TWI399434B - Method of controlling cell shape - Google Patents

Method of controlling cell shape Download PDF

Info

Publication number
TWI399434B
TWI399434B TW99125153A TW99125153A TWI399434B TW I399434 B TWI399434 B TW I399434B TW 99125153 A TW99125153 A TW 99125153A TW 99125153 A TW99125153 A TW 99125153A TW I399434 B TWI399434 B TW I399434B
Authority
TW
Taiwan
Prior art keywords
acid
polycaprolactone
chitosan
coating
blend
Prior art date
Application number
TW99125153A
Other languages
Chinese (zh)
Other versions
TW201204835A (en
Inventor
Tai Horng Young
Jyh Horng Wang
Hung Jen Shao
Chi Ruei Chen
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW99125153A priority Critical patent/TWI399434B/en
Publication of TW201204835A publication Critical patent/TW201204835A/en
Application granted granted Critical
Publication of TWI399434B publication Critical patent/TWI399434B/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

控制細胞形狀之方法Method of controlling cell shape

本發明係關於一種在進行細胞培養時控制細胞形狀之方法。The present invention relates to a method of controlling the shape of a cell when performing cell culture.

細胞和材料間的作用機制非常的複雜,以貼附而言可簡單分為二步驟,首先,細胞外基質(extracellular matrix(ECM) proteins)先吸附在材料表面,其後,細胞透過穿膜蛋白(integrin)和細胞外基質相結合,如此細胞即可貼附於材料表面(Brakebusch et al.,EMBO J 22(10):2324-2333,2003;and Garcia et al Biomaterials 26:7525-7529,2005 )。隨後,經由中心貼附酶(Focal adhesion kinase,FAK)的作用,驅動細胞內的生化反應,使細胞質內的細胞骨架重新排列,造成細胞的生長及表現型發生不同的變化(Machesky et al.,Trends Cell Biol 6(8):304-310,1996 )。細胞骨架主要功用為構成細胞形狀,因此控制細胞骨架即可以控制細胞形狀。目前,控制細胞骨架的方式可分為化學性及物理性刺激。The mechanism of action between cells and materials is very complex. In terms of attachment, it can be easily divided into two steps. First, the extracellular matrix (ECM) proteins are first adsorbed on the surface of the material, and then the cells penetrate the transmembrane protein. (integrin) is combined with the extracellular matrix so that the cells can be attached to the surface of the material ( Brakebusch et al., EMBO J 22(10): 2324-2333, 2003; and Garcia et al Biomaterials 26: 7525-7529, 2005 ). Subsequently, through the action of Focal adhesion kinase (FAK), the biochemical reaction in the cell is driven to rearrange the cytoskeleton in the cytoplasm, causing different changes in cell growth and phenotype ( Machesky et al., Trends Cell Biol 6(8): 304-310, 1996 ). The main function of the cytoskeleton is to form the shape of the cell, so controlling the cytoskeleton can control the shape of the cell. Currently, the way to control the cytoskeleton can be divided into chemical and physical stimuli.

化學性刺激以cytochalasin系列的藥物居多(Varedi et al.,J Invest Dermatol 104(1):118-123,1995;Varedi.,J Cell Physiol 172(2):192-199,1997 ),主要的作用是使細胞骨架無法聚合形成,造成細胞呈現圓形狀態,但卻無法隨意控制細胞呈現出不同程度的貼附情形。此外,化學性藥物刺激通常存在著導致細胞死亡的副作用。因此,利用化學性藥物刺激來控制細胞形狀會被侷限於藥物濃度毒殺的控制因素。物理性刺激分為外力刺激及培養基材的改變,外力刺激利用伸張力延伸細胞的骨架,造成細胞因應力量的不同方向呈現纖維狀(Lee et al.,Biochem Biophys Res Commun,352:147-152,2007 ),此種刺激僅造成細胞呈現纖維狀,依然無法控制細胞呈現出不同程度的貼附情形。另一種物理性刺激為生物醫學材料表面性質(培養基材)的改變,可簡易區分為基材表面化學性處理及基材表面物理性處理。基材表面化學性處理:改質表面化學官能基,造成材料表面性質改變(親疏水性或表面電性),進而影響細胞外基質(ECM)的貼附,導致細胞貼附行為的不同,控制細胞形狀的發展(Facucheux et al.,Biomaterials,25: 2721-2730,2004;J Biomed Mater Res 66A: 247-259,2003;Curran et al.,Biomaterials,26(34): 7057-7067,2005;Silva et al.,Macromol. Biosci.,8: 568-576,2008) 。基材表面物理性處理:改變基材上細胞貼附區域的大小(surface-topography,pattern),控制細胞形狀的發展(Chou et al.,J Cell Sci 108: 1563-1573,1995;Thomas et al.,Proc Natl Acad Sci U S A,99(4): 1972-1977,2002 )。Chemical stimulation is dominated by the cytochalasin series of drugs ( Varedi et al., J Invest Dermatol 104 (1): 118-123, 1995; Varedi, J Cell Physiol 172 (2): 192-199 , 1997 ), the main role The cytoskeleton cannot be polymerized to form a circular state, but it is not possible to control the cells to exhibit different degrees of attachment. In addition, chemical drug stimulation often has side effects that lead to cell death. Therefore, the use of chemical drug stimulation to control cell shape is limited to the control factors of drug concentration poisoning. Physical stimuli are divided into external force stimulation and changes in the culture medium. External force stimulation uses the stretching tension to extend the skeleton of the cells, causing the cells to be fibrous in different directions of stress ( Lee et al., Biochem Biophys Res Commun, 352: 147-152). , 2007 ), this kind of stimulation only causes the cells to be fibrous, and still can't control the cells to show different degrees of attachment. Another physical stimulus is the change in the surface properties (physical material) of the biomedical material, which can be easily distinguished into the chemical treatment of the substrate surface and the physical treatment of the substrate surface. Chemical treatment of the surface of the substrate: modifying the chemical functional groups on the surface, causing changes in the surface properties of the material (hydrophobic or surface electrical properties), which in turn affects the attachment of the extracellular matrix (ECM), resulting in different cell attachment behaviors, controlling cells Development of shape ( Fuchueux et al., Biomaterials, 25: 2721-2730, 2004; J Biomed Mater Res 66A: 247-259, 2003; Curran et al., Biomaterials, 26(34): 7057-7067, 2005; Silva Et al., Macromol. Biosci., 8: 568-576, 2008) . Physical treatment of the substrate surface: changing the surface-topography (pattern) of the substrate to control the development of cell shape ( Chou et al., J Cell Sci 108: 1563-1573, 1995; Thomas et al Proc Natl Acad Sci USA, 99(4): 1972-1977, 2002 ).

上述用於控制細胞形狀發展的技術都有其缺陷,化學性藥物刺激控制細胞骨架的形成存在著藥物濃度毒殺的因素。培養基材物理性改質,亦存在著化學官能基改質後的生物相容性問題。另外,前述這些物理性改質僅侷限於表面的改質,無法做到全體性的材料性質的改變(bulk material)。The above techniques for controlling the development of cell shape have their defects, and the formation of cytoskeleton by chemical drug stimulation has a factor of drug concentration poisoning. The physical modification of the culture substrate also has the problem of biocompatibility after chemical functional group modification. In addition, the aforementioned physical modifications are limited to the modification of the surface, and it is impossible to achieve a bulk material material.

本發明揭示一種控制細胞形狀的平台,利用細胞對於兩種生物醫學材料:聚己內醋(polycaprolactone)及幾丁聚醣(chitosan)的不同貼附能力來控制細胞形狀,而達到可以控制細胞形狀的目的。我們利用摻合聚合物材料的手段,來形成含有不同比例的聚己內酯及幾丁聚醣摻合物,並將其塗佈於一基材的表面上形成一塗層。於進行細胞培養之前,依所需要之細胞形狀,選擇一基材其表面具有特定的聚己內酯含量的聚己內酯/幾丁聚醣摻合物塗層,即可控制細胞貼附行為,於是可培養出具有想要之細胞形狀的細胞。The invention discloses a platform for controlling cell shape, which utilizes different adhesion ability of cells to two biomedical materials: polycaprolactone and chitosan to control cell shape, and can control cell shape. the goal of. We use a method of blending polymer materials to form polycaprolactone and chitosan blends in different proportions and apply them to the surface of a substrate to form a coating. Cell attachment behavior can be controlled by selecting a polycaprolactone/chitosan blend coating with a specific polycaprolactone content on the surface of the substrate prior to cell culture. Thus, cells having the desired cell shape can be cultured.

較佳的,該聚己內酯/幾丁聚醣摻合物具有5-95%的聚己內酯含量,以聚己內酯和幾丁聚醣的重量和為基準。Preferably, the polycaprolactone/chitosan blend has a polycaprolactone content of from 5 to 95% based on the weight of the polycaprolactone and chitosan.

較佳的,該細胞形狀係選自圓形、纖維狀及介於其間之形狀。Preferably, the cell shape is selected from the group consisting of a circle, a fiber, and a shape interposed therebetween.

較佳的,該細胞包含原核生物或真核生物所取下之細胞。更佳的,該細胞為人類前十字韌帶細胞或人類髓間葉細胞。Preferably, the cell comprises a cell removed by a prokaryote or a eukaryote. More preferably, the cell is a human anterior cruciate ligament cell or a human mesenchymal stem cell.

較佳的,本發明方法進一步包含於該基材的表面上形成該包含聚己內酯/幾丁聚醣摻合物的塗層。形成該塗層的方法較佳的包含下列步驟:a)將幾丁聚醣的一酸性水溶液與聚己內酯的酸溶液混合;b)將步驟a)的混合溶液塗佈於該基材表面上;c)揮發移除被塗佈的混合溶液中的溶劑而形成一乾的摻合物塗層;d)將該乾的摻合物塗層浸於一鹼性溶液以中和該摻合物塗層;及e)清洗該中和的摻合物塗層。Preferably, the method of the present invention further comprises forming a coating comprising a polycaprolactone/chitosan blend on the surface of the substrate. The method of forming the coating preferably comprises the steps of: a) mixing an acidic aqueous solution of chitosan with an acid solution of polycaprolactone; b) applying the mixed solution of step a) to the surface of the substrate. And c) volatilizing to remove the solvent in the coated mixed solution to form a dry blend coating; d) immersing the dry blend coating in an alkaline solution to neutralize the blend a coating; and e) cleaning the neutralized blend coating.

較佳的,上述步驟a)包含將聚己內酯溶解於無水的酸,其中該酸係選自甲酸(formic acid)、醋酸(acetic acid)、乳酸(lactic acid)、檸檬酸(citric acid)、酒石酸(tartaric acid)、琥珀酸(succinic acid)、蘋果酸(malic acid)、草酸(oxalic acid)、乙醇酸(glycolic acid)、二氯醋酸(dichloroacetic acid)、三氟醋酸(trifluoroacetic acid)、單寧酸(tannic acid)所組成的族群。更佳的,將聚己內酯溶解於無水的冰醋酸。Preferably, the above step a) comprises dissolving polycaprolactone in an anhydrous acid, wherein the acid is selected from the group consisting of formic acid, acetic acid, lactic acid, citric acid. , tartaric acid, succinic acid, malic acid, oxalic acid, glycolic acid, dichloroacetic acid, trifluoroacetic acid, A group of tannic acids. More preferably, the polycaprolactone is dissolved in anhydrous glacial acetic acid.

較佳的,上述步驟a)包含將幾丁聚醣溶解於一酸的水溶液,其中該酸係選自甲酸(formic acid)、醋酸(acetic acid)、乳酸(lactic acid)、檸檬酸(citric acid)、酒石酸(tartaric acid)、琥珀酸(succinic acid)、蘋果酸(malic acid)、草酸(oxalic acid)、乙醇酸(glycolic acid)、二氯醋酸(dichloroacetic acid)、三氟醋酸(trifluoroacetic acid)、單寧酸(tannic acid)所組成的族群。更佳的,其中該酸為醋酸。Preferably, the above step a) comprises dissolving chitosan in an aqueous solution of an acid selected from the group consisting of formic acid, acetic acid, lactic acid, and citric acid. ), tartaric acid, succinic acid, malic acid, oxalic acid, glycolic acid, dichloroacetic acid, trifluoroacetic acid And a group of tannic acids. More preferably, the acid is acetic acid.

較佳的,該聚己內酯具有500-200,000的分子量,及該幾丁聚醣具有60-99莫耳%的去己醯度及500-1,000,000的分子量。Preferably, the polycaprolactone has a molecular weight of from 500 to 200,000, and the chitosan has a deuterium of 60-99 mol% and a molecular weight of 500-1,000,000.

較佳的,於本明方法中當所需要之細胞形狀為圓形時,選擇一基材其表面其具有聚己內酯含量不高於15%的聚己內酯/幾丁聚醣摻合物的塗層;當所需要之細胞形狀為纖維狀時,選擇一基材表面其具有聚己內酯含量不低於25%的聚己內酯/幾丁聚醣摻合物的塗層。Preferably, in the method of the present invention, when the shape of the desired cell is circular, a surface of the substrate having a polycaprolactone content of not more than 15% is selected to be blended with polycaprolactone/chitosan. Coating of the material; when the desired cell shape is fibrous, a coating having a polycaprolactone/chitosan blend having a polycaprolactone content of not less than 25% is selected on the surface of the substrate.

本發明亦提供一種培養圓形細胞之方法,包含準備一基材,其表面具有一包含聚己內酯/幾丁聚醣摻合物的塗層,且該聚己內酯/幾丁聚醣摻合物塗層的聚己內酯含量不高於15%,以聚己內酯和幾丁聚醣的重量和為基準;及於具有該塗層的基材表面上進行細胞培養。The invention also provides a method for cultivating round cells, comprising preparing a substrate having a coating comprising a polycaprolactone/chitosan blend on the surface, and the polycaprolactone/chitosan The blend coating has a polycaprolactone content of not more than 15% based on the weight of the polycaprolactone and chitosan; and cell culture is carried out on the surface of the substrate having the coating.

本發明亦提供一種培養纖維狀細胞之方法,包含準備一基材,其表面具有一包含聚己內酯/幾丁聚醣摻合物的塗層,且該聚己內酯/幾丁聚醣摻合物塗層的聚己內酯含量不低於25%,以聚己內酯和幾丁聚醣的重量和為基準;及於具有該塗層的基材表面上進行細胞培養。The present invention also provides a method of culturing fibroblasts comprising preparing a substrate having a coating comprising a polycaprolactone/chitosan blend on a surface thereof, and the polycaprolactone/chitosan The blend coating has a polycaprolactone content of not less than 25% based on the weight of the polycaprolactone and the chitosan; and cell culture is carried out on the surface of the substrate having the coating.

本發明之優點:Advantages of the invention:

第一:捨棄利用化學性官能基改質用於控制細胞形狀之方法(可能造成的細胞毒殺副作用),摻合的製程中並不會創造出具有毒害細胞的物質。First: Discard the method of using chemical functional groups to modify the shape of cells (possible cytotoxic side effects), and the process of blending does not create substances with toxic cells.

第二:摻合兩者聚合物所創造出的新材料,其所改變的材料性質不侷限於材料表面而是材料全體性的改變,如此不會因為材料表面降解,而失去控制細胞形狀的功能。Second: the new material created by blending the two polymers, the material properties changed are not limited to the surface of the material but the change of the wholeness of the material, so that the function of controlling the shape of the cell is not lost due to the degradation of the surface of the material. .

第三:聚己內酯及幾丁聚醣為可相容的(miscibility),因此可以形成不會出現區塊性的高分子分離現象的摻合物,也因此可以調整兩者間的比例,達到隨意微調細胞形狀的效果。Thirdly, polycaprolactone and chitosan are miscible, so that a blend which does not have a block-like polymer separation phenomenon can be formed, and thus the ratio between the two can be adjusted. Achieve the effect of randomly fine-tuning the shape of the cells.

第四:相較於利用模版(pattern)製造出細胞貼附區域控制細胞形狀的方式,摻合的製備過程省時簡單且節省成本。Fourth: The preparation process of blending is time-saving and cost-effective compared to the manner in which the cell attachment region is used to control the shape of the cells using a pattern.

幾丁聚醣從甲殼動物經由去乙醯化反應而獲得,已被應用於許多醫學領域(傷口敷料及藥物傳輸)。於細胞體外培養,幾丁聚醣會造成細胞不易貼附,進而導致細胞呈現圓形狀。最近的研究史指出幾丁聚醣具有促進細胞分泌細胞外基質的能力(Kojima et al.,J Vet Med Sci 66(12): 1595-1598,2004;Howling et al.,Biomaterials 22(22): 2959-2966,2001;Inui et al.,Biosci,Biotechnol,Biochem 59(11): 2111-2114,1995;Okamoto et al. J Vet Med Sci 57(5): 851-854,1995 )。聚己內酯(PCL)是一種人工合成的聚酯高分子,細胞容易貼附於其表面。因此,細胞於聚己內酯表面呈現平鋪的形狀(Baker et al.,Biomaterials 30(7): 1321-1328,2009;Shin et al.,Tissue Eng 10(1-2): 33-41,2004;Kweon et al.,Biomaterials 24(5): 801-808,2003 )。基於此,我們摻合聚己內酯及幾丁聚醣創造出一新的培養材料,藉由調整此兩種聚合物的比例,使被培養於此摻合物上的細胞具有我們想要的形狀。除此之外,聚己內酯及幾丁聚醣均為經過美國食品藥物管理局認可的生物醫學材料,因此本發明也避免了細胞毒性的困擾。Chitosan is obtained from crustaceans via deacetylation and has been used in many medical fields (wound dressings and drug delivery). When cells are cultured in vitro, chitosan causes the cells to be difficult to attach, which in turn causes the cells to assume a round shape. Recent research has shown that chitosan has the ability to promote the secretion of extracellular matrices by cells ( Kojima et al., J Vet Med Sci 66(12): 1595-1598, 2004; Howling et al., Biomaterials 22 (22): 2959-2966, 2001; Inui et al., Biosci, Biotechnol, Biochem 59(11): 2111-2114, 1995; Okamoto et al. J Vet Med Sci 57(5): 851-854, 1995 ). Polycaprolactone (PCL) is a synthetic polyester polymer that is easily attached to its surface. Thus, the cells assume a tiled shape on the surface of polycaprolactone ( Baker et al., Biomaterials 30(7): 1321-1328, 2009; Shin et al., Tissue Eng 10(1-2): 33-41, 2004; Kweon et al., Biomaterials 24(5): 801-808, 2003 ). Based on this, we blended polycaprolactone and chitosan to create a new culture material. By adjusting the ratio of the two polymers, the cells cultured on this blend have what we want. shape. In addition, both polycaprolactone and chitosan are biomedical materials approved by the US Food and Drug Administration, and thus the present invention also avoids cytotoxicity.

本發明將藉由下列實施例被進一步了解,該等實施例僅作為說明之用而非用於限制本發明範圍。The invention is further understood by the following examples, which are intended to be illustrative only and not to limit the scope of the invention.

實施例基材的準備及特徵Example substrate preparation and characteristics

去乙醯幾丁聚醣(Sigma-Aldrich,聖路易斯,美國,去乙醯程度85%)在0.5 M醋酸被溶解以準備1 wt%去乙醯幾丁聚醣溶液。PCL(分子量80000,Sigma-Aldrich,聖路易斯,美國)以無水冰醋酸溶化以準備10 wt% PCL溶液。如以下表1所示,將不同體積的10 wt% PCL溶液及不同體積的冰醋酸,慢慢地加入到3 ml 1 wt%幾丁聚醣溶液,而獲得5、10、15、25、50和75 wt% PCL的PCL/幾丁聚醣溶液。上述純PCL溶液、純幾丁聚醣溶液和PCL/幾丁聚醣混合溶液被直接塗布在組織培養用聚苯乙烯(TCPS)基材上(康寧,NY,美國)並且在60℃烘乾24 h以準備具有塗層的培養基材。接著浸於0.5 N NaOH水溶液中24 h以中和之,再以去離子水充份地清洗。Deacetylated chitosan (Sigma-Aldrich, St. Louis, USA, 85% deacetylated) was dissolved in 0.5 M acetic acid to prepare a 1 wt% solution of deacetylated chitosan. PCL (molecular weight 80,000, Sigma-Aldrich, St. Louis, USA) was dissolved in anhydrous glacial acetic acid to prepare a 10 wt% PCL solution. As shown in Table 1 below, different volumes of 10 wt% PCL solution and different volumes of glacial acetic acid were slowly added to 3 ml of 1 wt% chitosan solution to obtain 5, 10, 15, 25, 50. And a PCL/chitosan solution of 75 wt% PCL. The above pure PCL solution, pure chitosan solution and PCL/chitosan mixed solution were directly coated on a tissue culture polystyrene (TCPS) substrate (Corning, NY, USA) and dried at 60 ° C. h to prepare a coated culture substrate. It was then immersed in 0.5 N NaOH aqueous solution for 24 h to neutralize it, and then washed thoroughly with deionized water.

PCL/幾丁聚醣摻合物的化學結構以衰减全反射(ATR)/傅立葉轉換紅外線(FTIR)(UMA 600,Varian,美國)進行分析。所有的光譜係在600-4000 cm-1 範圍以4 cm-1 的標稱的解析度得到,並且以64掃瞄信號平均。結果被示於圖1。The chemical structure of the PCL/chitosan blend was analyzed by Attenuated Total Reflection (ATR) / Fourier Transform Infrared (FTIR) (UMA 600, Varian, USA). All spectra were obtained at a nominal resolution of 4 cm -1 in the range of 600-4000 cm -1 and averaged over 64 scan signals. The results are shown in Figure 1.

細胞培養Cell culture

前述具有PCL/幾丁聚醣摻合物塗層的培養基材先經70%酒精快速沖洗30秒,再置入紫外線24小時進行殺菌後,利用磷酸鹽緩衝溶液(phosphate buffered saline,PBS)清洗乾淨。將欲控制細胞形狀之細胞利用0.2%胰蛋白酶-0.1% EDTA(伸乙基二胺四醋酸)收取後,連同一被補充有10%小牛血清及1%抗生素(100 U Ml-1 penicillin sodium,100 μg mL-1 streptomycin and 0.25 μg mL1 amphotericin B;Gibco-RBL life Technologies,Paisley,UK)的DMEM培養基被培養於摻合物塗層上,放置於37℃及5%CO2 的濕氣調節的培養箱內進行培養。待細胞貼附後(約4小時後),即可於不同時間點觀察細胞形狀之變化。The above-mentioned culture medium with PCL/chitosan blend coating is rapidly rinsed with 70% alcohol for 30 seconds, and then placed in ultraviolet light for 24 hours for sterilization, and then washed with phosphate buffered saline (PBS). clean. The cells to be controlled for cell shape were collected with 0.2% trypsin-0.1% EDTA (extended ethylenediaminetetraacetic acid), and then supplemented with 10% calf serum and 1% antibiotic (100 U Ml -1 penicillin sodium). , DMEM medium of 100 μg mL -1 streptomycin and 0.25 μg mL 1 amphotericin B; Gibco-RBL life Technologies, Paisley, UK) was cultured on the blend coating and placed at 37 ° C and 5% CO 2 moisture. The culture is carried out in a regulated incubator. After the cells are attached (about 4 hours later), changes in cell shape can be observed at different time points.

細胞形狀Cell shape

使用日立S-800掃描式電子顯微鏡(SEM)進行細胞形狀的觀察。貼附的細胞先以PBS清洗,接著以2.5%戊二醛的PBS溶液於4℃下固定1小時。最後以PBS充份清洗,與梯度差乙醇溶液接觸而被脫水及冷凍乾燥,再於真空下鍍金以進行SEM觀察。The shape of the cells was observed using a Hitachi S-800 scanning electron microscope (SEM). The attached cells were first washed with PBS, and then fixed in a 2.5% glutaraldehyde solution in PBS at 4 ° C for 1 hour. Finally, it was washed thoroughly with PBS, dehydrated and freeze-dried by contact with a gradient ethanol solution, and then plated with gold under vacuum for SEM observation.

圖2為人類前十字韌帶細胞形狀培養一天後的SEM照片(放大倍數1500),圖3為人類前十字韌帶細胞形狀培養三天後的SEM照片(放大倍數1500),其中人類前十字韌帶細胞會隨著摻合比例的不同成長成不同的形狀,由圓形(培養於5-15wt% PCL)慢慢轉成纖維狀(25-75 wt% PCL)。Figure 2 is a SEM photograph of a human anterior cruciate ligament cell cultured for one day (magnification 1500), and Figure 3 is a SEM photograph (magnification 1500) of human anterior cruciate ligament cell shape culture for three days, in which human anterior cruciate ligament cells As the blending ratio grows into different shapes, it is slowly converted into a fibrous shape (25-75 wt% PCL) by a circular shape (cultured at 5-15 wt% PCL).

圖4為人類骨髓間葉細胞培養一天後的SEM照片,其中細胞會隨著摻合比例的不同成長成不同的形狀,由圓形(培養於2wt% PCL)慢慢轉成纖維狀(50 wt% PCL)。Figure 4 is a SEM photograph of human bone marrow mesenchymal cells after one day of culture, in which cells grow into different shapes with different blending ratios, and are slowly transformed into a fibrous shape (cultured at 2 wt% PCL) (50 wt % PCL).

圖1為PCL/幾丁聚醣摻合物的衰减全反射(ATR)/傅立葉轉換紅外線(FTIR)光譜。Figure 1 is an attenuated total reflectance (ATR) / Fourier transform infrared (FTIR) spectrum of a PCL/chitosan blend.

圖2為人類前十字韌帶細胞形狀培養於PCL/幾丁聚醣摻合物塗上一天後的SEM照片(放大倍數1500),其中A為純幾丁聚醣,B為5 wt% PCL,C為10 wt% PCL,D為15 wt% PCL,E為25 wt% PCL,F為50 wt% PCL,G為75 wt% PCL,及H為純PCL。Figure 2 is a SEM photograph (magnification 1500) of a human anterior cruciate ligament cell shape cultured on a PCL/chitosan blend for one day, where A is pure chitosan and B is 5 wt% PCL, C. It is 10 wt% PCL, D is 15 wt% PCL, E is 25 wt% PCL, F is 50 wt% PCL, G is 75 wt% PCL, and H is pure PCL.

圖3為人類前十字韌帶細胞形狀培養於PCL/幾丁聚醣摻合物塗上三天後的SEM照片(放大倍數1500),其中A為純幾丁聚醣,B為5 wt% PCL,C為10 wt% PCL,D為15 wt% PCL,E為25 wt% PCL,F為50 wt% PCL,G為75 wt% PCL,及H為純PCL。Figure 3 is a SEM photograph (magnification 1500) of human anterior cruciate ligament cell shape cultured on PCL/chitosan blend for three days, where A is pure chitosan and B is 5 wt% PCL. C is 10 wt% PCL, D is 15 wt% PCL, E is 25 wt% PCL, F is 50 wt% PCL, G is 75 wt% PCL, and H is pure PCL.

圖4為人類骨髓間葉細胞培養一天後的螢光照片,其中A為2 wt% PCL,B為10 wt% PCL,及C為50 wt% PCL。Figure 4 is a fluorescent photograph of human bone marrow mesenchymal cells one day after culture, wherein A is 2 wt% PCL, B is 10 wt% PCL, and C is 50 wt% PCL.

Claims (16)

一種控制細胞形狀之方法,包含於一基材的表面上進行細胞培養,其特徵在於該基材表面包含聚己內酯/幾丁聚醣摻合物的塗層。A method of controlling the shape of a cell comprising performing cell culture on a surface of a substrate, characterized in that the surface of the substrate comprises a coating of a polycaprolactone/chitosan blend. 如申請專利範圍第1項的方法,其中該聚己內酯/幾丁聚醣摻合物具有5-95%的聚己內酯含量,以聚己內酯和幾丁聚醣的重量和為基準。The method of claim 1, wherein the polycaprolactone/chitosan blend has a polycaprolactone content of 5 to 95%, and the weight of polycaprolactone and chitosan is Benchmark. 如申請專利範圍第1或2項的方法,其進一步包含:於進行細胞培養之前,依所需要之細胞形狀,選擇一基材其表面具有特定的聚己內酯含量的聚己內酯/幾丁聚醣摻合物塗層。The method of claim 1 or 2, further comprising: selecting a polycaprolactone having a specific polycaprolactone content on the surface of the substrate according to a desired cell shape before performing cell culture. Butanose blend coating. 如申請專利範圍第3項的方法,其中該細胞形狀係選自圓形、纖維狀及介於其間之形狀。The method of claim 3, wherein the cell shape is selected from the group consisting of a circle, a fiber, and a shape therebetween. 如申請專利範圍第1項的方法,其中該細胞包含原核生物或真核生物所取下之細胞。The method of claim 1, wherein the cell comprises a cell removed by a prokaryote or a eukaryote. 如申請專利範圍第5項的方法,其中該細胞為人類前十字韌帶細胞或人類骨髓間葉細胞。The method of claim 5, wherein the cell is a human anterior cruciate ligament cell or a human bone marrow mesenchymal cell. 如申請專利範圍第1項的方法,其進一步包含於該基材的表面上形成該包含聚己內酯/幾丁聚醣摻合物的塗層。The method of claim 1, further comprising forming the coating comprising a polycaprolactone/chitosan blend on the surface of the substrate. 如申請專利範圍第7項的方法,其中形成該塗層包含下列步驟:a)將幾丁聚醣的一酸性水溶液與聚己內酯的酸溶液混合;b)將步驟a)的混合溶液塗佈於該基材表面上;c)揮發移除被塗佈的混合溶液中的溶劑而形成一乾的摻合物塗層;d)將該乾的摻合物塗層浸於一鹼性溶液以中和該摻合物塗層;及e)清洗該中和的摻合物塗層。The method of claim 7, wherein the forming the coating comprises the steps of: a) mixing an acidic aqueous solution of chitosan with an acid solution of polycaprolactone; b) coating the mixed solution of step a) Deploying on the surface of the substrate; c) volatilizing to remove the solvent in the coated mixed solution to form a dry blend coating; d) immersing the dried blend coating in an alkaline solution Neutifying the blend coating; and e) washing the neutralized blend coating. 如申請專利範圍第8項的方法,其中的步驟a)包含將聚己內酯溶解於無水的酸,其中該酸係選自甲酸(formic acid)、醋酸(acetic acid)、乳酸(lactic acid)、檸檬酸(citric acid)、酒石酸(tartaric acid)、琥珀酸(succinic acid)、蘋果酸(malic acid)、草酸(oxalic acid)、乙醇酸(glycolic acid)、二氯醋酸(dichloroacetic acid)、三氟醋酸(trifluoroacetic acid)、單寧酸(tannic acid)所組成的族群。The method of claim 8, wherein the step a) comprises dissolving polycaprolactone in an anhydrous acid, wherein the acid is selected from the group consisting of formic acid, acetic acid, and lactic acid. , citric acid, tartaric acid, succinic acid, malic acid, oxalic acid, glycolic acid, dichloroacetic acid, three A group consisting of trifluoroacetic acid and tannic acid. 如申請專利範圍第9項的方法,其中的步驟a)包含將聚己內酯溶解於無水的冰醋酸。The method of claim 9, wherein the step a) comprises dissolving the polycaprolactone in anhydrous glacial acetic acid. 如申請專利範圍第8、9或10項的方法,其中的步驟a)包含將幾丁聚醣溶解於一酸的水溶液,其中該酸係選自甲酸(formic acid)、醋酸(acetic acid)、乳酸(lactic acid)、檸檬酸(citric acid)、酒石酸(tartaric acid)、琥珀酸(succinic acid)、蘋果酸(malic acid)、草酸(oxalic acid)、乙醇酸(glycolic acid)、二氯醋酸(dichloroacetic acid)、三氟醋酸(trifluoroacetic acid)、單寧酸(tannic acid)所組成的族群。 The method of claim 8, wherein the step a) comprises dissolving chitosan in an aqueous solution of an acid selected from the group consisting of formic acid, acetic acid, Lactic acid, citric acid, tartaric acid, succinic acid, malic acid, oxalic acid, glycolic acid, dichloroacetic acid A group consisting of dichloroacetic acid, trifluoroacetic acid, and tannic acid. 如申請專利範圍第11項的方法,其中該酸為醋酸。 The method of claim 11, wherein the acid is acetic acid. 如申請專利範圍第1項的方法,其中該聚己內酯具有500-200,000的分子量,及該幾丁聚醣具有60-99莫耳%的去己醯度及500-1,000,000的分子量。 The method of claim 1, wherein the polycaprolactone has a molecular weight of from 500 to 200,000, and the chitosan has a deuterium of 60 to 99 mol% and a molecular weight of from 500 to 1,000,000. 如申請專利範圍第4項的方法,其中當所需要之細胞形狀為圓形時,選擇一基材其表面其具有聚己內酯含量不低於5%至不高於15%的聚己內酯/幾丁聚醣摻合物的塗層;當所需要之細胞形狀為纖維狀時,選擇一基材表面其具有聚己內酯含量不低於25%至不高於95%的聚己內酯/幾丁聚醣摻合物的塗層,該等%以聚己內酯和幾丁聚醣的重量和為基準。 The method of claim 4, wherein when the desired cell shape is circular, a substrate having a surface having a polycaprolactone content of not less than 5% and not more than 15% is selected. a coating of an ester/chitosan blend; when the desired cell shape is fibrous, selecting a surface of the substrate having a polycaprolactone content of not less than 25% to not more than 95% A coating of a lactone/chitosan blend, the % being based on the weight of polycaprolactone and chitosan. 一種培養圓形細胞之方法,包含準備一基材,其表面具有一包含聚己內酯/幾丁聚醣摻合物的塗層,且該聚己內酯/幾丁聚醣摻合物塗層的聚己內酯含量不低於5%至不高於15%,以聚己內酯和幾丁聚醣的重量和為基準;及 於具有該塗層的基材表面上進行細胞培養。 A method of cultivating a round cell, comprising preparing a substrate having a coating comprising a polycaprolactone/chitosan blend on a surface thereof, and coating the polycaprolactone/chitosan blend The polycaprolactone content of the layer is not less than 5% to not more than 15%, based on the weight of the polycaprolactone and the chitosan; and Cell culture is carried out on the surface of the substrate having the coating. 一種培養纖維狀細胞之方法,包含準備一基材,其表面具有一包含聚己內酯/幾丁聚醣摻合物的塗層,且該聚己內酯/幾丁聚醣摻合物塗層的聚己內酯含量不低於25%至不高於95%,以聚己內酯和幾丁聚醣的重量和為基準;及於具有該塗層的基材表面上進行細胞培養。A method of culturing fibroblasts comprising preparing a substrate having a coating comprising a polycaprolactone/chitosan blend on a surface thereof, and coating the polycaprolactone/chitosan blend The polycaprolactone content of the layer is not less than 25% to not more than 95%, based on the weight of polycaprolactone and chitosan; and cell culture is carried out on the surface of the substrate having the coating.
TW99125153A 2010-07-29 2010-07-29 Method of controlling cell shape TWI399434B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99125153A TWI399434B (en) 2010-07-29 2010-07-29 Method of controlling cell shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99125153A TWI399434B (en) 2010-07-29 2010-07-29 Method of controlling cell shape

Publications (2)

Publication Number Publication Date
TW201204835A TW201204835A (en) 2012-02-01
TWI399434B true TWI399434B (en) 2013-06-21

Family

ID=46761384

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125153A TWI399434B (en) 2010-07-29 2010-07-29 Method of controlling cell shape

Country Status (1)

Country Link
TW (1) TWI399434B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558813B (en) * 2014-02-07 2016-11-21 國立臺灣大學 System for controlling attachment/detachment of biomaterials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Schagemann, J. C.; Chung, H. W.; Mrosek, E. H.; et al. "Poly-epsilon-caprolactone/gel hybrid scaffolds for cartilage tissue engineering" Journal of Biomedical Materials Research part A, MAY 2010 , vol. 93A, pages 454-463。 *
Schagemann, Jan C.; Kurz, Haymo; Casper, Michelle E.; et al. "The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules" Biomaterials, APR 2010, vol. 31, pages 2798-2805。 *
Wu, Hua; Wan, Ying; Dalai, Siqin; et al. "Response of rat osteoblasts to polycaprolactone/chitosan blend porous scaffolds" Journal of Biomedical Materials Research part A, JAN 2010, vol. 92A, pages 238-245。 *

Also Published As

Publication number Publication date
TW201204835A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
Babitha et al. Electrospun protein nanofibers in healthcare: A review
Aldana et al. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications
Ma et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering
Kanokpanont et al. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing
Varshney et al. Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization
Guo et al. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications
Wang et al. Electrospun PLGA–silk fibroin–collagen nanofibrous scaffolds for nerve tissue engineering
JP4698596B2 (en) Concentrated aqueous silk fibroin solutions and their use
Lee et al. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix
Dippold et al. Novel electrospun poly (glycerol sebacate)–zein fiber mats as candidate materials for cardiac tissue engineering
Nseir et al. Biodegradable scaffold fabricated of electrospun albumin fibers: mechanical and biological characterization
CN102271724A (en) Modified silk films containing glycerol
Xu et al. Sustainable release of nerve growth factor for peripheral nerve regeneration using nerve conduits laden with Bioconjugated hyaluronic acid-chitosan hydrogel
Yu et al. PLGA/SF blend scaffolds modified with plasmid complexes for enhancing proliferation of endothelial cells
Goonoo et al. Improved multicellular response, biomimetic mineralization, angiogenesis, and reduced foreign body response of modified polydioxanone scaffolds for skeletal tissue regeneration
Olyveira et al. Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine
Kijeńska-Gawrońska et al. Alignment and bioactive molecule enrichment of bio-composite scaffolds towards peripheral nerve tissue engineering
KR20180129831A (en) Improved silk fibroin glycerol film
EP2874672B1 (en) Chitosan hydrogel for repairing nerve tissue
Jiang et al. Implantation of multiscale silk fibers on poly (lactic acid) fibrous membrane for biomedical applications
Karahaliloğlu Electrospun PU-PEG and PU-PC hybrid scaffolds for vascular tissue engineering
Movahedi et al. In vitro and in vivo study of aspirin loaded, electrospun polycaprolactone–maltodextrin membrane for enhanced skin tissue regeneration
Gong et al. Surgical repair of abdominal wall defect with biomimetic nano/microfibrous hybrid scaffold
Morelli et al. Polymers from renewable resources
Huang et al. Multifunctional implantable particles for skin tissue regeneration: preparation, characterization, in vitro and in vivo studies

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees