TWI392848B - Method for identifying the orientation and navigation apparatus using the same - Google Patents

Method for identifying the orientation and navigation apparatus using the same Download PDF

Info

Publication number
TWI392848B
TWI392848B TW97119009A TW97119009A TWI392848B TW I392848 B TWI392848 B TW I392848B TW 97119009 A TW97119009 A TW 97119009A TW 97119009 A TW97119009 A TW 97119009A TW I392848 B TWI392848 B TW I392848B
Authority
TW
Taiwan
Prior art keywords
accelerometer
navigation device
axis
acceleration
angular velocity
Prior art date
Application number
TW97119009A
Other languages
Chinese (zh)
Other versions
TW200949200A (en
Inventor
Shyang Jye Chang
Yung Yu Chen
Shih Ching Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97119009A priority Critical patent/TWI392848B/en
Publication of TW200949200A publication Critical patent/TW200949200A/en
Application granted granted Critical
Publication of TWI392848B publication Critical patent/TWI392848B/en

Links

Landscapes

  • Navigation (AREA)

Description

設置方位辨識方法及其導航裝置Position recognition method and navigation device thereof

本發明係有關一種電子裝置設置之方位判斷技術,尤其是指一種辨識導航裝置設置之方位辨識方法以及使用該方法之導航裝置。The present invention relates to an orientation determination technique for setting an electronic device, and more particularly to an orientation recognition method for identifying a navigation device setting and a navigation device using the same.

如圖一所示,該圖係為習用之全球定位(global position system,GPS)與慣性導航(inertia navigation system)系統示意圖。該在該習用技術中,該全球定位與慣性導航系統10係固定設置於一交通工具(例如:車輛)內之儀表板11上。由於圖一之系統係固定安裝於車輛內,因此對於使用者在空間的利用上比較沒有機動性。近年來,隨著慣性原件價格的平民化,未來全球定位與慣性導航系統已經逐漸普及在PDA或手機之中。As shown in FIG. 1, the figure is a schematic diagram of a conventional global position system (GPS) and inertial navigation system. In the conventional technique, the global positioning and inertial navigation system 10 is fixedly disposed on the instrument panel 11 in a vehicle (for example, a vehicle). Since the system of Fig. 1 is fixedly mounted in the vehicle, there is no maneuverability for the user to utilize the space. In recent years, with the civilianization of the price of inertial originals, the future global positioning and inertial navigation system has gradually spread in PDAs or mobile phones.

由於PDA或手機等可攜式電子產品的體積小攜帶方便,因此使用者可以隨著自己喜好安裝於車內的任意位置。然而在縱向與橫向的使用上需要克服幾個問題,第一為判斷旋轉方位,以調整影像顯示方向。第二為當全球定位與慣性導航系統之使用方向改變時,全球定位與慣性導航系統中的慣性導航模組中的加速度及角速度偵測軸向也與原來的大地參考座標產生了一座標轉換關係,此時若不作任何座標轉換修正,慣性導航模組將無法正常工作。Since portable electronic products such as PDAs or mobile phones are small in size and easy to carry, users can install them anywhere in the car as they like. However, there are several problems to be overcome in the use of the vertical and horizontal directions. The first is to determine the rotational orientation to adjust the image display direction. The second is that when the direction of use of global positioning and inertial navigation system changes, the acceleration and angular velocity detection axes in the inertial navigation module in the global positioning and inertial navigation system also have a standard conversion relationship with the original geodetic reference coordinates. At this time, if no coordinate conversion correction is made, the inertial navigation module will not work properly.

判斷系統工作方位之技術,目前有被應用在手持式遊 戲機上,例如:美國專利US.Pat.NO.6,908,388專利中描述一個3D空間的遊戲環境,包含一個外殼可供使用者抓取,一個傾斜感測器在外殼之內,觀測點座標判斷機制跟隨著傾斜感測器的輸出訊號而判斷觀測座標。一個遊戲影像產生處理機制,根據所判定的座標來產生遊戲影像。而該遊戲系統以最小的處理負擔,可以提供一個使用者感覺3D遊戲空間隨遊戲裝置的傾斜而變化。另外在美國專利US.Pat.No.7,158,118專利中也描述一包括雙軸陀螺儀及加速度計以及處理單元之3D指示裝置,其係利用第一參考面(例如3D指標裝置之本體)感測到之運動資訊轉換到第二參考面(例如,使用者參考面),主要是用來消除了手持此3D指標裝置之角度傾斜效應。簡單來說,即是一種使用慣性元件姿態偵測再利用座標轉換去消除傾斜的影響。然而在前述之習用技術中,對於如何克服前述之兩個問題,並未有具體而有效之作法。The technology for judging the working position of the system is currently applied to handheld games. A 3D space game environment is described in the US Patent No. 6,908,388, which includes a housing for the user to grab, a tilt sensor within the housing, and an observation point coordinate determination mechanism. The observation coordinates are judged along with the output signal of the tilt sensor. A game image generation processing mechanism generates a game image based on the determined coordinates. The game system can provide a user with a feeling that the 3D game space varies with the tilt of the game device with a minimum processing load. A 3D indicating device including a dual-axis gyroscope and an accelerometer and a processing unit is also described in the U.S. Patent No. 7,158,118, which is sensed by a first reference surface (for example, a body of a 3D indicator device). The motion information is converted to a second reference plane (eg, a user reference plane), primarily to eliminate the angular tilt effect of the handheld 3D indicator device. Simply put, it is an inertial component attitude detection that reuses coordinate transformation to eliminate the effects of tilt. However, in the aforementioned conventional techniques, there is no specific and effective method for how to overcome the above two problems.

本發明提供一種設置方位辨識方法,其係應用在可攜式導航裝置中。該方法主要是根據加速度計在第一方向及第二方向量測到的加速度值來判定該導航裝置之設置方位為縱向或橫向,並進行相對應之座標轉換,使導航裝置不受工作方位影響維持正常之工作。The invention provides a method for setting azimuth identification, which is applied in a portable navigation device. The method mainly determines that the positioning position of the navigation device is vertical or horizontal according to the acceleration value measured by the accelerometer in the first direction and the second direction, and performs corresponding coordinate conversion, so that the navigation device is not affected by the working orientation. Maintain normal work.

本發明更提供一種導航裝置,其係利用前述之設置方位辨識方法來辨識該導航裝置之設置方位以及偵測導航裝置之所在座標位置以提供使用者位置以及交通資訊。The present invention further provides a navigation device that uses the above-described set orientation recognition method to identify the orientation of the navigation device and detect the coordinate position of the navigation device to provide user location and traffic information.

在一實施例中,本發明提供一種設置方位辨識方法,其係包括有下列步驟:提供一導航裝置,其係具有一轉向感測模組以及感測一第一方向加速度之第一加速度計以及感測一第二方向加速度之一第二加速度計;擷取該導航裝置之第一加速度計以及該第二加速度計所輸出之加速度值;以及根據該第一加速度計以及該第二加速度計所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置之設置方位,其中該辨識資訊係為當導航裝置被轉向到特定設置方位時該第一加速度計與該第二加速度計理論上應該感測到的加速度值。In one embodiment, the present invention provides a method for setting an orientation, comprising the steps of: providing a navigation device having a steering sensing module and a first accelerometer for sensing a first directional acceleration; Sensing a second accelerometer of a second direction acceleration; capturing a first accelerometer of the navigation device and an acceleration value output by the second accelerometer; and according to the first accelerometer and the second accelerometer The output acceleration value is compared with an identification information to determine a set orientation of the navigation device, wherein the identification information is that the first accelerometer and the second accelerometer should theoretically feel when the navigation device is turned to a specific set orientation. The measured acceleration value.

在另一實施例中,本發明更提供一種導航裝置,包括:一慣性導航單元,其係具有一第一加速度計、一第二加速度計、一第三加速度計以及一角速度感測模組;一衛星訊號接收單元,以接收一衛星訊號;以及一訊號處理單元,其係與該慣性導航單元以及該衛星訊號接收單元相耦接,該訊號處理單元係可根據該第一加速度計以及該第二加速度計所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置之設置方位以及根據該慣性導航單元以及該衛星訊號輸出一座標位置,其中該辨識資訊係為當導航裝置被轉向到特定設置方位時該第一加速度計與該第二加速度計理論上應該感測到的加速度值。In another embodiment, the present invention further provides a navigation device, comprising: an inertial navigation unit having a first accelerometer, a second accelerometer, a third accelerometer, and an angular velocity sensing module; a satellite signal receiving unit for receiving a satellite signal; and a signal processing unit coupled to the inertial navigation unit and the satellite signal receiving unit, the signal processing unit being responsive to the first accelerometer and the first The acceleration value output by the two accelerometers is compared with an identification information to determine a set orientation of the navigation device and output a target position according to the inertial navigation unit and the satellite signal, wherein the identification information is when the navigation device is turned to a specific The first accelerometer and the second accelerometer should theoretically sense the acceleration value when the orientation is set.

在另一實施例中,本發明更提供一種導航裝置,其係可設置於一交通工具內,並根據使用需要調整其設置方位,該導航裝置包括:一慣性導航單元,其係具有一第一加速度計、一第二加速度計、一第三加速度計以及一角速 度感測模組;一衛星訊號接收單元,以接收一衛星訊號;一訊號處理單元,其係與該慣性導航單元以及該衛星訊號接收單元相耦接,該訊號處理單元係可根據該第一加速度計以及該第二加速度計所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置之設置方位以及根據該慣性導航單元以及該衛星訊號輸出一座標位置,其中該辨識資訊係為當導航裝置被轉向到特定設置方位時該第一加速度計與該第二加速度計理論上應該感測到的加速度值;一資料庫,其係與該訊號處理單元相耦接,該資料庫內係建立有地圖與道路交通資訊;以及一顯示裝置,其係與該訊號處理單元相連接,該顯示裝置係顯示該資料庫所提供之資訊。In another embodiment, the present invention further provides a navigation device that can be disposed in a vehicle and adjusts its orientation according to the needs of use. The navigation device includes: an inertial navigation unit having a first Accelerometer, a second accelerometer, a third accelerometer, and an angular velocity a sensing module; a satellite signal receiving unit for receiving a satellite signal; a signal processing unit coupled to the inertial navigation unit and the satellite signal receiving unit, the signal processing unit being The accelerometer and the acceleration value output by the second accelerometer are compared with an identification information to determine a set orientation of the navigation device and output a landmark position according to the inertial navigation unit and the satellite signal, wherein the identification information is for navigation The first accelerometer and the second accelerometer should theoretically sense an acceleration value when the device is turned to a specific set orientation; a database coupled to the signal processing unit, the database being built There is map and road traffic information; and a display device is connected to the signal processing unit, and the display device displays information provided by the database.

為使 貴審查委員能對本發明之特徵、目的及功能有更進一步的認知與瞭解,下文特將本發明之裝置的相關細部結構以及設計的理念原由進行說明,以使得 審查委員可以了解本發明之特點,詳細說明陳述如下:In order to enable the reviewing committee to have a further understanding and understanding of the features, objects and functions of the present invention, the related detailed structure of the device of the present invention and the concept of the design are explained below so that the reviewing committee can understand the present invention. Features, detailed descriptions are as follows:

請參閱圖二所示,該圖係為本發明之導航裝置實施例方塊示意圖。該導航裝置2,其係可設置於一交通工具內(例如:輪型車輛)內,該導航裝置2主要包括有一慣性導航單元20(inertia navigation system,INS)、一衛星訊號接收單元21(global position system,GPS)以及一訊號處理單元22。該慣性導航單元20,其係可量測空間中三軸之加速度狀態以及該導航裝置的轉動狀態。在本實施 例中,該慣性導航單元20具有一第一加速度計201,其係可偵測第一軸(X軸)之加速度、一第二加速度計202,其係可偵測第三軸(Z軸)之加速度、一第三加速度計203,其係可偵測第二軸(Y軸)之加速度以及一角速度感測模組204,其係可以感測第一軸(X軸)之轉速以及第三軸(Z軸)之轉速。Referring to FIG. 2, the figure is a block diagram of an embodiment of a navigation device of the present invention. The navigation device 2 can be disposed in a vehicle (for example, a wheeled vehicle). The navigation device 2 mainly includes an inertia navigation system (INS) and a satellite signal receiving unit 21 (global). Position system, GPS) and a signal processing unit 22. The inertial navigation unit 20 is capable of measuring the acceleration state of the three axes in the space and the rotation state of the navigation device. In this implementation In an example, the inertial navigation unit 20 has a first accelerometer 201 that detects acceleration of the first axis (X-axis) and a second accelerometer 202 that detects the third axis (Z-axis). Acceleration, a third accelerometer 203, which can detect the acceleration of the second axis (Y axis) and an angular velocity sensing module 204, which can sense the rotational speed of the first axis (X axis) and the third The speed of the shaft (Z axis).

雖然圖二中之實施例是利用三個加速度計201、202與203,但是由於現在半導體製程的進步,亦可選擇整合三個加速度計以感測三軸之運動狀態的單一加速度計來實施。這是熟悉此項技術之人根據本發明所揭露之技術,可以輕易置換的。其中該第二軸(Y軸)之加速度係代表交通工具之前進或後退之加速度,而第一軸轉速大小係可代表交通工具傾角之角速度大小,第三軸(Z軸)轉速大小則可代表該交通工具左右轉向之角速度大小。Although the embodiment of FIG. 2 utilizes three accelerometers 201, 202, and 203, due to advances in semiconductor manufacturing, it is also possible to implement a single accelerometer that integrates three accelerometers to sense the motion state of the three axes. This is a technique that is familiar to those skilled in the art and can be readily substituted in accordance with the teachings of the present invention. The acceleration of the second axis (Y axis) represents the acceleration of the vehicle forward or backward, and the first axis rotation speed can represent the angular velocity of the vehicle inclination, and the third axis (Z axis) rotation speed can represent The angular velocity of the left and right steering of the vehicle.

如圖三A所示,該圖係為本發明角速度感測模組第一實施例方塊示意圖。在本實施例中,該角速度感測模組204係由兩個陀螺儀感測器2041與2042所構成以分別感測X軸以及Z軸之轉速。利用陀螺儀感測器感測角速度之技術係屬於習用技術,在此不做贅述。如圖三B所示,該圖係為本發明角速度感測模組第二實施例方塊示意圖。在本實施例中,該角速度感測模組204具有一陀螺儀感測器2043以感測X軸之轉速。至於Z軸之轉速係由一差分模組2044所負責,其係具有一對加速度計2051與2052,且相距一距離。藉由該對加速度計2051與2052感測同一軸向之一加速度變化,利用差分得到第一軸之轉動狀態。如圖四所 示,該圖係為本發明之角速度感測說明示意圖。在圖示中,當加速度計2051以及加速度計2052所感測之第一軸(X軸)加速度訊號積分便可得到位移(S1 ,S2 ),然後推算S1 ,S2 之差值,由於加速度計2051以及加速度計2052相差一距離h,所以可藉由計算得到該第三軸(Z軸)之角度θ變化。As shown in FIG. 3A, the figure is a block diagram of a first embodiment of the angular velocity sensing module of the present invention. In the present embodiment, the angular velocity sensing module 204 is configured by two gyro sensors 2041 and 2042 to sense the rotational speeds of the X-axis and the Z-axis, respectively. The technique of sensing angular velocity using a gyro sensor is a conventional technique and will not be described herein. As shown in FIG. 3B, the figure is a block diagram of a second embodiment of the angular velocity sensing module of the present invention. In this embodiment, the angular velocity sensing module 204 has a gyro sensor 2043 to sense the rotational speed of the X-axis. The rotational speed of the Z-axis is responsible for a differential module 2044 having a pair of accelerometers 2051 and 2052 at a distance. The pair of accelerometers 2051 and 2052 sense one acceleration change in the same axial direction, and the rotation state of the first axis is obtained by using the difference. As shown in FIG. 4, the figure is a schematic diagram of the angular velocity sensing of the present invention. In the figure, when the accelerometer 2051 and the accelerometer 2052 sense the first axis (X-axis) acceleration signal integral, the displacement (S 1 , S 2 ) can be obtained, and then the difference between S 1 and S 2 is estimated, because Since the accelerometer 2051 and the accelerometer 2052 are separated by a distance h, the angle θ of the third axis (Z-axis) can be calculated by calculation.

請參閱圖三C所示,該圖係為本發明之角速度感測模組第三實施例示意圖。在本實施例中,該角速度感測模組204係由兩個差分模組2045與2046所構成,每一個差分模組2045或2046具有一對加速度計2053與2054以及2055與2056,每一對加速度計2053與2054或2055與2056相距一距離。其中差分模組2045係可藉由感測同一軸向(Z軸)之加速度變化,以利用差分算出第一軸(X軸)的轉速,而另一差分模組2046係可藉由感測同一軸向(X軸)之加速度變化,以利用差分算出則可量測第三軸(Z軸)之轉速。Please refer to FIG. 3C, which is a schematic diagram of a third embodiment of the angular velocity sensing module of the present invention. In this embodiment, the angular velocity sensing module 204 is composed of two differential modules 2045 and 2046. Each differential module 2045 or 2046 has a pair of accelerometers 2053 and 2054 and 2055 and 2056, each pair. The accelerometers 2053 are separated from the 2054 or 2055 by 2056 by a distance. The differential module 2045 can calculate the rotational speed of the first axis (X axis) by using the difference by sensing the acceleration change of the same axial direction (Z axis), and the other differential module 2046 can sense the same by sensing The acceleration of the axial direction (X-axis) is measured to calculate the rotational speed of the third axis (Z-axis) by using the difference calculation.

如圖三D所示,該圖係為本發明之角速度感測模組第四實施例示意圖。在本實施例中,該角速度感測模組204具有一第一輔助加速度計2047以及一第二輔助加速度計2048。請參閱圖三D與圖二所示,其中,該第一輔助加速度計2047,其係與該第一加速度計201相距一距離,藉由該第一加速度計201以及該第一輔助加速度計2047所感測之一加速度變化,利用差分以得到第三軸(Z軸)之轉動狀態。該第二輔助加速度計2048,其係與該第二加速度計202相距一距離,藉由該第二加速度計202以及該第二輔助加速度計2048感測之一加速度變化,利用差分以得到第一軸(X軸)之轉動狀態。As shown in FIG. 3D, the figure is a schematic diagram of a fourth embodiment of the angular velocity sensing module of the present invention. In the embodiment, the angular velocity sensing module 204 has a first auxiliary accelerometer 2047 and a second auxiliary accelerometer 2048. Referring to FIG. 3D and FIG. 2 , the first auxiliary accelerometer 2047 is at a distance from the first accelerometer 201 , and the first accelerometer 201 and the first auxiliary accelerometer 2047 . One of the acceleration changes is sensed, and the difference is used to obtain the rotation state of the third axis (Z axis). The second auxiliary accelerometer 2048 is at a distance from the second accelerometer 202. The second accelerometer 202 and the second auxiliary accelerometer 2048 sense one acceleration change, and use the difference to obtain the first The rotation state of the shaft (X axis).

再回到圖二所示,該衛星訊號接收單元21,以接收一衛星訊號。該衛星訊號接收單元21係屬全球定位系統之習用技術元件,在此不作贅述。該訊號處理單元22,其係與該慣性導航單元20以及該衛星訊號接收單元21相耦接,該訊號處理單元22係可根據該第一加速度計201以及該第二加速度計202所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置2之設置方位以及根據該慣性導航單元20以及該衛星訊號輸出一座標位置。Returning to Figure 2, the satellite signal receiving unit 21 receives a satellite signal. The satellite signal receiving unit 21 is a conventional technical component of the global positioning system, and is not described herein. The signal processing unit 22 is coupled to the inertial navigation unit 20 and the satellite signal receiving unit 21, and the signal processing unit 22 is capable of outputting acceleration according to the first accelerometer 201 and the second accelerometer 202. The value is compared with an identification information to determine the set orientation of the navigation device 2 and to output a target position based on the inertial navigation unit 20 and the satellite signal.

接續來說明該訊號處理單元之運作方法,如圖五所示,該圖係為本發明之設置方位辨識方法流程示意圖。該方法主要包括有下列步驟:首先進行步驟40,擷取第一加速度計以及第二加速度計所輸出之加速度值。第一加速度計可以感測X軸方向之加速度,第二加速度計可以感測Z軸方向之加速度。再回到圖五所示,接著進行步驟41,根據該第一加速度計以及該第二加速度計所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置之設置方位。如圖二所示,該辨識資訊係可儲存於一記憶單元23中,該記憶單元23係與該訊號處理單元22相耦接。一般而言,該記憶單元23係可選擇為習用之記憶體元件,其係屬於習用技術在此不作贅述。Next, the operation method of the signal processing unit will be described. As shown in FIG. 5, the figure is a schematic flow chart of the method for setting the orientation of the present invention. The method mainly includes the following steps: First, step 40 is performed to extract the acceleration values output by the first accelerometer and the second accelerometer. The first accelerometer can sense the acceleration in the X-axis direction, and the second accelerometer can sense the acceleration in the Z-axis direction. Returning to FIG. 5, step 41 is further performed, and the acceleration value output by the first accelerometer and the second accelerometer is compared with an identification information to determine a set orientation of the navigation device. As shown in FIG. 2, the identification information can be stored in a memory unit 23, and the memory unit 23 is coupled to the signal processing unit 22. In general, the memory unit 23 can be selected as a conventional memory component, which is not a part of the prior art.

由於導航裝置2之擺設方位會使得第一加速度計以及第二加速度計所感測到的加速度產生變化。例如圖六A所示,該圖係為導航裝置2直立狀態示意圖。圖二之方塊係設置於圖六A中之導航裝置之殼體26內,在圖六A中僅以標號來示明各個加速度計。在圖六A之狀態下,由於重力 G的作用,因此該第二加速度計202可以感測到重力加速度。反之,如圖六B所示,該圖係為導航裝置橫向設置示意圖。當導航裝置經由圖六A經由順時針翻轉至圖六B的狀態時,由於第一加速度計201與第二加速度計202之方位改變,所以此時感測到重力加速度的為第一加速度計201,其感測到的重力加速度值為正值。另外,當導航裝置經由圖六A經由逆時針翻轉至圖六C的狀態時,由於第一加速度計201與第二加速度計202之方位改變,所以此時感測到重力加速度的為第一加速度計201,其感測到的重力加速度值為負值。需強調的是,雖然前述以重力加速度為說明實施例,但這是對於車輛在平坦道路上行駛而言的情況下(亦即車輛傾角為零度)。如果當車輛有具有傾角時,例如:上下坡或者是上下交流道時,則所感測到的加速度值應該為重力加速度的三角函數關係值。這是熟悉此項技術之人,根據本發明所揭露之技術可以瞭解的。Due to the orientation of the navigation device 2, the acceleration sensed by the first accelerometer and the second accelerometer changes. For example, as shown in FIG. 6A, the figure is a schematic diagram of the navigation device 2 in an upright state. The block of Fig. 2 is disposed within the housing 26 of the navigation device of Fig. 6A, and the various accelerometers are only indicated by reference numerals in Fig. 6A. In the state of Figure 6A, due to gravity The action of G, therefore the second accelerometer 202 can sense the gravitational acceleration. On the contrary, as shown in FIG. 6B, the figure is a schematic diagram of the lateral arrangement of the navigation device. When the navigation device is turned clockwise to the state of FIG. 6B via FIG. 6A, since the orientations of the first accelerometer 201 and the second accelerometer 202 are changed, the first accelerometer 201 is sensed by the gravitational acceleration at this time. The sensed gravitational acceleration value is positive. In addition, when the navigation device is flipped to the state of FIG. 6C via the counterclockwise direction via FIG. 6A, since the orientations of the first accelerometer 201 and the second accelerometer 202 are changed, the first acceleration of the gravitational acceleration is sensed at this time. In 201, the sensed gravitational acceleration value is a negative value. It should be emphasized that although the foregoing gravity acceleration is used as an illustrative embodiment, this is the case when the vehicle is traveling on a flat road (ie, the vehicle inclination is zero degrees). If the vehicle has an inclination, for example, ups and downs or up and down, the sensed acceleration value should be a trigonometric relationship of gravity acceleration. This is familiar to those skilled in the art and will be apparent from the teachings of the present invention.

再回到圖五所示,由於導航裝置方位改變時第一加速度計與第二加速度計所偵測到的加速度值會有變化,因此在步驟41中可以將所偵測到的值與事先存在記憶單元中的辨識資訊進行比對,進而判斷出該導航裝置所處之設置方位狀態。該辨識資訊係為當導航裝置被轉向到特定設置方位時該第一加速度計與該第二加速度計理論上應該感測到的加速度值,例如:圖六A的直立狀態時,則感測到重力加速度為第二加速度計202,如果是圖六B之狀態時,則感測到重力加速度的為第一加速度計201,其感測到的重力加速度值為正值。如果是圖六C的狀態,則感測到重 力加速度的為第一加速度計201,其感測到的重力加速度值為負值。因此經由步驟41的比對之後,即可立即判斷出該導航裝置所設置之方位。最後,當判斷出導航裝置所設置之方位後(如圖六A、圖六B或者是圖六C的狀態),再進行步驟42,進行重新轉換慣性導航單元之座標軸方向。Returning to FIG. 5, since the acceleration values detected by the first accelerometer and the second accelerometer change when the orientation of the navigation device changes, the detected value and the pre-existence may be present in step 41. The identification information in the memory unit is compared, and then the set orientation state of the navigation device is determined. The identification information is an acceleration value that the first accelerometer and the second accelerometer should theoretically sense when the navigation device is turned to a specific set orientation, for example, when the erect state of FIG. 6A is sensed, The gravitational acceleration is the second accelerometer 202. If it is the state of FIG. 6B, the gravitational acceleration is sensed by the first accelerometer 201, and the sensed gravitational acceleration value is a positive value. If it is the state of Figure 6C, it is sensed to be heavy The force acceleration is the first accelerometer 201, and the sensed gravitational acceleration value is a negative value. Therefore, after the comparison of step 41, the orientation set by the navigation device can be immediately determined. Finally, after determining the orientation set by the navigation device (as shown in FIG. 6A, FIG. 6B or FIG. 6C), step 42 is performed to re-convert the coordinate axis direction of the inertial navigation unit.

當導航裝置不管是由直立設置轉成橫向設置或者是由橫向設置轉成直立設置時,其內之慣性導航單元所感測到的物理量對應到絕對座標系統時會產生改變。這是因為原先慣性導航單元中負責偵測交通工具轉向以及傾角的感測器會隨著導航裝置位置之改變而產生變化。例如在圖六A中,其第一軸x’係與絕對座標系90的第一軸X一致,而所測得關於第一軸的轉速ω x’代表車輛的傾角,另外,第三軸z’係與絕對座標系90的第三軸Z一致,而所得關於第三軸的轉速ω z’代表車輛的轉向。可是當轉至圖六B之狀態時,原先的第一軸x’則會與絕對座標系的第三軸Z一致,因此所偵測到的轉速ω x’則代表車輛的轉向而非原先的車輛傾角。同樣地,原先的第三軸z’則與絕對座標系90的第一軸X一致,所以所偵測到的轉速ω z’得代表車輛的傾角而非原先的轉向角度。When the navigation device is switched from the upright setting to the lateral setting or from the lateral setting to the upright setting, the physical quantity sensed by the inertial navigation unit therein changes when it corresponds to the absolute coordinate system. This is because the sensor in the original inertial navigation unit responsible for detecting the steering and tilt of the vehicle changes as the position of the navigation device changes. For example, in FIG. 6A, the first axis x' thereof coincides with the first axis X of the absolute coordinate system 90, and the measured rotational speed ω x' with respect to the first axis represents the inclination of the vehicle, and in addition, the third axis z The 'the line coincides with the third axis Z of the absolute coordinate system 90, and the resulting rotational speed ω z' with respect to the third axis represents the steering of the vehicle. However, when going to the state of Figure 6B, the original first axis x' will coincide with the third axis Z of the absolute coordinate system, so the detected rotational speed ω x ' represents the steering of the vehicle instead of the original Vehicle inclination. Similarly, the original third axis z' coincides with the first axis X of the absolute coordinate system 90, so the detected rotational speed ω z' represents the inclination of the vehicle rather than the original steering angle.

因為有上述的變化,因此為了維持導航裝置正常運作,因此需要進行步驟42,將進行重新轉換慣性導航單元之座標軸方向。亦即,系統會根據導航裝置的設置方位,而對感測到的轉動狀態給予不同的判斷。例如:以圖三A的角速度感測模組為例,當導航裝置處於圖六A之狀態時,陀螺儀感測器2041所偵測到的轉速係代表絕對座標系 90中的X軸轉速,也代表交通工具的傾角,而陀螺儀感測器2042所偵測到的轉速則代表絕對座標90的Z軸轉速,亦即代表交通工具的轉向。當藉由步驟41判斷出導航裝置的設置方位後,便透過步驟42進行座標轉換,也就是說,當導航裝置由直立改為橫向時,陀螺儀感測器2041所偵測到的訊號便會對應到絕對座標Z軸的轉速,而反映出車輛的轉向。同樣地,陀螺儀感測器2042所偵測到的訊號則對應到絕對座標X軸的轉速,反映出交通工具的傾角。由於同樣的陀螺儀感測器2041或2042所偵測到的轉速,會隨著導航裝置的設置方位改變而有不同的物理意義,因此步驟42的座標轉換極為重要。Because of the above changes, in order to maintain the normal operation of the navigation device, step 42 is required to re-convert the coordinate axis direction of the inertial navigation unit. That is, the system will give different judgments on the sensed rotation state according to the orientation of the navigation device. For example, taking the angular velocity sensing module of FIG. 3A as an example, when the navigation device is in the state of FIG. 6A, the rotational speed detected by the gyroscope sensor 2041 represents an absolute coordinate system. The X-axis rotational speed in 90 also represents the inclination of the vehicle, and the rotational speed detected by the gyro sensor 2042 represents the Z-axis rotational speed of the absolute coordinate 90, that is, represents the steering of the vehicle. After determining the set orientation of the navigation device by step 41, coordinate conversion is performed through step 42, that is, when the navigation device is changed from upright to horizontal, the signal detected by the gyro sensor 2041 will be Corresponds to the rotational speed of the Z coordinate of the absolute coordinate, reflecting the steering of the vehicle. Similarly, the signal detected by the gyro sensor 2042 corresponds to the rotational speed of the X coordinate of the absolute coordinate, reflecting the inclination of the vehicle. Since the rotational speed detected by the same gyro sensor 2041 or 2042 has different physical meanings as the orientation of the navigation device changes, the coordinate conversion of step 42 is extremely important.

請參閱圖二所示,該導航裝置更具有一地圖資料庫24以及一顯示裝置25。該地圖資料庫24係與該訊號處理單元22相耦接,該地圖資料庫24內係建立有地圖與道路交通資訊。該顯示裝置25,其係與該訊號處理單元22相連接,該顯示裝置25係顯示該資料庫22所提供之資訊。該顯示裝置25可以顯示出對應該座標位置的區域地圖,並於該地圖上顯示出標記,以裡使用者識別其所在的位置。另外,該訊號處理單元22根據該座標位置以及使用者輸入欲前往的目的地,規劃出行車路線,並於該顯示裝置25上顯示出來。Referring to FIG. 2, the navigation device further has a map database 24 and a display device 25. The map database 24 is coupled to the signal processing unit 22, and the map database 24 is provided with map and road traffic information. The display device 25 is connected to the signal processing unit 22, and the display device 25 displays the information provided by the database 22. The display device 25 can display an area map corresponding to the coordinate position, and display a mark on the map to identify the location where the user is located. In addition, the signal processing unit 22 plans a driving route based on the coordinate position and the destination to which the user inputs the destination, and displays the driving route on the display device 25.

惟以上所述者,僅為本發明之實施例,當不能以之限制本發明範圍。即大凡依本發明申請專利範圍所做之均等變化及修飾,仍將不失本發明之要義所在,亦不脫離本發明之精神和範圍,故都應視為本發明的進一步實施狀況。However, the above is only an embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention, and should be considered as a further embodiment of the present invention.

綜合上述,本發明提供之設置方位辨識方法及其導航裝置,可以判斷導航裝置之設置位置並且可以根據其設置之設置方位轉換座標系統以維持導航裝置的運作。本發明之特徵已經可以提高該產業之競爭力以及帶動週遭產業之發展,誠已符合發明專利法所規定申請發明所需具備之要件,故爰依法呈提發明專利之申請,謹請 貴審查委員允撥時間惠予審視,並賜准專利為禱。In summary, the method for setting azimuth and the navigation device provided by the present invention can determine the setting position of the navigation device and can convert the coordinate system according to the set orientation of the setting to maintain the operation of the navigation device. The features of the present invention can improve the competitiveness of the industry and promote the development of the surrounding industries. Cheng has already met the requirements for applying for inventions as stipulated by the invention patent law. Therefore, the application for invention patents is submitted according to law. Allow time to review and grant patents as prayers.

10‧‧‧全球定位與慣性導航系統10‧‧‧Global Positioning and Inertial Navigation System

11‧‧‧儀表板11‧‧‧Dashboard

2‧‧‧導航裝置2‧‧‧Navigation device

20‧‧‧慣性導航單元20‧‧‧Inertial navigation unit

201‧‧‧第一加速度計201‧‧‧First accelerometer

202‧‧‧第二加速度計202‧‧‧Second accelerometer

203‧‧‧第三加速度計203‧‧‧ Third accelerometer

204‧‧‧角速度感測模組204‧‧‧Angle speed sensing module

2041、2042、2043‧‧‧陀螺儀感測器2041, 2042, 2043 ‧ ‧ gyroscope sensor

2044、2045、2046‧‧‧差分模組2044, 2045, 2046‧‧‧Differential Module

2051~2056‧‧‧加速度計2051~2056‧‧‧Accelerometer

2047‧‧‧第一輔助加速度計2047‧‧‧First auxiliary accelerometer

2048‧‧‧第二輔助加速度計2048‧‧‧Second auxiliary accelerometer

21‧‧‧衛星訊號接收單元21‧‧‧ Satellite signal receiving unit

22‧‧‧訊號處理單元22‧‧‧Signal Processing Unit

23‧‧‧記憶單元23‧‧‧ memory unit

24‧‧‧地圖資料庫24‧‧‧Map Database

25‧‧‧顯示裝置25‧‧‧ display device

4‧‧‧設置方位辨識方法4‧‧‧Set azimuth identification method

40~42‧‧‧步驟40~42‧‧‧Steps

90‧‧‧絕對座標系90‧‧‧Absolute coordinate system

圖一係為習用之全球定位(global position system,GPS)與慣性導航(inertia navigation system)系統示意圖。Figure 1 is a schematic diagram of a conventional global position system (GPS) and inertial navigation system.

圖二係為本發明之導航裝置實施例方塊示意圖。2 is a block diagram showing an embodiment of a navigation device of the present invention.

圖三A係為本發明角速度感測模組第一實施例方塊示意圖。FIG. 3A is a block diagram showing the first embodiment of the angular velocity sensing module of the present invention.

圖三B係為本發明角速度感測模組第二實施例方塊示意圖。FIG. 3B is a block diagram showing a second embodiment of the angular velocity sensing module of the present invention.

圖三C係為本發明之角速度感測模組第三實施例示意圖。FIG. 3C is a schematic diagram of a third embodiment of the angular velocity sensing module of the present invention.

圖三D係為本發明之角速度感測模組第四實施例示意圖。FIG. 3D is a schematic diagram of a fourth embodiment of the angular velocity sensing module of the present invention.

圖四係為本發明之角速度感測說明示意圖。Figure 4 is a schematic diagram of the angular velocity sensing of the present invention.

圖五係為本發明之設置方位辨識方法流程示意圖。FIG. 5 is a schematic flow chart of the method for setting the orientation of the present invention.

圖六A係為導航裝置直立狀態示意圖。Figure 6A is a schematic diagram of the navigation device in an upright state.

圖六B與圖六C係為導航裝置橫向設置示意圖。Figure 6B and Figure 6C are schematic diagrams of the lateral arrangement of the navigation device.

2‧‧‧導航裝置2‧‧‧Navigation device

20‧‧‧慣性導航單元20‧‧‧Inertial navigation unit

201‧‧‧第一加速度計201‧‧‧First accelerometer

202‧‧‧第二加速度計202‧‧‧Second accelerometer

203‧‧‧第三加速度計203‧‧‧ Third accelerometer

204‧‧‧角速度感測模組204‧‧‧Angle speed sensing module

21‧‧‧衛星訊號接收單元21‧‧‧ Satellite signal receiving unit

22‧‧‧訊號處理單元22‧‧‧Signal Processing Unit

23‧‧‧記憶單元23‧‧‧ memory unit

24‧‧‧地圖資料庫24‧‧‧Map Database

25‧‧‧顯示裝置25‧‧‧ display device

Claims (19)

一種設置方位辨識方法,其係包括有下列步驟:提供一導航裝置,其係具有一轉向感測模組以及感測一第一方向加速度之第一加速度計以及感測一第二方向加速度之一第二加速度計;擷取該導航裝置之第一加速度計以及該第二加速度計所輸出之加速度值;以及根據該第一加速度計以及該第二加速度計所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置之設置方位,其中該辨識資訊係為當導航裝置被轉向到特定設置方位時該第一加速度計與該第二加速度計理論上應該感測到的加速度值。 A method for setting azimuth includes the following steps: providing a navigation device having a steering sensing module and a first accelerometer for sensing a first direction acceleration and sensing one of the second direction accelerations a second accelerometer; the first accelerometer of the navigation device and the acceleration value output by the second accelerometer; and the acceleration value outputted by the first accelerometer and the second accelerometer and an identification information Comparing to determine a set orientation of the navigation device, wherein the identification information is an acceleration value that the first accelerometer and the second accelerometer should theoretically sense when the navigation device is turned to a specific set orientation. 如申請專利範圍第1項所述之設置方位辨識方法,判斷該導航裝置之設置方位更包括有下列步驟:判斷該第一加速度計所感測到之加速度值是否為一方位加速度值,如果是的話則代表該導航裝置之設置方位為直向設置;以及判斷該第二加速度計所感測到之加速度值是否為一方位加速度值,如果是的話則代表該導航裝置之設置方位為橫向設置。 The method for determining the orientation of the navigation device according to claim 1, wherein determining the orientation of the navigation device further comprises the steps of: determining whether the acceleration value sensed by the first accelerometer is an azimuth acceleration value, and if so Then, the setting orientation of the navigation device is a straight orientation setting; and determining whether the acceleration value sensed by the second accelerometer is an azimuth acceleration value, and if so, representing that the setting orientation of the navigation device is a lateral setting. 如申請專利範圍第2項所述之設置方位辨識方法,其中該方位加速度值係為重力加速度與導航裝置傾角之函數。 The method for setting azimuth according to claim 2, wherein the azimuth acceleration value is a function of gravity acceleration and a tilt angle of the navigation device. 如申請專利範圍第1項所述之設置方位辨識方法,其係 更包括有根據該辨識結果轉換該轉向感測模組之感測座標軸向之一步驟。 The method for setting azimuth according to item 1 of the patent application scope is The method further includes the step of converting the sensing coordinate axis of the steering sensing module according to the identification result. 如申請專利範圍第1項所述之設置方位辨識方法,其中該辨識資訊係儲存於一記憶單元內。 The method for setting azimuth according to claim 1, wherein the identification information is stored in a memory unit. 一種導航裝置,包括:一慣性導航單元,其係具有一第一加速度計、一第二加速度計、一第三加速度計以及一角速度感測模組,該第一加速度計偵測第一軸之加速度、該第二加速度計偵測第三軸之加速度、該第三加速度計偵測第二軸之加速度;一衛星訊號接收單元,以接收一衛星訊號;以及一訊號處理單元,其係與該第一加速度計、該第二加速度計、該第三加速度計、該角速度感測模組以及該衛星訊號接收單元相耦接,該訊號處理單元係可根據該第一加速度計以及該第二加速度計所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置之設置方位以及根據該慣性導航單元以及該衛星訊號輸出一座標位置,其中該辨識資訊係為當導航裝置被轉向到特定設置方位時該第一加速度計與該第二加速度計應該感測到的加速度值。 A navigation device includes: an inertial navigation unit having a first accelerometer, a second accelerometer, a third accelerometer, and an angular velocity sensing module, wherein the first accelerometer detects the first axis Acceleration, the second accelerometer detects acceleration of the third axis, the third accelerometer detects acceleration of the second axis; a satellite signal receiving unit receives a satellite signal; and a signal processing unit is coupled thereto The first accelerometer, the second accelerometer, the third accelerometer, the angular velocity sensing module, and the satellite signal receiving unit are coupled to each other, and the signal processing unit is responsive to the first accelerometer and the second acceleration The acceleration value outputted by the meter is compared with an identification information to determine a set orientation of the navigation device and output a target position according to the inertial navigation unit and the satellite signal, wherein the identification information is when the navigation device is turned to a specific set orientation The first accelerometer and the second accelerometer should sense the acceleration value. 如申請專利範圍第6項所述之導航裝置,其中該角速度感測模組係為一陀螺儀感測模組,其係可輸出一第一軸之角速度以及一第三軸之角速度訊號。 The navigation device of claim 6, wherein the angular velocity sensing module is a gyroscope sensing module that outputs an angular velocity of the first axis and an angular velocity signal of the third axis. 如申請專利範圍第6項所述之導航裝置,其中該角速度 感測模組具有:一差分模組,其係具有一對加速度計,該對加速度計相距一距離,藉由該對加速度計感測之一加速度變化,利用差分得到第一軸之轉動狀態;以及一陀螺儀感測器,其係可感測第三軸之角速度。 The navigation device of claim 6, wherein the angular velocity The sensing module has: a differential module having a pair of accelerometers, the pair of accelerometers being separated by a distance, and the pair of accelerometers sense one of the acceleration changes, and the difference is used to obtain the rotation state of the first axis; And a gyroscope sensor that senses the angular velocity of the third axis. 如申請專利範圍第6項所述之導航裝置,其中該角速度感測模組具有:第一差分模組,其係具有一對加速度計,該對加速計間相距一距離,藉由該對加速度計感測之一加速度變化,利用差分以得到第一軸之轉動狀態;以及第二差分模組,其係具有一對加速度計,該對加速計間相距一距離,藉由該對加速度計感測之一加速度變化,利用差分以得到第三軸之轉動狀態。 The navigation device of claim 6, wherein the angular velocity sensing module has: a first differential module having a pair of accelerometers, the pair of accelerometers being separated by a distance, by the pair of accelerations Measuring one of the acceleration changes, using the difference to obtain the rotational state of the first axis; and the second differential module having a pair of accelerometers, the pair of accelerometers being separated by a distance, by the pair of accelerometers One of the acceleration changes is measured, and the difference is used to obtain the rotation state of the third axis. 如申請專利範圍第6項所述之導航裝置,其係更具有一記憶單元以儲存該辨識資訊。 The navigation device of claim 6, further comprising a memory unit for storing the identification information. 如申請專利範圍第6項所述之導航裝置,其中該角速度感測模組具有:第一輔助加速度計,其係與該第一加速度計相距一距離,藉由該第一加速度計以及該第一輔助加速度計所感測之一加速度變化,利用差分以得到第三軸之轉動狀態;以及第二輔助加速度計,其係與該第二加速度計相距一距離,藉由該第二加速度計以及該第二輔助加速度計感測之一加速度變化,利用差分以得到第一軸之轉 動狀態。 The navigation device of claim 6, wherein the angular velocity sensing module has: a first auxiliary accelerometer, which is at a distance from the first accelerometer, by the first accelerometer and the first An auxiliary accelerometer senses one of the acceleration changes, the difference is used to obtain a rotation state of the third axis; and the second auxiliary accelerometer is at a distance from the second accelerometer by the second accelerometer and the The second auxiliary accelerometer senses one of the acceleration changes, and uses the difference to obtain the first axis of rotation Dynamic state. 一種導航裝置,其係可設置於一交通工具內,並根據需要調整其設置方位,該導航裝置包括:一慣性導航單元,其係具有一第一加速度計、一第二加速度計、一第三加速度計以及一角速度感測模組,該第一加速度計偵測第一軸之加速度、該第二加速度計偵測第三軸之加速度、該第三加速度計偵測第二軸之加速度,該第二軸之加速度係為該交通工具之前進或後退之加速度;一衛星訊號接收單元,以接收一衛星訊號;一訊號處理單元,其係與該第一加速度計、該第二加速度計、該第三加速度計、該角速度感測模組以及該衛星訊號接收單元相耦接,該訊號處理單元係可根據該第一加速度計以及該第二加速度計所輸出之加速度值與一辨識資訊相比較以判斷該導航裝置之設置方位以及根據該慣性導航單元以及該衛星訊號輸出一座標位置,其中該辨識資訊係為當導航裝置被轉向到特定設置方位時該第一加速度計與該第二加速度計應該感測到的加速度值;一資料庫,其係與該訊號處理單元相耦接,該資料庫內係建立有地圖與道路交通資訊;以及一顯示裝置,其係與該訊號處理單元相連接,該顯示裝置係顯示該資料庫所提供之資訊。 A navigation device that can be disposed in a vehicle and adjusts its orientation according to needs. The navigation device includes: an inertial navigation unit having a first accelerometer, a second accelerometer, and a third An accelerometer and an angular velocity sensing module, wherein the first accelerometer detects acceleration of the first axis, the second accelerometer detects acceleration of the third axis, and the third accelerometer detects acceleration of the second axis, The acceleration of the second axis is the acceleration of the vehicle forward or backward; a satellite signal receiving unit receives a satellite signal; a signal processing unit is coupled to the first accelerometer, the second accelerometer, and the The third accelerometer, the angular velocity sensing module and the satellite signal receiving unit are coupled to each other, and the signal processing unit can compare the acceleration value output by the first accelerometer and the second accelerometer with an identification information. Determining a set orientation of the navigation device and outputting a target position according to the inertial navigation unit and the satellite signal, wherein the identification information is The acceleration value that the first accelerometer and the second accelerometer should sense when the navigation device is turned to a specific set orientation; a database coupled to the signal processing unit, the database is internally established Map and road traffic information; and a display device coupled to the signal processing unit, the display device displaying information provided by the database. 如申請專利範圍第12項所述之導航裝置,其中該角速 度感測模組係為一陀螺儀感測模組,其係可輸出一第一軸之角速度以及一第三軸之角速度訊號。 The navigation device of claim 12, wherein the angular velocity The degree sensing module is a gyroscope sensing module that outputs an angular velocity of the first axis and an angular velocity signal of the third axis. 如申請專利範圍第12項所述之導航裝置,其中該角速度感測模組具有:一差分模組,其係具有一對加速度計,該對加速度計係相距一距離,藉由該對加速度計感測之一加速度變化,利用差分得到第一軸之轉動狀態;以及一陀螺儀感測器,其係可感測第三軸之角速度。 The navigation device of claim 12, wherein the angular velocity sensing module comprises: a differential module having a pair of accelerometers, the pair of accelerometers being separated by a distance, by the pair of accelerometers Sensing one of the acceleration changes, using the difference to obtain the rotational state of the first axis; and a gyroscope sensor that senses the angular velocity of the third axis. 如申請專利範圍第12項所述之導航裝置,其中該角速度感測模組具有:第一差分模組,其係具有一對加速度計,該對加速計間相距一距離,藉由該對加速度計感測之一加速度變化,利用差分以得到第一軸之轉動狀態;以及第二差分模組,其係具有一對加速度計,該對加速計間相距一距離,藉由該對加速度計感測之一加速度變化,利用差分以得到第三軸之轉動狀態。 The navigation device of claim 12, wherein the angular velocity sensing module has: a first differential module having a pair of accelerometers, the pair of accelerometers being separated by a distance, by the pair of accelerations Measuring one of the acceleration changes, using the difference to obtain the rotational state of the first axis; and the second differential module having a pair of accelerometers, the pair of accelerometers being separated by a distance, by the pair of accelerometers One of the acceleration changes is measured, and the difference is used to obtain the rotation state of the third axis. 如申請專利範圍第12項所述之導航裝置,其係更具有一記憶單元以儲存該辨識資訊。 The navigation device of claim 12, further comprising a memory unit for storing the identification information. 如申請專利範圍第12項所述之導航裝置,其中該角速度感測模組具有:第一輔助加速度計,其係與該第一加速度計相距一距離,藉由該第一加速度計以及該第一輔助加速度計所感測之一加速度變化,利用差分以得到第三軸之轉動狀態;以及 第二輔助加速度計,其係與該第二加速度計相距一距離,藉由該第二加速度計以及該第二輔助加速度計感測之一加速度變化,利用差分以得到第一軸之轉動狀態。 The navigation device of claim 12, wherein the angular velocity sensing module has: a first auxiliary accelerometer, which is at a distance from the first accelerometer, wherein the first accelerometer and the first An auxiliary accelerometer senses one of the acceleration changes, and uses the difference to obtain the rotational state of the third axis; The second auxiliary accelerometer is at a distance from the second accelerometer, and the second accelerometer and the second auxiliary accelerometer sense one of the acceleration changes, and the difference is used to obtain the rotation state of the first axis. 如申請專利範圍第12項所述之導航裝置,其係可根據該座標位置於該顯示裝置上顯示一定位標記。 The navigation device of claim 12, wherein the positioning mark is displayed on the display device according to the coordinate position. 如申請專利範圍第12項所述之導航裝置,其中該訊號處理單元根據該座標位置,在該顯示裝置上顯示一行車路線。 The navigation device of claim 12, wherein the signal processing unit displays a one-way route on the display device according to the coordinate position.
TW97119009A 2008-05-23 2008-05-23 Method for identifying the orientation and navigation apparatus using the same TWI392848B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97119009A TWI392848B (en) 2008-05-23 2008-05-23 Method for identifying the orientation and navigation apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97119009A TWI392848B (en) 2008-05-23 2008-05-23 Method for identifying the orientation and navigation apparatus using the same

Publications (2)

Publication Number Publication Date
TW200949200A TW200949200A (en) 2009-12-01
TWI392848B true TWI392848B (en) 2013-04-11

Family

ID=44870849

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97119009A TWI392848B (en) 2008-05-23 2008-05-23 Method for identifying the orientation and navigation apparatus using the same

Country Status (1)

Country Link
TW (1) TWI392848B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8886449B2 (en) 2012-01-13 2014-11-11 Qualcomm Incorporated Calibrated hardware sensors for estimating real-world distances
US8650955B2 (en) * 2012-01-18 2014-02-18 The United States Of America As Represented By The Secretary Of The Navy Time domain switched gyroscope
TWI485421B (en) * 2012-12-17 2015-05-21 Ind Tech Res Inst Map matching device, system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW498169B (en) * 2000-11-29 2002-08-11 American Gnc Corp Interruption-free hand-held positioning method and system thereof
US20030216865A1 (en) * 2002-04-12 2003-11-20 Ensco, Inc. Inertial navigation system for mobile objects with constraints
EP0870174B1 (en) * 1995-12-28 2006-08-23 Magellan Dis Inc. Improved vehicle navigation system and method using gps velocities
TW200724865A (en) * 2005-12-30 2007-07-01 Destinator Technologies Inc Systems, methods and apparatus for continuous in-vehicle and pedestrian navigation
TWI287620B (en) * 2006-09-27 2007-10-01 Univ Nat Formosa Method for automobile angle measurement by a two-axis accelerometer and the apparatus thereof
TWI290214B (en) * 2006-04-04 2007-11-21 Mitac Int Corp Method of modified navigation information map with discriminated function and the apparatus thereof
US7352567B2 (en) * 2005-08-09 2008-04-01 Apple Inc. Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870174B1 (en) * 1995-12-28 2006-08-23 Magellan Dis Inc. Improved vehicle navigation system and method using gps velocities
TW498169B (en) * 2000-11-29 2002-08-11 American Gnc Corp Interruption-free hand-held positioning method and system thereof
US20030216865A1 (en) * 2002-04-12 2003-11-20 Ensco, Inc. Inertial navigation system for mobile objects with constraints
US7352567B2 (en) * 2005-08-09 2008-04-01 Apple Inc. Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations
TW200724865A (en) * 2005-12-30 2007-07-01 Destinator Technologies Inc Systems, methods and apparatus for continuous in-vehicle and pedestrian navigation
TWI290214B (en) * 2006-04-04 2007-11-21 Mitac Int Corp Method of modified navigation information map with discriminated function and the apparatus thereof
TWI287620B (en) * 2006-09-27 2007-10-01 Univ Nat Formosa Method for automobile angle measurement by a two-axis accelerometer and the apparatus thereof

Also Published As

Publication number Publication date
TW200949200A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
CN100565111C (en) Measure the equipment and the method for moving object speed
JP3848941B2 (en) Geomagnetic sensor attitude error compensation apparatus and method
US8200452B2 (en) Attitude-angle detecting apparatus and attitude-angle detecting method
CN101872260B (en) Remote interactive pen and handwriting detection method
CN102313822B (en) Biasing evaluation method, posture evaluation method, biasing estimating device and posture estimating device
JP7036080B2 (en) Inertial navigation system
CN103712622B (en) The gyroscopic drift estimation compensation rotated based on Inertial Measurement Unit and device
JP2007108326A (en) Mobile map display apparatus and its method
TWI391629B (en) Method for modifying navigation information and navigation apparatus using the same
KR102245884B1 (en) In-vehicle equipment, computing devices and programs
TWI392848B (en) Method for identifying the orientation and navigation apparatus using the same
JP2004125689A (en) Position calculation system for self-contained navigation
CN101598569B (en) Method for identifying setting location and navigation device thereof
WO2010030565A1 (en) Magnetic sensing device for navigation and detecting inclination
JP2011209162A (en) Navigation system
TWI405952B (en) Navigation method and electronic apparatus with navigation
JPH0942979A (en) On-vehicle navigation device
US7437242B2 (en) Navigation apparatus
JP5008200B2 (en) Portable terminal, program, and method for determining change of traveling direction using acceleration sensor and geomagnetic sensor
JP2005274186A (en) Acceleration calculation method of navigation device
CN115507793A (en) Distance measuring device
TWI484207B (en) Locating apparatus, locating method and computer program product thereof for a mobile device
US9791277B2 (en) Apparatus and method for measuring velocity of moving object in a navigation system
JP2011069633A (en) Portable device
JP3696586B2 (en) Attitude angle detector