady-state precessing with a cone angle 沿 along the z-axis. Operator Used to generate (destroy) electrons (at the r position and the energy level with electron spin σ), and γ (as shown in the second figure) is the adjacent electron hopping energy. The coupling of the flowing electrons is described via the material-dependent exchange potential energy Δ r to collect the magnetic force, wherein Is the Pauli matrices It is a matrix element. Here, ε r (not shown in the second figure) is the potential energy at position r, which can describe potential barriers (like ε r = ε l on the other side of the second graph), disordered The external magnetic field, as well as the gate voltage. We consider semi-infinite electrodes (without spin and electron interaction). Each electrode has the same electrochemical potential energy μ p = E F (not shown), where E F is Fermi energy.

非平衡格林函數(NEGF)包含兩基本函數:(i)延遲(the retarded),The non-equilibrium Green's function (NEGF) consists of two basic functions: (i) the retarded,

和(ii)較低(the lesser)And (ii) lower (the lesser)

格林函數(<…>為非平衡統計平均)分別描述可利用的量子狀態及電子如何佔據這些狀態。一般而言,在非平衡問題中,這些格林函數分別和兩時間變數有關。然而,用於由進動磁化作用所造成時間相關的位能的特別情況如自旋釋放(pumping)問題,難處理之兩時間相關(double-time dependent)非平衡格林函數(NEGF)可被簡化。此簡化方法為引入一轉換,此轉換對應到一個跟著電子自旋逕動而動的旋轉座標系統。因此,在旋轉座標上的哈米爾頓(Hamiltonian)The Green's function (<...> is an unbalanced statistical average) describes the available quantum states and how electrons occupy these states, respectively. In general, in the non-equilibrium problem, these Green's functions are related to two time variables, respectively. However, for the special case of the time-dependent bit energy caused by the precession magnetization, such as the spining problem, the difficult-to-handle double-time dependent non-equilibrium Green's function (NEGF) can be simplified. . This simplified method is to introduce a conversion This conversion corresponds to a rotary coordinate system that follows the movement of the electron spin. Therefore, Hamiltonian on the rotating coordinates

變成和時間無關。其中一致出現在系統的任何一個地方,包含導體樣本(sample)以及金屬電極(electrodes)。此會造成金屬電極的能帶中的自旋分離(spin-split)。於是在旋轉座標裡,造成一個四端接口裝置或等效電路如第三圖所示。It has nothing to do with time. among them Consistent in any part of the system, including conductor samples and electrodes. this It causes spin-split in the energy band of the metal electrode. So in the rotating coordinates, Create a four-terminal interface device or equivalent circuit as shown in the third figure.

請參閱第三圖,其為本發明偵測微波方法於旋轉座標上的虛擬結構示意圖。第三圖係為旋轉座標下的模型,於第三圖中所示,利用該第一鐵磁性層10接收該微波,且於該第一鐵磁性層10的兩側分別接上該第一導線11、一第二導線12、該第三導線32及一第四導線33,且於該第一導線11及該第三導線32用以傳輸由該第一鐵磁性層10所產生的自旋向下電流(圖中未標示),於該第二導線12及該第四導線33用以傳輸由該第一鐵磁性層10所產生的自旋向上電流(圖中未標示)。Please refer to the third figure, which is a schematic diagram of the virtual structure of the method for detecting microwaves on the rotating coordinates of the present invention. The third figure is a model under a rotating coordinate. As shown in the third figure, the microwave is received by the first ferromagnetic layer 10, and the first wire is respectively connected to both sides of the first ferromagnetic layer 10. 11. A second wire 12, the third wire 32 and a fourth wire 33, and the first wire 11 and the third wire 32 are used to transmit a spin direction generated by the first ferromagnetic layer 10. A current (not shown) is applied to the second wire 12 and the fourth wire 33 for transmitting a spin-up current (not shown) generated by the first ferromagnetic layer 10.

上述第三圖的裝置引導我們在設定非平衡格林函數(NEGF)用於描述四個電極或導線中來回的電流,符號p,σ(p=L、R及σ=↑、↓),其中它的偏壓為。這些電極或導線等效於半金屬鐵磁電極(注意到半金屬鐵磁電極中只有一種自旋種類會被發射或吸收)。旋轉座標的格林函數如下The device of the third figure above guides us to set the unbalanced Green's function (NEGF) to describe the current going back and forth in the four electrodes or wires, the symbol p, σ (p = L, R and σ = ↑, ↓), where Bias is . These electrodes or wires are equivalent to semi-metallic ferromagnetic electrodes (note that only one type of spin in the semi-metallic ferromagnetic electrode is emitted or absorbed). The Green's function of the rotating coordinates is as follows

其中E為入射電子的能量。上述的格林函數中,是由基本局部軌道(atomic local-orbital)為基底矩陣。延遲自恰能量(self-energy)矩陣描述了導線和樣品間的互相作,此自恰能量(self-energy)矩陣決定自旋-σ電子的逃逸樣品的速率(escape rates)。Where E is the energy of the incident electron. In the above Green's function, with The atomic local-orbital is the base matrix. Delayed self-energy matrix Describes the interaction between the wire and the sample, this self-energy matrix Determine the escape rates of the spin-σ electrons.

對於強關聯系統,將包含電子-電子及電子-聲子的分布,而對於自由電子系統,係由哈米爾頓第(4)式(Hamiltonian 4)來描述。較低自恰能量(self-energy)可經由算出,如For strong correlation systems, The distribution of electron-electron and electron-phonons will be included, while for free electron systems, it will be described by Hamiltonian 4 (Hamiltonian 4). Lower self-energy can be via Calculate, such as

其中,能階寬度矩陣(the level broadening matrix)Where the level broadening matrix

是從實驗室座標中的半無限長導線(semi-infinite leads)的自恰能量矩陣中獲得,該自恰能量矩陣中,被平移的能量等效於第三圖中的偏壓。Is a self-consistent energy matrix of semi-infinite leads from the coordinates of the laboratory Obtained in the self-consistent energy matrix, translated The energy is equivalent to the bias voltage in the third figure.

在旋轉座標中四個電極的直流電流之電子分部函數如下The electronic fractional function of the DC current of the four electrodes in the rotating coordinates is as follows

其中σ=+為自旋(spin)-↑,σ=-為自旋(spin)-↓。注意到研究裝置在實驗室座標中的電極是無偏壓的,而在旋轉座標中,轉換的費米函數(9)將施給自旋↑或↓偏壓。Where σ=+ is spin-↑, and σ=- is spin-↓. It is noted that the electrodes of the study device in the laboratory coordinates are unbiased, while in the rotating coordinates, the converted Fermi function (9) will be applied to the spin ↑ or ↓ bias.

對於旋轉座標直流電流的基本傳輸量是自旋解析(spin-resolved)電流。考慮帶有自旋-σ從位置r到鄰近的位置r’的電流,如The basic amount of transmission of the DC current for the rotating coordinates is a spin-resolved current. Consider a current with a spin-σ from position r to an adjacent position r', such as

其自旋電流(11)以及電荷電流(12)流經鄰近的兩位置(r到鄰近的位置r’)之間。第(10)式能求出對於旋轉座標下模型的可解析解,假定,在零溫中,此近似是適用的。Spin current (11) and charge current (12) Flowing between adjacent two positions (r to adjacent position r'). Equation (10) can find the analytical solution for the model under the rotating coordinates, assuming In zero temperature, this approximation It is applicable.

SZ 方向的束縛電流介於進動位置與他鄰近的鐵磁性層中,如第一圖所示,其中,在頻率接近giga-HZ的情況,項可被忽略。這裡的是一維半無限長(semi-infinte)導線的自恰能量而The bound current in the S Z direction is between the precession position and the ferromagnetic layer adjacent to it, as shown in the first figure. , in the case where the frequency is close to giga-HZ, Items can be ignored. here Is the self-equal energy of a one-dimensional semi-infinte wire .

上述自旋電流係包含自旋向上電流(spin-up current)與自旋向下電流(spin-down current)的總合,而於第二圖中的自旋電流,我們無法分別量測到自旋向上電流(spin-up current)與自旋向下電流(spin-down current)。利用第(4)式中的來引進角動量的概念並且透過第(4)式,將原本在實驗室座標上與時間有關的方程式轉換成於旋轉座標軸上與時間無關的方程式,則可發現到當利用該第一鐵磁性層10接收該微波後,由於該微波本身帶有一角動量,在某頻率時會被自旋吸收,而根據角動量守恆定律,該第一鐵磁性層10會將多餘的角動量以自旋(spin)的形式被釋放出去,因此我們即可透過該伏特計、安培器或其他可量測的工具(圖中未標示)量到自旋向上電流(spin-up current)以及自旋向下電流(spin-down current)。以上係利用方程式的推導來引進角動量的概念,而實際上本發明之用以偵測微波的裝置及其方法也能利用裝置來說明,請見以下說明。The above spin current system includes the sum of the spin-up current and the spin-down current, and the spin current in the second graph cannot be measured separately. Spin-up current and spin-down current. Using the formula (4) To introduce the concept of angular momentum and to convert the time-dependent equations on the laboratory coordinates into time-independent equations on the rotating coordinate axes through equation (4), it can be found that when using the first ferromagnetic layer 10 After receiving the microwave, since the microwave itself has an angular momentum, it is absorbed by the spin at a certain frequency, and according to the law of conservation of angular momentum, the first ferromagnetic layer 10 will spin the excess angular momentum (spin) The form is released, so we can measure the spin-up current and the spin-down current (spin) through the voltmeter, ammeter or other measurable tool (not shown). -down current). The above uses the derivation of the equation to introduce the concept of angular momentum. In fact, the apparatus and method for detecting microwaves of the present invention can also be explained by means of a device, as described below.

請參閱第四圖,其為本發明之第一較佳實施例的裝置圖,該用以偵測微波的系統包含該第一鐵磁性層10,且該第一鐵磁性層10的一第一側鄰接該金屬層41的一第一側,利用該第一鐵磁性層10接收該微波以產生一第一電流及一第二電流;該第一導線11的一第一端耦接至該金屬層41的一第二側的第一上端及一第二導線12的一第一端耦接至該金屬層41之該第二側的第一下端,該第三導線32的一第一端耦接至該第一鐵磁性層10的一第二側的第二上端及該第四導線33的一第一端耦接至該第一鐵磁性層10的該第二側的第二下端,利用上述該第一導線11及該第三導線32來傳遞該第一電流與該第二導線12及該第四導線33來傳遞該第二電流,其中該第一電流係為自旋向上電流(spin up current)以及該第二電流係為一自旋向下電流(spin down current),此為用以偵測微波之裝置。Referring to FIG. 4, which is a device diagram of a first preferred embodiment of the present invention, the system for detecting microwaves includes the first ferromagnetic layer 10, and a first of the first ferromagnetic layers 10. The first side of the metal layer 41 is adjacent to the first ferroelectric layer 10 to generate a first current and a second current; a first end of the first wire 11 is coupled to the metal A first end of a second side of the layer 41 and a first end of a second wire 12 are coupled to a first lower end of the second side of the metal layer 41, and a first end of the third wire 32 A second upper end coupled to a second side of the first ferromagnetic layer 10 and a first end of the fourth lead 33 are coupled to a second lower end of the second side of the first ferromagnetic layer 10, Using the first wire 11 and the third wire 32 to transmit the first current and the second wire 12 and the fourth wire 33 to transmit the second current, wherein the first current is a spin-up current ( The spin up current) and the second current system are a spin down current, which is a device for detecting microwaves.

在本案之第四圖實施例中,該第一鐵磁性層10鄰接該金屬層41,對於本實施例而言,因為該金屬層41為完全導體,故可以將它視為導線之一部分;也就是說,在第四圖之實施例中的效果等同於未接該金屬層41的效果(如第五圖所示)。In the fourth embodiment of the present invention, the first ferromagnetic layer 10 is adjacent to the metal layer 41. For the embodiment, since the metal layer 41 is a complete conductor, it can be regarded as a part of the wire; That is to say, the effect in the embodiment of the fourth figure is equivalent to the effect of not being connected to the metal layer 41 (as shown in the fifth figure).

請參閱第五圖,其為本發明之第二較佳實施例的裝置圖,該用以偵測微波系統包含該第一鐵磁性層10,利用該第一鐵磁性層10接收該微波以產生一第一電流及一第二電流;該第一導線11的一第一端耦接至該第一鐵磁性層10的一第一側的第一上端及該第二導線12的一第一端耦接至該第一鐵磁性層10的該第一側的第一下端,該第三導線32的一第一端耦接至該鐵磁性層10一第二側的第二上端及一第四導線33的一第一端耦接至該鐵磁性層10的該第二側的第二下端,利用上述該第一導線11及該第三導線32來傳遞該第一電流與該第二導線12及該第四導線33來傳遞該第二電流,其中該第一電流係為自旋向上(spin up current)以及該第二電流係為電流自旋向下電流(spin down current),此為用以偵測微波之裝置。Please refer to FIG. 5, which is a device diagram of a second preferred embodiment of the present invention. The method for detecting a microwave system includes the first ferromagnetic layer 10, and the microwave is received by the first ferromagnetic layer 10 to generate a first current and a second current; a first end of the first wire 11 is coupled to a first upper end of the first side of the first ferromagnetic layer 10 and a first end of the second wire 12 The first end of the third wire 32 is coupled to the second upper end of the second side of the ferromagnetic layer 10 and the first end of the first ferromagnetic layer 10 A first end of the four wires 33 is coupled to the second lower end of the second side of the ferromagnetic layer 10, and the first wire 11 and the third wire 32 are used to transmit the first current and the second wire 12 and the fourth wire 33 to transmit the second current, wherein the first current is a spin up current and the second current is a current spin down current, which is A device for detecting microwaves.

在本案之實施例第五圖中,由於該鐵磁性層10左右兩邊具有對稱性,所以在這種情況之下,量測出來的電壓為零,但左右兩邊所釋放(pump)的電流是一樣的,也就是說經由該第一導線11所傳輸的自旋向上(spin up)電流與該第三導線32所傳輸的自旋(spin up)向上電流具有相同的電流值;經由該第二導線12所傳輸的自旋向下(spin down)電流與該第四導線33所傳輸的自旋(spin down)向下電流具有相同的電流值。In the fifth embodiment of the embodiment of the present invention, since the left and right sides of the ferromagnetic layer 10 have symmetry, in this case, the measured voltage is zero, but the currents of the left and right sides are the same. That is, the spin up current transmitted via the first wire 11 has the same current value as the spin up current transmitted by the third wire 32; via the second wire The spin down spin current transmitted by 12 has the same current value as the spin down down current transmitted by the fourth conductor 33.

請參閱第六圖,其為本發明之第三較佳實施例的裝置圖,該用以偵測微波系統包含該鐵磁性層10,且該鐵磁性層10的一第一側鄰接一絕緣體層21的一第一側,利用該鐵磁性層10接收該微波以產生一第一電流及一第二電流;該第一導線11的一第一端耦接至該絕緣體層21的一第二側的第一上端及該第二導線12的一第一端耦接至該絕緣體層21的該第二側的第一下端,該第三導線32的一第一端耦接至該第一鐵磁性層10的一第二側的第二上端及一第四導線33的一第一端耦接至該第一鐵磁性層10的該第二側的第二下端,利用上述該第一導線11及該第三導線32來傳遞該第一電流與該第二導線12及該第四導線33來傳遞該第二電流,其中該第一電流係為自旋向上電流(spin up current)以及該第二電流係為一自旋向下電流(spin down current),此為用以偵測微波之裝置。Please refer to a sixth embodiment, which is a device diagram of a third preferred embodiment of the present invention. The microwave system includes a ferromagnetic layer 10, and a first side of the ferromagnetic layer 10 is adjacent to an insulator layer. a first side of the first magnetic field 10 receives the microwave to generate a first current and a second current; a first end of the first wire 11 is coupled to a second side of the insulator layer 21 The first upper end of the second wire 12 and the first end of the second wire 12 are coupled to the first lower end of the second side of the insulator layer 21, and a first end of the third wire 32 is coupled to the first iron a second upper end of the second side of the magnetic layer 10 and a first end of a fourth lead 33 are coupled to the second lower end of the second side of the first ferromagnetic layer 10, using the first lead 11 And the third wire 32 transmits the first current and the second wire 12 and the fourth wire 33 to transmit the second current, wherein the first current is a spin up current and the first current The two current system is a spin down current, which is a device for detecting microwaves.

在本案之實施例第六圖中,與第五圖不同的是,第六圖中多放了一層該絕緣體層21,一般真正實驗室所用的結構為F/I/N(F-鐵磁性層,I-絕緣體層,N-金屬層),也可為N/F/I/N,而與第五圖一樣,此裝置也能將左右兩邊的金屬層視為導線的一部分。當利用該第一鐵磁性層10接收一微波後,由於該第一鐵磁性層10本身帶有自旋及該微波帶有一角動量,所以在某頻率時該第一鐵磁層10會不斷地吸收微波所送進來的角動量,而根據角動量守恆定律,該第一鐵磁性層10會將多餘的角動量以自旋的形式被釋放出去,而因為該絕緣體層21的緣故,當以自旋的形式被釋放出去時,會在該第一鐵磁性層10與該絕緣體層21之界面不斷的穿透與反射,就會造成在左右兩邊量到的電壓與左右兩邊所釋放出的電流會有些許差異(相較於第五圖)。In the sixth figure of the embodiment of the present invention, unlike the fifth figure, a layer of the insulator layer 21 is placed in the sixth figure. Generally, the structure used in the laboratory is F/I/N (F-ferromagnetic layer). , I-insulator layer, N-metal layer), can also be N/F/I/N, and like the fifth figure, this device can also regard the metal layers on the left and right sides as part of the wire. After receiving a microwave by the first ferromagnetic layer 10, since the first ferromagnetic layer 10 itself has a spin and the microwave has an angular momentum, the first ferromagnetic layer 10 is continuously at a certain frequency. Absorbing the angular momentum fed by the microwave, and according to the law of conservation of angular momentum, the first ferromagnetic layer 10 will release the excess angular momentum in the form of spin, and because of the insulator layer 21, When the form of the spin is released, the interface between the first ferromagnetic layer 10 and the insulator layer 21 is continuously penetrated and reflected, and the voltages measured on the left and right sides and the currents discharged from the left and right sides are generated. There are some differences (compared to the fifth picture).

請參閱第七圖,其為本發明之第四較佳實施例的裝置圖,該用以偵測微波系統包含該第一鐵磁性層10、該絕緣體21及該第二鐵磁性層31,其中該絕緣體21的兩側分別耦接該第一鐵磁性層10的一第一側與該第二鐵磁性層31的一第一側,利用該第二鐵磁性層31接收該微波以產生一第一電流及一第二電流;該第一導線11的一第一端耦接至該第一鐵磁性層10的一第二側的第一上端及該第二導線12的一第一端耦接至該第一鐵磁性層10的該第二側的第一下端,該第三導線32的一第一端耦接至該第二鐵磁性層31的一第二側的第二上端及一第四導線33的一第一端耦接至該第二鐵磁性層31的該第二側第二下端,利用上述該第一導線11及該第三導線32來傳遞該第一電流與該第二導線12及該第四導線33來傳遞該第二電流,其中該第一電流係為自旋向上電流(spin up current)以及該第二電流係為一自旋向下電流(spin down current),此為用以偵測微波之裝置。Referring to FIG. 7 , which is a device diagram of a fourth preferred embodiment of the present invention, the microwave system includes a first ferromagnetic layer 10 , an insulator 21 , and a second ferromagnetic layer 31 . A first side of the first ferromagnetic layer 10 and a first side of the second ferromagnetic layer 31 are coupled to the first side of the first ferromagnetic layer 10, and the microwave is received by the second ferromagnetic layer 31 to generate a first a current and a second current; a first end of the first wire 11 coupled to a first upper end of the second side of the first ferromagnetic layer 10 and a first end of the second wire 12 coupled To a first lower end of the second side of the first ferromagnetic layer 10, a first end of the third wire 32 is coupled to a second upper end of the second side of the second ferromagnetic layer 31 and a second end A first end of the fourth wire 33 is coupled to the second lower second end of the second ferromagnetic layer 31, and the first wire 11 and the third wire 32 are used to transmit the first current and the first wire The second wire 12 and the fourth wire 33 transmit the second current, wherein the first current is a spin up current and the second current system It is a spin down current, which is a device for detecting microwaves.

在本案之實施例第七圖中,與第六圖不同的是,第七圖中多放了一層該第二鐵磁性層31,一般真正實驗室所用的結構為F/I/F,也可為N/F/I/F/N,而與第五圖一樣,此裝置也能將左右兩邊的金屬層視為導線的一部分。當利用該第一鐵磁性層10接收一微波後,由於該第一鐵磁性層10與該第二鐵磁性層31本身帶有自旋及該微波帶有一角動量,所以在某頻率時該第二鐵磁層31會不斷地吸收微波所送進來的角動量,而根據角動量守恆定律,該第二鐵磁性層31會將多餘的角動量以自旋的形式被釋放出去,而因為該絕緣體層21與該第一鐵磁性層10的緣故,當以自旋的形式被釋放出去時,會在該第一鐵磁性層10與該絕緣體層21的界面及該第二鐵磁性層31與該絕緣體層21的界面間不斷的穿透與反射,就會造成在左右兩邊量到的電壓與左右兩邊所釋放出的電流會有更大的差異(相較於第六圖)。In the seventh figure of the embodiment of the present invention, different from the sixth figure, a second layer of the second ferromagnetic layer 31 is placed in the seventh figure. Generally, the structure used in the real laboratory is F/I/F. It is N/F/I/F/N, and like the fifth figure, this device can also regard the metal layers on the left and right sides as part of the wire. After receiving the microwave by the first ferromagnetic layer 10, since the first ferromagnetic layer 10 and the second ferromagnetic layer 31 themselves have a spin and the microwave has an angular momentum, the frequency is at a certain frequency. The ferromagnetic layer 31 continuously absorbs the angular momentum fed by the microwave, and according to the law of conservation of angular momentum, the second ferromagnetic layer 31 releases the excess angular momentum in the form of spin, because the insulator When the layer 21 and the first ferromagnetic layer 10 are released in the form of spin, the interface between the first ferromagnetic layer 10 and the insulator layer 21 and the second ferromagnetic layer 31 and the The continuous penetration and reflection between the interfaces of the insulator layer 21 causes a greater difference between the voltages measured on the left and right sides and the currents discharged from the left and right sides (compared to the sixth figure).

上述實施例中的所有鐵磁性層,一般來說皆會有N極與S極,舉例來說,假設該第一鐵磁性層10本身的極化方向是向上時(↑),當該第一鐵磁性層10接收一微波後所釋放的自旋:其包含自旋向上-↑與自旋向下-↓,此時若極化方向與自旋方向為同向(皆為向上),自旋向上較容易穿透該鐵磁性層10;反之若為極化方向與自旋方向為反向時(如極化方向為↑,自旋方向為↓),則所被釋放的自旋向下較不易穿透過去。All of the ferromagnetic layers in the above embodiments generally have N poles and S poles. For example, if the polarization direction of the first ferromagnetic layer 10 itself is upward (↑), when the first The spin released by the ferromagnetic layer 10 after receiving a microwave: it includes spin up-↑ and spin down-↓, and if the polarization direction is the same direction as the spin direction (all upwards), the spin It is easier to penetrate the ferromagnetic layer 10 upward; if the polarization direction is opposite to the spin direction (for example, the polarization direction is ↑, the spin direction is ↓), the released spin is downward. Not easy to penetrate the past.

如第七圖所示,若該第一鐵磁性層10與該第二鐵磁性層31的極化方向為相反方向時,可增加所量測出來電壓的差異。當該第二鐵磁層性層31接收一微波開始以自旋的形式釋放出角動量時,若被釋放的自旋與該第一鐵磁性層10及該第二鐵磁性層31皆為反向,此時會在該絕緣體層21與該第二鐵磁性層31的界面被反射一次,在該第一鐵磁性層10與該絕緣體層21的界面又會被反射一次,則在該第一導線11與該第二導線12所釋放出來的自旋電流會相較於該第三導線32與該第四導線33的電流會來的較小(因該第一導線11與該第二導線12的自旋電流經過兩次反射),如此所量測出來的電壓差異就為更大,也可以藉由此方式來得知被釋放出來的自旋的方向,例如當量出來的電壓較大時則知道被釋放出來為自旋向上電流,反之若量出來的電壓較小時則知道其為自旋向下電流,當使用為一偵測微波的感應器時,其具有相當高的靈敏度。As shown in the seventh figure, if the polarization directions of the first ferromagnetic layer 10 and the second ferromagnetic layer 31 are opposite directions, the difference in the measured voltage can be increased. When the second ferromagnetic layer 31 receives a microwave and starts to release the angular momentum in the form of spin, if the released spin is opposite to the first ferromagnetic layer 10 and the second ferromagnetic layer 31 In this case, the interface between the insulator layer 21 and the second ferromagnetic layer 31 is reflected once, and the interface between the first ferromagnetic layer 10 and the insulator layer 21 is again reflected once. The spin current discharged from the wire 11 and the second wire 12 may be smaller than the current of the third wire 32 and the fourth wire 33 (because the first wire 11 and the second wire 12 are The spin current is reflected twice, so the difference in voltage measured is larger, and the direction of the released spin can be known by this method. For example, when the equivalent voltage is large, it is known. It is released as a spin-up current. On the other hand, if the measured voltage is small, it is known as a spin-down current. When used as a sensor for detecting microwaves, it has a relatively high sensitivity.

請參閱第八圖,其為本發明之第五較佳實施例的裝置圖,該用以偵測微波系統包含該第一鐵磁性層10,利用該第一鐵磁性層10接收該微波以產生一第一電流及一第二電流;該第一導線11的一第一端耦接至該第一鐵磁性層10的一第二側的第一上端及該第二導線12的一第一端耦接至該第一鐵磁性層10的該第二側的第一下端,利用上述該第一導線11來傳遞該第一電流與該第二導線12來傳遞該第二電流,其中該第一電流係為自旋向上電流(spin up current)以及該第二電流係為一自旋向下電流(spin down current),此為用以偵測微波之裝置。Please refer to the eighth embodiment, which is a device diagram of a fifth preferred embodiment of the present invention. The method for detecting a microwave system includes the first ferromagnetic layer 10, and the microwave is received by the first ferromagnetic layer 10 to generate a first current and a second current; a first end of the first wire 11 is coupled to a first upper end of the second side of the first ferromagnetic layer 10 and a first end of the second wire 12 The first lower end of the second side of the first ferromagnetic layer 10 is coupled to the first current and the second current 12 to transmit the second current. One current is a spin up current and the second current is a spin down current, which is a device for detecting microwaves.

在第八圖實施例中,其敘述了本案之偵測微波的單端結構,利用該第一導線11與該第二導線12來傳輸自旋向上(spin up current)電流以及自旋向下(spin down current)電流,而上述各實施例皆可變換成單端外接導線的結構模式,而所得到的效果與雙端結構(雙端都各接兩條導線)一樣,而以裝置的成本來說,單端結構優於雙端結構。In the eighth embodiment, the single-ended structure for detecting microwaves in the present case is described, and the first wire 11 and the second wire 12 are used to transmit a spin up current and a spin down ( Spin down current), and the above embodiments can be converted into a single-ended external lead structure mode, and the effect obtained is the same as the double-ended structure (two wires are connected at both ends), and the cost of the device is Said single-ended structure is better than double-ended structure.

綜上所述,本案確實可提供一種用於偵測微波的裝置及其方法,並利用本案之裝置引進角動量的概念,提供在上述各結構中外接該第一導線11及該第三導線32及第二導線12與該第四導線33用以傳輸自旋向上電流及自旋向下電流且能量測到μV等級的電壓,其突破習知技術中,未引進角動量之概念,且無法量測到μV等級的電壓,但本案的偵測微波的感應器之方法與結構具有高度的靈敏性。本案技術極為簡單,製造成本極低而應用性極高,實具產業之價值,爰依法提出發明專利申請。In summary, the present invention can provide a device for detecting microwaves and a method thereof, and introduce the concept of angular momentum by using the device of the present invention, and provide the first wire 11 and the third wire 32 in the above structures. And the second wire 12 and the fourth wire 33 are used for transmitting a spin-up current and a spin-down current and measuring a voltage of a μV level, which breaks through the prior art, does not introduce the concept of angular momentum, and cannot The voltage of the μV level is measured, but the method and structure of the microwave detecting sensor of the present invention are highly sensitive. The technology of this case is extremely simple, the manufacturing cost is extremely low and the application is extremely high. It has the value of the industry, and the invention patent application is filed according to law.

以上所述係利用較佳實施例詳細說明本案,而非限制本案的範圍,因此熟知此技藝的人士應能明瞭,適當而做些為的改變與調整,仍將不失本案之要義所在,亦不脫離本案之精神與範圍,故皆應為本案的進一步實施狀況,即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之範圍內,謹請 貴審查委員明鑑,並祈惠准,是所至禱。The above descriptions of the present invention are described in detail by the preferred embodiments, and are not intended to limit the scope of the present invention. Therefore, those skilled in the art should be able to clarify that the appropriate changes and adjustments will not detract from the essence of the case. Without departing from the spirit and scope of the case, it should be further implemented in this case, that is, the equal changes and modifications made by the company in accordance with the scope of the patent application of the present invention should still fall within the scope of the patent of the present invention. Mingjian, and pray for the right, is the prayer.

101...鐵磁性層101. . . Ferromagnetic layer

102...金屬層102. . . Metal layer

103...第一導線103. . . First wire

104...第二導線104. . . Second wire

10...第一鐵磁性層10. . . First ferromagnetic layer

21...絕緣體層twenty one. . . Insulator layer

11...第一導線11. . . First wire

31...第二鐵磁性層31. . . Second ferromagnetic layer

12...第二導線12. . . Second wire

41...金屬層41. . . Metal layer

32...第三導線32. . . Third wire

33...第四導線33. . . Fourth wire

第1圖:習知偵測微波的裝置圖;Figure 1: A device diagram for detecting microwaves;

第2圖:習知偵測微波方法中的實驗室座標之結構示意圖;Figure 2: Schematic diagram of the structure of the laboratory coordinates in the conventional method of detecting microwaves;

第3圖:旋轉座標上之偵測微波虛擬結構示意圖;Figure 3: Schematic diagram of the detection microwave virtual structure on the rotating coordinates;

第4圖:本發明之第一較佳實施例圖;Figure 4 is a view showing a first preferred embodiment of the present invention;

第5圖:本發明之第二較佳實施例圖;Figure 5 is a view showing a second preferred embodiment of the present invention;

第6圖:本發明之第三較佳實施例圖;Figure 6 is a view showing a third preferred embodiment of the present invention;

第7圖:本發明之第四較佳實施例圖;及Figure 7 is a view showing a fourth preferred embodiment of the present invention; and

第8圖:本發明之第五較佳實施例圖。Figure 8 is a view showing a fifth preferred embodiment of the present invention.

10...第一鐵磁性層10. . . First ferromagnetic layer

11...第一導線11. . . First wire

12...第二導線12. . . Second wire

32...第三導線32. . . Third wire

33...第四導線33. . . Fourth wire

Claims (20)

一種用以偵測微波的方法,該方法包含下列步驟:(a)提供具有一第一側與一第二側的一第一鐵磁性層、一第一組導線及一第二組導線;(b)藉由該第一鐵磁性層接收一微波,並產生一第一電流及一第二電流;以及(c)透過該第一組導線及該第二組導線來量測該第一電流及該第二電流。A method for detecting microwaves, the method comprising the steps of: (a) providing a first ferromagnetic layer having a first side and a second side, a first set of wires, and a second set of wires; b) receiving a microwave by the first ferromagnetic layer and generating a first current and a second current; and (c) measuring the first current through the first set of wires and the second set of wires The second current. 如申請專利範圍第1項所述之方法,其中:該第一組導線包含:具有一第一端與一第二端的一第一導線;及具有一第一端與一第二端的一第二導線;以及該第二組導線包含:具有一第一端與一第二端的一第三導線;及具有一第一端與一第二端的一第四導線。The method of claim 1, wherein the first set of wires comprises: a first wire having a first end and a second end; and a second having a first end and a second end And the second set of wires includes: a third wire having a first end and a second end; and a fourth wire having a first end and a second end. 如申請專利範圍第1項所述之方法,該步驟(c)的該第一電流係為一自旋向下(spin down)的電流,該第二電流係為一自旋向上(spin up)的電流。The method according to claim 1, wherein the first current of the step (c) is a spin down current, and the second current is a spin up. Current. 如申請專利範圍第1項所述之方法,該步驟(a)更包含下列步驟:(a1)提供具有一第一側與一第二側的一絕緣體層;(a2)鄰接該絕緣體層的該第一側至該第一鐵磁性層的該第一側;以及(a3)分別耦接該第一組導線及該第二組導線至該絕緣體層的該第二側與該第一鐵磁性層的該第二側。The method of claim 1, wherein the step (a) further comprises the steps of: (a1) providing an insulator layer having a first side and a second side; (a2) abutting the insulator layer The first side to the first side of the first ferromagnetic layer; and (a3) respectively coupling the first set of wires and the second set of wires to the second side of the insulator layer and the first ferromagnetic layer The second side. 如申請專利範圍第1項所述之方法,其中該步驟(a)包含下列步驟:(a1)提供一絕緣體層及具有一第一側與一第二側的一第二鐵磁性層;(a2)分別鄰接該絕緣體層兩側至該第一鐵磁性層的該第一側及該第二鐵磁性層的該第一側;以及(a3)分別耦接該第一組導線及該第二組導線至該第二鐵磁性層的該第二側及該第一鐵磁性層的該第二側。The method of claim 1, wherein the step (a) comprises the steps of: (a1) providing an insulator layer and a second ferromagnetic layer having a first side and a second side; (a2) Adjacent to the first side of the first ferromagnetic layer and the first side of the second ferromagnetic layer, and (a3) respectively coupled to the first set of wires and the second group a wire to the second side of the second ferromagnetic layer and the second side of the first ferromagnetic layer. 一種用於偵測微波的裝置,包含:一鐵磁性層,具有一第一側與一第二側,用以接收一微波以產生一第一電流及一第二電流;以及一第一組導線及一第二組導線,其分別耦接至該鐵磁性層的該第一側與該第二側,用以傳輸該鐵磁性層所產生的該第一電流及該第二電流。An apparatus for detecting microwaves, comprising: a ferromagnetic layer having a first side and a second side for receiving a microwave to generate a first current and a second current; and a first set of wires And a second set of wires respectively coupled to the first side and the second side of the ferromagnetic layer for transmitting the first current and the second current generated by the ferromagnetic layer. 如申請專利範圍第6項所述之裝置,其中:該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的該第一端耦接至該鐵磁性層的該第一側的一第一上端;及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該鐵磁性層的該第一側的一第一下端;以及該第二組導線包含:具有一第一端與一第二端的一第三導線,該第三導線的該第一端耦接至該鐵磁性層的該第二側的一第二上端;及具有一第一端與一第二端的一第四導線,該第四導線的該第一端耦接至該鐵磁性層的該第二側的一第二下端。The device of claim 6, wherein the first set of wires comprises: a first wire having a first end and a second end, the first end of the first wire being coupled to the iron a first upper end of the first side of the magnetic layer; and a second wire having a first end and a second end, the first end of the second wire being coupled to the first side of the ferromagnetic layer a first lower end; and the second set of wires includes: a third wire having a first end and a second end, the first end of the third wire being coupled to the second end of the ferromagnetic layer a second upper end of the side; and a fourth wire having a first end and a second end, the first end of the fourth wire being coupled to a second lower end of the second side of the ferromagnetic layer. 如申請專利範圍第6項所述之裝置,更可包含:一第一金屬層,該第一組導線透過該第一金屬層與該鐵磁性層連接;以及一第二金屬層,該第二組導線透過該第二金屬層與該鐵磁性層連接。The device of claim 6, further comprising: a first metal layer, the first set of wires being connected to the ferromagnetic layer through the first metal layer; and a second metal layer, the second A group of wires is connected to the ferromagnetic layer through the second metal layer. 如申請專利範圍第6項所述之裝置,其中該第一電流係為一自旋向上(spin up)的電流,該第二電流係為一自旋向下(spin down)的電流。The device of claim 6, wherein the first current is a spin up current and the second current is a spin down current. 如申請專利範圍第6項所述之裝置,更包含具有一第一側與一第二側的一絕緣體層,該絕緣體層的該第一側鄰接於該鐵磁性層的該第一側,且該第一組導線及該第二組導線分別耦接至該絕緣體層的該第二側與該鐵磁性層的該第二側。The device of claim 6, further comprising an insulator layer having a first side and a second side, the first side of the insulator layer being adjacent to the first side of the ferromagnetic layer, and The first set of wires and the second set of wires are respectively coupled to the second side of the insulator layer and the second side of the ferromagnetic layer. 如申請專利範圍第10項所述之裝置,其中:該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的第一端耦接至該絕緣體層的第二側的一第一上端;及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該絕緣體層的該第二側的一第一下端;以及該第二組導線包含:具有一第一端與一第二端的一第三導線,該第三導線的該第一端耦接至該鐵磁性層的該第二側的一第二上端;及具有一第一端與一第二端的一第四導線,該第四導線的該第一端耦接至該鐵磁性層的該第二側的一第二下端。The device of claim 10, wherein the first set of wires comprises: a first wire having a first end and a second end, the first end of the first wire being coupled to the insulator layer a first upper end of the second side; and a second wire having a first end and a second end, the first end of the second wire being coupled to a first side of the second side of the insulator layer And a second wire comprising: a first end and a second end, the first end of the third wire being coupled to the second side of the ferromagnetic layer And a fourth wire having a first end and a second end, the first end of the fourth wire being coupled to a second lower end of the second side of the ferromagnetic layer. 如申請專利範圍第10項所述之裝置,更包含:一第一金屬層,其中該第一組導線透過該第一金屬層與該絕緣體層連接;以及一第二金屬層,該第二組導線透過該第二金屬層與該鐵磁性層連接。The device of claim 10, further comprising: a first metal layer, wherein the first set of wires are connected to the insulator layer through the first metal layer; and a second metal layer, the second group A wire is connected to the ferromagnetic layer through the second metal layer. 一種用於偵測微波的裝置,包含:一第一鐵磁性層,具有一第一側與一第二側,用以接收一微波產生一第一電流及一第二電流;一第二鐵磁性層,具有一第一側與一第二側、一絕緣體層,其中該絕緣體層的兩側分別鄰接該第一鐵磁性層的該第一側與該第二鐵磁性層的該第一側;以及一第一組導線及一第二組導線,用以傳輸由該第一鐵磁性層所產生的該第一電流與該第二電流。An apparatus for detecting microwaves includes: a first ferromagnetic layer having a first side and a second side for receiving a microwave to generate a first current and a second current; and a second ferromagnetic The layer has a first side and a second side, an insulator layer, wherein the two sides of the insulator layer respectively adjoin the first side of the first ferromagnetic layer and the first side of the second ferromagnetic layer; And a first set of wires and a second set of wires for transmitting the first current and the second current generated by the first ferromagnetic layer. 如申請專利範圍第13項所述之裝置,其中該第一組導線及該第二組導線分別耦接至該第二鐵磁性層的該第二側及該第一鐵磁性層的該第二側。The device of claim 13, wherein the first set of wires and the second set of wires are respectively coupled to the second side of the second ferromagnetic layer and the second side of the first ferromagnetic layer side. 如申請專利範圍第13項所述之裝置,其中:該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的該第一端耦接至該第一鐵磁性層的該第二側的一第一上端;及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該第一鐵磁性層的該第二側的一第一下端;以及該第二組導線包含:具有一第一端與一第二端的一第三導線,該第三導線的該第一端耦接至該第二鐵磁性層的該第二側的一第二上端;及具有一第一端與一第二端的一第四導線,該第四導線的該第一端耦接至該第二鐵磁性層的該第二側的一第二下端。The device of claim 13 , wherein the first set of wires comprises: a first wire having a first end and a second end, the first end of the first wire being coupled to the first a first upper end of the second side of the ferromagnetic layer; and a second wire having a first end and a second end, the first end of the second wire being coupled to the first ferromagnetic layer a first lower end of the second side; and the second set of wires includes: a third wire having a first end and a second end, the first end of the third wire being coupled to the second iron a second upper end of the second side of the magnetic layer; and a fourth wire having a first end and a second end, the first end of the fourth wire being coupled to the second ferromagnetic layer A second lower end on the two sides. 如申請專利範圍第13項所述之裝置,其中更包含:一第一金屬層,該第一組導線透過該第一金屬層與該第一鐵磁性層連接;以及一第二金屬層,該第二組導線透過該第二金屬層與該第二鐵磁性層連接。 The device of claim 13, further comprising: a first metal layer, the first set of wires being connected to the first ferromagnetic layer through the first metal layer; and a second metal layer, A second set of wires is connected to the second ferromagnetic layer through the second metal layer. 如申請專利範圍第13項所述之裝置,其中該第一電流係為一自旋向上(spin up)的電流,該第二電流係為一自旋向下(spin down)的電流。 The device of claim 13, wherein the first current is a spin up current and the second current is a spin down current. 一種用於偵測微波的裝置,包含:一鐵磁性層,具有一第一側與一第二側,用以接收一微波產生一第一電流及一第二電流;以及一第一組導線,耦接至該鐵磁性層的該第一側,用以傳輸該鐵磁性層所產生的該第一電流及該第二電流。 An apparatus for detecting microwaves includes: a ferromagnetic layer having a first side and a second side for receiving a microwave to generate a first current and a second current; and a first set of wires, The first side of the ferromagnetic layer is coupled to the first current and the second current generated by the ferromagnetic layer. 如申請專利範圍第18項所述之裝置,其中:該第一組導線包含:具有一第一端與一第二端的一第一導線,該第一導線的該第一端耦接至該鐵磁性層的該第一側的一第一上端;以及具有一第一端與一第二端的一第二導線,該第二導線的該第一端耦接至該鐵磁性層的該第一側的一第一下端。 The device of claim 18, wherein the first set of wires comprises: a first wire having a first end and a second end, the first end of the first wire being coupled to the iron a first upper end of the first side of the magnetic layer; and a second wire having a first end and a second end, the first end of the second wire being coupled to the first side of the ferromagnetic layer A first lower end. 如申請專利範圍第18項所述之裝置,其中該第一電流係為一自旋向上(spin up)的電流,該第二電流係為一自旋向下(spin down)的電流。 The device of claim 18, wherein the first current is a spin up current and the second current is a spin down current.
TW98127958A 2009-08-19 2009-08-19 Apparatus for detecting microwave and the method thereof TWI399549B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98127958A TWI399549B (en) 2009-08-19 2009-08-19 Apparatus for detecting microwave and the method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98127958A TWI399549B (en) 2009-08-19 2009-08-19 Apparatus for detecting microwave and the method thereof

Publications (2)

Publication Number Publication Date
TW201107762A TW201107762A (en) 2011-03-01
TWI399549B true TWI399549B (en) 2013-06-21

Family

ID=44835385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98127958A TWI399549B (en) 2009-08-19 2009-08-19 Apparatus for detecting microwave and the method thereof

Country Status (1)

Country Link
TW (1) TWI399549B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060183002A1 (en) * 2004-09-30 2006-08-17 Haitao Yang Coherent spin valve and related devices
TW200731505A (en) * 2006-02-13 2007-08-16 Taiwan Semiconductor Mfg Co Ltd Magnetic-bias ferromagnetic spiral inductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060183002A1 (en) * 2004-09-30 2006-08-17 Haitao Yang Coherent spin valve and related devices
TW200731505A (en) * 2006-02-13 2007-08-16 Taiwan Semiconductor Mfg Co Ltd Magnetic-bias ferromagnetic spiral inductor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.C. Ralph and M.D. Stiles. Spin transfer torques. Journal of Magnetism and Magnetic Materials 320(7), 1190{1216 (April 2008). *
Son-Hsien Chen, Ching-Ray Chang, John Q. Xiao, and Branislav K. Nikolic. Spin and charge pumping in magnetic tunnel junc-tions with precessing magnetization: A nonequilibrium green function ap-proach. Phys. Rev. B 79(5), 054424 (2009). *
Y. Tserkovnyak, T. Moriyama, and J. Q. Xiao. Tunnel-barrier-enhanced dc voltage signals induced by magnetization dynamics in magnetic tunnel junctions. Phys. Rev. B 78(2), 020401 (2008). *

Also Published As

Publication number Publication date
TW201107762A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
Tsunegi et al. Physical reservoir computing based on spin torque oscillator with forced synchronization
Zhang et al. Spin pumping and inverse rashba-edelstein effect in nife/ag/bi and nife/ag/sb
Zhang et al. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics
Moriya et al. Probing vortex-core dynamics using current-induced resonant excitation of a trapped domain wall
Wang et al. Sensitivity of spin-torque diodes for frequency-tunable resonant microwave detection
Pollard et al. Direct dynamic imaging of non-adiabatic spin torque effects
Gui et al. The physics of spin rectification and its application
Tomita et al. Unified understanding of both thermally assisted and precessional spin-transfer switching in perpendicularly magnetized giant magnetoresistive nanopillars
Schulz et al. Effective field analysis using the full angular spin-orbit torque magnetometry dependence
Chen et al. Comprehensive and macrospin-based magnetic tunnel junction spin torque oscillator model-part I: Analytical model of the MTJ STO
Finocchio et al. Micromagnetic modeling of magnetization switching driven by spin-polarized current in magnetic tunnel junctions
Bortolotti et al. Temperature dependence of microwave voltage emission associated to spin-transfer induced vortex oscillation in magnetic tunnel junction
Bose et al. Sensitive measurement of spin-orbit torque driven ferromagnetic resonance detected by planar Hall geometry
Siracusano et al. Intrinsic synchronization of an array of spin-torque oscillators driven by the spin-Hall effect
Huang et al. Antiferromagnetic inverse spin Hall effect
Iacocca et al. Destabilization of serially connected spin-torque oscillators via non-Adlerian dynamics
Chen et al. Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach
Skirdkov et al. Vortex spin-torque diode: The impact of DC bias
Ohira et al. Spin liquid state in κ-(BEDT-TTF) 2 Cu 2 (CN) 3 studied by muon spin relaxation method
Sinnecker et al. Interaction between magnetic vortex cores in a pair of nonidentical nanodisks
TWI399549B (en) Apparatus for detecting microwave and the method thereof
Sun et al. Vertical magnetic flux concentrators for high-sensitivity superconductor/magnetoresistance composite sensors
Guo et al. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
Buschhorn et al. Precessional damping of Fe magnetic moments in a FeNi film
Kuepferling et al. Vortex dynamics in Co-Fe-B magnetic tunnel junctions in presence of defects