TWI397548B - Composite particle including nano wires and method for making the same - Google Patents

Composite particle including nano wires and method for making the same Download PDF

Info

Publication number
TWI397548B
TWI397548B TW97149720A TW97149720A TWI397548B TW I397548 B TWI397548 B TW I397548B TW 97149720 A TW97149720 A TW 97149720A TW 97149720 A TW97149720 A TW 97149720A TW I397548 B TWI397548 B TW I397548B
Authority
TW
Taiwan
Prior art keywords
nanowire
composite particle
composite
polymer
ball
Prior art date
Application number
TW97149720A
Other languages
Chinese (zh)
Other versions
TW201024340A (en
Inventor
Yuan Yao
Chang Shen Chang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97149720A priority Critical patent/TWI397548B/en
Publication of TW201024340A publication Critical patent/TW201024340A/en
Application granted granted Critical
Publication of TWI397548B publication Critical patent/TWI397548B/en

Links

Description

含有奈米線的複合粒子及其製備方法 Composite particle containing nanowire and preparation method thereof

本發明涉及一種複合粒子及其製備方法,尤其涉及一種奈米複合粒子及其備方法。 The invention relates to a composite particle and a preparation method thereof, in particular to a nano composite particle and a preparation method thereof.

奈米複合粒子由兩種或兩種以上具有不同性能之固相粉末組成。由奈米粒子及基體材料形成之直徑為奈米尺寸之複合粒子,具有優异之物理性能。奈米複合粒子之結構通常為核殼結構,請參見文獻“Preparation and Sintering Behaviour of Nanostructured Alumina/Titania Composite Powders Modified with Nano-dopants”(Yong Yang,You Wang,Materials Science and Engineering A,Vol.490,P457-464(2008))。該文獻中Yong Yang等人揭示了一種奈米氧化鋁粒子及氧化鈦基體形成之奈米複合粒子及其製備方法。所述奈米複合粒子為核殼結構,其製備方法為燒結法。然而,采用燒結法通常僅適於製備基體為陶瓷材料之複合粒子,不適宜製備以聚合物或其它材料為基體之複合粒子,因此,該種奈米複合粒子之應用受限。 The nanocomposite particles are composed of two or more solid phase powders having different properties. A composite particle having a diameter of nanometer formed of nano particles and a matrix material, and having excellent physical properties. The structure of the nanocomposite particles is usually a core-shell structure, see the document "Preparation and Sintering Behaviour of Nanostructured Alumina/Titania Composite Powders Modified with Nano-dopants" (Yong Yang, You Wang, Materials Science and Engineering A, Vol. 490, P457-464 (2008)). In this document, Yong Yang et al. disclose a nano-composite particle formed of nano-alumina particles and a titanium oxide matrix and a preparation method thereof. The nano composite particles are a core-shell structure, and the preparation method is a sintering method. However, the sintering method is generally only suitable for preparing composite particles whose matrix is a ceramic material, and it is not suitable to prepare composite particles based on a polymer or other materials. Therefore, the application of the nano composite particles is limited.

為解决此問題,復旦大學之熊煥明及任慶光之於2008年02月28日公告之CN 101245126 A中揭示了一種氧化鋅-聚合物核殼發光粒子及其製備方法。所述氧化鋅-聚合物核殼發光粒子之內核為各個方向之粒徑均在10奈米左右之氧化鋅量子點,外殼由內層之聚甲基丙烯酸及外層之聚乙二醇單甲基醚組 成。所述奈米複合粒子之製備方法為溶膠-凝膠法,其具體步驟為:將有機羧酸之鋅鹽溶解到無水乙醇中,然後加入碱液促進鋅鹽水解,在無水環境下生成表面修飾了有機雙鍵之氧化鋅奈米粒子;將引發劑及聚合物單體加入到反應體系中,在70-80℃溫度下引發聚合反應,在氧化鋅奈米粒子之表面形成共聚之高分子外殼。 In order to solve this problem, a zinc oxide-polymer core-shell luminescent particle and a preparation method thereof are disclosed in CN 101245126 A, which is published on Feb. 28, 2008 by Xiong Huanming and Ren Qingguang. The core of the zinc oxide-polymer core-shell luminescent particles is a zinc oxide quantum dot having a particle diameter of about 10 nm in each direction, and the outer layer is composed of an inner layer of polymethacrylic acid and an outer layer of polyethylene glycol monomethyl group. Ether group to make. The preparation method of the nano composite particles is a sol-gel method, wherein the specific steps are: dissolving a zinc salt of an organic carboxylic acid into anhydrous ethanol, and then adding an alkali solution to promote hydrolysis of the zinc salt to form a surface modification in an anhydrous environment. The organic double-bonded zinc oxide nanoparticle; the initiator and the polymer monomer are added to the reaction system, and the polymerization reaction is initiated at a temperature of 70-80 ° C to form a copolymerized polymer shell on the surface of the zinc oxide nanoparticle. .

奈米複合粒子在應用中通常需對其進行表面改性,使其具備不同之表面活性,從而在不同之領域應用。然而,由於上述核殼結構之氧化鋅-聚合物核殼發光粒子中僅含有一個氧化鋅量子點,當所需要之氧化鋅量子點數量較多時,例如,對所述氧化鋅-聚合物核殼發光粒子進行表面改性從而在醫療中用作熒光標記,需要對複數氧化鋅-聚合物核殼發光粒子進行表面改性,因此,需要較多之改性劑對氧化鋅-聚合物核殼發光粒子進行改性。 Nanocomposite particles are usually surface-modified in applications to have different surface activities for use in different fields. However, since the zinc oxide-polymer core-shell luminescent particles of the above core-shell structure contain only one zinc oxide quantum dot, when the number of zinc oxide quantum dots required is large, for example, the zinc oxide-polymer core The surface modification of the shell luminescent particles for use as a fluorescent label in medical treatment requires surface modification of the complex zinc oxide-polymer core-shell luminescent particles. Therefore, more modifiers are needed for the zinc oxide-polymer core shell. The luminescent particles are modified.

有鑑於此,提供一種在應用中可節省表面改性劑用量,且製備方法簡單之奈米複合粒子及其製備方法實為必要。 In view of the above, it is necessary to provide a nano composite particle which can save the amount of surface modifier in the application and has a simple preparation method and a preparation method thereof.

一種含有奈米線的複合粒子,其包括一聚合物基體及均勻分散於該聚合物基體中之複數奈米線,所述含有奈米線的複合粒子之直徑小於1000微米。 A composite particle comprising a nanowire comprising a polymer matrix and a plurality of nanowires uniformly dispersed in the polymer matrix, the nanowire-containing composite particles having a diameter of less than 1000 micrometers.

一種含有奈米線的複合粒子之製備方法,包括以下步驟:提供複數奈米線;提供一液態之聚合物材料或聚合物單體;分散所述複數奈米線至所述液態聚合物材料或聚合物單體中;固化形成複合材料;及粉碎所述複合材料形成奈米複合粒子。 A method for preparing a composite particle containing a nanowire, comprising the steps of: providing a plurality of nanowires; providing a liquid polymer material or a polymer monomer; dispersing the plurality of nanowires to the liquid polymer material or In the polymer monomer; solidifying to form a composite material; and pulverizing the composite material to form a nano composite particle.

相對於先前技術,本發明提供之奈米複合粒子及其製備方法具備以下優點:其一,本發明提供之奈米複合粒子中含有至少一個奈米線,在實際應用中當需要複數奈米線,從而需要對含有奈米線於奈米複合粒子進行表面改 性時,可僅對少數奈米複合粒子表面改性即可,相比於核殼結構之奈米複合粒子所需之表面改性劑用量較少;其二,本發明提供之奈米複合粒子之製備方法先將奈米線分散在液態之聚合物或聚合物單體中並使之固化,再采用粉碎法直接粉碎,相比於溶膠-凝膠法或燒結法,方法簡單,易於實現產業化。 Compared with the prior art, the nano composite particle provided by the invention and the preparation method thereof have the following advantages: First, the nano composite particle provided by the invention contains at least one nanowire, and in practical applications, a plurality of nanowires are required. Therefore, it is necessary to modify the surface of the nano-composite particles containing nanowires. When the properties are small, only a few nano composite particles may be surface-modified, and the amount of surface modifier required for the nano-composite particles of the core-shell structure is less; second, the nano-composite particles provided by the present invention The preparation method first disperses the nanowire in a liquid polymer or a polymer monomer and solidifies it, and then directly pulverizes by a pulverization method. Compared with the sol-gel method or the sintering method, the method is simple and easy to realize the industry. Chemical.

10‧‧‧奈米複合粒子 10‧‧‧Nano composite particles

104‧‧‧奈米線 104‧‧‧Nan line

102‧‧‧聚合物基體 102‧‧‧ polymer matrix

圖1為本發明實施例提供之奈米複合粒子之結構示意圖。 FIG. 1 is a schematic structural view of a nano composite particle according to an embodiment of the present invention.

圖2為本發明實施例提供之奈米複合粒子之製備方法流程圖。 2 is a flow chart of a method for preparing nano composite particles according to an embodiment of the present invention.

以下將結合附圖及具體實施例,對本發明提供之奈米複合粒子及其製備方法作進一步之說明。 The nano composite particles provided by the present invention and a preparation method thereof will be further described below in conjunction with the accompanying drawings and specific embodiments.

請參閱圖1,本發明實施例提供一種奈米複合粒子10,該奈米複合粒子10包括一聚合物基體102及設置於該聚合物基體102中之至少一個奈米線104。 Referring to FIG. 1 , an embodiment of the present invention provides a nano composite particle 10 comprising a polymer matrix 102 and at least one nanowire 104 disposed in the polymer matrix 102 .

所述聚合物基體102之材料為樹脂、橡膠及塑膠中之一種或幾種。具體地,依不同應用聚合物基體102之材料為聚本乙烯、聚乙烯、聚丙烯、聚氯乙烯、聚四氟乙烯、天然橡膠、聚甲醛及聚乙醛中之一種或幾種。在本實施例中,聚合物基體102之材料選擇半透明、無毒之聚乙烯。 The material of the polymer matrix 102 is one or more of resin, rubber and plastic. Specifically, the material of the polymer matrix 102 according to different applications is one or more of polyethylene, polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, natural rubber, polyoxymethylene, and polyacetal. In this embodiment, the material of the polymer matrix 102 is selected from translucent, non-toxic polyethylene.

所述奈米線104包括不同類型,包括金屬奈米線,其金屬材料包括鎳、鉑或金等;半導體奈米線,其半導體材料包括砷化鎵、磷化鎵、氮化鎵、硫化鎘、氧化錫、二氧化鈦或氧化鋅等;絕緣體奈米線,其絕緣體材料包括二氧化矽或二氧化鈦等。奈米線104之直徑小於10微米,長度不限。優選地,奈米線104之材料為半導體奈米線。本實施例中奈米線104為氧化鋅奈米線。所述氧化鋅奈米線之直徑小於50微米,長度沒有限制。所述奈米複合粒 子10之直徑小於1000微米,優選地所述奈米複合粒子10之直徑為300-700微米。本實施例中,所述奈米複合粒子10之直徑為500微米。 The nanowires 104 comprise different types, including metal nanowires, the metal materials thereof include nickel, platinum or gold; the semiconductor nanowires, the semiconductor materials thereof include gallium arsenide, gallium phosphide, gallium nitride, cadmium sulfide , tin oxide, titanium dioxide or zinc oxide; insulator nanowires, the insulator material of which includes cerium oxide or titanium dioxide. The diameter of the nanowire 104 is less than 10 microns and the length is not limited. Preferably, the material of the nanowire 104 is a semiconductor nanowire. In the present embodiment, the nanowire 104 is a zinc oxide nanowire. The diameter of the zinc oxide nanowire is less than 50 microns and the length is not limited. Nanocomposite The diameter of the sub-10 is less than 1000 microns, and preferably the diameter of the nanocomposite particles 10 is 300-700 microns. In this embodiment, the nano composite particles 10 have a diameter of 500 μm.

另外,所述奈米複合粒子10中可包括複數奈米線104。當奈米複合粒子10中含有複數奈米線104時,奈米線104均勻分散於奈米複合粒子10中。本實施例中,奈米複合粒子中包括複數氧化鋅奈米線分散在聚乙烯基體中。 Additionally, a plurality of nanowires 104 may be included in the nanocomposite particles 10. When the nano composite particles 10 contain a plurality of nanowires 104, the nanowires 104 are uniformly dispersed in the nanocomposite particles 10. In this embodiment, the nano composite particles include a plurality of zinc oxide nanowires dispersed in a polyethylene matrix.

可選擇地,所述奈米複合粒子10中進一步包括一種添加物或者多種添加物之混合物。所述添加物包括固化劑、改性劑、填料或者稀釋劑等。所述固化劑用於促進所述聚合物基體材料之固化。常用固化劑包括脂肪胺、脂環胺、芳香胺、聚醯胺、酸酐、樹脂類及叔胺中之一種或者幾種之混合。所述改性劑用於改善聚合物基體材料之柔性、抗剪、抗彎、抗沖或者提高絕緣性等。常用改性劑包括聚硫橡膠、聚醯胺樹脂、聚乙烯醇叔丁醛或者丁腈橡膠類中一種或者幾種之混合。所述填料用於改善所述聚合物基體材料固化時之散熱條件,使用填料也可以減少所述聚合物材料之用量,降低成本。常用填料包括石棉纖維、玻璃纖維、石英粉、瓷粉、氧化鋁及矽膠粉中一種或者幾種之混合。所述稀釋劑用於降低樹脂黏度,改善樹脂之滲透性。所述稀釋劑包括二縮水甘油醚、多縮水甘油醚、環氧丙烷丁基醚、環氧丙烷苯基醚、二環氧丙烷乙基醚、三環氧丙烷丙基醚及烯丙基苯酚中之一種或者幾種之混合。 Alternatively, the nanocomposite particle 10 further includes an additive or a mixture of a plurality of additives. The additive includes a curing agent, a modifier, a filler or a diluent, and the like. The curing agent is used to promote curing of the polymer matrix material. Commonly used curing agents include one or a mixture of a fatty amine, an alicyclic amine, an aromatic amine, a polyamine, an acid anhydride, a resin, and a tertiary amine. The modifier is used to improve the flexibility, shear resistance, bending resistance, impact resistance or insulation of the polymer matrix material. Commonly used modifiers include one or a mixture of polysulfide rubber, polyamide resin, polyvinyl butyral or nitrile rubber. The filler is used to improve the heat dissipation condition of the polymer matrix material when it is cured, and the use of the filler can also reduce the amount of the polymer material and reduce the cost. Commonly used fillers include one or a mixture of asbestos fibers, glass fibers, quartz powder, porcelain powder, alumina and tannin powder. The diluent is used to lower the viscosity of the resin and improve the permeability of the resin. The diluent includes diglycidyl ether, polyglycidyl ether, propylene oxide butyl ether, propylene oxide phenyl ether, dipropylene oxide ethyl ether, tripropylene oxide propyl ether and allyl phenol. One or a mixture of several.

所述奈米複合粒子10根據奈米線104之材料不同,具有不同之應用。本實施例提供之以聚乙烯為基體材料,至少一個氧化鋅奈米線設置於聚乙烯中之奈米複合粒子可在醫療中用作熒光標記。在應用時,先對所述奈米複合粒子進行表面改性,使該種奈米複合粒子表面固定某種生化識別標記,從而使所述奈米複合粒子能够黏附在具有該生化識別標記之癌細胞上。氧化鋅奈米線為半導體發光材料,可以發出特定波長之光,聚乙烯為半透明,因 此,氧化鋅奈米線發出之光可以穿透聚乙烯,通過光學識別裝置就可以看到氧化鋅奈米線之位置及發光強度,也就確定了某種癌細胞之存在與否,及其位置與數量。 The nanocomposite particles 10 have different applications depending on the material of the nanowire 104. In this embodiment, a nano-composite particle provided with polyethylene as a matrix material and at least one zinc oxide nanowire disposed in the polyethylene can be used as a fluorescent marker in medical treatment. When applied, the surface of the nano composite particle is first modified to fix a biochemical identification mark on the surface of the nano composite particle, so that the nano composite particle can adhere to the cancer having the biochemical identification mark. On the cell. The zinc oxide nanowire is a semiconductor luminescent material that emits light of a specific wavelength, and the polyethylene is translucent due to Therefore, the light emitted by the zinc oxide nanowire can penetrate the polyethylene, and the position and the luminescence intensity of the zinc oxide nanowire can be seen through the optical identification device, thereby determining the presence or absence of a certain cancer cell, and Location and quantity.

本發明提供之奈米複合粒子中含有至少一個奈米線,在實際應用中當需要複數奈米線,從而需要對奈米複合粒子進行表面改性時,可僅對少數奈米複合粒子改性即可,相比於核殼結構之奈米複合粒子所需之表面改性劑用量較少。 The nano composite particle provided by the invention contains at least one nanowire. In practical applications, when a plurality of nanowires are required, it is necessary to modify only a few nano composite particles when surface modification of the nano composite particle is required. That is, the amount of surface modifier required for the nanocomposite particles compared to the core-shell structure is small.

請參閱圖2,本發明實施例進一步提供所述奈米複合粒子10之製備方法,包括以下步驟: Referring to FIG. 2, an embodiment of the present invention further provides a method for preparing the nano composite particle 10, comprising the following steps:

步驟一:提供複數奈米線。 Step 1: Provide multiple nanowires.

所述奈米線包括不同之類型,包括金屬奈米線,其金屬材料包括鎳、鉑、金等;半導體奈米線,其半導體材料包括砷化鎵、磷化鎵、氮化鎵、硫化鎘、氧化錫、二氧化鈦及氧化鋅等;絕緣體奈米線,其絕緣體材料包括二氧化矽或二氧化鈦等。優選地,所述奈米線為半導體奈米線,其直徑小於50微米,長度不限。所述奈米線之製備方法包括化學氣相沈積法、模板限制輔助生長法、金屬有機氣相外延生長法及膠體化學自組裝法等。本實施例中奈米線為氧化鋅奈米線,所述氧化鋅奈米線之直徑小於100奈米,長度不限。本實施例中,所述氧化鋅奈米線之製備方法為模板限制輔助生長法,其具體包括以下步驟:提供一多孔氧化鋁模板;在所述多孔氧化鋁模板上濺鍍一層銀膜做陰極;把鍍有銀膜之一面固定在一導電基底上,銀膜另一面暴露於氯化鋅電解液中;及在恒電位狀態下,將氧化鋅沈積到模板中之奈米孔中,去除模板得到氧化鋅奈米線。 The nanowires comprise different types, including metal nanowires, the metal materials thereof include nickel, platinum, gold, etc.; the semiconductor nanowires, the semiconductor materials thereof include gallium arsenide, gallium phosphide, gallium nitride, cadmium sulfide , tin oxide, titanium dioxide, zinc oxide, etc.; insulator nanowire, the insulator material includes cerium oxide or titanium dioxide. Preferably, the nanowire is a semiconductor nanowire having a diameter of less than 50 micrometers and an unlimited length. The preparation method of the nanowire includes a chemical vapor deposition method, a template-limited auxiliary growth method, a metal organic vapor phase epitaxial growth method, and a colloidal chemical self-assembly method. In this embodiment, the nanowire is a zinc oxide nanowire, and the diameter of the zinc oxide nanowire is less than 100 nm, and the length is not limited. In this embodiment, the method for preparing the zinc oxide nanowire is a template-limited auxiliary growth method, which specifically includes the following steps: providing a porous alumina template; and depositing a silver film on the porous alumina template a cathode; one side of the silver plated film is fixed on a conductive substrate, and the other side of the silver film is exposed to the zinc chloride electrolyte; and at a constant potential state, zinc oxide is deposited into the nanopore in the template to remove The template obtained a zinc oxide nanowire.

可選擇地,所述複數奈米線進一步包括預先使用有機溶劑處理。該有機溶 劑為乙醇、甲醇、丙酮、二氯乙烷及氯仿中之一種或者幾種之混合。所述奈米線經有機溶劑處理後,其表面會被有機溶劑浸潤。根據相似相溶原理,使用有機溶劑處理奈米線有助於其在聚合物材料中之分散。本實施例中通過將氧化鋅奈米線浸泡在乙醇中一段時間使氧化鋅奈米線被浸潤。 Alternatively, the plurality of nanowires further comprises prior treatment with an organic solvent. Organic dissolution The agent is one or a mixture of ethanol, methanol, acetone, dichloroethane and chloroform. After the nanowire is treated with an organic solvent, the surface thereof is infiltrated with an organic solvent. According to the principle of similar compatibility, the treatment of the nanowires with an organic solvent contributes to their dispersion in the polymer material. In this embodiment, the zinc oxide nanowire is infiltrated by immersing the zinc oxide nanowire in ethanol for a period of time.

步驟二:提供一液態之聚合物材料或聚合物單體。 Step 2: Providing a liquid polymeric material or polymer monomer.

聚合物為熱固性或熱塑性之樹脂、橡膠及塑膠中之一種或幾種,具體地,所述聚合物之材料為聚本乙烯、聚乙烯、聚丙烯、聚氯乙烯、聚四氟乙烯、天然橡膠、聚甲醛或聚乙醛中之一種或幾種。可選擇地,所述聚合物或聚合物單體中可進一步包括一種添加物或多種添加物之混合物,並對所述混合有添加物之液態聚合物材料或聚合物單體進行攪拌,使所述聚合物材料或聚合物單體與所述添加物混合均勻,從而得到一液態之基體材料。所述添加物包括固化劑、改性劑、填料或者稀釋劑等。攪拌混合有添加物之液態聚合物材料或聚合物單體之時間由所述聚合物材料、聚合物單體材料及添加物之種類及數量所决定。聚合物越黏稠,添加物種類、數量越多,則攪拌時間越長。可選擇地,如果所提供之聚合物為一常溫下處於固態之聚合物材料,則對其進行加熱,使其熔化,形成一液態之聚合物材料。 The polymer is one or more of thermosetting or thermoplastic resin, rubber and plastic. Specifically, the material of the polymer is polyethylene, polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, natural rubber. One or more of polyoxymethylene or polyacetaldehyde. Alternatively, the polymer or polymer monomer may further comprise an additive or a mixture of a plurality of additives, and the liquid polymer material or polymer monomer mixed with the additive is stirred to make The polymer material or polymer monomer is uniformly mixed with the additive to obtain a liquid matrix material. The additive includes a curing agent, a modifier, a filler or a diluent, and the like. The time during which the liquid polymer material or polymer monomer to be mixed with the additive is stirred is determined by the type and amount of the polymer material, the polymer monomer material, and the additive. The more viscous the polymer, the more the type and amount of additives, the longer the mixing time. Alternatively, if the polymer provided is a polymeric material that is solid at room temperature, it is heated to melt to form a liquid polymeric material.

本實施例中提供一液態之聚乙烯,不添加其它添加物。由於聚乙烯常溫下為蠟狀,因此對其加熱至112℃-135℃,使其熔化得到一液態之聚乙烯。 In this embodiment, a liquid polyethylene is provided without adding other additives. Since the polyethylene is waxy at normal temperature, it is heated to 112 ° C - 135 ° C and melted to obtain a liquid polyethylene.

步驟三:將所述複數奈米線添加至所述液態之聚合物材料或聚合物單體中並分散。 Step 3: Adding the plurality of nanowires to the liquid polymer material or polymer monomer and dispersing.

將所述複數奈米線添加至所述液態之聚合物材料或聚合物單體中並分散之方法之具體步驟為:添加所述複數奈米線至所述液態之聚合物材料或聚合物單體中;對聚合物材料或聚合物單體與奈米線形成之混合物進行機械攪 拌,同時使用超聲波處理。 The specific step of adding the plurality of nanowires to the liquid polymer material or polymer monomer and dispersing is: adding the plurality of nanowires to the liquid polymer material or polymer sheet In the body; mechanically agitating the polymer material or a mixture of polymer monomers and nanowires Mix and use ultrasonic treatment at the same time.

機械攪拌或超聲波處理使奈米線在液態之聚合物材料或聚合物單體中均勻分散,形成一液態混合物。攪拌時間由聚合物、聚合物單體及奈米線之種類及數量决定。奈米線之數量越多,聚合物越黏稠,則需要之攪拌時間越長。超聲波處理之方法可以為采用超聲波攪拌機或超聲波分散機對所述奈米線與聚合物材料或聚合物單體形成之混合物進行攪拌或分散。 Mechanical agitation or sonication allows the nanowires to be uniformly dispersed in a liquid polymeric material or polymer monomer to form a liquid mixture. The agitation time is determined by the type and amount of polymer, polymer monomer and nanowire. The more the number of nanowires, the more viscous the polymer, the longer the mixing time is required. The ultrasonic treatment may be carried out by stirring or dispersing a mixture of the nanowires with a polymer material or a polymer monomer using an ultrasonic mixer or an ultrasonic disperser.

可以理解,分散所述複數奈米線至聚合物材料中之方法還可以為其它方法,例如采用磁力攪拌機分散所述複數奈米線至聚合物材料中。 It will be appreciated that the method of dispersing the plurality of nanowires into the polymeric material may be other methods, such as dispersing the plurality of nanowires into the polymeric material using a magnetic stirrer.

本實施例中將複數氧化鋅奈米線分散在聚乙烯中,對氧化鋅奈米線及聚乙烯形成之混合物進行機械攪拌,同時使用超聲波攪拌,使氧化鋅奈米線均勻地分散在聚乙烯中。 In this embodiment, the plurality of zinc oxide nanowires are dispersed in the polyethylene, and the mixture of the zinc oxide nanowire and the polyethylene is mechanically stirred, and the zinc oxide nanowire is uniformly dispersed in the polyethylene by ultrasonic stirring. in.

步驟四:固化形成一複合材料。 Step 4: Curing to form a composite material.

對於上述液態之聚合物材料或聚合物單體與奈米線形成之混合物,根據聚合物或聚合物單體材料之不同可采用不同之方法使其固化,形成一複合材料。 For the liquid polymer material or the mixture of the polymer monomer and the nanowire, the composite material may be solidified by different methods depending on the polymer or the polymer monomer material to form a composite material.

對於熱固性之聚合物材料與奈米線形成之混合物采用逐步升溫之方法使其固化。升溫固化所述熱固性材料之方法具體為:通過一加熱裝置對所述奈米線與液態之聚合物形成之混合物進行加熱,形成一複合材料。熱固性材料需要逐步升溫,升溫過快會導致熱固性聚合物材料爆聚,從而影響材料之性能。所述熱固性材料固化之溫度及時間由所述聚合物、添加物及奈米線之種類及數量决定。聚合物熔點越高,添加物及奈米線之數量越多,則固化所需時間越長。所述加熱裝置可以係加熱板、熱壓機、平板硫化機、熱壓罐或者烘箱等加熱裝置中之一種。 The mixture of the thermosetting polymer material and the nanowire is cured by a stepwise heating method. The method of curing the thermosetting material by heating is specifically: heating a mixture of the nanowire and the liquid polymer by a heating device to form a composite material. Thermosetting materials require a gradual increase in temperature. Heating too fast can cause the thermoset polymer material to blast and affect the properties of the material. The temperature and time at which the thermoset material cures is determined by the type and amount of the polymer, additives, and nanowires. The higher the melting point of the polymer, the greater the amount of additives and nanowires, the longer the curing time. The heating device may be one of a heating device such as a heating plate, a hot press, a flat vulcanizer, an autoclave or an oven.

對於熱塑性之聚合物材料與奈米線形成之混合物采用冷却之方法使其固化。降低所述熱塑性材料溫度之方法為在室溫下自然冷却或通過一冷却裝置對液態之奈米線與聚合物形成之混合物進行冷却,形成一複合材料。所述冷却裝置可以係循環水冷却器、液壓油冷却器或油水冷却器等冷却裝置中之一種。 The mixture of the thermoplastic polymer material and the nanowire is cured by cooling. The method of lowering the temperature of the thermoplastic material is to cool the mixture of the liquid nanowire and the polymer by natural cooling at room temperature or by a cooling device to form a composite material. The cooling device may be one of a cooling device such as a circulating water cooler, a hydraulic oil cooler, or a water-oil cooler.

對於聚合物單體與奈米線形成之混合物采用加入引發劑之方法引發聚合反應,使聚合物單體發生聚合反應,形成一固化之聚合物。 For the mixture of the polymer monomer and the nanowire, the polymerization reaction is initiated by adding an initiator to polymerize the polymer monomer to form a solidified polymer.

可以理解所述固化奈米線與聚合物材料或聚合物單體形成混合物之方法不限於上述方法,還可以通過光固化技術,例如,通過紫外光固化以矽橡膠為聚合物材料之複合材料。 It is understood that the method of forming the mixture of the cured nanowires with the polymer material or the polymer monomer is not limited to the above method, and the composite material of the ruthenium rubber as the polymer material may also be cured by a photocuring technique, for example, by ultraviolet light curing.

本實施例中氧化鋅奈米線與聚乙烯材料形成之混合物為熱塑性材料,因此采用循環水冷却器對氧化鋅奈米線與聚乙烯形成之混合物進行冷却,形成一複合材料。 In this embodiment, the mixture of the zinc oxide nanowire and the polyethylene material is a thermoplastic material, so that a mixture of the zinc oxide nanowire and the polyethylene is cooled by a circulating water cooler to form a composite material.

步驟五:粉碎上述複合材料形成奈米複合粒子。 Step 5: pulverizing the above composite material to form nano composite particles.

粉碎上述複合材料形成一奈米複合粒子之方法包括球磨法、造粒機粉碎法、破碎機粉碎法或氣流粉碎機粉碎法。優選地,采用球磨機粉碎所述複合材料,所述球磨機粉碎複合材料之方法具體包括以下步驟:將大球直徑為8毫米,中球直徑為5.5毫米,小球直徑為3.9毫米之研磨體以介於3:2:1-1:2:3之配料比與步驟四得到之複合材料以介於1:1-40:1之球料比裝入一球磨機筒體內;啟動球磨機,筒體內之研磨體在慣性、離心力作用及摩擦力之作用下,與筒體內之複合材料相互撞擊,球磨機轉速為200-580轉/分;球磨1-50小時,粉碎所述複合材料形成奈米複合粒子。 The method of pulverizing the above composite material to form a nano composite particle includes a ball milling method, a granulator pulverization method, a crusher pulverization method, or a jet mill pulverization method. Preferably, the composite material is pulverized by a ball mill, and the method for pulverizing the composite material by the ball mill comprises the following steps: the grinding body having a diameter of 8 mm, a diameter of 5.5 mm, and a diameter of 3.9 mm The ratio of the ingredients in the 3:2:1-1:2:3 ratio to the material obtained in the fourth step is loaded into the barrel of the ball mill at a ratio of 1:1-40:1; the ball mill is started, and the barrel is ground. Under the action of inertia, centrifugal force and friction, the composite collides with the composite material in the cylinder, the ball mill rotates at 200-580 rpm, and the ball mill takes 1-50 hours to pulverize the composite to form nano composite particles.

所述球磨過程中,球磨時間越長、球磨速度越高、球料比越大及磨球配比 中大球質量小而小球數多可使球磨得到之奈米複合粒子直徑較小。所述球磨過程中,球磨時間越短、球磨速度越低、球料比越小及磨球配比中大球質量大而小球數少則球磨得到之奈米複合粒子直徑較大。本實施例中,大球、中球及小球之磨球配比為1:2:3,球料比為3:1,球磨機轉速為350轉/分,球磨之時間為5小時。 In the ball milling process, the longer the ball milling time, the higher the ball milling speed, the larger the ball to material ratio and the grinding ball ratio The medium-sized ball has a small mass and the number of small balls can make the diameter of the nano-composite particles obtained by ball milling smaller. In the ball milling process, the shorter the ball milling time, the lower the ball milling speed, the smaller the ball-to-batch ratio and the larger the mass of the ball in the grinding ball ratio, and the smaller the number of small balls, the larger the diameter of the nano-composite particles obtained by ball milling. In this embodiment, the ball ratio of the large ball, the middle ball and the small ball is 1:2:3, the ball to material ratio is 3:1, the ball mill rotation speed is 350 rpm, and the ball milling time is 5 hours.

可選擇地,可將經球磨機粉碎得到之奈米複合粒子進一步放入氣流粉碎機中進一步粉碎。所述采用氣流粉碎機對經球磨機粉碎得到之奈米複合粒子進一步粉碎之方法包括以下步驟:將經球磨機粉碎後得到之奈米複合粒子加入氣流粉碎機之粉碎腔中;通過噴嘴將壓縮空氣噴射進入粉碎腔;在壓縮空氣形成之氣流作用下奈米複合粒子被反復碰撞、磨擦、剪切而進一步粉碎。粉碎後之奈米複合粒子在風機抽力作用下隨上升氣流運動至分級區,符合粒度要求之奈米複合粒子通過分級輪進入旋風分離器及除塵器收集,不符合粒度要求之粗顆粒下降至粉碎區繼續粉碎。 Alternatively, the nano composite particles obtained by the ball mill pulverization may be further placed in a jet mill to be further pulverized. The method for further pulverizing the nano composite particles obtained by the ball mill by using a jet mill comprises the steps of: adding the nano composite particles obtained by pulverizing the ball mill to the pulverization chamber of the jet mill; and spraying the compressed air through the nozzle The pulverization chamber is entered; the nano composite particles are further pulverized by repeated collision, friction, shearing under the action of the air formed by the compressed air. The pulverized nano composite particles move to the classification zone with the upward airflow under the action of the fan suction force, and the nano composite particles satisfying the particle size requirements are collected into the cyclone and the dust collector through the grading wheel, and the coarse particles that do not meet the particle size requirements are lowered to The crushing zone continues to smash.

所製備之奈米複合粒子之直徑小於1000微米,優選地所述奈米複合粒子之直徑為300-700微米。本實施例中,采用球磨法粉碎所述氧化鋅奈米線/聚乙烯複合材料形成奈米複合粒子,所製備之奈米複合粒子之直徑為500微米。 The prepared nanocomposite particles have a diameter of less than 1000 microns, and preferably the nanocomposite particles have a diameter of from 300 to 700 microns. In this embodiment, the zinc oxide nanowire/polyethylene composite material is pulverized by ball milling to form nano composite particles, and the prepared nano composite particles have a diameter of 500 μm.

本發明提供之奈米複合粒子及其製備方法具備以下優點:其一,本發明提供之奈米複合粒子中含有至少一個奈米線,在實際應用中當需要複數奈米線,從而需要對含有奈米線於奈米複合粒子進行表面改性時,可僅對少數奈米複合粒子表面改性即可,相比於核殼結構之奈米複合粒子所需之表面改性劑用量較少;其二,本發明提供之奈米複合粒子之製備方法先將奈米線分散在液態之聚合物或聚合物單體中並使之固化,再采用粉碎法直接粉碎,相比於溶膠-凝膠法或燒結法,方法簡單,易於實現產業化。 The nano composite particle provided by the invention and the preparation method thereof have the following advantages: First, the nano composite particle provided by the invention contains at least one nanowire, and in practical applications, when a plurality of nanowires are required, the When the nanowire is surface-modified with nano-composite particles, only a few nano-composite particles can be surface-modified, and the amount of surface modifier required for the nano-composite particles of the core-shell structure is less; Secondly, the preparation method of the nano composite particle provided by the invention first disperses the nanowire in a liquid polymer or a polymer monomer and solidifies it, and then directly pulverizes by using a pulverization method, compared to the sol-gel. The method or the sintering method is simple in method and easy to realize industrialization.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧奈米複合粒子 10‧‧‧Nano composite particles

104‧‧‧奈米線 104‧‧‧Nan line

102‧‧‧聚合物基體 102‧‧‧ polymer matrix

Claims (19)

一種含有奈米線的複合粒子,包括一聚合物基體,其改良在於,所述含有奈米線的複合粒子進一步包括複數奈米線均勻分散於該聚合物基體中,所述含有奈米線的複合粒子之直徑小於1000微米。 A composite particle comprising a nanowire, comprising a polymer matrix, wherein the nanowire-containing composite particle further comprises a plurality of nanowires uniformly dispersed in the polymer matrix, wherein the nanowire-containing layer The composite particles have a diameter of less than 1000 microns. 如請求項1所述之含有奈米線的複合粒子,其中,所述含有奈米線的複合粒子之直徑為300-700微米。 The composite particle containing a nanowire according to claim 1, wherein the nanowire-containing composite particle has a diameter of 300 to 700 μm. 如請求項1所述之含有奈米線的複合粒子,其中,所述奈米線之材料為鎳、鉑、金、二氧化矽、砷化鎵、磷化鎵、氮化鎵、硫化鎘、氧化錫、二氧化鈦或氧化鋅中之一種或幾種。 The composite particle containing a nanowire according to claim 1, wherein the material of the nanowire is nickel, platinum, gold, cerium oxide, gallium arsenide, gallium phosphide, gallium nitride, cadmium sulfide, One or more of tin oxide, titanium dioxide or zinc oxide. 如請求項1所述之含有奈米線的複合粒子,其中,所述奈米線之直徑小於50微米。 The composite particle containing a nanowire according to claim 1, wherein the nanowire has a diameter of less than 50 μm. 如請求項1所述之含有奈米線的複合粒子,其中,所述聚合物基體之材料為樹脂、橡膠或塑膠中之一種或幾種。 The composite particle containing a nanowire according to claim 1, wherein the material of the polymer matrix is one or more of a resin, a rubber or a plastic. 如請求項1所述之含有奈米線的複合粒子,其中,所述含有奈米線的複合粒子包括一種添加物或者多種添加物之混合物。 The nanowire-containing composite particle according to claim 1, wherein the nanowire-containing composite particle comprises an additive or a mixture of a plurality of additives. 如請求項6所述之含有奈米線的複合粒子,其中,所述添加物包括脂肪胺、脂環胺、芳香胺、聚醯胺、酸酐、樹脂類、聚硫橡膠、聚醯胺樹脂、聚乙烯醇叔丁醛、丁腈橡膠、石棉纖維、玻璃纖維、石英粉、瓷粉、氧化鋁、矽膠粉、二縮水甘油醚、多縮水甘油醚、環氧丙烷丁基醚、環氧丙烷苯基醚、二環氧丙烷乙基醚、三環氧丙烷丙基醚、烯丙基苯酚。 The composite particle containing a nanowire according to claim 6, wherein the additive comprises a fatty amine, an alicyclic amine, an aromatic amine, a polyamine, an acid anhydride, a resin, a polysulfide rubber, a polyamide resin, Polyvinyl alcohol tert-butyraldehyde, nitrile rubber, asbestos fiber, glass fiber, quartz powder, porcelain powder, alumina, tannin powder, diglycidyl ether, polyglycidyl ether, propylene oxide butyl ether, propylene oxide benzene Ethyl ether, dipropylene oxide ethyl ether, tripropylene oxide propyl ether, allyl phenol. 一種含有奈米線的複合粒子之製備方法,包括以下步驟提供複數奈米線;提供一液態之聚合物材料或聚合物單體; 將所述複數奈米線添加至所述液態之聚合物材料或聚合物單體中並分散;固化形成一複合材料;及粉碎所述複合材料形成含有奈米線的複合粒子。 A method for preparing a composite particle containing a nanowire, comprising the steps of providing a plurality of nanowires; providing a liquid polymer material or a polymer monomer; Adding the plurality of nanowires to the liquid polymer material or polymer monomer and dispersing; solidifying to form a composite material; and pulverizing the composite material to form composite particles containing nanowires. 如請求項8所述之含有奈米線的複合粒子之製備方法,其中,將所述複數奈米線添加至所述液態之聚合物材料或聚合物單體中並分散之具體步驟為:添加所述複數奈米線至所述液態之聚合物材料或聚合物單體中;對聚合物材料或聚合物單體與奈米線形成之混合物進行機械攪拌,同時使用超聲波處理。 The method for preparing a nanowire-containing composite particle according to claim 8, wherein the specific step of adding the plurality of nanowires to the liquid polymer material or polymer monomer and dispersing is: adding The plurality of nanowires are in the liquid polymer material or polymer monomer; the polymer material or the mixture of the polymer monomer and the nanowire is mechanically stirred while using ultrasonic treatment. 如請求項8所述之含有奈米線的複合粒子之製備方法,其中,在所述奈米線添加至所述液態之聚合物材料或聚合物單體之步驟前,進一步包括使用有機溶劑浸潤奈米線之步驟。 The method for preparing a nanowire-containing composite particle according to claim 8, wherein the step of adding the nanowire to the liquid polymer material or the polymer monomer further comprises infiltrating with an organic solvent. The steps of the nano line. 如請求項10所述之含有奈米線的複合粒子之製備方法,其中,所述有機溶劑為乙醇、甲醇、丙酮、二氯乙烷及氯仿中之一種或者幾種之混合。 The method for producing a nanowire-containing composite particle according to claim 10, wherein the organic solvent is one or a mixture of ethanol, methanol, acetone, dichloroethane and chloroform. 如請求項8所述之含有奈米線的複合粒子之製備方法,其中,所述固化形成複合材料的方法為加入引發劑引發聚合反應的方法。 The method for producing a nanowire-containing composite particle according to claim 8, wherein the method of curing to form a composite material is a method of initiating a polymerization reaction by adding an initiator. 如請求項8所述之含有奈米線的複合粒子之製備方法,其中,所述固化形成複合材料的方法為紫外光固化的方法。 The method for producing a nanowire-containing composite particle according to claim 8, wherein the method of curing to form a composite material is a method of ultraviolet light curing. 如請求項8所述之含有奈米線的複合粒子之製備方法,其中,所述固化形成複合材料的方法為冷卻或逐步升溫的方法。 The method for preparing a nanowire-containing composite particle according to claim 8, wherein the method of curing to form a composite material is a method of cooling or gradually increasing the temperature. 如請求項8所述之含有奈米線的複合粒子之製備方法,其中,所述粉碎複合材料形成所述含有奈米線的複合粒子之方法包括采用球磨法、造粒機粉碎法、破碎機粉碎法或氣流粉碎機粉碎法。 The method for preparing a composite particle containing a nanowire according to claim 8, wherein the method of forming the composite material containing the nanowire by the pulverized composite material comprises a ball milling method, a granulator pulverization method, a crusher Pulverization method or jet mill pulverization method. 如請求項15所述之含有奈米線的複合粒子之製備方法,其中,所述粉碎 複合材料形成所述含有奈米線的複合粒子之方法為球磨法。 The method for producing a composite particle containing a nanowire according to claim 15, wherein the pulverization The method of forming the composite material containing the composite material of the nanowire is a ball milling method. 如請求項16所述之含有奈米線的複合粒子之製備方法,其中,所述粉碎複合材料形成含有奈米線的複合粒子之方法進一步包括將經球磨機粉碎得到之含有奈米線的複合粒子放入氣流粉碎機中進一步粉碎。 The method for producing a composite particle containing a nanowire according to claim 16, wherein the method of forming the composite material containing the nanowire by the pulverized composite material further comprises: composite particle containing a nanowire obtained by pulverizing the ball mill It was further pulverized by being placed in a jet mill. 如請求項15所述之含有奈米線的複合粒子之製備方法,其中,所述球磨過程中大球、中球及小球之磨球配比為1:2:3,球料比為3:1,球磨機轉速為350轉/分,球磨之時間為5小時。 The method for preparing a composite particle containing a nanowire according to claim 15, wherein the ball, the middle ball and the small ball have a ratio of 1:2:3 and a ball to ball ratio of 3 during the ball milling process. :1, the ball mill speed is 350 rpm, and the ball milling time is 5 hours. 如請求項17所述之含有奈米線的複合粒子之製備方法,其中,所述將經球磨機粉碎得到之含有奈米線的複合粒子放入氣流粉碎機中進一步粉碎的方法包括以下步驟:將經球磨機粉碎後得到之含有奈米線的複合粒子加入氣流粉碎機之粉碎腔中;通過噴嘴將壓縮空氣噴射進入粉碎腔;在壓縮空氣形成之氣流作用下含有奈米線的複合粒子被反復碰撞、磨擦、剪切而進一步粉碎。 The method for preparing a composite particle containing a nanowire according to claim 17, wherein the method of further pulverizing the composite particle containing the nanowire obtained by pulverizing the ball mill into a jet mill comprises the following steps: The composite particles containing the nanowire obtained by pulverization by a ball mill are added into the pulverizing chamber of the jet mill; the compressed air is injected into the pulverizing chamber through the nozzle; the composite particles containing the nanowire are repeatedly collided under the action of the air formed by the compressed air. , rubbing, shearing and further pulverizing.
TW97149720A 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same TWI397548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97149720A TWI397548B (en) 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97149720A TWI397548B (en) 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same

Publications (2)

Publication Number Publication Date
TW201024340A TW201024340A (en) 2010-07-01
TWI397548B true TWI397548B (en) 2013-06-01

Family

ID=44852040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97149720A TWI397548B (en) 2008-12-19 2008-12-19 Composite particle including nano wires and method for making the same

Country Status (1)

Country Link
TW (1) TWI397548B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064185A1 (en) * 2003-08-04 2005-03-24 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
US7068898B2 (en) * 2002-09-05 2006-06-27 Nanosys, Inc. Nanocomposites
US20070184288A1 (en) * 2004-03-09 2007-08-09 Nv Bekaert Sa Composite article comprising a metal reinforcement element embedded in a thermoplastic polymer material
US20070184969A1 (en) * 2003-08-05 2007-08-09 S.A. Nanocyl Polymer-based composites comprising carbon nanotubes as a filler method for producing said composites, and associated uses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068898B2 (en) * 2002-09-05 2006-06-27 Nanosys, Inc. Nanocomposites
US20050064185A1 (en) * 2003-08-04 2005-03-24 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
US20070184969A1 (en) * 2003-08-05 2007-08-09 S.A. Nanocyl Polymer-based composites comprising carbon nanotubes as a filler method for producing said composites, and associated uses
US20070184288A1 (en) * 2004-03-09 2007-08-09 Nv Bekaert Sa Composite article comprising a metal reinforcement element embedded in a thermoplastic polymer material

Also Published As

Publication number Publication date
TW201024340A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
CN101735632B (en) Nano composite particle and preparation method thereof
JP5079450B2 (en) Dispersible silica nano hollow particles and method for producing dispersion of silica nano hollow particles
Baskaran et al. Unsaturated polyester nanocomposites filled with nano alumina
Chunze et al. A nanosilica/nylon-12 composite powder for selective laser sintering
CN103951971B (en) A kind of carbon fiber-reinforced resin dusty material for selective laser sintering
CN103108903B (en) Nanoparticle pultrusion processing aide
Vijayan et al. Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: Volume shrinkage, cure kinetics and properties
CN102059083A (en) Method for preparing phase-transformation microcapsule with wall material inlaid with nano alumina
CN1288206C (en) Epoxy resin/montmorillonoid nano-compoiste-material and its preparation method
CN102344632A (en) Three-layer core-shell-structure inorganic nanoparticle/silicon dioxide/high polymer composite microspheres and preparation method thereof
CN110713746A (en) High-refractive-index wear-resistant hardened coating composition and preparation method of hardened film thereof
CN101495223A (en) Preparation of composite nano/microcapsules comprising nanoparticles
CN108641288A (en) A kind of nano zircite/epoxy resin composite material and preparation method thereof
CN106547040A (en) A kind of high intensity crystal film with photon and preparation method thereof
JP2009013227A (en) Resin composition for electrical insulating material and its manufacturing method
CN112537921B (en) Phenolic resin coated chopped carbon fiber composite powder for laser 3D printing and preparation method thereof
CN109206853A (en) A kind of high-thermal-conductivity epoxy resin based composites, and its preparation method and application
CN102604330A (en) Preparing method of epoxy resin composite material based on boron nitride nanoparticles
CN108794822A (en) A kind of preparation method of compound rubber master batch
CN109370414A (en) A kind of graphene heat radiation coating and preparation method thereof
JP2018030752A (en) Boron nitride particle agglomerate, method for producing the same, composition and resin sheet
CN105504749A (en) Polycarbonate composite material for 3D printing and preparation method thereof
JP4613268B2 (en) Method for producing spherical carbon nanotube aggregate
CN100337986C (en) Process for preparing nuclear shell type composite ceramic particle
JP5133478B2 (en) Method for producing biodegradable polyester resin fine particles