TWI399452B - Production method of sulfurized metal nanowires and their arrays - Google Patents

Production method of sulfurized metal nanowires and their arrays Download PDF

Info

Publication number
TWI399452B
TWI399452B TW98128428A TW98128428A TWI399452B TW I399452 B TWI399452 B TW I399452B TW 98128428 A TW98128428 A TW 98128428A TW 98128428 A TW98128428 A TW 98128428A TW I399452 B TWI399452 B TW I399452B
Authority
TW
Taiwan
Prior art keywords
metal
sulfide
substrate
array
doped
Prior art date
Application number
TW98128428A
Other languages
Chinese (zh)
Other versions
TW201107518A (en
Original Assignee
Univ Feng Chia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Feng Chia filed Critical Univ Feng Chia
Priority to TW98128428A priority Critical patent/TWI399452B/en
Publication of TW201107518A publication Critical patent/TW201107518A/en
Application granted granted Critical
Publication of TWI399452B publication Critical patent/TWI399452B/en

Links

Landscapes

  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Description

硫化金屬奈米線及其陣列之製造方法Metal sulfide nanowire and manufacturing method thereof

本發明係與奈米線之製造方法有關,特別係指一種硫化金屬奈米線及其陣列之製造方法。The present invention relates to a method for producing a nanowire, and particularly to a method for producing a metal sulfide nanowire and an array thereof.

按,早期發展的生物感測器(Biosensor)主是以電流型或電位型傳導元件配合固定化酵素或全菌為主,量測的污染物則大多集中於生物醫學的醣類物質(如葡萄糖、乳糖)與生化需氧量(biochemical oxygen demand,BOD)等方面。其主要的困難點包括:操作時氧化電位過高,易氧化環境中干擾物質,導致雜訊產生,偵測時間為長,偵測極限太高,無法針對低濃度的污染物做偵測,應用面過於狹窄。隨著微精密電子、電機技術的快速發展,電子傳導元件也漸漸朝向奈米化發展,許多具高靈敏性及選擇性的生物感測器也陸續被發展出來並實際應用於各領域中。目前,大多利用奈米碳管(CNT)作為場效電晶體,但其亦具有製程複雜、製備溫度高及成本昂貴之缺點。According to the early development of Biosensor, the main component is the current-type or potential-type conduction element combined with immobilized enzymes or whole bacteria. Most of the measured pollutants are concentrated in biomedical carbohydrates (such as glucose). , lactose) and biochemical oxygen demand (BOD). The main difficulties include: excessive oxidation potential during operation, interference with substances in the oxidizing environment, resulting in noise generation, long detection time, too high detection limit, and no detection for low concentration pollutants. The face is too narrow. With the rapid development of micro-precision electronics and motor technology, electronic conduction components have gradually developed towards nano-ization, and many biosensing sensors with high sensitivity and selectivity have been developed and applied in various fields. At present, most of the carbon nanotubes (CNT) are used as field effect transistors, but they also have the disadvantages of complicated process, high preparation temperature and high cost.

此外,常用的螢光感測法,以特定波長且能量集中的光束(如雷射)去激發與待測物質相接之螢光,並藉由讀取該螢光強度以獲知待測物質濃度。相較於目前應用於生物檢測之用的奈米粒子,可以經由各種不同的方法製作與合成,包括電化學法、雷射脫落法、光化學法、聲化學法與電沈積在多孔膜的模板等。然而這些方法存在著某些缺點,例如:不易定位、訊號微弱等。In addition, a commonly used fluorescent sensing method uses a specific wavelength and concentrated energy beam (such as a laser) to excite the fluorescent light that is in contact with the substance to be tested, and by reading the fluorescent intensity to obtain the concentration of the test substance. . Compared with the nano particles currently used for bio-detection, it can be fabricated and synthesized through various methods, including electrochemical methods, laser shedding, photochemical methods, sonochemical methods and electrodeposition in porous membranes. Wait. However, these methods have certain disadvantages, such as: difficulty in positioning, weak signals, and the like.

另,傳統的氣體感測器(Gas Sensor)大約分為以下幾種,觸媒燃燒型氣體感測器、半導體吸附型氣體感測器、電化學式氣體感測器,此三種型式之氣體感測器須在高溫狀態下才能偵測到氣體洩漏反應,或是其所偵測到氣體洩漏之反應電阻率比較低,使得往往得需經過一些時間之後感測器才會發現氣體洩漏,而可能因此造成不可以預知之損害。綜上所述,故若欲在室溫環境下即時偵測有毒氣體,還有一定的瓶頸需待克服,然而目前在學術研究上大多利用奈米碳管(CNT)作場效電晶體型氣體感測器,但其具有製程步驟繁雜、成本昂貴及恢復時間較慢(需加熱至200℃,約1小時後才能恢復)之缺點,此外,更有人發明出一種利用奈米線之氣體感測器,其係為中華民國專利申請案號第941225679號「含有氧化鋅或銦鋅混合氧化物的氣體感測器及偵測NOx 氣體的方法」專利,而其主要係於一基材上間隔設有二金屬電極,且該基材表面更同時設有與該等金屬電極相連接之半導體薄膜,該半導體薄膜係包含有氧化鋅或銦鋅混合氧化物,而該氧化鋅或銦鋅混合氧化物係以奈米線形式構成一氣體感測表面,而於上述之發明中,其揭露之奈米線係含有氧化鋅或銦鋅混合氧化物,著重在元件應用於氣體感測,而非奈米線材製備,非與本發明相同。In addition, the conventional gas sensor (Gas Sensor) is roughly divided into the following types, a catalytic combustion type gas sensor, a semiconductor adsorption type gas sensor, an electrochemical gas sensor, and three types of gas sensing. The gas leakage reaction must be detected at a high temperature, or the reaction resistivity of the gas leak detected by the device is relatively low, so that it is often necessary for the sensor to detect the gas leakage after some time, and thus Cause unpredictable damage. In summary, if you want to detect toxic gases in the room temperature environment, there are still some bottlenecks to be overcome. However, in the academic research, most of the carbon nanotubes (CNTs) are used as field-effect transistor gas. Sensor, but it has the disadvantages of complicated process steps, high cost and slow recovery time (heating to 200 ° C, about 1 hour to recover), in addition, some people have invented a gas sensing using nanowires. "a method and a gas sensor detecting gas containing NO x or zinc indium zinc oxide mixed oxides", a system which is the ROC Patent application No. 941225679 Patent Nos, whose principal lines spaced on a substrate Providing a two-metal electrode, and the surface of the substrate is further provided with a semiconductor film connected to the metal electrodes, the semiconductor film comprising a mixed oxide of zinc oxide or indium zinc, and the zinc oxide or indium zinc mixed oxidation The system forms a gas sensing surface in the form of a nanowire, and in the above invention, the disclosed nanowire system contains a mixed oxide of zinc oxide or indium zinc, focusing on the component applied to gas sensing, rather than Rice noodle Preparation of the present invention the non-identical.

綜上所述,可知習知生物感測器及氣體感測器皆具有眾多之缺點,故實有待加以改善之空間。In summary, it is known that both the conventional biosensor and the gas sensor have many disadvantages, and thus there is room for improvement.

本發明之目的係在提供一種硫化金屬奈米線及其陣列之製造方法,使可製造出可應用於多種感測器或生化檢測之奈米線,並藉以提升感測器之使用效能且同時減低其製造成本。The object of the present invention is to provide a method for manufacturing a sulfide metal nanowire and an array thereof, which can manufacture a nanowire which can be applied to various sensors or biochemical detection, thereby improving the performance of the sensor and simultaneously Reduce its manufacturing costs.

本發明硫化金屬奈米線及其陣列之製造方法,係可利用電化學沉積(Electrodeposition)、化學氣相沉積(Chemical vapor deposition,CVD)、物理氣相沉積(Physical vapor deposition,PVD)等方法沉積一金屬結合硫元素以形成一硫化金屬奈米線及其陣列。The method for manufacturing a sulfide metal nanowire and an array thereof can be deposited by electrochemical deposition, chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like. A metal combines sulfur to form a metal sulfide metal line and an array thereof.

本發明硫化金屬奈米線,其主要係包含有一本體,該本體係為一線體,且其係由一金屬結合硫元素沉積而成。The sulfide metal nanowire of the present invention mainly comprises a body, and the system is a linear body, and is deposited by a metal-bonded sulfur element.

藉此,使可藉由該生長模板控制金屬奈米線之直徑和長度,精準定義奈米線位置,同時自我對準形成汲極和源極,且可利用該硫化金屬奈米線陣列以製備成感測器,並因該硫化金屬奈米線陣列易與待測物質產生連結,故可使其作為通道,且亦因該硫化金屬奈米線陣列其線徑極為細微,對氣體感測具有極大的反應表面積,故可有效提高對待測物質及氣體感測之靈敏度及反應時間,另,因其製造簡單且成本低廉,故可大幅降低製造所需之成本及工時。Thereby, the diameter and length of the metal nanowire can be controlled by the growth template to accurately define the position of the nanowire, while self-aligning to form the drain and the source, and the silicon metal nanowire array can be used to prepare As a sensor, and because the sulfide metal nanowire array is easy to be connected with the substance to be tested, it can be used as a channel, and because the sulfide metal nanowire array has a very small wire diameter, it has gas sensing The extremely large reaction surface area can effectively improve the sensitivity and reaction time of the substance to be tested and the gas sensing. Moreover, because of its simple manufacture and low cost, the cost and man-hour required for manufacturing can be greatly reduced.

首先,請先參閱第一圖所示,為本發明第一較佳實施例之製造流程方塊圖,其步驟包含有模板生成步驟1、電極長成步驟2、奈米線陣列長成步驟3、硫化步驟4。First, please refer to the first figure, which is a block diagram of a manufacturing process according to a first preferred embodiment of the present invention. The steps include a template generation step 1, an electrode growth step 2, and a nanowire array growth step 3. Vulcanization step 4.

請同時參閱第二至第五圖所示,而執行上述步驟之詳細過程為:Please also refer to the second to fifth figures, and the detailed process of performing the above steps is:

於模板生成步驟1中,首先,先將一基材10進行前處理,而一般前處理主要包含有拋光、脫脂及酸洗等三部份,因上述係為習知技藝故在此不加以贅敘,而該基材10之材質係可為鋁(Al)、鈦(Ti)、鎂(Mg)、鋯(Zr)、鋁鎂合金(Al-Mg alloy)、鋁銅合金(Al-Cu alloy)、鋁矽合金(Al-Si alloy)、鋁錳合金(Al-Mn alloy)、鋁鎂矽合金(Al-Mg-Si alloy)以及鋁鋅鎂合金(Al-Zn-Mg alloy)其中之一材料,同時於本發明較佳實施例中該基材10之材質係為鋁(Al),且該基材10係更進一步進行二次陽極處理,而於第一次陽極處理時,該基材10表面會反應形成一氧化鋁層11,另,更再利用電解液酸蝕第一次陽極處理反應生成之氧化鋁層11,且使該基材10表面遺留下多數個凹槽12,又,再將該基材10進行第二次陽極處理,並利用該等凹槽12反應生成一成長模板(即為陽極氧化鋁模板;anodic aluminum oxide template)13,而該成長模板13係具有多數個直立有序之奈米級管道131,該等管道131係垂直於該基材10表面且彼此平行,同時,該成長模板13與該基材10間係形成有一阻障層14。In the template forming step 1, first, a substrate 10 is pretreated, and the general pretreatment mainly includes three parts of polishing, degreasing, and pickling, since the above-mentioned techniques are not known in the art. The material of the substrate 10 may be aluminum (Al), titanium (Ti), magnesium (Mg), zirconium (Zr), aluminum-magnesium alloy (Al-Mg alloy), aluminum-copper alloy (Al-Cu alloy). ), one of Al-Si alloy, Al-Mn alloy, Al-Mg-Si alloy, and Al-Zn-Mg alloy In the preferred embodiment of the present invention, the material of the substrate 10 is aluminum (Al), and the substrate 10 is further subjected to secondary anodization, and the substrate is subjected to the first anodizing treatment. 10 surface will react to form an aluminum oxide layer 11, and further, the aluminum oxide layer 11 formed by the first anodizing reaction is acid-etched by the electrolyte, and a plurality of grooves 12 are left on the surface of the substrate 10, and The substrate 10 is subjected to a second anodization treatment, and the grooves 12 are reacted to form a growth template (ie, an anodic aluminum oxide template) 13 . The long template 13 has a plurality of upright ordered nano-scale tubes 131 which are perpendicular to the surface of the substrate 10 and parallel to each other, and a barrier is formed between the growth template 13 and the substrate 10. Layer 14.

再請配合參閱第六及第七圖所示,於電極長成步驟2中,係利用化學蝕刻液將上述基材10及阻障層14分別酸蝕移除,同時,該化學蝕刻液更可擴大該等管道131,另,更於該等成長模板10一側鍍有一導電電極20。Referring to the sixth and seventh figures, in the electrode growth step 2, the substrate 10 and the barrier layer 14 are respectively removed by a chemical etching solution, and the chemical etching solution can be further removed. The tubes 131 are enlarged, and a conductive electrode 20 is plated on the side of the growth template 10.

再請配合參閱第八圖所示,於奈米線陣列長成步驟3中,係配合電鍍液利用電化學沉積(Electrodeposition)沿該成長模板13之管道131沉積一金屬,而於本發明較佳實施例中該金屬係選自於鋅(Zn)、鉻(Cd)、錫(Sn)、銦(In)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鈦(Ti)、銀(Ag)、鋁(Al)以及鉛(Pb)其中之一材料,同時,該金屬沉積於該等管道131中並形成一金屬奈米線陣列30,而該金屬奈米線陣列30更分別由多數個金屬奈米線31所組成。Referring to FIG. 8 again, in the step 3 of the nanowire array extension, a metal is deposited along the tube 131 of the growth template 13 by electroplating with a plating solution, which is preferred in the present invention. In the embodiment, the metal is selected from the group consisting of zinc (Zn), chromium (Cd), tin (Sn), indium (In), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), titanium. One of (Ti), silver (Ag), aluminum (Al), and lead (Pb), and at the same time, the metal is deposited in the tubes 131 and forms a metal nanowire array 30, and the metal nanowire The array 30 is further composed of a plurality of metal nanowires 31, respectively.

再請配合參閱第九及第十圖所示,於硫化步驟4中,該金屬奈米線陣列30係與一硫元素同時置於硫元素所生成之硫氣環境內,且進行高溫反應,而本發明較佳實施例中該硫元素係選自於硫片(Sulfide,S)、硫代硫酸鈉(Sodium thiosulfate,Na2 S2 O3 ‧5H2 O)、硫化鈉(Sodium sulfide,Na2 S)、硫化氫(Hydrogen Sulfide,H2 S)以及硫尿(Thidiazuron)其中之一材料,且其硫化之最佳反應環境條件之反應溫度範圍為150-800℃及反應時間範圍為0.1-12小時,又,該金屬奈米線陣列30與該硫元素所生成之硫氣經高溫硫化後,可結合為一體,並形成一硫化金屬奈米線陣列40(如第十一圖所示),另,再以化學溶液去除該成長模板13,以使該硫化金屬奈米線陣列40可直立有序排列於該導電電極20上,而該硫化金屬奈米線陣列40係由多數個硫化金屬奈米線41所組成。Referring to the ninth and tenth figures, in the vulcanization step 4, the metal nanowire array 30 is simultaneously placed in a sulfur gas environment formed by sulfur element and a high temperature reaction. In a preferred embodiment of the invention, the sulfur element is selected from the group consisting of sulfur (Sulfide, S), sodium thiosulfate (Sodium thiosulfate, Na 2 S 2 O 3 ‧5H 2 O), sodium sulfide (Sodium sulfide, Na 2 ) S), hydrogen sulfide (H 2 S) and thiourea (Thidiazuron), and the optimum reaction conditions for vulcanization have a reaction temperature range of 150-800 ° C and a reaction time range of 0.1-12 Hours, again, the metal nanowire array 30 and the sulfur gas generated by the sulfur element can be combined by high temperature vulcanization, and form a metal sulfide nanowire array 40 (as shown in FIG. 11). In addition, the growth template 13 is removed by a chemical solution so that the sulfide metal nanowire array 40 can be arranged upright and orderly on the conductive electrode 20, and the sulfide metal nanowire array 40 is composed of a plurality of sulfide metal naphthalenes. The rice noodle 41 is composed.

請再配合參閱第十一圖所示,為本發明硫化金屬奈米線陣列填充於成長模板之SEM截面圖,由該圖中可看出該成長模板13與該硫化金屬奈米線陣列40沉積分佈之情形,該等硫化金屬奈米線41係直立沉積於該成長模板13內,且有序排列。Referring to FIG. 11 again, the SEM cross-section of the expanded metal nanowire array of the present invention is filled in a growth template, and the growth template 13 and the sulfide metal nanowire array 40 are deposited. In the case of distribution, the sulfide metal nanowires 41 are erected in the growth template 13 in an orderly arrangement.

請再配合參閱第十二圖所示,為本發明硫化金屬奈米線陣列填充於成長模板之EDS成分比例圖,由該圖中可清楚看出該硫化金屬奈米線陣列40成長於該成長模板13中之成分比例,其中,該硫化金屬奈米線41其成分比例係含有硫(S),而鋁(Al)及氧(O)係受成長模板13長成時之影響,銦(In)則係沉積之金屬所含之成分。Please refer to the twelfth figure, which is a ratio diagram of the EDS composition of the expanded metal nanowire array of the present invention filled in the growth template. It can be clearly seen from the figure that the sulfide metal nanowire array 40 grows in the growth. The ratio of the components in the template 13, wherein the proportion of the constituents of the sulfide metal nanowire 41 contains sulfur (S), and the aluminum (Al) and oxygen (O) are affected by the growth of the growth template 13, indium (In ) is the composition of the deposited metal.

請參閱第十三圖所示,為本發明第二較佳實施例之製造流程方塊圖,其步驟包含有模板生成步驟5、奈米線陣列長成步驟6、硫化步驟7。Referring to FIG. 13 , a block diagram of a manufacturing process according to a second preferred embodiment of the present invention includes a template generating step 5, a nanowire array length forming step 6, and a vulcanization step 7.

請同時參閱第十四至第十七圖所示,而實施第二較佳實施例之製造流程步驟之詳細過程如下所述,其中,與上述實施例相同結構之部分標號係沿用之。Please refer to the fourteenth to seventeenth drawings at the same time, and the detailed process of the steps of the manufacturing process of the second preferred embodiment is as follows, wherein a part of the same structure as the above embodiment is used.

於模板生成步驟5中,第二實施例與上述實施例之主要不同點係在於一基板50上先長成一導電黏著層60,且再於該導電黏著層60上長成一基材10,而該基板50之材質係可為硬質材料或軟質材料,該硬質材料係包含有矽(Si)以及玻璃(Glass),另,該軟質材料則係包含有薄塑膠片、金屬薄片以及可彎曲之基板,且該導電黏著層60係選自於鉭(Ta)、鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、摻錫的氧化銦(ITO)、摻氟的氧化錫(FTO)、摻鋅的氧化錫(ZTO)、摻鍗的氧化錫(ATO)、摻鋅的氧化銦(IZO)、摻鋁的氧化鋅(AZO)、摻鎵的氧化鋅(GZO)、摻氟的氧化鋅(FZO)其中之一材料,而於本發明較佳實施例中該基板50之材質係為矽(Si),該導電黏著層60之材質係為氮化鈦(TiN),該基材10之材質則係鋁(Al),同時,該基材10亦先進行前處理及二次陽極處理,而於第一次陽極處理時,該基材10表面會反應形成該氧化鋁層11,另,更再利用電解液酸蝕第一次陽極處理反應生成之氧化鋁層11,且該基材10表面並遺留下該等凹槽12,又,更將該基材10進行第二次陽極處理,並利用該等凹槽12整體反應生成該成長模板13,而該成長模板13係具有多數個直立有序之奈米級管道131,該等管道131係垂直於該基板50表面且彼此平行,同時,該成長模板13與該導電黏著層60間係形成有該阻障層14,另,更利用化學蝕刻液將該阻障層14酸蝕移除,並擴大該等管道131(如第十八圖所示)。In the template generating step 5, the main difference between the second embodiment and the above embodiment is that a substrate 50 is grown into a conductive adhesive layer 60, and then grown on the conductive adhesive layer 60 to form a substrate 10. The material of the substrate 50 may be a hard material or a soft material, and the hard material includes bismuth (Si) and glass, and the soft material includes a thin plastic sheet, a metal foil, and a flexible substrate. The conductive adhesive layer 60 is selected from the group consisting of tantalum (Ta), titanium (Ti), titanium nitride (TiN), tantalum nitride (TaN), tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO). Zinc-doped tin oxide (ZTO), antimony-doped tin oxide (ATO), zinc-doped indium oxide (IZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), fluorine-doped One of the materials of the zinc oxide (FZO), and in the preferred embodiment of the present invention, the material of the substrate 50 is bismuth (Si), and the material of the conductive adhesive layer 60 is titanium nitride (TiN). The material of 10 is aluminum (Al), and the substrate 10 is also subjected to pre-treatment and secondary anodization, and the surface of the substrate 10 reacts to form the first anode treatment. The aluminum layer 11 is further etched with the electrolyte to etch the aluminum oxide layer 11 formed by the first anodizing reaction, and the surface of the substrate 10 is left behind and the grooves 12 are left. Performing a second anodic treatment, and using the grooves 12 as a whole to form the growth template 13 , the growth template 13 having a plurality of upright ordered nano-scale tubes 131 perpendicular to the substrate The surface of the 50 is parallel to each other, and the barrier layer 14 is formed between the growth template 13 and the conductive adhesive layer 60. Further, the barrier layer 14 is acid-etched and removed by a chemical etching solution. Pipe 131 (as shown in Figure 18).

再請配合參閱第十八圖所示,於奈米線陣列長成步驟6中,係配合電鍍液利用電化學沉積沿該成長模板13之管道131沉積該金屬,而該金屬係與上述第一較佳實施例相同,同時,該金屬沉積於該等管道131中並形成該金屬奈米線陣列30,而該金屬奈米線陣列30更分別由該等金屬奈米線31所組成。Referring to FIG. 18 again, in the nanowire array length forming step 6, the plating solution is used to deposit the metal along the pipe 131 of the growth template 13 by electrochemical deposition, and the metal system and the first The preferred embodiment is the same, and at the same time, the metal is deposited in the tubes 131 and the metal nanowire array 30 is formed, and the metal nanowire array 30 is further composed of the metal nanowires 31, respectively.

再請參閱第十九及第二十圖所示,於硫化步驟7中,係將該金屬奈米線陣列30係與該硫元素同時置於硫元素所生成之硫氣環境內,且進行高溫反應,而該硫元素係與上述第一較佳實施例相同,且其硫化之最佳反應環境條件之反應溫度範圍亦為150-800℃及反應時間範圍為0.1-12小時,又,該金屬奈米線陣列30與該硫元素所生成之硫氣經高溫硫化後,可結合為一體,並形成該硫化金屬奈米線陣列40,而該硫化金屬奈米線陣列40係由該等硫化金屬奈米線41所構成,另,再以化學溶液去除該成長模板13,以使該等硫化金屬奈米線陣列40可直立有序排列於該導電黏著層60上。Referring to the nineteenth and twentieth diagrams, in the vulcanization step 7, the metal nanowire array 30 and the sulfur element are simultaneously placed in the sulfur gas environment generated by the sulfur element, and the temperature is high. Reaction, and the sulfur element is the same as the first preferred embodiment described above, and the reaction temperature range of the optimum reaction conditions for vulcanization is also 150-800 ° C and the reaction time range is 0.1-12 hours. After the nanowire array 30 and the sulfur gas generated by the sulfur element are vulcanized at a high temperature, they may be combined to form the sulfide metal nanowire array 40, and the sulfide metal nanowire array 40 is composed of the sulfide metal. The nanowires 41 are formed. Further, the growth template 13 is removed by a chemical solution so that the sulfide metal nanowire arrays 40 can be arranged in an upright order on the conductive adhesive layer 60.

請同時參閱第二十一圖所示,為本發明第二較佳實施例硫化奈米線及其陣列成長於硬性基板上之SEM截面圖,由該圖中可看出該基板50上係沉積有該導電黏著層60,該導電黏著層60上係直立有序沉積有該等硫化金屬奈米線41,且該等硫化金屬奈米線41更進一步組成該硫化金屬奈米線陣列40。Please also refer to FIG. 21, which is a SEM cross-sectional view of a vulcanized nanowire and an array thereof grown on a rigid substrate according to a second preferred embodiment of the present invention, and it can be seen from the figure that the substrate 50 is deposited. There is a conductive adhesive layer 60 on which the metal sulfide nanowires 41 are deposited in an upright order, and the metal sulfide wires 41 further constitute the metal sulfide nanowire array 40.

另,於上述沉積該硫化金屬奈米線陣列40中,亦可將硫代硫酸鈉(Sodium thiosulfate,Na2 S2 O3 ‧5H2 O)、硫化鈉(Sodium sulfide,Na2 S)以及硫尿(Thidiazuron)其中之一材料與該金屬之氯化物、硫酸物及硝酸物共同結合形成含硫之電鍍液,並直接電鍍形成該硫化金屬奈米線陣列40。In addition, in the above deposited metal sulfide nanowire array 40, sodium thiosulfate (Sodium thiosulfate, Na 2 S 2 O 3 ‧5H 2 O), sodium sulfide (Sodium sulfide, Na 2 S), and sulfur may also be used. One of the materials of the urine (Thidiazuron) is combined with the chloride, sulfuric acid and nitrate of the metal to form a sulfur-containing plating solution, and is directly electroplated to form the sulfide metal nanowire array 40.

請再配合參閱第二十二圖所示,為本發明第三較佳實施例之製造流程之示意圖,本發明第三較佳實施例與上述實施例主要不同點係在於,第三較佳實施例係利用化學氣相沉積(Chemical vapor deposition,CVD)沉積形成該硫化金屬奈米線陣列40,而其成長步驟主要係於一爐管70一側將顆粒(粉末)狀之金屬放置於該氧化鋁坩堝80上,且該氧化鋁坩堝80係位於該爐管70之高溫區,同時,該金屬係選自於鋅(Zn)、鉻(Cd)、錫(Sn)、銦(In)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鈦(Ti)、銀(Ag)、鋁(Al)以及鉛(Pb)其中之一材料,另,並於該爐管70另側放置該基板50,而該基板50係位於該爐管70之低溫區,且該基板50上係依序沉積一導電黏著層60及一觸媒層90,該導電黏著層60係選自於鉭(Ta)、鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、摻錫的氧化銦(ITO)、摻氟的氧化錫(FTO)、摻鋅的氧化錫(ZTO)、摻鍗的氧化錫(ATO)、摻鋅的氧化銦(IZO)、摻鋁的氧化鋅(AZO)、摻鎵的氧化鋅(GZO)以及摻氟的氧化鋅(FZO)其中之一材料,而該觸媒層90係可為一薄膜或粒子形態,且其材料係選自於鉑(Pt)、金(Au)、銀(Ag)、鐵(Fe)、鈷(Co)以及鎳(Ni)其中之一材料,而使可藉由該觸媒層90以降低製程溫度,同時,再利用機械式幫浦將該爐管70真空度抽至大約10-5 Torr,並通入一氬氣(Ar),以使該觸媒層90上可生成該金屬奈米線陣列30,且再進一步導入硫元素所生成之硫氣將該金屬奈米線陣列30進行硫化反應,其中,該金屬奈米線陣列30係可藉由高溫反應而與硫元素所生成之硫氣結合形成該硫化奈米線陣列40(如第二十三圖所示),且於本發明第三較佳實施例中該金屬奈米線陣列30硫化之最佳反應環境條件之反應溫度範圍為150-1100℃,反應時間則為0.1-10小時,此外,亦可直接將硫元素及金屬分置或一併研磨成粉末狀或結合成合金,放置於氧化鋁坩堝80上,而直接獲得該硫化金屬奈米線陣列40;又,於成長形成該硫化金屬奈米線陣列40之過程中,亦可直接通入有機金屬氣源材料以取代上述顆粒(粉末)狀金屬,以進行該硫化金屬奈米線陣列40之成長,而該有機金屬氣源材料係選自於二乙基鋅(DEZn)、二甲基鋅(DMZn)、二甲基鎘(DMCd)、三甲基錫(TMSn)以及三甲基銦(TMIn)其中之一材料。Referring to FIG. 22, which is a schematic diagram of a manufacturing process according to a third preferred embodiment of the present invention, the third preferred embodiment of the present invention is different from the above embodiment in that the third preferred embodiment is For example, the sulfide metal nanowire array 40 is formed by chemical vapor deposition (CVD) deposition, and the growth step is mainly based on a furnace tube 70 side to place a particle (powder) metal on the oxidation. The aluminum crucible 80 is located in the high temperature region of the furnace tube 70, and the metal is selected from the group consisting of zinc (Zn), chromium (Cd), tin (Sn), indium (In), and iron. One of (Fe), cobalt (Co), nickel (Ni), copper (Cu), titanium (Ti), silver (Ag), aluminum (Al), and lead (Pb), and in the furnace tube The substrate 50 is placed on the other side, and the substrate 50 is located in the low temperature region of the furnace tube 70, and a conductive adhesive layer 60 and a catalyst layer 90 are sequentially deposited on the substrate 50. The conductive adhesive layer 60 is selected. From tantalum (Ta), titanium (Ti), titanium nitride (TiN), tantalum nitride (TaN), tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), zinc-doped tin oxide ( ZTO), antimony-doped tin oxide (ATO), zinc-doped indium oxide (IZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and fluorine-doped zinc oxide (FZO), and the catalyst layer 90 The film may be in the form of a film or a particle, and the material thereof is selected from the group consisting of platinum (Pt), gold (Au), silver (Ag), iron (Fe), cobalt (Co), and nickel (Ni). Therefore, the catalyst layer 90 can be used to lower the process temperature, and at the same time, the furnace tube 70 is vacuumed to about 10 -5 Torr by a mechanical pump, and an argon gas (Ar) is introduced to make The metal nanowire array 30 can be formed on the catalyst layer 90, and the metal nanowire array 30 can be subjected to a vulcanization reaction by further introducing sulfur gas generated by sulfur element, wherein the metal nanowire array 30 can be Forming the vulcanized nanowire array 40 (as shown in FIG. 23) by a high temperature reaction in combination with sulfur gas generated by sulfur element, and in the third preferred embodiment of the present invention, the metal nanowire array 30 The optimum reaction conditions for vulcanization have a reaction temperature range of 150-1100 ° C and a reaction time of 0.1-10 hours. In addition, the sulfur element and the metal may be directly separated or ground. Powdered or combined into an alloy, placed on the alumina crucible 80, and directly obtained the sulfide metal nanowire array 40; in addition, in the process of growing the sulfide metal nanowire array 40, it can also be directly accessed An organometallic gas source material is used to replace the above-mentioned particle (powder) metal to grow the sulfide metal nanowire array 40, and the organometallic gas source material is selected from diethyl zinc (DEZn), dimethyl One of zinc (DMZn), dimethyl cadmium (DMCd), trimethyltin (TMSn), and trimethyl indium (TMIn).

請再同時第二十四圖所示,為本發明第四較佳實施例之製造流程之示意圖,本發明第四較佳實施例與上述實施例主要不同點係在於,第四較佳實施例係利用物理氣相沈積(Physical vapor deposition,PVD)成長形成該硫化金屬奈米線陣列40,而其成長步驟主要係於一反應腔體100內相對位置處分別放置該基板50及一靶材(Target)T,且該基板50上亦可沉積上述導電黏著層60及觸媒層90,而該導電黏著層60及該觸媒層90之材料種類係與上述相同,同時,於本發明第四較佳實施例中該靶材之材料係選至於鋅(Zn)、鉻(Cd)、錫(Sn)、銦(In)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鈦(Ti)、銀(Ag)、鋁(Al)以及鉛(Pb)之其中一金屬與硫片,並採選適宜莫耳比之金屬與硫片利用球磨機研磨成更細小且混合均勻的粉末或硫化金屬物粉末,並再利用壓靶機將上述之粉末經壓模及燒結形成該靶材T,又,再同時導入氬氣(Ar),且將該反應腔體100內之真空度調節置大約0.1-50mTorr,並利用利用氬原子(Ar)撞擊上述靶材T,而使可於該觸媒層90上生成該金屬奈米線陣列30,更進一步,該金屬奈米線陣列30係再藉由高溫反應與硫元素所生成之硫氣進行硫化,而得該硫化金屬奈米線陣列40(如第二十五圖所示),同時,於本發明第四較佳實施例中該金屬奈米線陣列30硫化之最佳反應環境條件之反應溫度範圍為150-850℃,及其反應時間範圍為0.1-10小時。FIG. 24 is a schematic diagram of a manufacturing process according to a fourth preferred embodiment of the present invention. The fourth preferred embodiment of the present invention is different from the above embodiment in that the fourth preferred embodiment is The sulfide metal nanowire array 40 is grown by physical vapor deposition (PVD), and the growth step is mainly performed by placing the substrate 50 and a target at a relative position in a reaction chamber 100 ( The conductive adhesive layer 60 and the catalyst layer 90 may be deposited on the substrate 50, and the material of the conductive adhesive layer 60 and the catalyst layer 90 are the same as described above, and at the same time, the fourth aspect of the present invention. In the preferred embodiment, the material of the target is selected from the group consisting of zinc (Zn), chromium (Cd), tin (Sn), indium (In), iron (Fe), cobalt (Co), nickel (Ni), and copper ( Cu, titanium (Ti), silver (Ag), aluminum (Al), and lead (Pb), one of the metals and the sulfur flakes, and the metal and sulfur flakes selected for the molar ratio are ground to a finer and mixed state by a ball mill. a uniform powder or a sulfide metal powder, and then using a pressure target machine to press and sinter the powder to form the target T, and again Argon gas (Ar) is introduced, and the degree of vacuum in the reaction chamber 100 is adjusted to about 0.1 to 50 mTorr, and the target T is struck by using an argon atom (Ar) to be formed on the catalyst layer 90. The metal nanowire array 30, and further, the metal nanowire array 30 is further vulcanized by a high temperature reaction and sulfur gas generated by sulfur element, thereby obtaining the sulfide metal nanowire array 40 (such as the twentieth At the same time, in the fourth preferred embodiment of the present invention, the reaction temperature of the metal nanowire array 30 is subjected to an optimum reaction temperature range of 150-850 ° C, and the reaction time range is 0.1- 10 hours.

仍請同時參閱第二十圖所示,本發明之硫化金屬奈米線係包含有:Still referring to the twenty-fifth figure, the vulcanized metal nanowire of the present invention comprises:

一本體(即上述之硫化金屬奈米線)41,係為一線體,且該本體41係由一金屬結合硫元素所沉積而成,而該金屬係選自於鋅(Zn)、鉻(Cd)、錫(Sn)、銦(In)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鈦(Ti)、銀(Ag)、鋁(Al)及鉛(Pb)其中之一材料,另,該硫元素係選自於硫片(Sulfide,S)、硫代硫酸鈉(Sodium thiosulfate,Na2 S2 O3 ‧5H2 O)、硫化鈉(Sodium sulfide,Na2 S)、硫化氫(Hydrogen Sulfide,H2 S)以及硫尿(Thidiazuron)其中之一。A body (ie, the above-mentioned sulfide metal nanowire) 41 is a linear body, and the body 41 is formed by depositing a metal-bonded sulfur element selected from the group consisting of zinc (Zn) and chromium (Cd). ), tin (Sn), indium (In), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), titanium (Ti), silver (Ag), aluminum (Al) and lead (Pb) One of the materials, the sulfur element is selected from the group consisting of sulfur (Sulfide, S), sodium thiosulfate (Sodium thiosulfate, Na 2 S 2 O 3 ‧5H 2 O), sodium sulfide (Sodium sulfide, Na 2 S), Hydrogen Sulfide (H 2 S) and Thidiazuron.

茲,再將本發明之特徵及其可達成之預期功效陳述如下:Hereafter, the features of the present invention and its achievable efficacy are stated as follows:

1、本發明硫化金屬奈米線及其陣列可藉由成長模板控制其線徑和長度,精準定義硫化金屬奈米線之位置,同時自我對準形成汲極和源極,且具有無金屬污染、製造簡單及成本低廉之優點。1. The sulfide metal nanowire of the present invention and its array can control the wire diameter and length by growing a template, accurately define the position of the sulfide metal nanowire, and self-align to form a drain and a source, and have no metal pollution. The advantages of simple manufacturing and low cost.

2、本發明可將硫化金屬奈米線及其陣列連接固定於電晶體源極及汲極之間,且因該硫化金屬奈米線易與待測物質產生連結,故可使其作為通道,同時,該硫化金屬奈米線表面電荷變化十分靈敏,而使可架構成一高靈敏度之場效電晶體生物感測器,並提升檢驗的可信度。2. The present invention can fix the metal sulfide nanowire and its array connection between the source and the drain of the transistor, and the sulfide metal nanowire can be connected to the substance to be tested, so that it can be used as a channel. At the same time, the surface charge change of the sulfide metal nanowire is very sensitive, and the frame can constitute a high-sensitivity field effect transistor biosensor, and the reliability of the test is improved.

3、本發明可將結合奈米粒子製備成氣體感測器,且因該硫化金屬奈米線陣列其線徑極為細微,對氣體感測具有極大的反應表面積,並提高其氣體之吸附能力,同時,其結構可提高對氣體感測之靈敏度及反應時間,更可使氣體感測器之體積達到微型化。3. The invention can prepare the combined nanoparticle into a gas sensor, and the wire diameter of the sulfide metal nanowire array is extremely fine, has a great reaction surface area for gas sensing, and improves the adsorption capacity of the gas. At the same time, its structure can improve the sensitivity and reaction time of gas sensing, and the volume of the gas sensor can be miniaturized.

綜上所述,本發明在同類產品中實有其極佳之進步實用性,同時遍查國內外關於此類結構之技術資料,文獻中亦未發現有相同的構造存在在先,是以,本發明實已具備發明專利要件,爰依法提出申請。In summary, the present invention has excellent advancement and practicability in similar products, and at the same time, the technical materials of such structures are frequently investigated at home and abroad, and the same structure is not found in the literature. The invention already has the invention patent requirements, and the application is filed according to law.

惟,以上所述者,僅係本發明之一較佳可行實施例而已,故舉凡應用本發明說明書及申請專利範圍所為之等效結構變化,理應包含在本發明之專利範圍內。However, the above-mentioned ones are merely preferred embodiments of the present invention, and the equivalent structural changes of the present invention and the scope of the claims are intended to be included in the scope of the present invention.

1...模板生成步驟1. . . Template generation step

2...電極長成步驟2. . . Electrode growth step

3...奈米線陣列長成步驟3. . . Nano line array grows into steps

4...硫化步驟4. . . Vulcanization step

5...模板生成步驟5. . . Template generation step

6...奈米線陣列長成步驟6. . . Nano line array grows into steps

7...硫化步驟7. . . Vulcanization step

10...基材10. . . Substrate

11...氧化鋁層11. . . Alumina layer

12...凹槽12. . . Groove

13...成長模板13. . . Growth template

131...管道131. . . pipeline

14...阻障層14. . . Barrier layer

20...導電電極20. . . Conductive electrode

30...金屬奈米線陣列30. . . Metal nanowire array

31...金屬奈米線31. . . Metal nanowire

40...硫化金屬奈米線陣列40. . . Sulfurized metal nanowire array

41...硫化金屬奈米線41. . . Sulfide metal nanowire

50...基板50. . . Substrate

60...導電黏著層60. . . Conductive adhesive layer

70...爐管70. . . Furnace tube

80...氧化鋁坩堝80. . . Alumina

90...觸媒層90. . . Catalyst layer

100...反應腔體100. . . Reaction chamber

T...靶材T. . . Target

第一圖為本發明第一較佳實施例之製造流程方塊圖。The first figure is a block diagram of a manufacturing process of a first preferred embodiment of the present invention.

第二至第十圖分別為本發明第一較佳實施例之製造流程之示意圖。The second to tenth views are respectively schematic views of the manufacturing process of the first preferred embodiment of the present invention.

第十一圖為本發明硫化金屬奈米線及其陣列填充於成長模板之SEM截面圖。An eleventh drawing is an SEM cross-sectional view of a vulcanized metal nanowire of the present invention and an array thereof filled in a growth template.

第十二圖為本發明硫化金屬奈米線及其陣列填充於成長模板之EDS成分比例圖。Fig. 12 is a view showing the ratio of the EDS composition of the vulcanized metal nanowire and the array thereof filled in the growth template.

第十三圖為本發明第二較佳實施例之製造流程方塊圖。Figure 13 is a block diagram showing the manufacturing flow of the second preferred embodiment of the present invention.

第十四至第二十圖分別為本發明第二較佳實施例之製造流程之示意圖。The fourteenth to twentieth drawings are respectively schematic views showing the manufacturing process of the second preferred embodiment of the present invention.

第二十一圖為本發明第二較佳實施例硫化金屬奈米線及其陣列成長於硬性基板上之SEM截面圖。Figure 21 is a SEM cross-sectional view showing a sintered metal nanowire of the second preferred embodiment of the present invention and an array thereof grown on a rigid substrate.

第二十二圖為本發明第三較佳實施例之製造流程之示意圖。Figure 22 is a schematic view showing the manufacturing process of the third preferred embodiment of the present invention.

第二十三圖為利用化學氣相沉積長成之硫化金屬奈米線及其陣列之SEM圖。The twenty-third figure is an SEM image of a sulfide metal nanowire grown by chemical vapor deposition and an array thereof.

第二十四圖為本發明第四較佳實施例之製造流程之示意圖。A twenty-fourth embodiment is a schematic view showing a manufacturing process of a fourth preferred embodiment of the present invention.

第二十五圖為利用物理氣相沉積長成之硫化金屬奈米線及其陣列之SEM圖。The twenty-fifth figure is an SEM image of a sulfided metal nanowire grown by physical vapor deposition and an array thereof.

Claims (22)

一種硫化金屬奈米線及其陣列之製造方法,係以電化學沉積(Electrodeposition)方式沉積一金屬於一成長模板內,且該成長模板係具有多數個奈米級之管道,同時,與一硫元素進行反應,並於每一管道內對應形成一硫化金屬奈米線,而該等硫化金屬奈米線係共同界定出該硫化金屬奈米線陣列;其中,係於一基板上先長成一導電黏著層,且再於該導電黏著層上長成一基材,同時,該基材係經二次陽極處理以生成該成長模板,而該成長模板係具有多數個奈米級之管道,該等管道係垂直於該導電黏著層表面,同時,該成長模板與該導電黏著層間更具有一阻障層,又,再利用化學蝕刻液以進行擴大該等管道及移除該阻障層,而使其可沿該等管道沉積形成一金屬奈米線陣列,更進一步,再將該金屬奈米線陣列與硫元素進行反應,以得到該硫化金屬奈米線陣列。 A method for manufacturing a sulfide metal nanowire and an array thereof, wherein a metal is deposited in a growth template by an electrochemical deposition method, and the growth template has a plurality of nanometer-scale pipes, and at the same time, The element reacts, and a metal sulfide nanowire is formed in each of the pipes, and the vulcanized metal nanowires jointly define the sulfide metal nanowire array; wherein the substrate is first grown into a conductive Adhesive layer, and then growing into a substrate on the conductive adhesive layer, and the substrate is subjected to secondary anodization to form the growth template, and the growth template has a plurality of nano-scale pipes, the pipes Straight to the surface of the conductive adhesive layer, and at the same time, a barrier layer is further formed between the growth template and the conductive adhesive layer, and a chemical etching solution is further used to expand the pipeline and remove the barrier layer, thereby making it A metal nanowire array can be deposited along the pipelines, and further, the metal nanowire array is reacted with sulfur element to obtain the sulfide metal nanowire array. 依申請專利範圍第1項所述之硫化金屬奈米線及其陣列之製造方法,其中,該基板之材質係為硬質材料。 The method for producing a metal sulfide nanowire according to claim 1, wherein the material of the substrate is a hard material. 依申請專利範圍第2項所述之硫化金屬奈米線及其陣列之製造方法,其中,該基板係選自於矽(Si)以及玻璃(Glass)其中之一。 The method for producing a metal sulfide nanowire according to claim 2, wherein the substrate is selected from the group consisting of bismuth (Si) and glass (Glass). 依申請專利範圍第1項所述之硫化金屬奈米線及其陣列之製造方法,其中,該基板之材質係為軟質材料。 The method for producing a metal sulfide nanowire according to claim 1, wherein the material of the substrate is a soft material. 依申請專利範圍第4項所述之硫化金屬奈米線及其陣列之製造方法,其中,該基板係選自於薄塑膠片、金屬薄片以及可彎曲之基板其中之一。 The method for producing a metal sulfide nanowire according to claim 4, wherein the substrate is selected from the group consisting of a thin plastic sheet, a metal foil, and a bendable substrate. 依申請專利範圍第1項所述之硫化金屬奈米線及其陣列之製造方法,其中,該基材係選自於鋁(Al)、鈦(Ti)、鎂(Mg)以及鋯(Zr)其中之一材料。 The method for producing a metal sulfide nanowire according to claim 1, wherein the substrate is selected from the group consisting of aluminum (Al), titanium (Ti), magnesium (Mg), and zirconium (Zr). One of the materials. 依申請專利範圍第1項所述之硫化金屬奈米線及其陣列之製造 方法,其中,該基材係選自於鋁鎂合金(Al-Mg alloy)、鋁銅合金(Al-Cu alloy)、鋁矽合金(Al-Si alloy)、鋁錳合金(Al-Mn alloy)、鋁鎂矽合金(Al-Mg-Si alloy)以及鋁鋅鎂合金(Al-Zn-Mg alloy)其中之一合金材料。 Manufacture of metal sulfide wires and arrays thereof according to item 1 of the patent application scope The method, wherein the substrate is selected from the group consisting of an aluminum-magnesium alloy (Al-Mg alloy), an aluminum-copper alloy (Al-Cu alloy), an aluminum-bismuth alloy (Al-Si alloy), and an aluminum-manganese alloy (Al-Mn alloy). , Al-Mg-Si alloy and one of the alloy materials of Al-Zn-Mg alloy. 依申請專利範圍第1項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於鉭(Ta)以及鈦(Ti)其中之一材料。 The method for producing a metal sulfide nanowire according to claim 1, wherein the conductive adhesive layer is selected from the group consisting of tantalum (Ta) and titanium (Ti). 依申請專利範圍第1項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於氮化鈦(TiN)以及氮化鉭(TaN)其中之一材料。 The method for producing a metal sulfide nanowire according to claim 1, wherein the conductive adhesive layer is selected from the group consisting of titanium nitride (TiN) and tantalum nitride (TaN). 依申請專利範圍第1項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於摻錫的氧化銦(ITO)、摻氟的氧化錫(FTO)、摻鋅的氧化錫(ZTO)、摻鍗的氧化錫(ATO)、摻鋅的氧化銦(IZO)、摻鋁的氧化鋅(AZO)、摻鎵的氧化鋅(GZO)以及摻氟的氧化鋅(FZO)其中之一材料。 The method for producing a sulfided metal nanowire according to claim 1, wherein the conductive adhesive layer is selected from the group consisting of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), Zinc-doped tin oxide (ZTO), antimony-doped tin oxide (ATO), zinc-doped indium oxide (IZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and fluorine-doped zinc oxide (FZO) One of the materials. 一種硫化金屬奈米線及其陣列之製造方法,係以化學氣相沉積(Chemical vapor deposition,CVD)方式將一金屬及一硫元素一併反應沉積於一基板上,並於該基板上形成該硫化金屬奈米線及其陣列;其中,該基板上更依序設有一導電黏著層及一觸媒層,並於該觸媒層上再沉積形成該硫化金屬奈米線及其陣列。 A method for manufacturing a sulfide metal nanowire and an array thereof, wherein a metal and a sulfur element are collectively deposited on a substrate by chemical vapor deposition (CVD), and the substrate is formed on the substrate The metal sulfide nanowire and the array thereof; wherein the substrate is further provided with a conductive adhesive layer and a catalyst layer, and is further deposited on the catalyst layer to form the sulfide metal nanowire and the array thereof. 依申請專利範圍第11項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於鉭(Ta)以及鈦(Ti)其中之一材料。 The method for producing a sulfided metal nanowire according to claim 11 or an array thereof, wherein the conductive adhesive layer is selected from the group consisting of tantalum (Ta) and titanium (Ti). 依申請專利範圍第11項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於氮化鈦(TiN)以及氮化鉭(TaN)其中之一材料。 The method for producing a sulfided metal nanowire according to claim 11 or an array thereof, wherein the conductive adhesive layer is selected from the group consisting of titanium nitride (TiN) and tantalum nitride (TaN). 依申請專利範圍第11項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於摻錫的氧化銦(ITO)、摻氟的氧化錫(FTO)、摻鋅的氧化錫(ZTO)、摻鍗的氧化錫(ATO)、摻鋅的氧化 銦(IZO)、摻鋁的氧化鋅(AZO)、摻鎵的氧化鋅(GZO)以及摻氟的氧化鋅(FZO)其中之一材料。 The method for producing a sulfided metal nanowire according to claim 11, wherein the conductive adhesive layer is selected from the group consisting of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), Zinc-doped tin oxide (ZTO), antimony-doped tin oxide (ATO), zinc-doped oxidation One of indium (IZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and fluorine-doped zinc oxide (FZO). 依申請專利範圍第11項所述之硫化金屬奈米線及其陣列之製造方法,其中,該觸媒層之材料係選自於鉑(Pt)、金(Au)、銀(Ag)、鐵(Fe)、鈷(Co)以及鎳(Ni)其中之一。 The method for producing a sulfide metal nanowire according to claim 11, wherein the material of the catalyst layer is selected from the group consisting of platinum (Pt), gold (Au), silver (Ag), and iron. One of (Fe), cobalt (Co), and nickel (Ni). 依申請專利範圍第11項所述之硫化金屬奈米線及其陣列之製造方法,其中,該金屬係可為一有機金屬氣源材料形態。 The method for producing a sulfided metal nanowire according to claim 11 and an array thereof, wherein the metal system is in the form of an organic metal gas source material. 依申請專利範圍第16項所述之硫化金屬奈米線及其陣列之製造方法,其中,該有機金屬氣源材料係選自於二乙基鋅(DEZn)、二甲基鋅(DMZn)、二甲基鎘(DMCd)、三甲基錫(TMSn)以及三甲基銦(TMIn)其中之一材料。 The method for producing a sulfided metal nanowire according to claim 16 or an array thereof, wherein the organometallic gas source material is selected from the group consisting of diethyl zinc (DEZn) and dimethyl zinc (DMZn). One of dimethyl cadmium (DMCd), trimethyltin (TMSn), and trimethyl indium (TMIn). 一種硫化金屬奈米線及其陣列之製造方法,係以物理氣相沈積(Physical vapor deposition,PVD)方式將一金屬及一硫元素一併沉積於一基板上,並於該基板上形成該硫化金屬奈米線及其陣列;其中,該基板上更依序設有一導電黏著層及一觸媒層,並於該觸媒層上再沉積形成該硫化金屬奈米線及其陣列。 A method for manufacturing a sulfide metal nanowire and an array thereof, wherein a metal and a sulfur element are collectively deposited on a substrate by physical vapor deposition (PVD), and the sulfide is formed on the substrate The metal nanowire and the array thereof; wherein the substrate is further provided with a conductive adhesive layer and a catalyst layer, and is further deposited on the catalyst layer to form the sulfide metal nanowire and the array thereof. 依申請專利範圍第18項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於鉭(Ta)以及鈦(Ti)其中之一材料。 The method for producing a metal sulfide nanowire according to claim 18, wherein the conductive adhesive layer is selected from the group consisting of tantalum (Ta) and titanium (Ti). 依申請專利範圍第18項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於氮化鈦(TiN)以及氮化鉭(TaN)其中之一材料。 The method for producing a sulfided metal nanowire according to claim 18, wherein the conductive adhesive layer is selected from the group consisting of titanium nitride (TiN) and tantalum nitride (TaN). 依申請專利範圍第18項所述之硫化金屬奈米線及其陣列之製造方法,其中,該導電黏著層係選自於摻錫的氧化銦(ITO)、摻氟的氧化錫(FTO)、摻鋅的氧化錫(ZTO)、摻鍗的氧化錫(ATO)、摻鋅的氧化銦(IZO)、摻鋁的氧化鋅(AZO)、摻鎵的氧化鋅(GZO)以及摻氟的氧化鋅(FZO)其中之一材料。 The method for producing a sulfided metal nanowire according to claim 18, wherein the conductive adhesive layer is selected from the group consisting of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), Zinc-doped tin oxide (ZTO), antimony-doped tin oxide (ATO), zinc-doped indium oxide (IZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and fluorine-doped zinc oxide (FZO) One of the materials. 依申請專利範圍第18項所述之硫化金屬奈米線及其陣列之製造方法,其中,該觸媒層之材料係選自於鉑(Pt)、金(Au)、銀(Ag)、鐵(Fe)、鈷(Co)以及鎳(Ni)其中之一。The method for producing a sulfided metal nanowire according to claim 18, wherein the material of the catalyst layer is selected from the group consisting of platinum (Pt), gold (Au), silver (Ag), and iron. One of (Fe), cobalt (Co), and nickel (Ni).
TW98128428A 2009-08-24 2009-08-24 Production method of sulfurized metal nanowires and their arrays TWI399452B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98128428A TWI399452B (en) 2009-08-24 2009-08-24 Production method of sulfurized metal nanowires and their arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98128428A TWI399452B (en) 2009-08-24 2009-08-24 Production method of sulfurized metal nanowires and their arrays

Publications (2)

Publication Number Publication Date
TW201107518A TW201107518A (en) 2011-03-01
TWI399452B true TWI399452B (en) 2013-06-21

Family

ID=44835252

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98128428A TWI399452B (en) 2009-08-24 2009-08-24 Production method of sulfurized metal nanowires and their arrays

Country Status (1)

Country Link
TW (1) TWI399452B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243753B (en) * 2004-12-23 2005-11-21 Ind Tech Res Inst Fabrication method of nanowire array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI243753B (en) * 2004-12-23 2005-11-21 Ind Tech Res Inst Fabrication method of nanowire array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
許文嘉, 施仁彬,"一維硫化銦的製備與特性分析", 逢甲大學, 電子工程學系碩士班, 2008年7月 *

Also Published As

Publication number Publication date
TW201107518A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
Zhuang et al. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode
Mazaheri et al. Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors
Kim et al. Modulating the growth rate, aspect ratio, and yield of copper nanowires with alkylamines
Toghill et al. The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode
Rengaraj et al. Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor
Wang et al. Electrochemical oxidation and determination of glucose in alkaline media based on Au (111)-like nanoparticle array on indium tin oxide electrode
Zhao et al. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing
Cui et al. Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface
Zhang et al. 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing
Yang et al. A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb2O5 nanotube arrays
Verma et al. Non-invasive oral cancer detection from saliva using zinc oxide–reduced graphene oxide nanocomposite based bioelectrode
Cao et al. Hedgehog-like Bi 2 S 3 nanostructures: a novel composite soft template route to the synthesis and sensitive electrochemical immunoassay of the liver cancer biomarker
Savariraj et al. Microwave-assisted synthesis of localized surface plasmon resonance enhanced bismuth selenide (Bi2Se3) layers for non-enzymatic glucose sensing
Liu et al. A highly sensitive label-free electrochemical immunosensor based on an aligned GaN nanowires array/polydopamine heterointerface modified with Au nanoparticles
Hien et al. H2S-sensing properties of Cu2O submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering
Fall et al. Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs)
Liyanage et al. Application of nanomaterials for chemical and biological sensors: A review
Purohit et al. Electrodeposition of metallic nanostructures for biosensing applications in health care
Feng et al. Cu2O nanowires with exposed {111} facet for nonenzymatic detection of glucose in complex biological fluids
Ma et al. Novel cathodic photoelectrochemical immnuosensor with high sensitivity based on 3D AuNPs/ZnO/Cu2O heterojunction nanowires
KR102169125B1 (en) Method of manufacturing gold nanostructure, 3-dimensional gold electrode and sensor comprising gold nanostructure manufactured thereby
TWI399452B (en) Production method of sulfurized metal nanowires and their arrays
Roy et al. Efficient Point-of-Care Detection of Uric Acid in the Human Blood Sample with an Enhanced Electrocatalytic Response Using Nanocomposites of Cobalt and Mixed-Valent Molybdenum Sulfide
Chen et al. Electrodeposition of thin films and single-crystalline nanowires of Ag7Te4
Wahab et al. Aluminum oxide quantum dots (Al2O3): An immediate sensing aptitude for the detection of urea