TWI398958B - Solar cell and method for manufacturing the same - Google Patents
Solar cell and method for manufacturing the same Download PDFInfo
- Publication number
- TWI398958B TWI398958B TW099100396A TW99100396A TWI398958B TW I398958 B TWI398958 B TW I398958B TW 099100396 A TW099100396 A TW 099100396A TW 99100396 A TW99100396 A TW 99100396A TW I398958 B TWI398958 B TW I398958B
- Authority
- TW
- Taiwan
- Prior art keywords
- type region
- solar cell
- electrode
- crystal substrate
- twin crystal
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係關於一種太陽能電池及其製造方法,尤其關於一種能夠產出較多電流量的太陽能電池以及其製造方法。The present invention relates to a solar cell and a method of fabricating the same, and more particularly to a solar cell capable of producing a larger amount of current and a method of manufacturing the same.
圖1顯示習知太陽能電池之剖面圖。如圖1所示,習知太陽能電池100包含有一矽晶基板110、一抗反射層120及一電極結構130。Figure 1 shows a cross-sectional view of a conventional solar cell. As shown in FIG. 1 , the conventional solar cell 100 includes a twin crystal substrate 110, an anti-reflection layer 120, and an electrode structure 130.
矽晶基板110包含有互相連接之一N型區域111及一P型區域112。一實施例中,矽晶基板110可為一P型多晶矽基板,且於其一表面上摻雜N型雜質,例如磷或砷,使其擴散進入P型多晶矽基板,形成一N型雜質擴散區。如此,此N型雜質擴散區即為N型區域111;而矽晶基板110的其餘部分則形成P型區域112。抗反射層120可以包含有一氮化矽(Si3 N4 )層。電極結構130包含有電連接N型區域111的兩個第一電極131;以及電連接P型區域112的第二電極132。而第一電極131與第二電極132可以透過一負載150互相電連接,以形成一電流迴路,供給負載150電能。The twin substrate 110 includes an N-type region 111 and a P-type region 112 interconnected. In one embodiment, the twinned substrate 110 can be a P-type polycrystalline germanium substrate, and an N-type impurity, such as phosphorus or arsenic, is doped on one surface thereof to diffuse into the P-type polycrystalline germanium substrate to form an N-type impurity diffusion region. . As such, the N-type impurity diffusion region is the N-type region 111; and the remaining portion of the twin crystal substrate 110 forms the P-type region 112. The anti-reflective layer 120 may comprise a layer of tantalum nitride (Si 3 N 4 ). The electrode structure 130 includes two first electrodes 131 electrically connected to the N-type region 111; and a second electrode 132 electrically connected to the P-type region 112. The first electrode 131 and the second electrode 132 can be electrically connected to each other through a load 150 to form a current loop for supplying power to the load 150.
然而,於製造習知太陽能電池100的過程中,在摻雜N型雜質的步驟,除了形成N型區域111之外,於矽晶基板110的側面很容易形成一個電連接N型區域111及第二電極132的漏電流路徑116,使電子e1不通過負載150,而直接透過漏電流路徑116從N型區域111流向第二電極132。此外,當太陽能電池100逆偏時,也會形成一漏電路徑,不僅會造成轉換效率降低,而且模組廠若使用逆電流過高的太陽能電池100時會導致熱點(hot spot)現象的發生。However, in the process of fabricating the conventional solar cell 100, in the step of doping the N-type impurity, in addition to forming the N-type region 111, an electrically connected N-type region 111 and the first layer are easily formed on the side of the twin crystal substrate 110. The leakage current path 116 of the two electrodes 132 causes the electrons e1 to flow from the N-type region 111 to the second electrode 132 directly through the leakage current path 116 without passing through the load 150. In addition, when the solar cell 100 is reversely biased, a leakage path is formed, which not only causes a decrease in conversion efficiency, but also causes a hot spot phenomenon to occur when the module factory uses the solar cell 100 having an excessively high reverse current.
為了避免上述問題,習知太陽能電池100會進行邊境隔離(edge isolation)處理,亦即在距離矽晶基板110之邊緣的一預定距離H處,形成有一分離溝140,分離溝140的開口位於接收陽光的表面,並向矽晶基板110內部延伸,用以切斷一電子e2從N型區域111流到第二電極132的電流路徑,使得電子e2僅能通過第一電極131及一負載後再流到第二電極132。In order to avoid the above problem, the conventional solar cell 100 performs edge isolation processing, that is, at a predetermined distance H from the edge of the twin crystal substrate 110, a separation trench 140 is formed, and the opening of the separation trench 140 is located at the receiving The surface of the sunlight extends toward the inside of the twin crystal substrate 110 to cut off a current path from the N-type region 111 to the second electrode 132, so that the electrons e2 can pass only the first electrode 131 and a load. Flows to the second electrode 132.
本發明一實施例之目的在於提供一種能夠增加電流量產出的太陽能電池。一實施例之目的在於提供一種分離溝不是形成在面向太陽光之表面的太陽能電池。It is an object of an embodiment of the present invention to provide a solar cell capable of increasing the amount of current produced. An object of an embodiment is to provide a solar cell in which the separation trench is not formed on the surface facing the sunlight.
依據本發明一實施例,提供一種太陽能電池用以將一光線轉換成一電能,其包含一矽晶基板、一第一電極、一第二電極及一第一分離溝。矽晶基板具有一第一表面、一第二表面、一第一型區域及一第二型區域。第一表面用以面向該光線。第二表面相對於第一表面。第一型區域靠近第一表面。第二型區域靠近第二表面,並且連接第一型區域以形成位於第一表面及第二表面間的一連接界面。第一電極電連接第一型區域。第二電極電連接第二型區域。第一分離溝具有一第一開口位於第二表面,並向矽晶基板內部延伸,用以切斷一電子從第一型區域流到第二電極的一電流路徑。較佳的情況是第一分離溝更穿過連接界面。According to an embodiment of the invention, a solar cell is provided for converting a light into an electrical energy, comprising a twinned substrate, a first electrode, a second electrode, and a first separation trench. The twin crystal substrate has a first surface, a second surface, a first type region and a second type region. The first surface is for facing the light. The second surface is opposite the first surface. The first type region is adjacent to the first surface. The second type region is adjacent to the second surface and connects the first type region to form a connection interface between the first surface and the second surface. The first electrode is electrically connected to the first type region. The second electrode is electrically connected to the second type region. The first separation trench has a first opening on the second surface and extends toward the inside of the twin crystal substrate to cut off a current path of electrons flowing from the first type region to the second electrode. Preferably, the first separation channel passes through the connection interface.
為了製造上述實施例的太陽能電池,依據本發明一實施例,提供一種太陽能電池製造方法其包含:利用一雷射照射前述未形成分離溝的太陽能電池之矽晶基板的第二表面,以形成向矽晶基板內部延伸的一分離溝,用以切斷一電子從第一型區域流到第二電極的一電流路徑。In order to manufacture the solar cell of the above embodiment, according to an embodiment of the present invention, a solar cell manufacturing method includes: irradiating a second surface of a twin crystal substrate of a solar cell in which the separation trench is not formed by using a laser to form a direction A separation trench extending inside the twin crystal substrate is used to cut off a current path of electrons flowing from the first type region to the second electrode.
依據本發明一實施例,提供一種太陽能電池用以將一光線轉換成一電能,其包含一矽晶基板、一第一電極、一第二電極及一第一分離溝。矽晶基板具有一第一表面、一第二表面、一第一側面、一第一型區域及一第二型區域。第一表面用以面向該光線。第二表面相對於第一表面。第一側面連接第一表面及第二表面。第一型區域靠近第一表面。第二型區域靠近第二表面,並且連接第一型區域以形成位於第一表面及第二表面間的一連接界面。第一電極電連接第一型區域。第二電極電連接第二型區域。第一分離溝具有一第一開口位於第一側面,並向矽晶基板內部延伸,用以切斷一電子從第一型區域流到第二電極的一電流路徑。於一實施例中,第一開口可以位於第一表面及連接界面間,或者可以位於第二表面及連接界面間,或者亦可以位於第一側面的連接界面的部分。較佳的情況是第一分離溝更穿過連接界面。According to an embodiment of the invention, a solar cell is provided for converting a light into an electrical energy, comprising a twinned substrate, a first electrode, a second electrode, and a first separation trench. The twin crystal substrate has a first surface, a second surface, a first side, a first type region and a second type region. The first surface is for facing the light. The second surface is opposite the first surface. The first side connects the first surface and the second surface. The first type region is adjacent to the first surface. The second type region is adjacent to the second surface and connects the first type region to form a connection interface between the first surface and the second surface. The first electrode is electrically connected to the first type region. The second electrode is electrically connected to the second type region. The first separation trench has a first opening on the first side and extends toward the inside of the twinned substrate to cut off a current path from the first type region to the second electrode. In an embodiment, the first opening may be located between the first surface and the connection interface, or may be located between the second surface and the connection interface, or may be located at a portion of the connection interface of the first side. Preferably, the first separation channel passes through the connection interface.
為了製造上述實施例的太陽能電池,依據本發明一實施例,提供一種太陽能電池製造方法其包含:利用一雷射照射前述未形成分離溝的太陽能電池之矽晶基板的第一側面,以形成向矽晶基板內部延伸的一分離溝,用以切斷一電子從第一型區域流到第二電極的一電流路徑。In order to manufacture the solar cell of the above embodiment, according to an embodiment of the present invention, a solar cell manufacturing method includes: irradiating a first side of a twin crystal substrate of a solar cell in which the separation trench is not formed by using a laser to form a direction A separation trench extending inside the twin crystal substrate is used to cut off a current path of electrons flowing from the first type region to the second electrode.
如上所述,由於依據本發明一實施例之太陽能電池的分離溝不是形成於面向太陽光的表面上,不會形成無效的區域,因此其所能夠產出的電流量會多於習知太陽能電池所能夠產出的電流量。As described above, since the separation trench of the solar cell according to an embodiment of the present invention is not formed on the surface facing the sunlight, an ineffective region is not formed, so that it can generate more current than the conventional solar cell. The amount of current that can be produced.
本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例並配合所附圖式,作詳細說明如下。Other objects and advantages of the present invention will become apparent from the technical features disclosed herein. The above and other objects, features, and advantages of the invention will be apparent from
圖2顯示依據本發明一實施例之太陽能電池之剖面圖。如圖2所示,太陽能電池200包含有一矽晶基板210、一抗反射層220及一電極結構230。矽晶基板210具有一第一表面213、一第二表面214、一N型區域211、一P型區域212及一分離溝240。2 shows a cross-sectional view of a solar cell in accordance with an embodiment of the present invention. As shown in FIG. 2, the solar cell 200 includes a twinned substrate 210, an anti-reflective layer 220, and an electrode structure 230. The twin substrate 210 has a first surface 213, a second surface 214, an N-type region 211, a P-type region 212, and a separation trench 240.
第一表面213用以面向一光線。第二表面214相對於第一表面213。N型區域211靠近第一表面213。P型區域212靠近第二表面214,並且連接N型區域211以形成位於第一表面213及第二表面214間的一連接界面215。一實施例中,矽晶基板210可為一P型多晶矽基板,且於其一第一表面213上摻雜N型雜質,例如磷或砷,使其擴散進入P型多晶矽基板,形成一N型雜質擴散區。如此,此N型雜質擴散區即為N型區域211;而矽晶基板210的其餘部分則形成P型區域212。抗反射層220可以為氮化矽(Si3 N4 )層。而電極結構230包含有電連接N型區域211的兩個第一電極231;以及電連接P型區域212的第二電極232。而第一電極231與第二電極232可以透過一負載250互相電連接,以形成一電流迴路,供給負載250電能。The first surface 213 is for facing a light. The second surface 214 is opposite the first surface 213. The N-type region 211 is adjacent to the first surface 213. The P-type region 212 is adjacent to the second surface 214 and connects the N-type region 211 to form a connection interface 215 between the first surface 213 and the second surface 214. In one embodiment, the twinned substrate 210 can be a P-type polycrystalline germanium substrate, and a first surface 213 thereof is doped with an N-type impurity, such as phosphorus or arsenic, to diffuse into the P-type polycrystalline germanium substrate to form an N-type. Impurity diffusion zone. As such, the N-type impurity diffusion region is the N-type region 211; and the remaining portion of the twin crystal substrate 210 forms the P-type region 212. The anti-reflection layer 220 may be a tantalum nitride (Si 3 N 4 ) layer. The electrode structure 230 includes two first electrodes 231 electrically connected to the N-type region 211, and a second electrode 232 electrically connected to the P-type region 212. The first electrode 231 and the second electrode 232 can be electrically connected to each other through a load 250 to form a current loop for supplying power to the load 250.
分離溝240具有一開口241位於第二表面214,並向矽晶基板210內部延伸,用以切斷一電子e2從N型區域211流到第二電極232的一漏電流路徑216。為了更進一步地確保分離溝240能夠實質地切斷前述漏電流路徑216,較佳的情況是分離溝240更穿過連接界面215。The separation trench 240 has an opening 241 on the second surface 214 and extends toward the inside of the twine substrate 210 for cutting off a leakage current path 216 from the N-type region 211 to the second electrode 232. In order to further ensure that the separation trench 240 can substantially cut off the aforementioned leakage current path 216, it is preferred that the separation trench 240 pass through the connection interface 215.
於一實施例中,太陽能電池製造方法之形成分離溝的步驟,可以包含:利用一雷射照射第二表面214,以形成向矽晶基板210內部延伸的一分離溝240。於本實施例中,雷射可以使用銣釔鋁石榴石(Nd:YAG)雷射。當Nd:YAG雷射照射物體表面,物體表面受到雷射束的高能量而汽化,遇到室溫變成微粒,由於是Nd:YAG雷射是以朝向矽晶基板210內部的方向,照射第二表面214,因此能夠形成開口241位於第二表面214並向矽晶基板210內部延伸的分離溝240。In one embodiment, the step of forming the separation trench of the solar cell manufacturing method may include: irradiating the second surface 214 with a laser to form a separation trench 240 extending toward the inside of the twinned substrate 210. In the present embodiment, the laser can use a yttrium aluminum garnet (Nd: YAG) laser. When the Nd:YAG laser illuminates the surface of the object, the surface of the object is vaporized by the high energy of the laser beam, and the room temperature becomes particles, since the Nd:YAG laser is directed toward the inside of the twinned substrate 210, and the second is irradiated. The surface 214 can thus form a separation trench 240 in which the opening 241 is located on the second surface 214 and extends toward the inside of the twinned substrate 210.
此外,當分離溝240的深度要達到穿過連接界面215的程度時,利用雷射進行蝕刻所需的蝕刻時間較長。因此於一實施例中,亦可以從矽晶基板210的側邊形成分離溝。Further, when the depth of the separation groove 240 is to reach the extent of passing through the connection interface 215, the etching time required for etching by laser is long. Therefore, in an embodiment, a separation groove may also be formed from the side of the twin crystal substrate 210.
圖3A顯示依據本發明一實施例之太陽能電池之剖面圖。圖3A之實施例之太陽能電池200a相似於圖2之實施例之太陽能電池200,因此以下說明中,相同的元件使用相同的符號,並省略其相關說明,僅說明相異處。如圖3A所示,太陽能電池200a之分離溝240a具有一開口241a位於第一側面217,並向矽晶基板210內部延伸,用以切斷一電子從N型區域211流到第二電極232的電流路徑。由於摻雜N型雜質的步驟是對第一表面213進行摻雜,因此位於第一表面213之部分的漏電流通路113較厚,開口241a位於第一側面217的分離溝240a,其深度可以設計成小於圖2實施例之分離溝240的深度。再者,亦可以更於矽晶基板210之相對於第一側面217的第二側面218,形成有另一分離溝240a,其特徵可以相同於形成於第一側面217的分離溝240a,因此以下將省略另一分離溝240a的相關說明。3A shows a cross-sectional view of a solar cell in accordance with an embodiment of the present invention. The solar cell 200a of the embodiment of FIG. 3A is similar to the solar cell 200 of the embodiment of FIG. 2, and therefore, the same components are denoted by the same reference numerals in the following description, and the related description will be omitted, and only the differences will be described. As shown in FIG. 3A, the separation trench 240a of the solar cell 200a has an opening 241a on the first side surface 217 and extends toward the inside of the twin crystal substrate 210 for cutting off an electron from the N-type region 211 to the second electrode 232. Current path. Since the step of doping the N-type impurity is to dope the first surface 213, the leakage current path 113 of the portion of the first surface 213 is thicker, and the opening 241a is located at the separation trench 240a of the first side surface 217, and the depth can be designed. It is smaller than the depth of the separation groove 240 of the embodiment of Fig. 2. Furthermore, a further separation groove 240a may be formed on the second side surface 218 of the twinned substrate 210 relative to the first side surface 217, and may be identical to the separation groove 240a formed on the first side surface 217, so that the following A description of another separation groove 240a will be omitted.
於一實施例中,太陽能電池製造方法之形成分離溝240a的步驟,可以包含:利用一雷射,以垂直於第一側面217的方向,瞄準第一側面217的連接界面215的部分,照射第一側面217,以形成向矽晶基板210內部延伸的一分離溝240a。於本實施例中,分離溝240a的開口241a位於第一側面217的連接界面215的部分,並以垂直於第一側面217的方向,向矽晶基板210內部延伸。因此,分離溝240已穿過連接界面215,能夠更進一步地確保分離溝240實質地切斷漏電流路徑216。此外,分離溝240a垂直於第一側面217的方向延伸,因此能夠以較短的深度即可切斷漏電流路徑216。應了解的是本發明不限定於上述特徵,分離溝亦可以形成如後述特徵。In an embodiment, the step of forming the separation trench 240a in the solar cell manufacturing method may include: aiming at a portion of the connection interface 215 of the first side surface 217 in a direction perpendicular to the first side surface 217 by using a laser, and irradiating the portion A side surface 217 is formed to form a separation groove 240a extending toward the inside of the twin crystal substrate 210. In the present embodiment, the opening 241a of the separation groove 240a is located at a portion of the connection interface 215 of the first side surface 217, and extends toward the inside of the twin crystal substrate 210 in a direction perpendicular to the first side surface 217. Therefore, the separation groove 240 has passed through the connection interface 215, and it is possible to further ensure that the separation groove 240 substantially cuts off the leakage current path 216. Further, since the separation groove 240a extends in the direction perpendicular to the first side surface 217, the leakage current path 216 can be cut at a short depth. It should be understood that the present invention is not limited to the above features, and the separation groove may be formed as described later.
圖3B及3C顯示依據本發明一實施例之太陽能電池之剖面圖。圖3B及3C之實施例之太陽能電池200b及200c相似於圖3A之實施例之太陽能電池200a,因此以下說明中,相同的元件使用相同的符號,並省略其相關說明,僅說明相異處。3B and 3C are cross-sectional views showing a solar cell according to an embodiment of the present invention. The solar cells 200b and 200c of the embodiment of FIGS. 3B and 3C are similar to the solar cell 200a of the embodiment of FIG. 3A. Therefore, in the following description, the same components are denoted by the same reference numerals, and the description thereof will be omitted, and only the differences will be described.
如圖3B所示,於一實施例中,太陽能電池製造方法之形成分離溝240b的步驟,可以包含:利用一雷射,以傾除於第一側面217且朝向第二表面214的方向,於第一側面217之第一表面213及連接界面215間的部分,照射第一側面217,以形成向矽晶基板210內部延伸的一分離溝240b。於本實施例中,分離溝240b的開口241b位於第一側面217之第一表面213及連接界面215間的部分。且為了更進一步地確保分離溝240b能夠實質地切斷前述漏電流路徑216,較佳的情況是分離溝240b更穿過連接界面215。As shown in FIG. 3B, in an embodiment, the step of forming the separation trench 240b in the solar cell manufacturing method may include: using a laser to be tilted in the direction of the first side surface 217 and toward the second surface 214, The first surface 213 of the first side surface 217 and the portion between the connection interfaces 215 illuminate the first side surface 217 to form a separation trench 240b extending toward the inside of the twin crystal substrate 210. In the present embodiment, the opening 241b of the separation groove 240b is located at a portion between the first surface 213 of the first side surface 217 and the connection interface 215. In order to further ensure that the separation trench 240b can substantially cut off the aforementioned leakage current path 216, it is preferable that the separation trench 240b passes through the connection interface 215.
如圖3C所示,於一實施例中,太陽能電池製造方法之形成分離溝240c的步驟,可以包含:利用一雷射,以傾除於第一側面217且朝向第一表面213的方向,於第一側面217之第二表面214及連接界面215間的部分,照射第一側面217,以形成向矽晶基板210內部延伸的一分離溝240c。於本實施例中,分離溝240c的開口241c位於第一側面217之第二表面214及連接界面215間的部分。且為了更進一步地確保分離溝240c能夠實質地切斷前述漏電流路徑216,較佳的情況是分離溝240c更穿過連接界面215。As shown in FIG. 3C, in an embodiment, the step of forming the separation trench 240c in the solar cell manufacturing method may include: using a laser to be tilted in the direction of the first side surface 217 and facing the first surface 213, The second surface 214 of the first side surface 217 and the portion between the connection interfaces 215 illuminate the first side surface 217 to form a separation groove 240c extending toward the inside of the twin crystal substrate 210. In the present embodiment, the opening 241c of the separation groove 240c is located at a portion between the second surface 214 of the first side surface 217 and the connection interface 215. In order to further ensure that the separation groove 240c can substantially cut off the aforementioned leakage current path 216, it is preferable that the separation groove 240c passes through the connection interface 215.
請再參照圖1及圖2,由於習知太陽能電池100之分離溝140形成於面向太陽光的第一表面213,雖然分離溝140能夠切斷漏電流,但是卻使矽晶基板110之邊緣的預定距離H部分,變成無效的區域,而減少了太陽能電池100所能夠產出的電流。相較於此,太陽能電池200之分離溝240形成於不是面向太陽光的矽晶基板110的第二表面214,因此整個第一表面213都是有效的區域,使太陽能電池200能夠產出的電流多於習知太陽能電池100所能夠產出的電流。如上所述,由於太陽能電池200a、200b及200c的分離溝不是形成於面向太陽光的第一表面213,因此他們能夠產出的電流亦多於習知太陽能電池100所能夠產出的電流。Referring to FIG. 1 and FIG. 2 again, since the separation trench 140 of the conventional solar cell 100 is formed on the first surface 213 facing the sunlight, although the separation trench 140 can cut off the leakage current, the edge of the twinned substrate 110 is The predetermined distance H portion becomes an ineffective area, and the current that the solar cell 100 can produce is reduced. In contrast, the separation trench 240 of the solar cell 200 is formed on the second surface 214 of the twinned substrate 110 that is not facing the sunlight, so that the entire first surface 213 is an effective region for enabling the current generated by the solar cell 200. More current than the conventional solar cell 100 can produce. As described above, since the separation grooves of the solar cells 200a, 200b, and 200c are not formed on the first surface 213 facing the sunlight, they can generate more current than the conventional solar cell 100 can produce.
以下更進一步推算增加的電流量。圖4顯示習知形成有第一電極的矽晶基板的俯視圖。如圖4所示,第一電極113包含有手指電極113a及匯流排條配線113b。對第一表面進行邊境隔離(edge isolation)處理後,會所形成的無效區域S。一般而言,手指電極113a共65條,其線寬為100um。匯流排條配線113b有2條,其線寬為1.8mm。分離溝140離矽晶基板110之邊緣的預定距離H為200um。因此,可有效提供光電流的區域面積為24336m m2 -1551.1mm2 -124.8mm2 =22660mm2 。電性參數Isc=8.16(A)、Voc=0.621(V)、FF=0.77、及光電轉換效率Eff.=16.03%。The amount of increased current is further estimated below. 4 shows a top view of a conventional twinned substrate formed with a first electrode. As shown in FIG. 4, the first electrode 113 includes a finger electrode 113a and a bus bar wiring 113b. The ineffective area S formed after the edge isolation treatment of the first surface. In general, there are a total of 65 finger electrodes 113a having a line width of 100 um. There are two bus bar wirings 113b, and the line width is 1.8 mm. The predetermined distance H of the separation trench 140 from the edge of the twinned substrate 110 is 200 um. Therefore, the area of the area where the photocurrent can be effectively supplied is 24336 m 2 - 1551.1 mm 2 -124.8 mm 2 = 22660 mm 2 . Electrical parameters Isc = 8.16 (A), Voc = 0.621 (V), FF = 0.77, and photoelectric conversion efficiency Eff. = 16.03%.
相較於此,於本發明一實施例中,由於分離溝不是形成於面向太陽光的表面,未產生無效區域S,因此在相同條件下,可有效提供光電流的區域面積為24336m m2 -1551.1mm2 =22784.8mm2 。因為可有效提供光電流的區域面積已增加,因此估計可提升電性參數Isc至8.16*(1+(22784.8-22660)/22660)=8.20(A)。若Isc=8.16(A),且Voc=0.621(V)、FF=0.77皆相同時,光電轉換效率Eff.=16.11%。因此由上可推知光電轉換效率增加約0.1%左右。In contrast, in an embodiment of the present invention, since the separation trench is not formed on the surface facing the sunlight, the ineffective region S is not generated, and therefore, under the same conditions, the area of the photocurrent effective to provide the area is 24336 m 2 - 1551.1mm 2 = 22784.8mm 2 . Since the area of the area where the photocurrent can be effectively supplied has increased, it is estimated that the electrical parameter Isc can be increased to 8.16*(1+(22784.8-22660)/22660)=8.20(A). When Isc = 8.16 (A), and Voc = 0.621 (V) and FF = 0.77 are all the same, the photoelectric conversion efficiency Eff. = 16.11%. Therefore, it can be inferred from the above that the photoelectric conversion efficiency is increased by about 0.1%.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.
100...太陽能電池100. . . Solar battery
110...矽晶基板110. . . Twin crystal substrate
111...N型區域111. . . N-type area
112...P型區域112. . . P-type area
116...漏電流路徑116. . . Leakage current path
120...抗反射層120. . . Antireflection layer
130...電極結構130. . . Electrode structure
131...第一電極131. . . First electrode
132...第二電極132. . . Second electrode
140...分離溝140. . . Separation ditch
150...負載150. . . load
200...太陽能電池200. . . Solar battery
200a...太陽能電池200a. . . Solar battery
200b...太陽能電池200b. . . Solar battery
200b...太陽能電池200b. . . Solar battery
200c...太陽能電池200c. . . Solar battery
210...矽晶基板210. . . Twin crystal substrate
211...N型區域211. . . N-type area
212...P型區域212. . . P-type area
213...第一表面213. . . First surface
214...第二表面214. . . Second surface
215...連接界面215. . . Connection interface
216...漏電流路徑216. . . Leakage current path
217...第一側面217. . . First side
218...第二側面218. . . Second side
220...抗反射層220. . . Antireflection layer
230...電極結構230. . . Electrode structure
231...第一電極231. . . First electrode
232...第二電極232. . . Second electrode
240...分離溝240. . . Separation ditch
240a...分離溝240a. . . Separation ditch
240b...分離溝240b. . . Separation ditch
240c...分離溝240c. . . Separation ditch
241...開口241. . . Opening
241a...開口241a. . . Opening
241b...開口241b. . . Opening
241c...開口241c. . . Opening
250...負載250. . . load
e1...電子E1. . . electronic
e2...電子E2. . . electronic
圖1顯示習知太陽能電池之剖面圖。Figure 1 shows a cross-sectional view of a conventional solar cell.
圖2顯示依據本發明一實施例之太陽能電池之剖面圖。2 shows a cross-sectional view of a solar cell in accordance with an embodiment of the present invention.
圖3A至3C顯示依據本發明一實施例之太陽能電池之剖面圖。3A to 3C are cross-sectional views showing a solar cell according to an embodiment of the present invention.
圖4顯示習知形成有第一電極的矽晶基板的俯視圖。4 shows a top view of a conventional twinned substrate formed with a first electrode.
200‧‧‧太陽能電池200‧‧‧ solar cells
210‧‧‧矽晶基板210‧‧‧Crystal substrate
211‧‧‧N型區域211‧‧‧N-type area
212‧‧‧P型區域212‧‧‧P type area
213‧‧‧第一表面213‧‧‧ first surface
214‧‧‧第二表面214‧‧‧ second surface
215‧‧‧連接界面215‧‧‧ Connection interface
216‧‧‧漏電流路徑216‧‧‧Leakage current path
220‧‧‧抗反射層220‧‧‧Anti-reflective layer
230‧‧‧電極結構230‧‧‧Electrode structure
231‧‧‧第一電極231‧‧‧First electrode
232‧‧‧第二電極232‧‧‧second electrode
240‧‧‧分離溝240‧‧‧Separation ditch
241‧‧‧開口241‧‧‧ openings
250‧‧‧負載250‧‧‧load
e1‧‧‧電子E1‧‧‧Electronics
e2‧‧‧電子E2‧‧‧Electronics
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099100396A TWI398958B (en) | 2010-01-08 | 2010-01-08 | Solar cell and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099100396A TWI398958B (en) | 2010-01-08 | 2010-01-08 | Solar cell and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201125134A TW201125134A (en) | 2011-07-16 |
TWI398958B true TWI398958B (en) | 2013-06-11 |
Family
ID=45047339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099100396A TWI398958B (en) | 2010-01-08 | 2010-01-08 | Solar cell and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI398958B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014188773A1 (en) * | 2013-05-21 | 2014-11-27 | 信越化学工業株式会社 | Method for manufacturing solar cell, and solar cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090260681A1 (en) * | 2008-02-25 | 2009-10-22 | Lg Electronics Inc. | Solar cell and method for manufacturing the same |
TW200945611A (en) * | 2008-04-25 | 2009-11-01 | Big Sun Energy Technology Inc | Apparatus and method for isolating edges of solar cell |
-
2010
- 2010-01-08 TW TW099100396A patent/TWI398958B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090260681A1 (en) * | 2008-02-25 | 2009-10-22 | Lg Electronics Inc. | Solar cell and method for manufacturing the same |
TW200945611A (en) * | 2008-04-25 | 2009-11-01 | Big Sun Energy Technology Inc | Apparatus and method for isolating edges of solar cell |
Also Published As
Publication number | Publication date |
---|---|
TW201125134A (en) | 2011-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100997113B1 (en) | Solar Cell and Method for Manufacturing thereof | |
TWI667798B (en) | Solar cell with trench-free emitter regions | |
JP2008294080A (en) | Solar cell and manufacturing method of same | |
JP2015198142A (en) | Crystal silicon solar battery, manufacturing method for the same and solar battery module | |
KR20120111378A (en) | Solar cell and fabrication method of the same | |
US20140352782A1 (en) | Method and structure for eliminating edge peeling in thin-film photovoltaic absorber materials | |
WO2015114922A1 (en) | Photoelectric conversion device and method for manufacturing photoelectric conversion device | |
KR101925928B1 (en) | Solar cell and manufacturing method thereof | |
US20120015474A1 (en) | Method for fabricating silicon heterojunction solar cells | |
US8269258B2 (en) | Method for manufacturing a solar cell | |
CN113380926B (en) | Manufacturing method of heterojunction solar cell and heterojunction solar cell | |
US20130344637A1 (en) | Mask for manufacturing dopant layer of solar cell, method for manufacturing dopant layer of solar cell, and method for manufacturing dopant layer of solar cell using the mask | |
JP2015506584A (en) | Photovoltaic cell and manufacturing method | |
TWI398958B (en) | Solar cell and method for manufacturing the same | |
CN113748523A (en) | Method for manufacturing solar cell | |
KR101160113B1 (en) | Edge isolation method and solar cell thereof | |
WO2016140309A1 (en) | Photoelectric conversion element and method for manufacturing same | |
TWI686958B (en) | Solar cell and method of fabricating the same | |
JP6313086B2 (en) | Crystalline silicon solar cell and method for manufacturing the same, method for manufacturing solar cell module, method for manufacturing concentrating solar cell module | |
JP4441377B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
JP6706808B2 (en) | Solar cell, solar cell module, and method for manufacturing solar cell | |
US20120295391A1 (en) | Method of manufacturing a solar cell | |
JP7483245B2 (en) | Solar cell and its manufacturing method | |
TW201201383A (en) | Solar cell | |
KR20180034091A (en) | Silicon solar cell and Method for manufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |