TWI389471B - Method and apparatus for supporting joint detection in downlink utra tdd - Google Patents

Method and apparatus for supporting joint detection in downlink utra tdd Download PDF

Info

Publication number
TWI389471B
TWI389471B TW93134025A TW93134025A TWI389471B TW I389471 B TWI389471 B TW I389471B TW 93134025 A TW93134025 A TW 93134025A TW 93134025 A TW93134025 A TW 93134025A TW I389471 B TWI389471 B TW I389471B
Authority
TW
Taiwan
Prior art keywords
cai
time slot
user terminal
downlink
changed
Prior art date
Application number
TW93134025A
Other languages
Chinese (zh)
Other versions
TW200616469A (en
Inventor
Yueheng Li
Li Sun
Gang Wu
Original Assignee
St Ericsson Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Ericsson Sa filed Critical St Ericsson Sa
Priority to TW93134025A priority Critical patent/TWI389471B/en
Publication of TW200616469A publication Critical patent/TW200616469A/en
Application granted granted Critical
Publication of TWI389471B publication Critical patent/TWI389471B/en

Links

Description

在分時雙工分碼多向近接通信系統中用於支持下行鏈路聯合偵側的方法及裝置Method and device for supporting downlink joint detection side in time division duplex code division multi-directional proximity communication system

本發明係關於一種無線通信系統中的通信方法及裝置,尤其係關於一種在分時雙工分碼多向近接(TDD CDMA)(如分時同步分碼多向近接(TD-SCDMA))通信系統中用於支持下行鏈路聯合偵測的方法及裝置。The present invention relates to a communication method and apparatus in a wireless communication system, and more particularly to a time division duplex code division multiple direction proximity (TDD CDMA) (such as time division synchronous code division multi-directional proximity (TD-SCDMA)) communication. A method and apparatus for supporting downlink joint detection in a system.

在以TDD CDMA為基礎的無線通信系統中,主要存在著兩種小區內干擾:一種係由於不同的使用者同時共用同一頻段的頻寬,且不同使用者分配之不同碼之間由於多徑效應而產生的非正交性而產生多存取干擾(MAL: Multiple Access Interference);另一種係由於多徑傳播而引起同一使用者不同徑之間的符號間干擾(ISI: Inter-Symbol Interference)。In the TDD CDMA-based wireless communication system, there are mainly two types of intra-cell interference: one is because different users share the same frequency band at the same time, and different users allocate different codes due to multipath effects. The resulting non-orthogonality results in multiple access interference (MAL: Multiple Access Interference); the other is due to multipath propagation causing inter-symbol interference (ISI: Inter-Symbol Interference) between different paths of the same user.

為了有效地消除多存取干擾及符號間干擾,在傳統TDD CDMA通信系統中,引入了一種稱為聯合偵測(JD: joint detection)之技術。聯合偵測技術,通過充分利用使用者訊號之碼、通道衰落、訊號延遲等資訊,不僅可以提高小區中訊號傳送之品質、擴大TDD無線通信系統之系統容量,而且可以適用於自低晶片速率(LCR: Low Chip Rate,1.28兆晶片/秒)、高晶片速率(HCR: High Chip Rate, 3.84兆晶片/秒)直至3GPP(第三代合作夥伴項目)正在討論之更高晶片速率(7.68兆晶片/秒)的TDD系統,因而,聯合偵測技術正成為當今TDD CDMA系統關鍵技術之一。In order to effectively eliminate multi-access interference and inter-symbol interference, a technique called joint detection (JD) has been introduced in a conventional TDD CDMA communication system. Joint detection technology, by making full use of user signal code, channel fading, signal delay and other information, can not only improve the quality of signal transmission in the cell, expand the system capacity of the TDD wireless communication system, but also can be applied to the low chip rate ( LCR: Low Chip Rate, 1.28 Mb/s, High Chip Rate (HCR: 3.84 Mb/sec) until 3GPP (3rd Generation Partnership Project) is discussing a higher wafer rate (7.68 Mb) / sec) TDD system, therefore, joint detection technology is becoming one of the key technologies of today's TDD CDMA system.

由大唐、飛利浦、三星三家公司組成的聯合投資商T3G, 在其第一代3G移動產品中,已經將聯合偵測技術,諸如迫零分塊線性均衡器(ZF-BLE: zero forcing block linear equalizer)、最小均方誤差分塊線性均衡器(MMSE-BLE: minimum mean square error block linear equalizer),應用於TD-SCDMA行動電話之開發設計方案中。T3G, a co-investor of Datang, Philips and Samsung, In its first generation of 3G mobile products, joint detection technology, such as zero forcing block linear equalizer (ZF-BLE: zero forcing block linear equalizer), minimum mean square error block linear equalizer (MMSE-BLE) : minimum mean square error block linear equalizer), used in the development design of TD-SCDMA mobile phones.

然而,ZF-BLE及MMSE-BLE演算法達成需要一個前提條件,意即:需要瞭解所有處於激活狀態之使用者終端(UE: user equipment)的碼才可以執行此等兩種聯合偵測演算法。對於基地台而言,此應當不是問題,因為基地台負責資源分配,所以可方便地得知所有使用者的碼;但是,對於使用者終端而言,由於使用者終端僅知道自身之碼,而對共用於同一時隙中之其他使用者終端的碼一無所知,因此,對於在使用者終端中達成聯合偵測演算法,存在一定難度。However, the implementation of the ZF-BLE and MMSE-BLE algorithms requires a prerequisite, that is, the code of all user terminals (UE: user equipment) that needs to be active can perform these two joint detection algorithms. . For the base station, this should not be a problem, because the base station is responsible for resource allocation, so it is convenient to know the code of all users; however, for the user terminal, since the user terminal only knows its own code, There is no knowledge of the codes commonly used for other user terminals in the same time slot. Therefore, there is a certain difficulty in achieving a joint detection algorithm in the user terminal.

為了在使用者終端中達成聯合偵測,一種方案在於:在TD-SCDMA行動電話之接收器中增加一"活動碼偵測(active code detection)"模組,從而在單個使用者終端中即可恢復出其他使用者終端之碼資訊。此部分技術,可參見Kang Shao-li等人撰寫的標題為"TD-SCDMA系統下行鏈路活動程式碼偵測演算法之效能(Performance of active codes detection algorithms for the downlink of TD-SCDMA system)"、發表在IEEE Inter. Symposium on circuit and systems (ISCS)2002年第1卷第613-616頁上之內容及S. Kourist等人撰寫的標題為"3GPP-TDD終端技術需求(Technology requirements of the 3GPP-TDD terminal)"、發表在IEE 2000 3G行動通信技術國際會議(IEE 2000 Inter. conf. on 3G Mobile communication technologies)論文集第89-93頁上的內容。然而,此種採用活動碼偵測模組的方案在一定條件下效果不甚理想,尤其在當使用者終端處於低速移動且存在多徑衰落之情況下,可能會導致系統容量之嚴重損失。In order to achieve joint detection in the user terminal, one solution is to add an "active code detection" module to the receiver of the TD-SCDMA mobile phone, so that it can be in a single user terminal. Restore the code information of other user terminals. For this part of the technology, see the article titled "Performance of active codes detection algorithms for the downlink of TD-SCDMA system" by Kang Shao-li et al. Published in IEEE Inter. Symposium on circuit and systems (ISCS), Vol. 1, 2002, pp. 613-616, and by S. Kourist et al., entitled "3GPP-TDD Terminal Requirements (the Technology requirements of the 3GPP-TDD terminal)", published in the IEE 2000 Inter. conf. on 3G Mobile communication technologies, pages 89-93. However, this uses active code detection. The solution of the module is not ideal under certain conditions, especially when the user terminal is moving at a low speed and there is multipath fading, which may cause serious loss of system capacity.

另一可選方案在於:採用均衡單使用者偵測JD演算法,也稱作MMSE-BLE-SD演算法,該演算法的詳細內容可參見A. Klein撰寫的標題為"CDMA行動無線系統下行鏈路專用資料偵測演算法(Data detection algorithms specially designed for the downlink of CDMA mobile radio systems)"、發表在1997年5月之關於車載技術(VTC)之IEEE國際會議論文集第1卷第203-207頁上的內容。MMSE-BLE-SD演算法與ZF-BLE、MMSE-BLE演算法相比,效能略差,優勢在於僅需知道使用者終端自身的碼即可。但此種MMSE-BLE-SD演算法仍亦必須預先瞭解與該使用者終端分配在同一時隙中之處於啟動狀態的碼數目ACN (active code number)。雖然ACN可以在使用者終端內通過特殊演算法計算而得,但是由於計算量較大,所以將會導致單使用者偵測接收器複雜度及功率消耗大大增加。Another alternative is to use the balanced single-user detection JD algorithm, also known as the MMSE-BLE-SD algorithm. For details of the algorithm, see A. Klein's titled "CDMA Mobile Wireless System Downstream." "Data detection algorithms specially designed for the downlink of CDMA mobile radio systems", published in the May 1997 issue of the IEEE International Conference on Automotive Technology (VTC), Vol. 1, No. 203- On page 207. Compared with the ZF-BLE and MMSE-BLE algorithms, the MMSE-BLE-SD algorithm has a slightly lower performance. The advantage is that it only needs to know the user terminal's own code. However, such an MMSE-BLE-SD algorithm must also know in advance the number of codes ACN (active code number) that are in the same state as the user terminal is allocated in the same time slot. Although the ACN can be calculated by a special algorithm in the user terminal, due to the large amount of calculation, the single user detection receiver complexity and power consumption are greatly increased.

上述兩種方案中遇到的問題,事實上,均可藉由基地台經由下行鏈路通道向各個使用者終端發送與其相關的碼或活動碼數目的資訊而得到解決。The problems encountered in the above two schemes can, in fact, be solved by the base station transmitting information about the number of codes or active codes associated with each user terminal via the downlink channel.

例如:在申請日為2003年1月13日、申請人為皇家飛利浦 電子股份有限公司、歐洲專利申請號為03075075.6之題為"能夠支持高級偵測演算法的行動台"的專利申請案中,提出了一種由基地台經由公共控制通道如BCH(廣播通道)向使用者終端發送相關碼資訊的方法。根據按照該專利申請案揭示的方法,可以自訓練序列之分配資訊中獲得與該訓練序列相對應的碼。此種方法在"預設訓練序列(default midamble)"的情況下(即已知訓練序列及通道分碼之間對應關係的情況下)是可以實施的。但是對於3GPP TDD標準中的另外兩種訓練序列而言,即:(i)公共訓練序列,所有共用同一時隙的使用者均使用相同的訓練序列;(ii)上層應用藉由信令來分配訓練序列,此時訓練序列與碼之間無固定對應關係,詳見2001年3月第4版的3GPP技術說明25.221"實體通道及傳輸通道至實體通道之映射(TDD)",在此兩種情況下,專利申請案中公開的方法還存在一定侷限性。For example: on the application date is January 13, 2003, the applicant is Royal Philips In the patent application entitled "Mobile Station capable of supporting advanced detection algorithms", the electronic patent company No. 03070755.6 proposes a kind of use by the base station via a common control channel such as BCH (broadcast channel). The method by which the terminal sends relevant code information. According to the method disclosed in the patent application, the code corresponding to the training sequence can be obtained from the allocation information of the training sequence. Such a method can be implemented in the case of a "default midamble" (i.e., in the case where the correspondence between the training sequence and the channel code is known). However, for the other two training sequences in the 3GPP TDD standard, namely: (i) the public training sequence, all users sharing the same time slot use the same training sequence; (ii) the upper layer application is allocated by signaling. The training sequence, at this time, there is no fixed correspondence between the training sequence and the code. For details, see 3GPP Technical Note 25.221 "Physical Channel and Transmission Channel to Physical Channel Mapping (TDD)" in the fourth edition of March 2001. In this case, the methods disclosed in the patent application still have certain limitations.

再例如:在申請人為皇家飛利浦電子股份有限公司、且申請人案號為PHCN030009、申請號為03110415.0的標題為"在TDD CDMA通信系統中支持P2P通信的方法及裝置"的專利申請案中,提出了一種將程式碼分配資訊(codes allocation information,CAI)直接藉由下行公共控制通道(如BCH)進行廣播的方法。按照該專利申請案揭示的方法,由於公共控制通道在無線訊框或子訊框中的位置是固定的(如BCH在TS0中傳遞),因此,對於每一使用者終端而言,應當均可接收到該CAI資訊,並利用該CAI資訊進行聯合偵測。但是,採用BCH來傳遞該資訊會碰到一個問題:由於 BCH的重複週期至少需要80 ms(即8個無線訊框)甚至更大(160、320或640 ms等,由高層決定),當CAI資訊變化較快時,該資訊可能來不及得到必要的更新;此外,由於CAI資訊量比較大,所以若必須在每一個重複週期之BCH中傳遞,則勢必也會使得BCH處於連續過載的狀態。For example, in the patent application titled "Method and Apparatus for Supporting P2P Communication in TDD CDMA Communication System", the applicant is Royal Philips Electronics Co., Ltd., and the applicant's case number is PHCN030009, and the application number is 03110415.0. A method of broadcasting code allocation information (CAI) directly through a downlink common control channel (such as BCH). According to the method disclosed in the patent application, since the position of the common control channel in the radio frame or the subframe is fixed (for example, the BCH is transmitted in TS0), for each user terminal, it should be The CAI information is received and the CAI information is used for joint detection. However, using BCH to pass this information will encounter a problem: The repetition period of the BCH needs at least 80 ms (that is, 8 radio frames) or even larger (160, 320 or 640 ms, etc., determined by the upper layer). When the CAI information changes rapidly, the information may not be able to get the necessary updates; In addition, since the amount of CAI information is relatively large, if it must be transmitted in the BCH of each repetition period, it is bound to cause the BCH to be in a state of continuous overload.

事實上,CAI資訊只在以下三種情況下會發生變化:第一:在通信鏈路建立之初,基地台為新使用者分配碼;第二:在通信進行中,同一時隙內存在其他使用者的變更,如:存在其他使用者進入或離開該時隙從而導致碼分配變化;第三:正在通信的使用者終端已切換至其他小區,此使用者終端釋放掉原小區內的碼。就此等三種情況而言,CAI資訊的變化僅在一定時期內發生,若系統比較穩定,則完全沒有必要在每個重複週期之BCH中均發送CAI資訊。此外,CAI資訊之變化也只會影響處於同一時隙內的各個使用者終端,而不會影響在其他時隙中工作的使用者終端。In fact, CAI information changes only in the following three situations: First: at the beginning of the communication link, the base station assigns codes to new users; Second: during communication, other uses exist in the same time slot. The change of the user, for example, there are other users entering or leaving the time slot to cause a code allocation change; third: the user terminal that is communicating has switched to another cell, and the user terminal releases the code in the original cell. In these three cases, the change of CAI information only occurs within a certain period of time. If the system is stable, it is not necessary to send CAI information in the BCH of each repetition period. In addition, changes in CAI information will only affect individual user terminals in the same time slot without affecting user terminals operating in other time slots.

因此,需要以一種更有效的方式來提供CAI資訊,以使得使用者終端利用該CAI資訊執行聯合偵測演算法。Therefore, it is necessary to provide CAI information in a more efficient manner so that the user terminal performs the joint detection algorithm using the CAI information.

由上述分析可知,對於TDD CDMA通信系統而言,當CAI資訊發生改變時,在相應下行鏈路時隙中,再發送該變化的CAI資訊,應當是一種比較合理的方法。It can be seen from the above analysis that for the TDD CDMA communication system, when the CAI information changes, it is a reasonable method to retransmit the changed CAI information in the corresponding downlink time slot.

本發明之一目的在於提供一種在TDD CDMA通信系統中用於支持下行鏈路進行聯合偵測的方法及裝置,使用該方法及裝置可以僅當CAI資訊發生改變時向與其相關的使用 者發送CAI資訊,以使得接收到此CAI資訊之各個使用者終端可以利用該CAI資訊實施ZF-BLE/MMSE-BLE聯合偵測演算法,從而提高各個使用者終端的通信品質。An object of the present invention is to provide a method and apparatus for supporting downlink detection in a TDD CDMA communication system, which can be used only when the CAI information changes. The CAI information is sent, so that each user terminal that receives the CAI information can implement the ZF-BLE/MMSE-BLE joint detection algorithm by using the CAI information, thereby improving the communication quality of each user terminal.

本發明之另一個目的在於提供一種在TDD CDMA通信系統中用於支持下行鏈路進行聯合偵測的方法及裝置,使用該方法及裝置,可以僅當ACN資訊發生改變時向與其相關的使用者發送ACN資訊,以使得接收到該ACN資訊之各個使用者終端可以利用該ACN資訊實施MMSE-BLE-SD聯合偵測演算法,從而提高各個使用者終端的通信品質。Another object of the present invention is to provide a method and apparatus for supporting downlink for joint detection in a TDD CDMA communication system, by using the method and apparatus, to directly associate ACN information with a user associated with it The ACN information is sent, so that each user terminal that receives the ACN information can implement the MMSE-BLE-SD joint detection algorithm by using the ACN information, thereby improving the communication quality of each user terminal.

一種根據本發明用於TDD CDMA通信網路系統中之支持下行鏈路聯合偵測的方法,包括以下步驟:(a)判斷一下行鏈路時隙中的碼分配資訊(CAI)在下一TTI(傳輸時間間隔)中是否會發生變化;(b)若該碼分配資訊會發生變化,則將變更的碼分配資訊作為特定控制資訊插入至當前TTI中相對應的下行鏈路時隙的業務突發之一指定域中;(c)將含有該特定控制資訊之業務突發經由一下行鏈路通道發送至處於該下行鏈路時隙中的各個使用者終端。其中,當與一個使用者終端建立鏈接時,由網路系統將初始程式碼分配資訊發送至使用者終端。A method for supporting downlink joint detection in a TDD CDMA communication network system according to the present invention, comprising the steps of: (a) determining that code allocation information (CAI) in a downlink time slot is in a next TTI ( Whether there is a change in the transmission time interval; (b) if the code allocation information changes, the changed code allocation information is inserted as a specific control information into the service burst of the corresponding downlink time slot in the current TTI. One of the designated domains; (c) transmitting a service burst containing the particular control information to each of the user terminals in the downlink time slot via the downlink channel. Wherein, when a link is established with a user terminal, the initial code allocation information is sent by the network system to the user terminal.

一種根據本發明在TDD CDMA通信系統之使用者終端中執行的用於支持下行鏈路之聯合偵測的方法,包括以下步驟:(i)在一下行鏈路時隙中,接收由網路系統經由下行鏈路通道傳送的業務突發;(ii)偵測該業務突發中是否包含下行鏈路時隙在下一個TTI中之碼分配資訊(CAI); (iii)若包含 該碼分配資訊,則提取該碼分配資訊;(iv)利用碼分配資訊,執行下一階段聯合偵測演算法以減少訊號干擾。A method for supporting joint detection of a downlink performed in a user terminal of a TDD CDMA communication system according to the present invention, comprising the steps of: (i) receiving a network system in a downlink time slot a traffic burst transmitted via the downlink channel; (ii) detecting whether the traffic burst includes code allocation information (CAI) of the downlink time slot in the next TTI; (iii) if included The code assigns information to extract the code allocation information; (iv) uses the code allocation information to perform the next stage joint detection algorithm to reduce signal interference.

一種根據本發明在TDD CDMA通信系統中由網路系統執行之用於支持下行鏈路的單使用者聯合偵測的方法,包括以下步驟:(a)判斷一下行鏈路時隙中之處於啟動狀態的使用者碼數目(ACN)在下一個TTI(傳輸時間間隔)中是否會發生變化;(b)若該處於啟動狀態之使用者碼數目會發生變化,則將變更之啟動碼數目作為特定控制資訊插入至當前TTI中相對應的下行鏈路時隙之業務突發的一指定域中;(c)將含有該特定控制資訊的業務突發經由下行鏈路通道發送至處於該下行鏈路時隙中的各個使用者終端。其中,當與一使用者終端建立鏈接時,由網路系統將初始處於啟動狀態的使用者碼數目發送至使用者終端。A method for supporting single-user joint detection of a downlink performed by a network system in a TDD CDMA communication system according to the present invention includes the following steps: (a) determining that the uplink time slot is initiating Whether the number of user codes in the status (ACN) will change in the next TTI (transmission time interval); (b) if the number of user codes in the startup state changes, the number of changed activation codes is used as the specific control. Information is inserted into a designated domain of a traffic burst of a corresponding downlink time slot in the current TTI; (c) transmitting a traffic burst containing the specific control information to the downlink channel via the downlink channel Each user terminal in the gap. Wherein, when a link is established with a user terminal, the number of user codes that are initially in an activated state is sent by the network system to the user terminal.

一種根據本發明在TDD CDMA通信系統之使用者終端中執行之用於支持下行鏈路的單使用者聯合偵測的方法,包括以下步驟:(i)在一下行鏈路時隙中,接收由網路系統經由下行鏈路通道傳送的業務突發;(ii)偵測該業務突發中是否包含該下行鏈路時隙在下一個TTI中之處於啟動狀態的使用者碼數目(ACN); (iii)若包含該啟動碼數目,則提取該啟動碼數目;(iv)利用啟動碼數目來執行下一階段單使用者聯合偵測演算法以減少訊號干擾。A method for supporting single-user joint detection of a downlink performed in a user terminal of a TDD CDMA communication system according to the present invention, comprising the steps of: (i) receiving in a downlink time slot a service burst transmitted by the network system via the downlink channel; (ii) detecting whether the traffic burst includes the number of user codes (ACN) of the downlink time slot in the next TTI; Iii) extracting the number of the start code if the number of start codes is included; (iv) performing the next stage single user joint detection algorithm by using the number of start codes to reduce signal interference.

下面以TD-SCDMA系統為例,結合附圖詳細描述本發明的內容。根據本發明技術方案,當上述CAI資訊或ACN資訊 發生變化時,基地台將變化了的CAI資訊或ACN資訊插入待發送的業務突發中,並在下行時隙中經由專用實體通道(DPCH)發送至處於下行鏈路時隙中的各使用者終端UE,各使用者終端UE根據偵測到之CAI資訊或ACN資訊執行下一階段的ZF-BLE/MMSE-BLE或MMSE-BLE-SD聯合偵測演算法。The content of the present invention will be described in detail below with reference to the accompanying drawings in the TD-SCDMA system. According to the technical solution of the present invention, when the above CAI information or ACN information When a change occurs, the base station inserts the changed CAI information or ACN information into the service burst to be transmitted, and transmits it to each user in the downlink time slot via the dedicated physical channel (DPCH) in the downlink time slot. The terminal UE, each user terminal UE performs the next stage of ZF-BLE/MMSE-BLE or MMSE-BLE-SD joint detection algorithm according to the detected CAI information or ACN information.

為了更清楚地描述本發明之上述方案,尤其係更具體地說明基地台如何將變化了的CAI資訊或ACN資訊插入至待發送之業務突發中的詳細過程,以下將結合圖1至圖3首先簡要介紹3GPP標準中TD-SCDMA系統所使用之子訊框及業務突發(即時隙)的結構。In order to more clearly describe the above solution of the present invention, in particular, the detailed process of how the base station inserts the changed CAI information or ACN information into the service burst to be transmitted will be described in more detail below with reference to FIGS. 1 to 3. First, the structure of the subframe and the service burst (ie, time slot) used by the TD-SCDMA system in the 3GPP standard will be briefly introduced.

在TD-SCDMA系統中,一無線訊框的長度為10 ms(毫秒),每個無線訊框又被進一步劃分成兩個子訊框,每個子訊框的長度為5 ms且由6400個晶片組成。如圖1所示,每個子訊框由7個業務時隙TS0-TS6與3個特定導頻時隙組成,7個業務時隙中之每個時隙均由864個晶片組成,其中時隙TS0總是用於傳送下行鏈路資料,時隙TS1總是用於傳送上行鏈路資料,其他時隙TS2-TS6則分別視需要被用於在上行或下行鏈路中傳送資料;3個特定導頻時隙中之DwPTS為下行鏈路導頻時隙(96個晶片)、UpPTS為上行鏈路導頻時隙(160個晶片)、GP為保護時段(96個晶片)。每個業務時隙又被進一步劃分為4個域,其包括:資料域1(352個晶片)、訓練序列域(144個晶片)、資料域2(352個晶片)以及用作時隙保護的空域GP(16個晶片),其中,資料域1與資料域2除了 用於承載業務資料符號外,還可用於承載一些UE特定控制符號,例如發射器功率控制TPC (Transmitter Power Control)、同步移位SS (Synchronization Shift)、發射器格式組合指示器TFCI (Transmitter Format Combination Indicator),利用此等UE特定控制符號,基地台可以向各使用者終端UE提供一些控制資訊。In the TD-SCDMA system, the length of a radio frame is 10 ms (milliseconds), and each radio frame is further divided into two sub-frames, each of which has a length of 5 ms and is composed of 6400 chips. composition. As shown in FIG. 1, each subframe is composed of 7 service slots TS0-TS6 and 3 specific pilot slots, and each of the 7 service slots is composed of 864 chips, wherein the slots are composed of 864 chips. TS0 is always used to transmit downlink data, time slot TS1 is always used to transmit uplink data, and other time slots TS2-TS6 are used to transmit data in uplink or downlink, respectively; 3 specific The DwPTS in the pilot time slot is a downlink pilot time slot (96 chips), the UpPTS is an uplink pilot time slot (160 chips), and the GP is a guard period (96 chips). Each service slot is further divided into four domains, including: data domain 1 (352 wafers), training sequence domain (144 wafers), data domain 2 (352 wafers), and slot protection. Airspace GP (16 wafers), in which data domain 1 and data domain 2 are excluded It can also be used to carry some UE-specific control symbols, such as Transmitter Power Control (TPC), Synchronization Shift (Synchronization Shift), and Transmitter Format Combination Indicator TFCI (Transmitter Format Combination). Indicators, using these UE-specific control symbols, the base station can provide some control information to each user terminal UE.

圖2展示加載有UE特定控制符號之子訊框及時隙的結構圖,如圖2所示,UE特定控制符號位於訓練序列(Midamble)即導頻符號的兩側,SS與TPC之控制符號分別佔用了每個子訊框之其中一個時隙內之資料域2中的部分資料符號的位置,而TFCI之控制符號則被分成四個部分,第一及第二部分之TFCI分別佔用一無線訊框之其中一個子訊框之一時隙(同上SS與TPC所在的時隙)的資料域1和資料域2中的部分資料符號的位置,第三及第四部分之TFCI分別佔用該無線訊框中另一個子訊框之相應時隙之資料域1及資料域2中之部分資料符號的位置。由於TPC、SS和TFCI控制符號位於業務時隙之資料域中,因此,與其他資料符號一樣,此等控制符號也要經過編碼、展頻才會發送至各使用者終端UE,各使用者終端UE在接收到基地台發送的含有上述控制資訊的資料後,必須經過一些基本的基帶處理,才可以恢復此等控制符號所包含的資訊。2 shows a structural diagram of a subframe and a time slot loaded with a UE-specific control symbol. As shown in FIG. 2, the UE-specific control symbols are located on both sides of a training sequence (Midamble), that is, pilot symbols, and SS and TPC control symbols respectively occupy The position of part of the data symbol in the data field 2 in one of the time slots of each subframe, and the control symbol of the TFCI is divided into four parts, and the TFCIs of the first and second parts respectively occupy a radio frame. The position of one of the data frames in one of the sub-frames (same time slot as the SS and the TPC) and the data symbols in the data field 2, the third and fourth portions of the TFCI occupy the other The location of the data field 1 of the corresponding time slot of a sub-frame and the part of the data symbol of the data field 2. Since the TPC, SS and TFCI control symbols are located in the data field of the service time slot, like other data symbols, these control symbols are also encoded and spread before being sent to each user terminal UE, each user terminal. After receiving the data sent by the base station and containing the above control information, the UE must undergo some basic baseband processing to recover the information contained in the control symbols.

上文對TD-SCDMA系統中使用之無線訊框和時隙的結構進行了簡要描述。在一時隙中,業務突發的具體結構(即業務資料及UE特定控制符號的分配)視時隙用於上行鏈路還 是下行鏈路以及展頻因子SF (Spreading Factor)等諸多因素而定,舉例而言,根據傳統TD-SCDMA協定標準,上行鏈路之展頻因子SF可以選取1、2、4、8、16五種不同數值,而下行鏈路之展頻因子SF只可選取1和16兩種數值,根據協定中規定的資料域所能容納之資料符號數S與展頻因子SF的關係S×SF=352個晶片,則一個上行鏈路的時隙可以包含之資料符號數分別為704、352、176、88和44個符號(一時隙中包括兩個資料域),若採用一個符號(symbol)轉化為2個位元(位元)的QPSK(四相移位鍵控)調製規則,則對應不同之展頻因子SF,一上行鏈路時隙可能具有的位元數目分別為1408位元位元、704位元位元、352位元位元、176位元位元和88位元位元;而與下行鏈路之展頻因子SF的1和16兩種值相對應,一下行鏈路之時隙可包含的資料符號數為704和44個符號,按照1個符號轉化為2個位元的調製規則,則當SF=1時,一個下行鏈路時隙具有的位元數目為1408位元位元,而當SF=16時,一個下行鏈路時隙具有的位元數目為88位元位元。The structure of the radio frame and time slot used in the TD-SCDMA system is briefly described above. In a time slot, the specific structure of the traffic burst (ie, the allocation of service data and UE-specific control symbols) is used for the uplink in the time slot. It is determined by many factors such as the downlink and the Spreading Factor (SF). For example, according to the traditional TD-SCDMA protocol standard, the uplink spreading factor SF can be selected 1, 2, 4, 8, 16 Five different values, and the spread spectrum factor SF of the downlink can only select 1 and 16 values. The relationship between the number of data symbols S and the spread factor SF that can be accommodated according to the data field specified in the agreement S × SF = For 352 chips, an uplink time slot can contain 704, 352, 176, 88, and 44 symbols, respectively (two data fields are included in one slot), if a symbol is used to convert A QPSK (Quadrature Shift Keying) modulation rule of 2 bits (bits) corresponds to a different spreading factor SF, and an uplink time slot may have a number of bits of 1408 bits, respectively. 704 octets, 352 octets, 176 octets, and 88 octets; and corresponds to the 1 and 16 values of the downlink spreading factor SF, the downlink The number of data symbols that a time slot can contain is 704 and 44 symbols. According to the modulation rule of 1 symbol converted to 2 bits, When SF = 1, one downlink time slot has a number of bits of 1408 bits, and when SF = 16, one downlink time slot has a number of bits of 88 bits.

圖3為傳統通信協定中TD-SCDMA系統之下行鏈路的時隙格式示意圖,其中位於第4行的控制符號TFCI根據有無TFCI資訊以及TFCI資訊內容的多少,在編碼後佔用的位元數目NTFCI 分別可以為0位元位元、4位元位元、8位元位元、16位元位元及32位元位元(位元此等位元會平均分配到一無線訊框即兩個訊框中);位於第五行的控制符號SS及TPC,當展頻因子SF=16時,若時隙中不包含SS和TPC之資 訊,則SS和TPC佔用的位元數目均為零,若時隙中包含SS和TPC之資訊,則SS和TPC佔用的位元數目NSS 和NTPC 均為2位元位元,同樣,當展頻因子SF=1時,SS與TPC佔用的位元數目NSS 和NTPC 可以為0位元位元、均為2位元位元以及均為32位元位元。3 is a schematic diagram of a slot format of a downlink of a TD-SCDMA system in a conventional communication protocol, wherein the control symbol TFCI located in the fourth row has the number of bits occupied after encoding according to the presence or absence of TFCI information and the content of the TFCI information. TFCI can be 0 bits, 4 bits, 8 bits, 16 bits, and 32 bits (bits, these bits are evenly distributed to a radio frame, ie two In the fifth line, the control symbols SS and TPC, when the spreading factor SF=16, if the time slot does not contain the information of SS and TPC, the number of bits occupied by SS and TPC is zero. If the time slot contains information of SS and TPC, the number of bits occupied by SS and TPC, N SS and NTPC are both 2-bit bits. Similarly, when the spreading factor SF=1, the bits occupied by SS and TPC are used. The number of elements N SS and N TPC may be 0 bit bits, both are 2 bit bits and are both 32 bit bits.

以圖3中時隙格式序號為8的時隙格式為例,如圖中所示,當展頻因子SF=16時,如上所述,該下行鏈路時隙所包含的位元數目為88位元位元。在下行時隙中,位於第四行的NTFCI =16位元,根據協定中的規定,此16位元被分為4個部分,作為第1或第3部分的4位元佔用該時隙內資料域1中的4位元,作為第2或第4部分的4位元佔用時隙內資料域2中的4位元;位於第5行的NSS 和NTPC 均為2位元,分別佔用該時隙內資料域2中的2位元。由於NTFCI 、NSS 和NTPC 均必須佔用資料域進行傳輸,因此,在插入UE特定控制符號後,88位元的時隙還剩有76位元(88位元-8位元(NTFCI )-2位元(NSS )-2位元(NTPC )=76位元)用於傳送資料業務,其中:44位元的資料域1還剩有40位元(44位元-4位元(第1或第3部分的NTFCI )=40位元)用於傳送資料業務,44位元的資料域2還剩有36位元(44位元-4位元(第2或第4部分的NTFCI )-2位元(NSS )-2位元(NTPC )=36位元)用於傳送資料業務。插入UE特定控制符號後的時隙、時隙內資料域1與2中用於傳送業務資料的位元數目分別由圖3中第7、8、9行的Ndata/Slot 、Ndata/field(1) 和Ndata/field(2) 表示。Taking the slot format with the slot format number 8 in FIG. 3 as an example, as shown in the figure, when the spreading factor SF=16, as described above, the number of bits included in the downlink slot is 88. Bit bit. In the downlink time slot, N TFCI = 16 bits in the fourth row, according to the provisions in the agreement, the 16-bit is divided into 4 parts, and the 4 bits as the first or third part occupy the time slot. The 4-bit in the data field 1 as the 2nd or 4th part of the 4th bit occupies 4 bits in the data field 2 in the time slot; the N SS and the N TPC in the 5th line are both 2 bits. The two bits in the data field 2 in the time slot are respectively occupied. Since N TFCI , N SS and N TPC must occupy the data domain for transmission, after inserting the UE-specific control symbols, there are 76 bits in the 88-bit time slot (88-bit-8 bits (N TFCI) ) - 2 bits (N SS ) - 2 bits (N TPC ) = 76 bits ) for transmitting data services, where: 44 bits of data field 1 have 40 bits left (44 bits - 4 bits) Yuan (N TFCI of Part 1 or Part 3 = 40 bits) is used to transmit data services. The data field of 44 bits has 36 bits left (44 bits - 4 bits (2nd or 4th) Part of the N TFCI ) - 2 bits (N SS ) - 2 bits (N TPC ) = 36 bits) is used to transmit data services. The number of bits used to transmit the service data in the time slots and time slots in the data fields 1 and 2 after the insertion of the UE-specific control symbols are respectively N data/Slot and N data/field in lines 7, 8, and 9 of FIG. (1) and N data/field (2) .

當CAI資訊或ACN資訊發生改變時利用專用實體通道傳 送經變化的CAI資訊或ACN資訊以使使用者終端UE進行聯合偵測的本發明之方法,與上述在業務時隙之資料域中插入UE特定控制符號TFCI、SS和TPC的方法類似,本發明將含有經變化之CAI資訊或ACN資訊的控制符號插入至業務時隙之資料域1或資料域2中,在進行編碼、展頻後,經由下行鏈路通道傳送至使用者終端UE。Use private entity channel to transmit when CAI information or ACN information changes The method of the present invention for transmitting the changed CAI information or the ACN information to enable the user terminal UE to perform joint detection is similar to the method for inserting the UE-specific control symbols TFCI, SS and TPC in the data field of the service slot. The invention inserts a control symbol containing the changed CAI information or ACN information into the data field 1 or the data field 2 of the service time slot, and after encoding and spreading, transmits to the user terminal UE via the downlink channel.

圖4為根據本發明之TD-SCDMA系統包含CAI或ACN資訊的經修訂業務突發的結構圖,圖中CAI或ACN控制符號佔用資料域1中之資料符號的一部分位置,並位於第1或第3部分TFCI之前的部分資料符號的位置(CAI/ACN資訊也可位於資料域2之TFCI之後或資料域1中其他的位置)。4 is a structural diagram of a revised service burst including CAI or ACN information in a TD-SCDMA system according to the present invention, in which a CAI or ACN control symbol occupies a part of the data symbol in the data field 1 and is located at the 1st or Part 3: Location of some data symbols before TFCI (CAI/ACN information can also be located after TFCI in data field 2 or elsewhere in data field 1).

以下將結合圖5至圖8,在圖4所示的時隙結構基礎上,描述當分別採用ZF-BLE/MMSE-BLE演算法與MMSE-BLE-SD演算法達成下行聯合偵測時,在業務時隙之資料域中分別插入CAI資訊和ACN資訊的具體過程。In the following, in conjunction with FIG. 5 to FIG. 8, based on the time slot structure shown in FIG. 4, when the downlink joint detection is implemented by using the ZF-BLE/MMSE-BLE algorithm and the MMSE-BLE-SD algorithm respectively, The specific process of inserting CAI information and ACN information into the data field of the service time slot.

一、採用ZF-BLE或MMSE-BLE演算法來達成下行鏈路聯合偵測First, use ZF-BLE or MMSE-BLE algorithm to achieve downlink joint detection

如上所述,在TD-SCDMA系統之下行鏈路中,展頻因子SF只有1和16兩種值。當SF為1時,表示該時隙中只分配了一個使用者,此種情況下根本沒有展頻,因此也不會有碼的分配問題,所以本發明中只需考慮展頻因子SF為16的情況。As described above, in the downlink of the TD-SCDMA system, the spreading factor SF has only two values of 1 and 16. When the SF is 1, it means that only one user is allocated in the time slot. In this case, there is no spreading frequency at all, so there is no problem of code allocation. Therefore, in the present invention, only the spreading factor SF is considered to be 16 Case.

當SF=16時,一個時隙內最多可存在16個碼同時分配至16個使用者碼,因此,對於一時隙而言,可使用16個位元(兩 個位元組)來表示這16個碼的分配情況。如附圖5所示的碼分配情況的映射圖,位元15到位元0分別對應於16個使用者碼使用的碼Code 15到Code 0,其中,若Bit i=1,則表示與之對應的碼Code i正在被時隙中的一使用者終端使用;若Bit i=0,則表示與之對應的碼Code i還未分配至使用者終端。舉例而言,當圖5中的Bit 0和Bit 5為1而其他位元均為0時,表示只有對應的碼Code 0和Code 5正在被使用者終端使用,而其他碼還未分配至使用者終端。When SF=16, there can be up to 16 codes in one time slot and 16 user codes at the same time. Therefore, for one time slot, 16 bits can be used (two One byte) to indicate the allocation of these 16 codes. As shown in the map of the code allocation situation shown in FIG. 5, the bit 15 to the bit 0 correspond to the code Code 15 to Code 0 used by the 16 user codes, respectively, wherein if Bit i=1, it corresponds to The code Code i is being used by a user terminal in the time slot; if Bit i=0, it means that the code Code i corresponding thereto has not been assigned to the user terminal. For example, when Bit 0 and Bit 5 in FIG. 5 are 1 and all other bits are 0, it means that only the corresponding codes Code 0 and Code 5 are being used by the user terminal, and other codes are not yet allocated for use. Terminal.

在下行鏈路的業務時隙中,當利用資料域發送圖5中所示的16個位元的碼分配資訊(CAI)時(實際傳送之位元資訊在通道編碼後會發生變化,在此假設所傳送的就是16位元原始位元資訊),圖3所示之業務時隙格式將會產生相應變動,修改後的格式如附圖6所示。為了便於比較,圖6中的第一行時隙格式序號分別以n和n'表示,其中n序號對應的列係未插入碼分配資訊CAI時的格式,而n'對應的列表示插入CAI資訊後的時隙格式,分別用白、灰兩種顏色標記,並且在任何情況下n和n'表示的時隙格式不會同時出現。In the downlink service time slot, when the code allocation information (CAI) of 16 bits shown in FIG. 5 is transmitted by using the data field (the actual transmitted bit information changes after channel coding, where Assuming that the 16-bit original bit information is transmitted, the service slot format shown in FIG. 3 will be correspondingly changed. The modified format is as shown in FIG. 6. For convenience of comparison, the first row slot format numbers in FIG. 6 are denoted by n and n', respectively, wherein the column corresponding to the n-number is not inserted in the format of the code allocation information CAI, and the column corresponding to n' indicates the insertion of the CAI information. The subsequent slot format is marked in white and gray, respectively, and in any case the slot formats represented by n and n' do not appear at the same time.

與圖3相比,圖6中增加了第四行NCAI ,用於表示碼分配資訊CAI,當NCAI =0時,表示碼分配狀況未變化,無需傳送CAI資訊;當NCAI =16時,表示碼分配狀況發生了變化,例如:當一或多個處於啟動狀態的使用者終端離開該下行鏈路時隙、基地台需要收回該使用者終端釋放的碼資源時,或當一或多個使用者終端加入下行鏈路時隙、基地台需要為新使用者終端分配碼資源時,以及當基地台需要對下行 鏈路時隙中之碼資源進行重新分配以使得下行鏈路時隙中的資源達成優化配置時,此時需要傳送16位元的CAI資訊,以表明圖5中與CAI資訊對應的各個碼的當前使用狀況。插入CAI資訊後的下行時隙、下行時隙內資料域1及2中用於傳送業務資料的位元數目分別由圖6中第8、9、10行的Ndata/Slot 、Ndata/field(1) 和Ndata/field(2) 表示。Compared with FIG. 3, the fourth row N CAI is added in FIG. 6 for indicating the code allocation information CAI. When N CAI =0, it indicates that the code allocation status has not changed, and there is no need to transmit CAI information; when N CAI =16 , indicating that the code allocation status has changed, for example, when one or more user terminals in the activated state leave the downlink time slot, the base station needs to reclaim the code resources released by the user terminal, or when one or more When the user terminal joins the downlink time slot, the base station needs to allocate code resources for the new user terminal, and when the base station needs to reallocate the code resources in the downlink time slot to make the downlink time slot When the resources are optimized, at this time, 16-bit CAI information needs to be transmitted to indicate the current usage status of each code corresponding to the CAI information in FIG. The number of bits used to transmit the service data in the data slots 1 and 2 in the downlink time slot and the downlink time slot after the CAI information is inserted is respectively N data/Slot and N data/field of the 8th, 9th, and 10th lines in FIG. (1) and N data/field (2) .

當基地台判斷一下行鏈路時隙中的CAI資訊在下一TTI中會發生變化時,將16位元變更後的CAI資訊作為特定控制資訊插入至當前TTI中與下行鏈路時隙相對應之下行鏈路時隙之業務突發的資料域(例如圖4所示的第1資料域中)中,並將該CAI資訊與其他業務資料、UE特定控制符號TFCI、SS和TPC(若UE特定控制符號存在)一起進行展頻,接著,將展頻後的含有特定控制資訊的業務突發經由下行鏈路通道(如例如專用實體通道DPCH)發送至處於下行鏈路時隙中之各個使用者終端。When the base station determines that the CAI information in the uplink time slot changes in the next TTI, inserting the 16-bit changed CAI information as specific control information into the current TTI and corresponding to the downlink time slot. The data field of the traffic burst of the downlink time slot (for example, the first data field shown in FIG. 4), and the CAI information and other service data, UE-specific control symbols TFCI, SS, and TPC (if UE-specific The control symbols are present together for spreading, and then the spread-spectrum service burst containing the specific control information is sent to each user in the downlink time slot via a downlink channel (eg, a dedicated physical channel DPCH) terminal.

當處於下行鏈路時隙中的一使用者終端接收到基地台經由DPCH傳送的業務突發時,與偵測UE特定控制符號TFCI、SS和TPC的方法一樣,使用者終端首先偵測業務突發中是否包含碼分配資訊CAI,若包含CAI資訊,則提取該碼分配資訊CAI,並根據CAI資訊,使用者終端獲知圖5中所示的與CAI資訊對應的碼的分配使用情況,接著,利用此等偵測出之碼資訊,使用者終端為下一傳輸時間間隔(TTI: Transmission Time Interval,實體層藉由空中介面發送傳輸塊集合之週期)執行聯合偵測演算法作準備,即:所 提取的CAI資訊作為下行鏈路時隙在下一TTI中的碼分配資訊;若使用者終端接收到的業務突發中不包含CAI資訊,則表明碼分配狀況未發生變化,使用者終端可根據先前之碼分配使用狀況執行下一階段的聯合偵測演算法。When a user terminal in the downlink time slot receives a service burst transmitted by the base station via the DPCH, the user terminal first detects the service burst as in the method of detecting the UE specific control symbols TFCI, SS, and TPC. Whether the code includes the code allocation information CAI, if the CAI information is included, the code allocation information CAI is extracted, and according to the CAI information, the user terminal knows the allocation and use of the code corresponding to the CAI information shown in FIG. 5, and then, Using the detected code information, the user terminal prepares the joint detection algorithm for the next transmission time interval (TTI: Transmission Time Interval, the period in which the physical layer transmits the transmission block set by the null intermediate plane), namely: Place The extracted CAI information is used as the code allocation information of the downlink time slot in the next TTI; if the service burst received by the user terminal does not include the CAI information, it indicates that the code allocation status has not changed, and the user terminal can be based on the previous The code assigns usage status to perform the next phase of the joint detection algorithm.

此處有一點需要注意:由於插入資料域中的CAI資訊與其他業務資料一樣,需進行展頻後才能發送,而使用者終端在接收到資訊後,需要使用高級接收演算法(例如聯合偵測演算法)才能有效地偵測到CAI資訊。而執行聯合偵測演算法又需預先知道所在時隙的碼資訊,所以根據本發明的上述方法,不可能在當前時隙內使用當前時隙傳送的CAI資訊對來自下行鏈路的資料進行解擴和解碼。因此,在上述偵測CAI資訊的步驟中偵測到的本發明之CAI資訊,只能供該使用者終端在下一個TTI中執行聯合偵測演算法時使用(一個TTI包含多個子訊框,為一個交叉週期,在此時間間隔內,CAI資訊不會發生變化),而最初的CAI資訊可在使用者終端與基地台之間建立通信鏈接時,由基地台以初始化形式經由廣播通道(BCH)或其他專用通道(DCH)將最初的CAI資訊發送至使用者終端,從而使用者終端可使用初始化之CAI資訊,在接收到後續下行鏈路時隙中傳送的業務突發時,執行聯合偵測演算法以偵測是否存在新的經變化的CAI資訊發送至該使用者終端。One thing to note here is that since the CAI information inserted in the data field is the same as other business data, it needs to be spread before it can be sent. After receiving the information, the user terminal needs to use the advanced receiving algorithm (such as joint detection). Algorithm) can effectively detect CAI information. However, the joint detection algorithm needs to know the code information of the time slot in advance, so according to the above method of the present invention, it is impossible to use the CAI information transmitted in the current time slot to solve the data from the downlink in the current time slot. Expansion and decoding. Therefore, the CAI information of the present invention detected in the step of detecting the CAI information can only be used when the user terminal performs the joint detection algorithm in the next TTI (a TTI includes multiple subframes, A crossover period during which the CAI information does not change), and the initial CAI information can be initiated by the base station via the broadcast channel (BCH) when the communication link is established between the user terminal and the base station. Or other dedicated channel (DCH) sends the initial CAI information to the user terminal, so that the user terminal can use the initialized CAI information to perform joint detection when receiving the service burst transmitted in the subsequent downlink time slot. The algorithm sends to the user terminal to detect whether there is new changed CAI information.

因為基地台控制著無線資源的分配,所以基地台在使用者終端與其建立通信鏈接之初,將最初的CAI資訊通知分配在下行時隙中的使用者終端,並在當前TTI中將預見到的下 一TTI中之碼的分配變化插入至當前TTI下行時隙中以傳送至下行時隙中的各個使用者終端,在通信技術中,對於基地台而言應當是不難達成的。Because the base station controls the allocation of radio resources, the base station notifies the user terminal allocated in the downlink time slot at the beginning of the communication link with the user terminal, and will foresee the current TTI. under The allocation change of the code in a TTI is inserted into the current TTI downlink time slot for transmission to each user terminal in the downlink time slot. In the communication technology, it should not be difficult for the base station to achieve.

如上所述,當使用者終端偵測到網路系統在CAI資訊發生變化時,經由下行鏈路發送的變化了的CAI資訊,可以利用收到的CAI資訊執行ZF-BLE或MMSE-BLE演算法。As described above, when the user terminal detects that the network system changes the CAI information, the changed CAI information sent via the downlink can perform the ZF-BLE or MMSE-BLE algorithm using the received CAI information. .

二、採用MMSE-BLE-SD演算法來達成下行鏈路聯合偵測Second, the MMSE-BLE-SD algorithm is used to achieve downlink joint detection

與採用ZF-BLE或MMSE-BLE演算法達成聯合偵測的方法不同,採用MMSE-BLE-SD演算法時,UE無需知道時隙內詳細的碼分配資訊,而僅需瞭解當前時隙內處於活動狀態的使用者碼數目(ACN)K。出於此原因,可採用4個位元表示時隙內使用者碼個數的16種可能,如圖7所示。Different from the method of joint detection using ZF-BLE or MMSE-BLE algorithm, when using MMSE-BLE-SD algorithm, the UE does not need to know the detailed code allocation information in the time slot, but only needs to know that it is in the current time slot. The number of user codes for the active state (ACN)K. For this reason, four bits can be used to represent the 16 possibilities of the number of user codes in the time slot, as shown in FIG.

在下行鏈路的業務時隙中,當利用資料域發送圖7中所示的4個位元ACN資訊時(實際傳送的位元資訊在通道編碼後會發生變化,在此假設傳送的就是4位元原始位元資訊),圖3所示的業務時隙格式將會產生相應的變動,修改後的格式如圖8所示。為了便於比較,圖8中的第一行時隙格式序號也分別以n和n'表示,其中n序號對應的列是未插入ACN資訊時的格式,而n'對應的列表示插入ACN資訊後的時隙格式,分別以白、灰兩種顏色標記,並且在任何情況下n和n'表示的時隙格式不會同時出現。In the downlink service time slot, when the 4 bit ACN information shown in FIG. 7 is transmitted by using the data field (the actually transmitted bit information changes after the channel coding, it is assumed that the transmitted 4 is Bit original bit information), the service slot format shown in Figure 3 will produce corresponding changes, the modified format is shown in Figure 8. For convenience of comparison, the first row slot format numbers in FIG. 8 are also denoted by n and n', respectively, wherein the column corresponding to the n sequence is the format when the ACN information is not inserted, and the column corresponding to n' indicates the insertion of the ACN information. The slot format is marked in white and gray, respectively, and in any case the slot formats represented by n and n' do not appear at the same time.

與圖3相比,圖8中增加了第四行NAC ,以用於表示當前時隙內處於啟動狀態的碼數目,當NAC =0時,表示當前時隙 內處於啟動狀態的碼數目未變化,無需傳送ACN資訊;當NAC =4時,表示當前時隙內處於啟動狀態的碼數目發生了變化,需要傳送4位元的ACN資訊。插入ACN資訊後的該下行時隙、該下行時隙內資料域1和2中用於傳送業務資料的位元數目分別由圖8中第8、9、10行的Ndata/Slot 、Ndata/field(1) 和Ndata/field(2) 表示。Compared with FIG. 3, the fourth row N AC is added in FIG. 8 to indicate the number of codes in the active state in the current time slot. When N AC =0, the number of codes in the current time slot is activated. No change, no need to transmit ACN information; when N AC = 4, it means that the number of codes in the current time slot is changed, and the ACN information of 4 bits needs to be transmitted. The downlink time slot after the ACN information is inserted, and the number of bits used for transmitting the service data in the data fields 1 and 2 in the downlink time slot are respectively N data/Slot and N data of the 8th, 9th, and 10th lines in FIG. 8. /field(1) and N data/field(2) are indicated.

當基地台判斷一下行鏈路時隙中處於啟動狀態的碼數目在下一TTI中會發生變化時,將4位元之變更後的ACN資訊作為特定控制資訊插入至當前TTI中與下行鏈路時隙相對應的之下行鏈路時隙之業務突發的資料域(例如圖4所示的第1資料域)中,並將ACN資訊與其他業務資料、UE特定控制符號TFCI、SS及TPC(若UE特定控制符號存在)一起進行編碼、展頻,接著,將編碼展頻後的含有特定控制資訊的業務突發經由下行鏈路通道(例如專用實體通道DPCH)發送至處於下行鏈路時隙中的各個使用者終端。When the base station judges that the number of codes in the uplink state in the uplink time slot changes in the next TTI, the ACN information after the change of the 4-bit is inserted as the specific control information into the current TTI and the downlink. The data field of the traffic burst of the downlink time slot corresponding to the slot (for example, the first data field shown in FIG. 4), and the ACN information and other service data, the UE-specific control symbols TFCI, SS, and TPC ( If the UE-specific control symbols are present, encoding and spreading together, then transmitting the spread-spectrum service burst containing the specific control information to the downlink time slot via the downlink channel (eg, dedicated physical channel DPCH) Each user terminal in the middle.

當處於下行鏈路時隙中的一個使用者終端接收到基地台經由DPCH傳送的業務突發時,與偵測UE特定控制符號TFCI、SS和TPC的方法一樣,使用者終端首先偵測業務突發中是否包含ACN資訊,若包含ACN資訊,則提取啟動碼數目ACN,並根據ACN資訊,使用者終端為下一個TTI執行單使用者聯合偵測演算法作準備,即所提取的ACN資訊是下行鏈路時隙在下一個TTI中的啟動碼數目;若使用者終端接收到的業務突發中不包含ACN資訊,則表明啟動碼數目未發生變化,使用者終端可根據先前的啟動碼數目來執行 後續階段單使用者聯合偵測演算法。When a user terminal in the downlink time slot receives a service burst transmitted by the base station via the DPCH, the user terminal first detects the service burst as in the method of detecting the UE specific control symbols TFCI, SS, and TPC. Whether the ACN information is included in the transmission, if the ACN information is included, the activation code number ACN is extracted, and according to the ACN information, the user terminal prepares for the next TTI to perform a single user joint detection algorithm, that is, the extracted ACN information is The number of the start code of the downlink time slot in the next TTI; if the service burst received by the user terminal does not include the ACN information, the number of the start code does not change, and the user terminal can use the number of the previous start code. carried out A single-user joint detection algorithm in subsequent stages.

與上述採用ZF-BLE/MMSE-BLE演算法一樣,在上述偵測ACN資訊的步驟中偵測到的本發明之ACN資訊,也只能供使用者終端在下一個TTI執行單使用者聯合偵測演算法時使用,而最初的ACN資訊則可由基地台(在使用者終端與其建立通信鏈接之初)由基地台以初始化形式將最初的ACN資訊發送至使用者終端。As with the above-mentioned ZF-BLE/MMSE-BLE algorithm, the ACN information of the present invention detected in the above step of detecting ACN information can only be used by the user terminal to perform single-user joint detection in the next TTI. The algorithm is used, and the original ACN information can be sent by the base station to the user terminal in an initialized form by the base station (at the beginning of the communication link with the user terminal).

如上所述,當使用者終端偵測到網路系統在ACN資訊發生變化時,經由下行鏈路發送之變化的ACN資訊可利用接收到的ACN資訊執行MMSE-BLE-SD演算法。As described above, when the user terminal detects that the network system changes in the ACN information, the changed ACN information sent via the downlink can perform the MMSE-BLE-SD algorithm using the received ACN information.

按照本發明之上述方法,在通信過程中,當CAI資訊或ACN資訊發生變化時,基地台可將變化的CAI資訊或ACN資訊以特定控制資訊形式插入至相應業務突發中,以使得接收到此業務突發之使用者終端可根據CAI資訊或ACN資訊執行聯合偵測演算法,從而減少通信過程中的訊號干擾;而對於不處於通信過程中的使用者終端而言,例如正在建立通信鏈接或通信鏈接正切換至其他小區時,可將初始化之CAI資訊或ACN資訊作為資源分配訊息或切換命令訊息中的一部分發送至使用者終端,以使得使用者終端可根據該資源分配訊息或切換命令訊息中的CAI資訊或ACN資訊來執行聯合偵測演算法,從而減少通信建立時與小區切換過程中的訊號干擾。According to the above method of the present invention, when the CAI information or the ACN information changes during the communication process, the base station can insert the changed CAI information or the ACN information into the corresponding service burst in a specific control information form, so as to receive the The user terminal of the service burst can perform the joint detection algorithm according to the CAI information or the ACN information, thereby reducing the signal interference during the communication process; and for the user terminal not in the communication process, for example, the communication link is being established. Or when the communication link is being switched to another cell, the initialized CAI information or ACN information may be sent to the user terminal as part of the resource allocation message or the handover command message, so that the user terminal can allocate a message or a handover command according to the resource. The CAI information or ACN information in the message is used to perform the joint detection algorithm, thereby reducing signal interference during communication establishment and cell handover.

本發明的上述方法,不僅適用於低碼率之TD-SCDMA系統,而且適用於諸如3.84 M晶片/秒的高晶片速率系統以及 7.68 M晶片/秒的更高速率系統。The above method of the present invention is applicable not only to a low bit rate TD-SCDMA system but also to a high wafer rate system such as 3.84 M chips/sec and 7.68 M chip/sec higher rate system.

達成本發明將CAI資訊或ACN資訊以特定控制資訊的形式插入至業務突發中的方法以及在使用者終端中偵測和利用CAI資訊或ACN資訊的方法,不僅可由電腦軟體達成,也可由具有該軟體功能的電腦硬體模組達成,還可藉由軟硬體結合的方式達成。The method for inserting CAI information or ACN information into a service burst in the form of specific control information and the method for detecting and utilizing CAI information or ACN information in a user terminal can be achieved not only by computer software but also by The computer hardware module of the software function is achieved, and can also be achieved by a combination of software and hardware.

當本發明之支持下行鏈路聯合偵測的方法採用硬體模組達成時,網路系統與使用者終端之組合如圖9所示。其中與現有網路系統和使用者終端中相同的部件未在圖9中示出。When the method for supporting downlink joint detection of the present invention is implemented by using a hardware module, the combination of the network system and the user terminal is as shown in FIG. 9. The same components as those in the existing network system and user terminal are not shown in FIG.

當一處於啟動狀態之使用者終端離開一下行鏈路時隙、或一新使用者終端加入到一下行鏈路時隙中、或網路系統對一下行鏈路時隙中的碼資源進行重新分配時,網路系統100中的判斷單元101判斷下行鏈路時隙中的碼分配資訊(CAI)在下一TTI中會發生變化。插入單元102將變更後的碼分配資訊作為特定控制資訊插入至當前TTI中與下行鏈路時隙相對應之下行鏈路時隙之業務突發的一指定域中。接著,發送單元103將含有此特定控制資訊的業務突發經由一下行鏈路通道發送至處於下行鏈路時隙中的各個使用者終端。其中,初始程式碼分配資訊,是該網路系統在與一個使用者終端建立鏈接時,藉由發送單元103發送至該使用者終端的。When a user terminal in an activated state leaves the downlink time slot, or a new user terminal joins the downlink time slot, or the network system re-codes the code resources in the downlink time slot At the time of allocation, the judging unit 101 in the network system 100 judges that the code allocation information (CAI) in the downlink slot changes in the next TTI. The inserting unit 102 inserts the changed code allocation information as specific control information into a designated field of the traffic burst of the downlink time slot corresponding to the downlink time slot in the current TTI. Next, the transmitting unit 103 transmits the traffic burst containing the specific control information to each user terminal in the downlink time slot via the downlink channel. The initial code allocation information is sent to the user terminal by the sending unit 103 when the network system establishes a link with a user terminal.

使用者終端200中的接收單元201,在一個下行鏈路時隙中接收網路系統經由下行鏈路通道傳送的業務突發。偵測單元202,偵測該業務突發中是否包含該下行鏈路時隙在下 一個TTI中的碼分配資訊。若包含該碼分配資訊,則提取單元203,從業務突發中提取該碼分配資訊,供執行單元204,執行下一階段ZF-BLE或MMSE-BLE聯合偵測演算法。其中,初始的碼分配資訊,是接收單元201在與網路系統建立鏈接時,接收的來自網路系統的初始的碼分配資訊。The receiving unit 201 in the user terminal 200 receives the traffic burst transmitted by the network system via the downlink channel in one downlink time slot. The detecting unit 202 detects whether the downlink burst is included in the service burst. Code allocation information in a TTI. If the code allocation information is included, the extracting unit 203 extracts the code allocation information from the service burst, and the execution unit 204 performs the next stage ZF-BLE or MMSE-BLE joint detection algorithm. The initial code allocation information is the initial code allocation information received by the receiving unit 201 from the network system when establishing a link with the network system.

當一個處於啟動狀態的使用者終端離開一個下行鏈路時隙、或有一個新使用者終端加入到一個下行鏈路時隙中時,網路系統100中的判斷單元101,判斷該下行鏈路時隙中的處於啟動狀態的使用者碼數目(CAN)在下一個TTI中會發生變化。插入單元102,將該變更後的激活碼數目作為一個特定控制資訊插入到當前TTI中與該下行鏈路時隙相對應的下行鏈路時隙的業務突發的一個指定域中。然後,發送單元103,將含有該特定控制資訊的業務突發經由一個下行鏈路通道,發送至處於該下行鏈路時隙中的各個使用者終端。其中,當網路系統與一個使用者終端建立鏈接時,藉由發送單元103將初始處於啟動狀態的使用者碼數目發送至使用者終端。When a user terminal in an activated state leaves a downlink time slot or a new user terminal joins a downlink time slot, the determining unit 101 in the network system 100 determines the downlink. The number of user codes (CAN) in the active state in the time slot will change in the next TTI. The inserting unit 102 inserts the changed number of activation codes as a specific control information into a designated domain of the traffic burst of the downlink slot corresponding to the downlink slot in the current TTI. Then, the transmitting unit 103 transmits the service burst containing the specific control information to each user terminal in the downlink slot via one downlink channel. When the network system establishes a link with a user terminal, the sending unit 103 sends the number of user codes that are initially in the activated state to the user terminal.

使用者終端200中的接收單元201在一下行鏈路時隙中接收網路系統經由下行鏈路通道傳送的業務突發。偵測單元202偵測業務突發中是否包含下行鏈路時隙在下一TTI中處於啟動狀態的使用者碼數目(CAN)。若包含啟動使用者終端數目,則提取單元203,自業務突發中提取包含該啟動碼數目,供執行單元204執行下一階段MMSE-BLE-SD聯合偵測演算法。其中,初始處於激活狀態之使用者碼數目是接收 單元201在與網路系統建立鏈接時接收的來自網路系統之初始處於啟動狀態的使用者碼數目。The receiving unit 201 in the user terminal 200 receives a traffic burst transmitted by the network system via the downlink channel in a downlink time slot. The detecting unit 202 detects whether the service burst contains the number of user codes (CAN) in which the downlink time slot is in the startup state in the next TTI. If the number of the starting user terminals is included, the extracting unit 203 extracts the number of the starting code from the service burst, and the executing unit 204 performs the next stage MMSE-BLE-SD joint detecting algorithm. Wherein, the number of user codes that are initially active is received. The number of user codes initially received by the unit 201 from the network system when the unit 201 establishes a link with the network system.

有益效果:Beneficial effects:

藉由上述結合附圖對本發明實施例的描述,從中可以看到,在TDD CDMA通信系統中用於支持下行鏈路聯合偵測的本發明之方法及裝置,由於只有當個下行時隙中的CAI資訊或ACN資訊發生變化時,基地台才將變更後的CAI資訊或ACN資訊以特定控制資訊形式插入至業務突發中並經由專用實體通道發送至處於下行時隙中的各個使用者終端,從而避免了每個BCH重複週期均發送CAI資訊或ACN資訊時可能造成的BCH通道過載現象,也避免了若採用公共通道發送CAI資訊或ACN資訊時,處於其他時隙中之使用者終端讀取CAI資訊或ACN資訊帶來的不必要的運算和功率消耗。With the above description of the embodiments of the present invention in conjunction with the accompanying drawings, it can be seen that the method and apparatus of the present invention for supporting downlink joint detection in a TDD CDMA communication system are only in the downlink time slots. When the CAI information or the ACN information changes, the base station inserts the changed CAI information or ACN information into the service burst in the form of specific control information and sends it to each user terminal in the downlink time slot via the dedicated physical channel. Therefore, the BCH channel overload phenomenon that may be caused when the CAI information or the ACN information is sent in each BCH repetition period is avoided, and the user terminal in other time slots is read when the CAI information or the ACN information is sent through the common channel. Unnecessary calculations and power consumption caused by CAI information or ACN information.

同時,根據本發明在TDD CDMA通信系統中用於支持下行鏈路聯合偵測的方法及裝置,由於使用者終端可根據所接收到的業務突發中包含之CAI資訊或ACN資訊執行ZF-BLE/MMSE-BLE或MMSE-BLE-SD聯合偵測演算法,因此,可降低通信過程中的訊號干擾、提高使用者終端的通信品質。Meanwhile, the method and apparatus for supporting downlink joint detection in a TDD CDMA communication system according to the present invention, wherein the user terminal can perform ZF-BLE according to the CAI information or ACN information included in the received service burst. /MMSE-BLE or MMSE-BLE-SD joint detection algorithm, therefore, can reduce signal interference during communication and improve communication quality of user terminals.

此外,在TDD CDMA通信系統中用於支持下行鏈路聯合偵測的本發明之方法及裝置,不借助於訓練序列資訊傳遞碼,因此不受訓練序列與碼之間固定關係的限制,可適用於3GPP標準中各種訓練序列的分配方案。In addition, the method and apparatus of the present invention for supporting downlink joint detection in a TDD CDMA communication system does not rely on a training sequence information transfer code, and thus is not limited by a fixed relationship between a training sequence and a code, and is applicable. Allocation scheme for various training sequences in the 3GPP standard.

熟悉此項技術者應當理解,對上述本發明所公開的在TDD CDMA通信系統中用於支持下行鏈路聯合偵測的方法及裝置而言,還可在不脫離本發明內容的基礎上進行各種修改。因此,本發明之保護範圍應當由隨附申請專利範圍的內容確定。It should be understood by those skilled in the art that the method and apparatus for supporting downlink joint detection in the TDD CDMA communication system disclosed in the above-mentioned present invention can also be performed without departing from the content of the present invention. modify. Therefore, the scope of protection of the present invention should be determined by the content of the accompanying claims.

TS0-TS7‧‧‧業務間隙TS0-TS7‧‧‧ business gap

100‧‧‧網路系統100‧‧‧Network System

101‧‧‧判斷單元101‧‧‧judging unit

102‧‧‧插入單元102‧‧‧Insert unit

103‧‧‧發送單元103‧‧‧Send unit

200‧‧‧使用者終端200‧‧‧user terminal

201‧‧‧接收單元201‧‧‧ receiving unit

202‧‧‧偵測單元202‧‧‧Detection unit

203‧‧‧提取單元203‧‧‧ extraction unit

204‧‧‧執行單元204‧‧‧Execution unit

以下將結合附圖與實施例對本發明進行詳細描述,其中:圖1為傳統TD-SCDMA系統中使用之子訊框及時隙的結構圖;圖2為傳統TD-SCDMA系統中具有UE特定控制符號(symbol)之子訊框和時隙的結構圖;圖3為傳統TD-SCDMA系統中下行鏈路之時隙格式示意圖;圖4為根據本發明之TD-SCDMA系統、包含CAI或ACN資訊的修訂後之業務突發的結構圖;圖5為根據本發明之TD-SCDMA系統,碼分配資訊(CAI)的映射關係示意圖;圖6為根據本發明之TD-SCDMA系統、在插入了CAI資訊後之下行鏈路的時隙格式示意圖;圖7為根據本發明之TD-SCDMA系統,由ACN資訊表示的處於啟動狀態的使用者碼數目的示意圖;圖8為根據本發明之TD-SCDMA系統、在插入了ACN資訊後之下行鏈路的時隙格式示意圖;圖9為本發明在TDD CDMA通信系統中用於支持下行鏈 路聯合偵測的方法以硬體模組達成的方塊圖。The present invention will be described in detail below with reference to the accompanying drawings and embodiments, wherein: FIG. 1 is a structural diagram of a sub-frame and a time slot used in a conventional TD-SCDMA system; and FIG. 2 is a UE-specific control symbol in a conventional TD-SCDMA system ( FIG. 3 is a schematic diagram of a time slot format of a downlink in a conventional TD-SCDMA system; FIG. 4 is a modified version of a TD-SCDMA system including CAI or ACN according to the present invention; FIG. 5 is a schematic diagram of a mapping relationship of code allocation information (CAI) of a TD-SCDMA system according to the present invention; FIG. 6 is a TD-SCDMA system according to the present invention, after inserting CAI information Schematic diagram of the slot format of the downlink; FIG. 7 is a schematic diagram of the number of user codes in the activated state indicated by the ACN information in the TD-SCDMA system according to the present invention; FIG. 8 is a TD-SCDMA system according to the present invention. Schematic diagram of the slot format of the downlink after the ACN information is inserted; FIG. 9 is used to support the downlink in the TDD CDMA communication system according to the present invention; The method of joint detection of roads is a block diagram achieved by a hardware module.

(無元件符號說明)(no component symbol description)

Claims (20)

一種用以於TDD CDMA通信網路系統中支持下行鏈路聯合偵測的方法,該方法包括以下步驟:判斷一下行鏈路時槽中的碼分配資訊(CAI)在下一傳輸時間間隔(TTI)中是否改變,其中該判斷包含下列所述之判斷中之其中之一者:當至少一啟動中之使用者終端離開該下行鏈路時槽時,判斷該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,判斷該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新分配以達成該下行鏈路時槽中的資源優化組態時,判斷該CAI將要改變;以及當至少一啟動中之使用者終端執行一胞元交遞時,判斷該CAI將要改變;根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重分配該擴展碼資源;只有當該CAI改變時,將經變更後的CAI作為一特定控制資訊插入至對應於當前TTI的下行鏈路時槽之訊務 突發中的一指定域中,經變更之該CAI包含與使用該下行鏈路時槽之多個使用者終端之每一者相關之擴展碼資源,經變更之該CAI包含在該擴展碼資源經分配,重新分配或改正後之該CAI;將含有該特定控制資訊的該訊務突發經由一下行鏈路通道發送至處於該下行鏈路時槽中的各個使用者終端,其中發送至各個使用者終端之該訊務突發包含使用該下行鏈路時槽之所有該使用者終端相關之擴展碼資源。 A method for supporting downlink joint detection in a TDD CDMA communication network system, the method comprising the steps of: determining a code allocation information (CAI) in a slot at a next transmission time interval (TTI) Whether the change is made, wherein the judgment includes one of the following judgments: when at least one of the activated user terminals leaves the downlink time slot, determining that the CAI is to be changed; when at least one user terminal When the downlink time slot is added, it is judged that the CAI is to be changed; when the spreading code resource in the downlink time slot is to be reallocated to achieve the resource optimization configuration in the downlink time slot, the CAI is judged. To be changed; and when at least one of the initiating user terminals performs a cell handover, determining that the CAI is to be changed; modifying the spreading code resource according to the changed CAI, the modification of the spreading code resource includes: And correcting the spreading code resource when the at least one user terminal in the startup leaves the downlink time slot; and assigning the extended code when the at least one user terminal joins the downlink time slot And redistributing the extended code resource when redistributing to achieve an optimized configuration of the resource, or when the at least one activated user terminal performs a cell transfer; only when the CAI changes, the change is made The CAI is inserted as a specific control information into the downlink time slot corresponding to the current TTI. In a specified one of the bursts, the changed CAI includes a spreading code resource associated with each of a plurality of user terminals using the downlink time slot, and the changed CAI is included in the spreading code resource Assigning, reallocating or correcting the CAI; transmitting the traffic burst containing the specific control information to each user terminal in the downlink time slot via a downlink channel, where The traffic burst of the user terminal includes all the spreading code resources associated with the user terminal using the downlink time slot. 如請求項1之方法,進一步包括下一步驟:當該網路系統與一使用者終端建立鏈接時,該網路系統將初始碼分配資訊發送至該使用者終端。 The method of claim 1, further comprising the step of: when the network system establishes a link with a user terminal, the network system transmits initial code allocation information to the user terminal. 如請求項1之方法,其中該特定控制資訊使該下行鏈路時槽中的各使用者終端可以執行迫零分塊線性均衡(ZF-BLE)及最小均方誤差分塊線性均衡(MMSE-BLE)兩種聯合偵測方法中一者。 The method of claim 1, wherein the specific control information enables each user terminal in the downlink time slot to perform zero-forcing block linear equalization (ZF-BLE) and minimum mean square error block linear equalization (MMSE- BLE) One of two joint detection methods. 一種在TDD CDMA通信網路系統由使用者終端所執行的用於支持下行鏈路的聯合偵測的方法,該方法包含以下步驟:接收由該網路系統經由下行鏈路通道所傳送的於一下行鏈路時槽中之訊務突發;偵測包含於該訊務突發中之CAI是否於該下行鏈路時槽之下一TTI會改變,其中該偵測包含下列所述之偵測中之其中之一者: 當至少一啟動中之使用者終端離開該下行鏈路時槽時,偵測該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,偵測該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新分配以達成該下行鏈路時槽中的資源優化組態時,偵測該CAI將要改變;以及當至少一啟動中之使用者終端執行一胞元交遞時,偵測該CAI將要改變;根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重分配該擴展碼資源;只有當該訊務突發包含該CAI時,粹取該CAI,該CAI包含與使用該下行鏈路時槽之所有其他多個使用者終端相關之擴展碼資源,經粹取之該CAI包含在該擴展碼資源經分配,重分配或更正後之該CAI;並利用該CAI執行下一階段聯合偵測演算法以減少訊號干擾。 A method for supporting joint detection of a downlink performed by a user terminal in a TDD CDMA communication network system, the method comprising the steps of: receiving a transmission by the network system via a downlink channel A burst of traffic in the slot of the link; detecting whether the CAI included in the burst of traffic is changed by a TTI under the downlink slot, wherein the detection includes the detection described below One of them: Detecting that the CAI is to be changed when at least one of the activated user terminals leaves the downlink time slot; and detecting that the CAI is to be changed when at least one user terminal joins the downlink time slot; Retrieving the spreading code resource in the downlink time slot to achieve the resource optimized configuration in the downlink time slot, detecting that the CAI is to be changed; and when at least one of the initiating user terminals executes a cell At the time of handover, detecting that the CAI is to be changed; modifying the spreading code resource according to the changed CAI, the modification of the spreading code resource includes: when the at least one activated user terminal leaves the downlink slot Correcting the spreading code resource; assigning the spreading code resource when the at least one user terminal joins the downlink time slot; and reallocating the optimized configuration of the resource, or using the at least one startup Relocating the spreading code resource when the terminal performs a cell handover; only when the traffic burst includes the CAI, the CAI is extracted, and the CAI includes all other multiples of the slot when the downlink is used. Make The CAI after the relevant terminal of the spread code resources of the CAI by Cuiqu contained in the resource allocated spreading code, redistribution or corrections; and using the CAI to the next phase of the joint detection algorithm to reduce signal interference. 如請求項4之方法,進一步包括下一步驟:當該使用者終端與該網路系統建立鏈接時,該使用者 終端接收來自該網路系統之初始碼分配資訊。 The method of claim 4, further comprising the step of: when the user terminal establishes a link with the network system, the user The terminal receives initial code allocation information from the network system. 如請求項5之方法,其中該聯合偵測演算法為迫零分塊線性均衡(ZF-BLE)方法與最小均方誤差分塊線性均衡(MMSE-BLE)方法中的一者。 The method of claim 5, wherein the joint detection algorithm is one of a zero-forcing block linear equalization (ZF-BLE) method and a minimum mean square error block linear equalization (MMSE-BLE) method. 一種在TDD CDMA通信網路系統中用於支持下行鏈路的單使用者聯合偵測的方法,包括以下步驟:判斷一下行鏈路時槽中的啟動碼數目(ACN)在下一TTI中是否會改變,其中該判斷包含下列所述之判斷中之其中之一者:當至少一啟動中之使用者終端離開該下行鏈路時槽時,判斷該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,判斷該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新分配以達成該下行鏈路時槽中的資源優化組態時,判斷該CAI將要改變;以及當至少一啟動中之使用者終端執行一胞元交遞時,判斷該CAI將要改變;根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重分配該擴展 碼資源;只有當該啟動碼數目會改變時,則將變更後的啟動碼數目作為一特定控制資訊插入至對應於當前TTI的下行鏈路時槽之訊務突發的一指定域中,該ACN包含與使用該下行鏈路時槽之多個使用者終端相關之擴展碼資源,經變更之該CAI包含在該擴展碼資源經分配,重分配或更正後之該CAI;將含有該特定控制資訊的訊務突發經由下行鏈路通道發送至處於該下行鏈路時槽中的各個使用者終端,其中發送至該多個使用者終端之每一者之該訊務突發包含使用該下行鏈路時槽之所有該使用者終端相關之擴展碼資源。 A method for supporting single-user joint detection of a downlink in a TDD CDMA communication network system, comprising the steps of: determining whether the number of start codes (ACN) in a slot in a downlink time will be in a next TTI And wherein the determining comprises one of the following: determining that the CAI is to be changed when at least one of the initiating user terminals leaves the downlink slot; when at least one user terminal joins the When the downlink time slot is used, it is judged that the CAI is to be changed; when the spreading code resource in the downlink time slot is to be reallocated to achieve the resource optimization configuration in the downlink time slot, it is judged that the CAI is to be changed. And determining, when at least one of the initiating user terminals performs a cell handover, determining that the CAI is to be changed; modifying the spreading code resource according to the changed CAI, the modification of the spreading code resource comprising: when the at least one The spreading code resource is corrected when the user terminal in the startup leaves the downlink time slot; and the spreading code resource is allocated when the at least one user terminal joins the downlink time slot; Redistributing the extension when redistributing to achieve an optimized configuration of the resource, or when the at least one active user terminal performs a cell handover a code resource; if the number of the start code changes, the number of the changed start code is inserted as a specific control information into a specified domain of the traffic burst corresponding to the downlink time slot of the current TTI, The ACN includes a spreading code resource associated with a plurality of user terminals using the downlink time slot, the changed CAI including the CAI after the spreading code resource is allocated, reassigned, or corrected; the specific control will be included The information burst of the information is sent to each user terminal in the downlink time slot via the downlink channel, wherein the traffic burst sent to each of the plurality of user terminals includes using the downlink All the extension code resources associated with the user terminal in the link time slot. 如請求項7之方法,進一步包括下一步驟:當該網路系統與該使用者終端建立鏈接時,該網路系統將初始啟動碼數目發送至該使用者終端。 The method of claim 7, further comprising the step of: when the network system establishes a link with the user terminal, the network system transmits the initial number of activation codes to the user terminal. 如請求項8之方法,其中該特定控制資訊使於該下行鏈路時槽中的各使用者終端可執行一單使用者偵測的最小均方誤差分塊線性均衡(MMSE-BLE-SD)聯合偵測方法。 The method of claim 8, wherein the specific control information enables each user terminal in the downlink time slot to perform a single user-detected minimum mean square error block linear equalization (MMSE-BLE-SD) Joint detection method. 一種在TDD CDMA通信網路系統中由使用者終端執行的用於支持下行鏈路的單使用者聯合偵測的方法,該方法包括以下步驟:接收由該網路系統經由一下行鏈路時槽中之下行鏈路通道所傳送的訊務突發;偵測該訊務突發中是否包含該下行鏈路時槽在下一 TTI中的啟動碼數目(ACN),該ACN包含與使用該下行鏈路時槽之所有其他多數使用者終端相關之擴展碼資源,其中該偵測包含下列所述之偵測中之至少其中之一者:當至少一啟動中之使用者終端離開該下行鏈路時槽時,偵測該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,偵測該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新分配以達成該下行鏈路時槽中的資源優化組態時,偵測該CAI將要改變;以及當該至少一啟動中之使用者終端執行一胞元交遞時,偵測該CAI將要改變;根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重新分配該擴展碼資源;只有當該訊務突發包含該ACN時,粹取該ACN,經粹取之該CAI包含在該擴展碼資源經分配,重分配或更正後之該CAI;藉由使用該啟動碼數目執行下一階段單使用者聯合偵測演算法以減少訊號干擾。 A method for supporting single-user joint detection of a downlink performed by a user terminal in a TDD CDMA communication network system, the method comprising the steps of: receiving a time slot from the network system via a downlink a traffic burst transmitted by the lower downlink channel; detecting whether the downlink burst is included in the traffic burst The number of initiator codes (ACN) in the TTI, the ACN including spreading code resources associated with all other user terminals using the downlink slot, wherein the detection includes at least one of the following detections One: detecting that the CAI is to be changed when at least one of the activated user terminals leaves the downlink time slot; and detecting that the CAI is to be changed when at least one user terminal joins the downlink time slot; When the spreading code resource in the downlink time slot is to be reallocated to achieve the resource optimized configuration in the downlink time slot, detecting that the CAI is to be changed; and when the at least one activated user terminal When performing cell handover, detecting that the CAI is to be changed; modifying the spreading code resource according to the changed CAI, the modification of the spreading code resource includes: when the at least one activated user terminal leaves the downlink Correcting the spreading code resource when the time slot is used; assigning the spreading code resource when the at least one user terminal joins the downlink time slot; and reallocating the optimized configuration of the resource, or the When the user terminal in the startup performs a cell handover, the extension code resource is re-allocated; only when the traffic burst includes the ACN, the ACN is extracted, and the CAI extracted is included in the extension code. The resource is allocated, redistributed or corrected by the CAI; the next stage single-user joint detection algorithm is performed by using the number of the start code to reduce signal interference. 如請求項10之方法,其中在接收由該網路系統所傳送的訊務突發之步驟之前,當該使用者終端與該網路系統建立鏈接時,該使用者終端接收來自該網路系統之初始啟動碼數目。 The method of claim 10, wherein the user terminal receives the network system from the network system when the user terminal establishes a link with the network system before receiving the traffic burst transmitted by the network system The number of initial startup codes. 如請求項11之方法,其中該聯合偵測方法是一單使用者偵測的最小均方誤差分塊線性均衡(MMSE-BLE-SD)方法。 The method of claim 11, wherein the joint detection method is a single user-detected minimum mean square error block linear equalization (MMSE-BLE-SD) method. 一種用以支持下行鏈路聯合偵測的網路系統,其包含:一判斷單元,其組配以判斷一下行鏈路時槽中的碼分配資訊(CAI)在下一TTI中是否會改變,其中該判斷包含下列所述之判斷中之其中之一者:當至少一啟動中之使用者終端離開該下行鏈路時槽時,判斷該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,判斷該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新分配以達成該下行鏈路時槽中的資源優化組態時,判斷該CAI將要改變;以及當至少一啟動中之使用者終端執行一胞元交遞時,判斷該CAI將要改變;一資源單元,其組配以根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽 時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重分配該擴展碼資源;;一插入單元,其組配於只有當該碼分配資訊改變時,將該改變後的碼分配資訊作為一特定控制資訊插入至對應至當前TTI的下行鏈路時槽之訊務突發的一指定域中,經改變之該CAI包含與使用該下行鏈路時槽之多個使用者終端之每一者相關之擴展碼資源,經改變之該CAI包含在該擴展碼資源經分配,重分配或更正後之該CAI;一發送單元,其組配以將含有該特定控制資訊之訊務突發經由一下行鏈路通道發送至處於該下行鏈路時槽中的各個使用者終端,其中發送至各個使用者終端之該訊務突發包含使用該下行鏈路時槽之所有該使用者終端相關之擴展碼資源。 A network system for supporting downlink joint detection includes: a judging unit configured to determine whether a code allocation information (CAI) in a slot in a downlink time band changes in a next TTI, wherein The determining includes one of the following determinations: when at least one of the initiating user terminals leaves the downlink slot, determining that the CAI is to be changed; when at least one user terminal joins the downlink In the time slot, it is judged that the CAI is to be changed; when the spreading code resource in the downlink time slot is to be reallocated to achieve the resource optimization configuration in the downlink time slot, it is judged that the CAI is to be changed; When at least one of the initiating user terminals performs a cell handover, determining that the CAI is to be changed; a resource unit configured to modify the spreading code resource according to the changed CAI, the modification of the spreading code resource includes Transmitting the spreading code resource when the at least one active user terminal leaves the downlink time slot; when the at least one user terminal joins the downlink time slot Reassigning the spreading code resource when the extended code resource is allocated; and redistributing to achieve an optimized configuration of the resource, or when the at least one activated user terminal performs a cell handover; And the grouping is configured to insert the changed code allocation information as a specific control information into a specified domain of the traffic burst corresponding to the downlink time slot of the current TTI only when the code allocation information is changed. The changed CAI includes a spreading code resource associated with each of a plurality of user terminals using the downlink time slot, the changed CAI being included in the spreading code resource being allocated, redistributed or corrected The CAI; a sending unit, configured to send a traffic burst containing the specific control information to each user terminal in the downlink time slot via a downlink channel, where the sending is sent to each user The traffic burst of the terminal includes all the spreading code resources associated with the user terminal using the downlink time slot. 如請求項13之網路系統,其中該發送單元在與該使用者終端建立鏈接時將初始的碼分配資訊發送至該使用者終端。 The network system of claim 13, wherein the sending unit transmits initial code allocation information to the user terminal when establishing a link with the user terminal. 一種用以支持下行鏈路聯合偵測的使用者終端,其包含:一接收單元,其組配以接收由一網路系統經由在一下行鏈路時槽中之一下行鏈路通道所傳送的訊務突發;一偵測單元,其組配以偵測該訊務突發中是否包含該下行鏈路時槽在下一TTI中的碼分配資訊(CAI),該CAN包含與使用該下行鏈路時槽之所有其他多數使用者終端相關之擴展碼資源,其中該偵測包含下列所述之偵 測中之至少其中之一者:當至少一啟動中之使用者終端離開該下行鏈路時槽時,偵測該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,偵測該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新分配以達成該下行鏈路時槽中的資源優化組態時,偵測該CAI將要改變;以及當該至少一啟動中之使用者終端執行一胞元交遞時,偵測該CAI將要改變;一資源單元,其組配以根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重分配該擴展碼資源;一粹取單元,其組配以只有當該訊務突發包含該碼分配資訊時粹取該碼分配資訊,經粹取之該CAI包含在該擴展碼資源經分配,重分配或更正後之該CAI;一執行單元,其組配以藉由利用該碼分配資訊執行下一階段聯合偵測演算法以減少訊號干擾。 A user terminal for supporting downlink joint detection, comprising: a receiving unit configured to receive a downlink channel transmitted by a network system via a downlink time slot a traffic burst; a detecting unit configured to detect whether the traffic burst includes code allocation information (CAI) of the downlink time slot in a next TTI, the CAN includes and uses the downlink All other user terminal related spreading code resources of the time slot, wherein the detection includes the following detection At least one of the tests: detecting that the CAI is to be changed when at least one of the initiating user terminals leaves the downlink slot; and detecting when at least one user terminal joins the downlink slot Detecting that the CAI is to be changed; when the spreading code resource in the downlink time slot is to be reallocated to achieve a resource optimized configuration in the downlink time slot, detecting that the CAI is to be changed; and when the at least one When the user terminal in the startup performs a cell handover, it is detected that the CAI is to be changed; a resource unit is configured to modify the extension code resource according to the changed CAI, and the modification of the extension code resource includes: Correcting the spreading code resource when the at least one active user terminal leaves the downlink time slot; assigning the spreading code resource when the at least one user terminal joins the downlink time slot; and reallocating Re-allocating the spreading code resource when the optimized configuration of the resource is achieved, or when the user terminal in the at least one startup performs a cell handover; the culling unit is configured to only Hair bag The code allocation information is obtained by taking the code allocation information, and the CAI is included in the CAI after the extension code resource is allocated, re-allocated or corrected; an execution unit is configured to be allocated by using the code. The information performs the next phase of the joint detection algorithm to reduce signal interference. 如請求項15之使用者終端,其中該接收單元在與該網路系統建立鏈接時,接收來自該網路系統的初始碼分配資 訊。 The user terminal of claim 15, wherein the receiving unit receives an initial code allocation from the network system when establishing a link with the network system News. 一種用以支持下行鏈路單使用者聯合偵測的網路系統,其包含:一判斷單元,其組配以判斷一下行鏈路時槽中啟動碼數目(ACN)在下一TTI中是否會改變,其中該判斷包含下列所述之判斷中之其中之一者:當至少一啟動中之使用者終端離開該下行鏈路時槽時,判斷該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,判斷該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新分配以達成該下行鏈路時槽中的資源優化組態時,判斷該CAI將要改變;以及當至少一啟動中之使用者終端執行一胞元交遞時,判斷該CAI將要改變;一資源單元,其組配以根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重分配該擴展碼資源;一插入單元,其用於只有在該啟動碼數目發生變化時,將變更後的啟動碼數目作為一特定控制資訊插入對 應至當前TTI的下行鏈路時槽之訊務突發的一指定域中,該ACN包含與使用該下行鏈路時槽之多個使用者終端相關之擴展碼資源,經改變之該CAI包含在該擴展碼資源經分配,重分配或更正後之該CAI;一發送單元,其組配以將含有該特定控制資訊的訊務突發經由下行鏈路通道發送至處於該下行鏈路時槽中的各個使用者終端,其中發送至各個使用者終端之該訊務突發包含使用該下行鏈路時槽之所有該使用者終端相關之擴展碼資源。 A network system for supporting downlink single-user joint detection includes: a judging unit configured to determine whether the number of start codes (ACN) in the slot changes in the next TTI when the downlink is performed And the determining includes one of the following determinations: when at least one of the activated user terminals leaves the downlink time slot, determining that the CAI is to be changed; when at least one user terminal joins the downlink When the link time slot is determined, it is determined that the CAI is to be changed; when the spreading code resource in the downlink time slot is to be reallocated to achieve the resource optimized configuration in the downlink time slot, it is determined that the CAI is to be changed; And determining, when at least one of the initiating user terminals performs a cell handover, that the CAI is to be changed; a resource unit configured to modify the spreading code resource according to the changed CAI, the spreading code resource The modifying includes: correcting the spreading code resource when the at least one active user terminal leaves the downlink time slot; and assigning the expansion when the at least one user terminal joins the downlink time slot And re-allocating the extended code resource when the user terminal of the at least one activation performs a cell handover; and an insertion unit for only When the number of the startup code changes, the number of the changed startup code is inserted as a specific control information. In a specified domain of the traffic burst of the downlink time slot of the current TTI, the ACN includes a spreading code resource associated with a plurality of user terminals using the downlink time slot, and the changed CAI includes The CAI after the spreading code resource is allocated, reassigned or corrected; a transmitting unit configured to send a traffic burst containing the specific control information to the downlink slot through the downlink channel Each of the user terminals of the user terminal, wherein the traffic burst sent to each user terminal includes a spreading code resource associated with all of the user terminals using the downlink time slot. 如請求項17之網路系統,其中該發送單元在與該使用者終端建立鏈接時,將初始啟動碼數目發送至該使用者終端。 The network system of claim 17, wherein the sending unit sends the initial number of activation codes to the user terminal when establishing a link with the user terminal. 一種用以支持下行鏈路單使用者聯合偵測的使用者終端,其包括:一接收單元,其組配以接收由一網路系統經由一下行鏈路時槽中之下行鏈路通道傳送的一訊務突發;一偵測單元,其組配以偵測該訊務突發中是否包含該下行鏈路時槽在下一TTI中之啟動碼數目(ACN)其中該偵測包含下列所述之偵測中之至少其中之一者:當至少一啟動中之使用者終端離開該下行鏈路時槽時,偵測該CAI將要改變;當至少一使用者終端加入該下行鏈路時槽時,偵測該CAI將要改變;當要對下行鏈路時槽中之擴展碼資源進行重新 分配以達成該下行鏈路時槽中的資源優化組態時,偵測該CAI將要改變;以及當該至少一啟動中之使用者終端執行一胞元交遞時,偵測該CAI將要改變;一資源單元,其組配以根據經改變之該CAI來修改該擴展碼資源,該擴展碼資源之修改包含:當該至少一啟動中之使用者終端離開該下行鏈路時槽時,改正該擴展碼資源;當該至少一使用者終端加入該下行鏈路時槽時,分配該擴展碼資源;以及重新分配以達成該資源之優化組態時,或該至少一啟動中之使用者終端執行一胞元交遞時,重分配該擴展碼資源;一粹取單元,其組配以只有當該訊務突發包含該ACN時,粹取該ACN,該ACN包含與使用該下行鏈路時槽之其他所有多個使用者終端相關之擴展碼資源,經粹取之該CAI包含在該擴展碼資源經分配,重分配或更正後之該CAI;一執行單元,其組配以利用該啟動碼數目執行下一階段單使用者聯合偵測演算法以減少訊號干擾。 A user terminal for supporting downlink single-user joint detection includes: a receiving unit configured to receive a downlink channel transmitted by a network system via a downlink link a traffic burst; a detection unit configured to detect whether the traffic burst includes an activation code number (ACN) of the downlink time slot in a next TTI, wherein the detection includes the following At least one of the detections: detecting that the CAI is to be changed when at least one of the initiating user terminals leaves the downlink slot; when at least one user terminal joins the downlink slot , detecting that the CAI is going to change; when the extension code resource in the slot is to be re-established Detecting that the CAI is to be changed when the resource optimization configuration in the downlink time slot is reached; and detecting that the CAI is to be changed when the at least one activated user terminal performs a cell handover; a resource unit, configured to modify the spreading code resource according to the changed CAI, where the modification of the spreading code resource includes: when the at least one activated user terminal leaves the downlink time slot, correct the a spreading code resource; when the at least one user terminal joins the downlink time slot, allocating the spreading code resource; and reallocating to achieve an optimized configuration of the resource, or performing the at least one active user terminal When a cell is handed over, the spreading code resource is reassigned; a culling unit is configured to extract the ACN only when the traffic burst includes the ACN, and the ACN includes and uses the downlink a spreading code resource associated with all other user terminals of the slot, wherein the CAI is included in the CAI after the spreading code resource is allocated, re-allocated or corrected; an execution unit is configured to utilize the startup Number of codes The next stage single-line user joint detection algorithm to reduce signal interference. 如請求項19之使用者終端,其中該接收單元接收來自該網路系統的初始啟動碼數目。The user terminal of claim 19, wherein the receiving unit receives the initial number of activation codes from the network system.
TW93134025A 2004-11-05 2004-11-05 Method and apparatus for supporting joint detection in downlink utra tdd TWI389471B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93134025A TWI389471B (en) 2004-11-05 2004-11-05 Method and apparatus for supporting joint detection in downlink utra tdd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93134025A TWI389471B (en) 2004-11-05 2004-11-05 Method and apparatus for supporting joint detection in downlink utra tdd

Publications (2)

Publication Number Publication Date
TW200616469A TW200616469A (en) 2006-05-16
TWI389471B true TWI389471B (en) 2013-03-11

Family

ID=48471168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93134025A TWI389471B (en) 2004-11-05 2004-11-05 Method and apparatus for supporting joint detection in downlink utra tdd

Country Status (1)

Country Link
TW (1) TWI389471B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414870B (en) * 2007-10-15 2012-10-24 电信科学技术研究院 Descending control signaling, transmission method and apparatus for reference symbol

Also Published As

Publication number Publication date
TW200616469A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
EP1692776B1 (en) Method and apparatus for supporting downlink joint detection in tdd cdma systems
JP6018339B2 (en) System and method for improving network efficiency using VAMOS channels in multi-SIM devices
KR100890416B1 (en) Method and apparatus for estimating channelization codes in a wireless transmit/receive unit
EP1887818B1 (en) A joint detection(jd) method for adjacent cells in tdd-cdma system
US20080247337A1 (en) Method and Apparatus for Joint Detection in Downlink Tdd Cdma
JP2006197318A (en) Mobile radio communication system and radio communication apparatus
CN101272179A (en) Method for wireless communication, subscriber station and base station
AU5832200A (en) Method of identifying information addressed to a user in a communication system, and a communication system
JP2000315994A (en) Improvement of communication system using cdma
JP2004357326A (en) Method for displaying set of codes belonging to base station in time division duplex (tdd) communication system
MXPA05008761A (en) Channel estimation of a receiver multipath cdma signal.
WO2007047746A1 (en) Transmitting data on an uplink associated with multiple mobile stations in a spread spectrum cellular system
JP2008529387A (en) Method and apparatus for using varying lengths of training sequences in wireless communications.
TWI389471B (en) Method and apparatus for supporting joint detection in downlink utra tdd
WO2001099453A1 (en) Communication terminal apparatus, base station apparatus, and radio communication method
CN101098184A (en) Method and apparatus for eliminating interference between adjacent cells
KR100547787B1 (en) Apparatus and Method for Eliminating Interference Signals Using a Midamble by a Base Station Receiver in a Time Division-Code Division Multiple Access Mobile Communication System
CN101478327B (en) Method and system for transmitting data on uplink code channel
KR20050000201A (en) Method and apparatus for effective cancellation of adjacent cell ue interference on base station receiver in td-cdma mobile communication system
KR20010003026A (en) method of confirming a frame synchronization, which is used slot by slot correlation results

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees