TWI397049B - Transreflective display apparatus and driving method thereof - Google Patents

Transreflective display apparatus and driving method thereof Download PDF

Info

Publication number
TWI397049B
TWI397049B TW97149069A TW97149069A TWI397049B TW I397049 B TWI397049 B TW I397049B TW 97149069 A TW97149069 A TW 97149069A TW 97149069 A TW97149069 A TW 97149069A TW I397049 B TWI397049 B TW I397049B
Authority
TW
Taiwan
Prior art keywords
mode
curve
ambient light
display device
display
Prior art date
Application number
TW97149069A
Other languages
Chinese (zh)
Other versions
TW201025248A (en
Inventor
Biing Seng Wu
Lin Kai Bu
Ying Lieh Chen
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW97149069A priority Critical patent/TWI397049B/en
Publication of TW201025248A publication Critical patent/TW201025248A/en
Application granted granted Critical
Publication of TWI397049B publication Critical patent/TWI397049B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

穿透反射式顯示裝置及其驅動方法Penetrating reflection type display device and driving method thereof

本發明是有關於一種顯示裝置,且特別是有關於一種穿透反射式(transreflective)顯示裝置及其驅動方法。The present invention relates to a display device, and more particularly to a transreflective display device and a method of driving the same.

現今的電子裝置,如手機、個人數位助理(personal digital assistant,PDA)及筆記型電腦,通常具有顯示裝置。而這些顯示裝置需設計輕薄短小以節省電子裝置之體積及成本。為了因應需求,平板顯示器(flat panel display,FPD)逐漸取代陰極射線管顯示器而蓬勃發展。Today's electronic devices, such as cell phones, personal digital assistants (PDAs), and notebook computers, typically have display devices. These display devices need to be designed to be thin and light to save the size and cost of the electronic device. In response to demand, flat panel displays (FPDs) have gradually replaced the cathode ray tube displays.

平板顯示器顯示面板分為穿透式顯示面板、反射式顯示面板以及穿透反射式顯示面板。穿透式顯示面板使用置於其後方之背光模組作為光源。反射式顯示面板使用環境光(ambient light)或位於面板前方之光源。而穿透反射式顯示面板可使用背光模組及/或環境光來作為光源。The flat panel display panel is divided into a transmissive display panel, a reflective display panel, and a transflective display panel. The transmissive display panel uses a backlight module placed behind it as a light source. The reflective display panel uses ambient light or a light source located in front of the panel. The transflective display panel can use a backlight module and/or ambient light as a light source.

圖1為穿透反射式顯示面板之示意圖。穿透反射式顯示面板中各畫素包括反射材質所形成之反射區域以及透明材質所形成之穿透區域。當顯示面板周圍之環境光強度足夠強時(例如高於一門檻值),此顯示面板處於反射模式,其以環境光作為光源且從反射區域發射光。當環境光之強度不足時,顯示面板便處於穿透模式,其使用背光模組作為光源且從穿透區域發射光。1 is a schematic view of a transflective display panel. Each pixel in the transflective display panel includes a reflective area formed by the reflective material and a transparent area formed by the transparent material. When the ambient light intensity around the display panel is sufficiently strong (eg, above a threshold), the display panel is in a reflective mode that uses ambient light as the light source and emits light from the reflective area. When the intensity of the ambient light is insufficient, the display panel is in a penetrating mode, which uses the backlight module as a light source and emits light from the penetrating region.

然而,當穿透反射式顯示面板處於穿透模式時,背光模組會開始提供背光,但是環境光可能存在且從反射區域而反射出來。因此,表示較暗畫素的一些灰階便不能可區別性地顯示出來。圖2為穿透反射式顯示面板之電壓至透光度(voltage-to-transparency,V-T)曲線。相較於無失真之原實線L,虛線L’顯示了失真之V-T曲線。也就是說,當電壓V0施加至畫素時,因反射之環境光影響,實際上會顯示失真V-T曲線L’之透光度T0’,而不是顯示原V-T曲線L之預期透光度T0。因此,透光度T0’以下所對應之低灰階便不能可區別性地顯示出預期的暗度。However, when the transflective display panel is in the penetrating mode, the backlight module will begin to provide backlighting, but ambient light may be present and reflected from the reflective area. Therefore, some gray scales representing darker pixels cannot be displayed distinctively. 2 is a voltage-to-transparency (V-T) curve of a transflective display panel. The dotted line L' shows the V-T curve of distortion compared to the original solid line L without distortion. That is, when the voltage V0 is applied to the pixel, the transmittance T0' of the distortion V-T curve L' is actually displayed due to the reflected ambient light, instead of the expected transmittance T0 of the original V-T curve L. Therefore, the low gray level corresponding to the transmittance T0' or less cannot exhibit the expected darkness distinguishably.

因此,需設計適當的驅動方法,以改善上述問題。Therefore, it is necessary to design an appropriate driving method to improve the above problems.

本發明提供一種穿透反射式顯示裝置之驅動方法,此顯示裝置具有雙模式之顯示面板。藉由此驅動方法,可在顯示裝置處於反射模式及穿透模式時正常地顯示圖像,並且提高顯示裝置之顯示品質。另外,本發明還提供一種穿透反射式顯示裝置,其亦具有上述優點。The present invention provides a driving method of a transflective display device having a dual mode display panel. With this driving method, an image can be normally displayed when the display device is in the reflective mode and the transmissive mode, and the display quality of the display device is improved. In addition, the present invention also provides a transflective display device which also has the above advantages.

本發明提供一種穿透反射式顯示裝置之驅動方法。在驅動方法中,會偵測顯示裝置之環境光強度以決定顯示裝置之顯示模式。若環境光強度大於預定值,則顯示模式為處於反射模式,否則顯示模式則處於穿透模式。接著,便可依據顯示模式和環境光強度,選擇多個電壓至透光度曲線(voltage-to-transparency,V-T)其一,以驅動顯示裝置。The invention provides a driving method of a transflective display device. In the driving method, the ambient light intensity of the display device is detected to determine the display mode of the display device. If the ambient light intensity is greater than the predetermined value, the display mode is in the reflective mode, otherwise the display mode is in the through mode. Then, according to the display mode and the ambient light intensity, a plurality of voltages to one of a voltage-to-transparency (V-T) can be selected to drive the display device.

在上述驅動方法之實施例中,V-T曲線包括穿透模式V-T曲線及反射模式V-T曲線。若顯示模式為穿透模式且存在影響顯示品質之部分環境光(或者說環境光強度大於低門檻值),則便選擇穿透模式V-T曲線。In an embodiment of the above driving method, the V-T curve includes a through mode V-T curve and a reflective mode V-T curve. If the display mode is the penetration mode and there is some ambient light that affects the display quality (or the ambient light intensity is greater than the low threshold), the penetration mode V-T curve is selected.

本發明提供一種穿透反射式顯示裝置。此顯示裝置包括顯示面板、環境光偵測器、背光模組、時序控制器以及伽馬電壓產生器。具雙顯示模式之顯示面板係用以顯示影像。環境光偵測器偵測顯示裝置之環境光強度,並依據環境光強度而決定顯示裝置之顯示模式,其中顯示模式為穿透模式或反射模式。當顯示模式為穿透模式時,背光模組提供背光。時序控制器依據顯示模式以及環境光強度,選擇多條電壓至透光度曲線其一。於後,時序控制器控制伽馬電壓產生器依據所選擇之V-T曲線而產生多個伽馬電壓。The present invention provides a transflective display device. The display device comprises a display panel, an ambient light detector, a backlight module, a timing controller and a gamma voltage generator. A display panel with dual display mode is used to display images. The ambient light detector detects the ambient light intensity of the display device and determines the display mode of the display device according to the ambient light intensity, wherein the display mode is a through mode or a reflective mode. When the display mode is the penetrating mode, the backlight module provides backlighting. The timing controller selects multiple voltages to the transmittance curve according to the display mode and the ambient light intensity. Thereafter, the timing controller controls the gamma voltage generator to generate a plurality of gamma voltages according to the selected V-T curve.

在上述顯示裝置之實施例中,環境光偵測器包括光感測器以及光控制器。光感測器偵測顯示裝置之環境光強度以輸出電子信號。光控制器將電子信號轉換為具有數位形式之偵測信號,使環境光控制器可依據偵測信號而決定顯示模式。In an embodiment of the above display device, the ambient light detector comprises a light sensor and a light controller. The light sensor detects the ambient light intensity of the display device to output an electronic signal. The light controller converts the electronic signal into a digital form detection signal, so that the ambient light controller can determine the display mode according to the detection signal.

本發明之驅動方法及穿透反射式顯示裝置,可選擇適當的電壓至透光度(V-T)曲線,藉以依據環境光強度以及顯示模式來驅動顯示面板上之畫素。當顯示裝置為穿透模式時,具有較低灰階之畫素會因環境光之存在而不能可區別性地顯示出來。因此,考慮環境光之影響,設計不同顯示模式之V-T曲線,甚至可依據不同的環境光強度而設計穿透模式之若干V-T曲線。因此,參考合適的電壓至透光度(V-T)曲線可提高顯示裝置之顯示品質。The driving method and the transflective display device of the present invention can select an appropriate voltage to transmittance (V-T) curve to drive the pixels on the display panel according to the ambient light intensity and the display mode. When the display device is in the penetrating mode, pixels with lower gray levels may not be distinguishably displayed due to the presence of ambient light. Therefore, considering the influence of ambient light, V-T curves of different display modes are designed, and even some V-T curves of the penetration mode can be designed according to different ambient light intensities. Therefore, referring to a suitable voltage to transmittance (V-T) curve can improve the display quality of the display device.

應該理解,上述之說明以及以下之詳細介紹為示例性的,並且意圖提供對申請專利範圍所要求保護之本發明之進一步解釋。The above description and the following detailed description are to be considered as illustrative of the invention

以下將參考附圖詳細闡述本發明的實施例,附圖舉例說明了本發明的示範實施例,其中相同標號指示同樣或相似的元件。The embodiments of the present invention are described in detail below with reference to the accompanying drawings, in which FIG.

在本發明實施例中,穿透反射式顯示裝置包括顯示面板以及作為光源之背光模組,其中背光模組可發射光至顯示面板。圖3A為本發明之一實施例應用於顯示裝置之兩條電壓至透光度(voltage-to-transparency,V-T)曲線VT1及VT2。顯示裝置提供兩條不同顯示模式的V-T曲線VT1及VT2。各V-T曲線均藉由一伽馬電壓組所決定之,例如第一V-T曲線VT1中伽馬電壓V1~Vn,以及第二V-T曲線VT2中伽馬電壓V1’~Vn’,此伽馬電壓組會提供至源極驅動器之數位至類比轉換器。In the embodiment of the invention, the transflective display device comprises a display panel and a backlight module as a light source, wherein the backlight module can emit light to the display panel. 3A is a diagram showing two voltage-to-transparency (V-T) curves VT1 and VT2 applied to a display device according to an embodiment of the present invention. The display device provides V-T curves VT1 and VT2 for two different display modes. Each VT curve is determined by a gamma voltage group, such as gamma voltage V1~Vn in the first VT curve VT1, and gamma voltage V1'~Vn' in the second VT curve VT2, the gamma voltage group A digital to analog converter is provided to the source driver.

為了區別較低的灰階,第一V-T曲線VT1中較低灰階所對應之一或多個伽馬電壓不同於第二V-T曲線VT2中的相同灰階所對應之伽馬電壓。在圖3A中,第一V-T曲線VT1中最低灰階所對應之伽馬電壓Vn不同於第二V-T曲線VT2中最低灰階所對應之伽馬電壓Vn’。換言之,為了顯示最低灰階,參考第二V-T曲線VT2所提供之伽馬電壓Vn’大於參考第一V-T曲線VT1所提供之伽馬電壓Vn。值得一提的是,在其他實施例中,數位至類比轉換器可將所接收之伽馬電壓V1、V2、…及Vn/Vn’進行內插,以產生更多額外的伽馬電壓,藉此可使伽瑪電壓V(n-1)至Vn之間的較低灰階之顯示不同於伽瑪電壓V(n-1)至Vn’之間的較低灰階。In order to distinguish the lower gray scale, one or more gamma voltages corresponding to the lower gray scales in the first V-T curve VT1 are different from the gamma voltages corresponding to the same gray scales in the second V-T curve VT2. In Fig. 3A, the gamma voltage Vn corresponding to the lowest gray level in the first V-T curve VT1 is different from the gamma voltage Vn' corresponding to the lowest gray level in the second V-T curve VT2. In other words, in order to display the lowest gray scale, the gamma voltage Vn' supplied with reference to the second V-T curve VT2 is larger than the gamma voltage Vn supplied from the reference first V-T curve VT1. It is worth mentioning that in other embodiments, the digital to analog converter can interpolate the received gamma voltages V1, V2, ..., and Vn/Vn' to generate more additional gamma voltages. This can cause the display of the lower gray level between the gamma voltages V(n-1) to Vn to be different from the lower gray level between the gamma voltages V(n-1) to Vn'.

舉例來說,利用電阻串來產生伽馬電壓。如圖3A所示,電阻串之一端耦接參考電壓Vref,而電阻串之另一端則耦接接地電壓GND。依據分壓定理,電阻串可輸出數個類比伽馬電壓,以驅動顯示面板上之畫素。各伽馬電壓會驅動畫素,使畫素於顯示面板呈現對應的透光度。第一V-T曲線VT1係由第一組伽馬電壓V1~Vn而決定之,而第二V-T曲線VT2係由第二組伽馬電壓V1’~Vn’而決定之,其中在V-T曲線VT1及VT2中,符號“V”所添加之相同參考數字對應相同的灰階,例如V1及V1’、V2及V2’、或Vn及Vn’。在此實施例中,雖然兩條V-T曲線VT1及VT2之間僅有最低灰階(其代表最暗之畫素)所對應之伽馬電壓為不同,但其他實施例中,兩條V-T曲線VT1及VT2之間可有多於一個伽馬電壓不相同。For example, a resistor string is utilized to generate a gamma voltage. As shown in FIG. 3A, one end of the resistor string is coupled to the reference voltage Vref, and the other end of the resistor string is coupled to the ground voltage GND. According to the partial pressure theorem, the resistor string can output several analog gamma voltages to drive the pixels on the display panel. Each gamma voltage drives the pixels, so that the pixels exhibit corresponding transmittance on the display panel. The first VT curve VT1 is determined by the first group of gamma voltages V1~Vn, and the second VT curve VT2 is determined by the second group of gamma voltages V1'~Vn', wherein the VT curves VT1 and VT2 In the middle, the same reference numerals added by the symbol "V" correspond to the same gray scale, for example, V1 and V1', V2 and V2', or Vn and Vn'. In this embodiment, although the gamma voltage corresponding to only the lowest gray scale (which represents the darkest pixel) between the two VT curves VT1 and VT2 is different, in other embodiments, the two VT curves VT1 There may be more than one gamma voltage between VT2 and VT2.

在本發明之實施例中,顯示裝置依據顯示模式及環境光的強度而選擇V-T曲線其一。圖3B為本發明之一實施例之選擇V-T曲線之方法的流程圖。首先,可透過偵測環境光強度來決定顯示模式(步驟301)。當環境光強度高於預定值時,顯示模式則設定為反射模式,否則顯示模式設定為穿透模式。在反射模式中,顯示裝置的背光模組會關閉,且顯示裝置之數位至類比轉換器採用第一V-T曲線來產生適當的伽馬電壓(步驟303)。在穿透模式中,顯示裝置的背光模組會開啟。In an embodiment of the invention, the display device selects one of the V-T curves depending on the display mode and the intensity of the ambient light. 3B is a flow chart of a method of selecting a V-T curve in accordance with an embodiment of the present invention. First, the display mode can be determined by detecting the ambient light intensity (step 301). When the ambient light intensity is higher than the predetermined value, the display mode is set to the reflective mode, otherwise the display mode is set to the through mode. In the reflective mode, the backlight module of the display device is turned off, and the digital to analog converter of the display device uses the first V-T curve to generate the appropriate gamma voltage (step 303). In the penetration mode, the backlight module of the display device is turned on.

接著,便偵測是否仍存在部分環境光(步驟305)。若仍存在部分環境光,則此環境光可能造成具較低灰階之暗畫素於顯示時不能區別。因此,顯示裝置會採用第二V-T曲線VT2(步驟307),否則採用第一V-T曲線VT1(步驟303)。在本發明之實施例中,第二V-T曲線VT2所提供之伽馬電壓可驅動畫素,使畫素呈現對應高於臨界透光度T0’之透光度,且伽馬電壓所對應之透光度彼此間具有差別性。在存有部分環境光之穿透模式的情況下,應用第二V-T曲線VT2可區別性地顯示較低的灰階。在其它實施例中,步驟305為非必需的,穿透模式可不考慮環境光而使用第二V-T曲線。於此,部分環境光可定義為當環境光強度大於低門檻值時的環境光。Next, it is detected whether part of the ambient light is still present (step 305). If some ambient light still exists, this ambient light may cause dark pixels with lower gray levels to be indistinguishable when displayed. Therefore, the display device will employ the second V-T curve VT2 (step 307), otherwise the first V-T curve VT1 will be employed (step 303). In the embodiment of the present invention, the gamma voltage provided by the second VT curve VT2 can drive the pixels, so that the pixels exhibit a transmittance corresponding to the critical transmittance T0', and the gamma voltage corresponds to the transmittance. The luminosity is different from each other. In the case where a partial ambient light penetration mode is present, the second V-T curve VT2 is applied to differentially display the lower gray scale. In other embodiments, step 305 is optional and the penetration mode may use the second V-T curve regardless of ambient light. Here, part of the ambient light can be defined as ambient light when the ambient light intensity is greater than the low threshold.

如上所述,雖然上述實施例提供兩條V-T曲線VT1及VT2以提高顯示裝置於不同顯示模式下之顯示品質,但是當顯示裝置處於穿透模式時,考量到環境光之強度大小,也可設計多條V-T曲線。換句話說,當顯示裝置設定為穿透模式時,臨界透光度T0’會隨環境光強度而改變,導致伽馬電壓(其低於驅動像素於臨界透光度T0’上之某一伽馬電壓)所驅動之畫素未能可區別性地顯示出來。環境光越多,臨界透光度T0’越高,且會有更多的低灰階未能清楚地顯示出來。因此,需設計更多適當的V-T曲線。As described above, although the above embodiment provides two VT curves VT1 and VT2 to improve the display quality of the display device in different display modes, when the display device is in the penetrating mode, the intensity of the ambient light can be considered, and the design can also be designed. Multiple VT curves. In other words, when the display device is set to the penetration mode, the critical transmittance T0' changes with the ambient light intensity, resulting in a gamma voltage (which is lower than the driving pixel at the critical transmittance T0'). The pixels driven by the horse voltage are not clearly distinguishable. The more ambient light, the higher the critical transmittance T0' and the more low gray levels are not clearly displayed. Therefore, more appropriate V-T curves need to be designed.

圖4為本發明之一實施例之多條V-T曲線的示意圖。請參照圖4,經由圖3A所示之電阻串或圖4所示之可程式化伽馬電壓產生器402可提供多條V-T曲線。圖4中繪示了三條V-T曲線VT1、VT2及VT3,但也可使用更多的V-T曲線,故本發明不限於此。V-T曲線VT3係由伽馬電壓V1”至Vn”所決定之。相較於V-T曲線VT2,灰階所對應之伽馬電壓V(n-1)”及Vn”不同於相同灰階所對應之伽馬電壓V(n-1)’及Vn’。同樣地,顯示裝置會依據顯示模式及/或環境光強度來決定V-T曲線中何者應用於顯示影像。可程式化伽馬電壓產生器402受控於顯示裝置之時序控制器401,其依據所選擇之V-T曲線來產生伽馬電壓。4 is a schematic diagram of a plurality of V-T curves according to an embodiment of the present invention. Referring to FIG. 4, a plurality of V-T curves can be provided via the resistor string shown in FIG. 3A or the programmable gamma voltage generator 402 shown in FIG. Three V-T curves VT1, VT2, and VT3 are illustrated in FIG. 4, but more V-T curves may be used, and the present invention is not limited thereto. The V-T curve VT3 is determined by the gamma voltages V1" to Vn". Compared with the V-T curve VT2, the gamma voltages V(n-1)" and Vn" corresponding to the gray scale are different from the gamma voltages V(n-1)' and Vn' corresponding to the same gray scale. Similarly, the display device determines which of the V-T curves is used to display the image depending on the display mode and/or ambient light intensity. The programmable gamma voltage generator 402 is controlled by a timing controller 401 of the display device that generates a gamma voltage in accordance with the selected V-T curve.

圖5為本發明之一實施例之穿透反射式顯示裝置的示意圖。顯示裝置包括顯示面板501、背光模組、環境光偵測器、時序控制器401以及可程式化伽馬電壓產生器402。環境光偵測器包括光感測器510以及光控制器520。光感測器510偵測環境光,以輸出偵測電流I至光控制器520。光控制器520包括電流至電壓轉換器502以及類比至數位轉換器503。光控制器520將偵測電流I轉換為偵測信號並且將偵測信號輸出至時序控制器401。於後,環境光偵測器便可藉由環境光強度來決定顯示裝置之顯示模式為穿透模式或反射模式。當顯示模式是穿透模式時,背光模組提供背光至顯示面板,否則背光模組關閉。時序控制器401依據顯示模式及/或環境光的強度來選擇V-T曲線其一。時序控制器401接收環境光強度,並據以控制可程式化伽馬電壓產生器402產生一組對應所選擇之V-T曲線的伽馬電壓。在另一實施例中,光控制器520及時序控制器401可整合為一積體電路(IC)。FIG. 5 is a schematic diagram of a transflective display device according to an embodiment of the present invention. The display device includes a display panel 501, a backlight module, an ambient light detector, a timing controller 401, and a programmable gamma voltage generator 402. The ambient light detector includes a light sensor 510 and a light controller 520. The photo sensor 510 detects ambient light to output a detection current I to the light controller 520. Light controller 520 includes a current to voltage converter 502 and an analog to digital converter 503. The light controller 520 converts the detection current I into a detection signal and outputs the detection signal to the timing controller 401. Thereafter, the ambient light detector can determine whether the display mode of the display device is the penetration mode or the reflection mode by the ambient light intensity. When the display mode is the penetration mode, the backlight module provides backlight to the display panel, otherwise the backlight module is turned off. The timing controller 401 selects one of the V-T curves depending on the display mode and/or the intensity of the ambient light. The timing controller 401 receives the ambient light intensity and accordingly controls the programmable gamma voltage generator 402 to generate a set of gamma voltages corresponding to the selected V-T curve. In another embodiment, the light controller 520 and the timing controller 401 can be integrated into an integrated circuit (IC).

綜上所述,穿透反射式顯示裝置可依據環境光控制器所偵測之環境光強度,來決定顯示模式為穿透模式或反射模式。當顯示裝置處於穿透模式時,具較低灰階之暗畫素可能不能區別性地顯示出來,因此在上述實施例中提供不同顯示模式之多條V-T曲線,並且依據顯示模式及環境光強度而選擇適當的V-T曲線來驅動顯示面板。參考穿透模式之V-T曲線,穿透模式的V-T曲線所提供之伽馬電壓可驅動畫素於高於臨界透光度之透光度上,伽馬電壓與環境光強度有關,且伽馬電壓所對應之透光度彼此間具有很小差別。因此,較暗的畫素可區別性地顯示出來,且提高顯示品質。In summary, the transflective display device can determine the display mode as the penetration mode or the reflection mode according to the ambient light intensity detected by the ambient light controller. When the display device is in the penetrating mode, the dark pixels with lower gray levels may not be displayed distinctively, so in the above embodiment, multiple VT curves of different display modes are provided, and according to the display mode and the ambient light intensity And select the appropriate VT curve to drive the display panel. Referring to the VT curve of the penetration mode, the gamma voltage provided by the VT curve of the penetration mode can drive the pixel to a transmittance higher than the critical transmittance, the gamma voltage is related to the ambient light intensity, and the gamma voltage The corresponding transmittances have little difference from each other. Therefore, darker pixels can be displayed distinctively and the display quality is improved.

對於彼等本領域熟知此項技藝者而言,在不背離本發明之精神和範圍之前提下,可對本發明之結構作出各種修改及變型。鑒於以上之介紹,若本發明之修改及變型落入以下之申請專利範圍及其等同物之範圍內,本發明還意圖覆蓋之。Various modifications and variations of the structure of the present invention are possible without departing from the spirit and scope of the invention. In view of the above, it is intended that the present invention covers the modifications and variations of the present invention.

I...偵測電流I. . . Detecting current

V0...電壓V0. . . Voltage

T0...透光度T0. . . Transmittance

L、L’、VT1、VT2...曲線L, L', VT1, VT2. . . curve

T0’...臨界透光度T0’. . . Critical transmittance

Vref...參考電壓Vref. . . Reference voltage

GND...接地電壓GND. . . Ground voltage

V1、V1’、V2、V2’、V(n-1)、V(n-1)’、V(n-1)”、Vn、Vn’、Vn”...伽馬電壓V1, V1', V2, V2', V(n-1), V(n-1)', V(n-1)", Vn, Vn', Vn". . . Gamma voltage

401...時序控制器401. . . Timing controller

402...可程式化伽馬電壓產生器402. . . Programmable gamma voltage generator

501...顯示面板501. . . Display panel

502...電流至電壓轉換器502. . . Current to voltage converter

503...類比至數位轉換器503. . . Analog to digital converter

510...光感測器510. . . Light sensor

520...光控制器520. . . Light controller

301、303、305、307...本發明之一實施例之驅動方法的步驟301, 303, 305, 307. . . Steps of the driving method of an embodiment of the present invention

圖1為穿透反射式顯示面板之示意圖。1 is a schematic view of a transflective display panel.

圖2為穿透反射式顯示面板之電壓至透光度曲線。Figure 2 is a voltage to transmittance curve of a transflective display panel.

圖3A為本發明之一實施例應用於顯示裝置之兩條電壓至透光度曲線。3A is a graph showing two voltage to transmittance curves applied to a display device in accordance with an embodiment of the present invention.

圖3B依據本發明之一實施例之選擇V-T曲線之方法的流程圖。3B is a flow chart of a method of selecting a V-T curve in accordance with an embodiment of the present invention.

圖4為本發明之一實施例之多條V-T曲線的示意圖。4 is a schematic diagram of a plurality of V-T curves according to an embodiment of the present invention.

圖5為本發明之一實施例之穿透反射式顯示裝置的示意圖。FIG. 5 is a schematic diagram of a transflective display device according to an embodiment of the present invention.

301、303、305、307...本發明之一實施例之驅動方法的步驟301, 303, 305, 307. . . Steps of the driving method of an embodiment of the present invention

Claims (14)

一種穿透反射式顯示裝置之驅動方法,包括:提供多個電壓至透光度(voltage-to-transparency,V-T)曲線,包括一預設VT曲線;偵測該顯示裝置之一環境光強度;依據該環境光強度決定一顯示模式,其中該顯示模式為一穿透模式或一反射模式;當該顯示模式為該反射模式時,選擇該預設V-T曲線,以驅動該顯示裝置;以及當該顯示模組為該穿透模式且該環境光強度高於一門檻值時選擇該預設V-T曲線以外之其他V-T曲線,以驅動該顯示裝置。A driving method for a transflective display device includes: providing a plurality of voltage-to-transparency (VT) curves, including a preset VT curve; and detecting an ambient light intensity of the display device; Determining a display mode according to the ambient light intensity, wherein the display mode is a penetration mode or a reflection mode; when the display mode is the reflection mode, selecting the preset VT curve to drive the display device; and when the When the display module is in the penetration mode and the ambient light intensity is higher than a threshold, another VT curve other than the preset VT curve is selected to drive the display device. 如申請專利範圍第1項所述之驅動方法,其中該V-T曲線包括一反射模式V-T曲線以及一穿透模式V-T曲線。The driving method of claim 1, wherein the V-T curve comprises a reflection mode V-T curve and a penetration mode V-T curve. 如申請專利範圍第2項所述之驅動方法,其中選擇該些V-T曲線其一的步驟中,若該顯示模式為該穿透模式且存在部分環境光,則選擇該穿透模式V-T曲線。The driving method of claim 2, wherein in the step of selecting one of the V-T curves, if the display mode is the penetration mode and partial ambient light is present, the penetration mode V-T curve is selected. 如申請專利範圍第2項所述之驅動方法,其中在選擇該些V-T曲線其一的步驟中,若該顯示模式為該穿透模式且該環境光強度大於一低門檻值,則選擇該穿透模式V-T曲線。The driving method of claim 2, wherein in the step of selecting one of the VT curves, if the display mode is the penetration mode and the ambient light intensity is greater than a low threshold, then the wearing is selected. Through mode VT curve. 如申請專利範圍第2項所述之驅動方法,其中該穿透模式V-T曲線中一低灰階所對應之伽馬電壓大於該反射模式V-T曲線中該低灰階所對應之伽馬電壓。The driving method of claim 2, wherein a gamma voltage corresponding to a low gray level in the penetration mode V-T curve is greater than a gamma voltage corresponding to the low gray level in the reflection mode V-T curve. 如申請專利範圍第1項所述之驅動方法,其中各該V-T曲線係由包含多個伽馬電壓之一伽馬電壓組所產生之。The driving method of claim 1, wherein each of the V-T curves is generated by a gamma voltage group including a plurality of gamma voltages. 如申請專利範圍第6項所述之驅動方法,其中該伽馬電壓組係由一電阻串所產生之。The driving method of claim 6, wherein the gamma voltage group is generated by a resistor string. 如申請專利範圍第6項所述之驅動方法,其中該伽馬電壓組係由一可程式化伽馬電壓產生器所產生之。The driving method of claim 6, wherein the gamma voltage group is generated by a programmable gamma voltage generator. 一種穿透反射式顯示裝置,包括:一顯示面板,用於顯示一影像;一環境光偵測器,耦接該顯示面板以偵測該顯示裝置之一環境光強度,並依據該環境光強度來決定該顯示裝置之一顯示模式,其中該顯示模式為一穿透模式或一反射模式;一背光模組,當該顯示模式為該穿透模式時,提供一背光;一時序控制器,耦接該環境光偵測器,當該顯示模式為該反射模式時,該時序控制器選擇多個電壓至透光度(V-T)曲線的一預設V-T曲線,當該顯示模式為該穿透模式且該環境光強度高於一門檻值時,該時序控制器選擇該預設VT曲線以外之其他V-T曲線;以及 一伽馬電壓產生器,耦接該時序控制器,且受控於該時序控制器以依據所選擇之該V-T曲線來產生多個伽馬電壓。A transflective display device includes: a display panel for displaying an image; an ambient light detector coupled to the display panel to detect an ambient light intensity of the display device, and according to the ambient light intensity Determining a display mode of the display device, wherein the display mode is a penetration mode or a reflection mode; a backlight module, when the display mode is the penetration mode, providing a backlight; a timing controller, coupled Connected to the ambient light detector, when the display mode is the reflective mode, the timing controller selects a plurality of voltages to a preset VT curve of the transmittance (VT) curve, when the display mode is the penetration mode And when the ambient light intensity is higher than a threshold, the timing controller selects another VT curve other than the preset VT curve; A gamma voltage generator is coupled to the timing controller and controlled by the timing controller to generate a plurality of gamma voltages according to the selected V-T curve. 如申請專利範圍第9項所述之穿透反射式顯示裝置,其中該環境光偵測器包括:一光感測器,偵測該顯示裝置之該環境光強度以輸出一電子信號;以及一光控制器,耦接該光感測器,接收該電子信號並且轉換該電子信號轉換為具有數位形式之一偵測信號,其中該環境光控制器依據該偵測信號決定該顯示模式。The transflective display device of claim 9, wherein the ambient light detector comprises: a photo sensor that detects the ambient light intensity of the display device to output an electronic signal; and The light controller is coupled to the light sensor, receives the electronic signal, and converts the electronic signal into a detection signal having a digital form, wherein the ambient light controller determines the display mode according to the detection signal. 如申請專利範圍第9項所述之穿透反射式顯示裝置,其中該些V-T曲線包括一反射模式V-T曲線以及一穿透模式V-T曲線。The transflective display device of claim 9, wherein the V-T curves comprise a reflection mode V-T curve and a penetration mode V-T curve. 如申請專利範圍第11項所述之穿透反射式顯示裝置,其中若該顯示模式為該穿透模式且存在部分環境光,則該時序控制器選擇該穿透模式V-T曲線。The transflective display device of claim 11, wherein the timing controller selects the penetration mode V-T curve if the display mode is the penetration mode and partial ambient light is present. 如申請專利範圍第11項所述之穿透反射式顯示裝置,其中若該顯示模式為該穿透模式且該環境光強度大於一低門檻值,則該時序控制器選擇該穿透模式V-T曲線。The transflective display device of claim 11, wherein if the display mode is the penetration mode and the ambient light intensity is greater than a low threshold, the timing controller selects the penetration mode VT curve. . 如申請專利範圍第11項所述之穿透反射式顯示裝置,其中該穿透模式V-T曲線中一低灰階所對應之伽馬電壓大於該反射模式V-T曲線中該低灰階所對應之伽馬電壓。The transflective display device of claim 11, wherein a gamma voltage corresponding to a low gray level in the penetration mode VT curve is greater than a gamma corresponding to the low gray level in the reflection mode VT curve. Horse voltage.
TW97149069A 2008-12-16 2008-12-16 Transreflective display apparatus and driving method thereof TWI397049B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97149069A TWI397049B (en) 2008-12-16 2008-12-16 Transreflective display apparatus and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97149069A TWI397049B (en) 2008-12-16 2008-12-16 Transreflective display apparatus and driving method thereof

Publications (2)

Publication Number Publication Date
TW201025248A TW201025248A (en) 2010-07-01
TWI397049B true TWI397049B (en) 2013-05-21

Family

ID=44852536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97149069A TWI397049B (en) 2008-12-16 2008-12-16 Transreflective display apparatus and driving method thereof

Country Status (1)

Country Link
TW (1) TWI397049B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030132906A1 (en) * 2002-01-16 2003-07-17 Shigeki Tanaka Gray scale display reference voltage generating circuit and liquid crystal display device using the same
TW200521524A (en) * 2003-09-23 2005-07-01 Koninkl Philips Electronics Nv Transflector and transflective display
TW200606809A (en) * 2004-08-09 2006-02-16 Vastview Tech Inc Driving system of display panel
TW200619746A (en) * 2004-08-27 2006-06-16 Nano Loa Inc Transflective liquid crystal device
TW200725034A (en) * 2005-12-23 2007-07-01 Innolux Display Corp Transflective liquid crystal display device and gamma changing method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030132906A1 (en) * 2002-01-16 2003-07-17 Shigeki Tanaka Gray scale display reference voltage generating circuit and liquid crystal display device using the same
TW200521524A (en) * 2003-09-23 2005-07-01 Koninkl Philips Electronics Nv Transflector and transflective display
TW200606809A (en) * 2004-08-09 2006-02-16 Vastview Tech Inc Driving system of display panel
TW200619746A (en) * 2004-08-27 2006-06-16 Nano Loa Inc Transflective liquid crystal device
TW200725034A (en) * 2005-12-23 2007-07-01 Innolux Display Corp Transflective liquid crystal display device and gamma changing method for the same

Also Published As

Publication number Publication date
TW201025248A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US8199074B2 (en) System and method for reducing mura defects
US8077136B2 (en) Electro-optical device and electronic apparatus
TWI275057B (en) Photo detection circuit, method of controlling the same, electro-optical panel, electro-optical device, and electronic apparatus
JP4863513B2 (en) Liquid crystal display device and driving method thereof
KR101362169B1 (en) Gamma correction system and correction method the same
JP5010949B2 (en) Organic EL display device
US8643574B2 (en) Imaging device
JP2005148735A (en) Display device
US8237643B2 (en) Transreflective display apparatus and driving method thereof
JP2009151272A (en) Light sensor test unit, method of testing light sensor, and display device
US7805272B2 (en) Sensing circuit, optical detection circuit, display device, and electronic apparatus
US20110001728A1 (en) Pointing device and display device using the same
KR100882696B1 (en) Optical Sensor for detecting Peripheral Light and Liquid Crystal Display Device Using the Same
US10636365B2 (en) Device and method for image correction
JP2009002661A5 (en)
JP2008233379A (en) Liquid crystal display device
KR20080057929A (en) Optical sensor for detecting peripheral light and liquid crystal display device using the same
US20100013850A1 (en) Liquid crystal display device
JP2009058342A (en) Sensing circuit, photodetection circuit, electro-optical device and electronic device
JP2007164160A (en) Systems for controlling brightness of displayed image
TWI397049B (en) Transreflective display apparatus and driving method thereof
JP2008064828A (en) Liquid crystal device and electronic apparatus
KR100902229B1 (en) Optical Sensor for detecting Peripheral Light and Liquid Crystal Display Device Using the Same
JP2010134179A (en) Display device
KR101351888B1 (en) Liquid crystal display device and driving method thereof