TWI389457B - Double trigger logic circuit - Google Patents

Double trigger logic circuit Download PDF

Info

Publication number
TWI389457B
TWI389457B TW97139123A TW97139123A TWI389457B TW I389457 B TWI389457 B TW I389457B TW 97139123 A TW97139123 A TW 97139123A TW 97139123 A TW97139123 A TW 97139123A TW I389457 B TWI389457 B TW I389457B
Authority
TW
Taiwan
Prior art keywords
clock
signal input
pmos transistor
transistor
circuit
Prior art date
Application number
TW97139123A
Other languages
Chinese (zh)
Other versions
TW201015858A (en
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW97139123A priority Critical patent/TWI389457B/en
Publication of TW201015858A publication Critical patent/TW201015858A/en
Application granted granted Critical
Publication of TWI389457B publication Critical patent/TWI389457B/en

Links

Landscapes

  • Logic Circuits (AREA)
  • Manipulation Of Pulses (AREA)

Description

雙觸發邏輯電路 Double trigger logic

本創作係有關一種組合式的邏輯電路,尤其關於一種雙觸發邏輯電路。 This creation relates to a combined logic circuit, and more particularly to a dual trigger logic circuit.

數位系統越來越多元,如何降低晶片的功率消耗是當前的重大研究方向,在所有的數位同步系統中,通常使用一組或是多組時脈系統,再利用時脈信號來控制資料的移動,而時脈系統是由系統時脈(clock system)分佈網路及正反器所組成的,它是整個晶片最耗功率的部分,其中功率消耗可分為靜態功率消耗及動態功率消耗,動態功率消耗中又分為切換功率和短路電流功率消耗,而靜態功率消耗中多為漏電電流功率消耗。 Digital systems are becoming more and more diverse. How to reduce the power consumption of the chip is the current major research direction. In all digital synchronization systems, one or more sets of clock systems are usually used, and the clock signal is used to control the movement of data. The clock system is composed of a system clock distribution network and a flip-flop. It is the most power-consuming part of the entire chip. The power consumption can be divided into static power consumption and dynamic power consumption. Power consumption is divided into switching power and short-circuit current power consumption, while static power consumption is mostly leakage current power consumption.

降低功率的技術可分別針對降低靜態功率與降低動態功率,由於動態功耗一直都遠大於靜態功耗,所以我們設計之電路主要朝著降低動態功率消耗的目標去執行。其中降低功率消耗最有效的方式為降低操作電壓,但降低電壓隨之而來的問題是速度的下降,因此另一可行的方式是採用雙緣觸發的設計,如此可在不減低輸出產生率(throughput)的情況下,有效的降低功率,於是實際電路的組成上,我們採用了脈波觸發正反器的方式,以求進一步降低系統時脈的電路負載(loading capacitance)和功率消耗。 The technology to reduce power can be used to reduce static power and reduce dynamic power. Since dynamic power consumption is always much larger than static power consumption, the circuit we designed is mainly implemented to reduce the dynamic power consumption. The most effective way to reduce power consumption is to reduce the operating voltage, but the problem with lowering the voltage is the speed drop. Therefore, another feasible way is to use a dual-edge trigger design, so that the output yield can be reduced without In the case of throughput, the power is effectively reduced. Therefore, in the composition of the actual circuit, we use a pulse-triggered flip-flop to further reduce the loading capacitance and power consumption of the system clock.

請參閱「圖1、2」所示,為習知正反器之架構,其 由兩個栓鎖器組成,由時脈訊號之正/負緣控制資料取樣和資料保持的動作,如「圖1」中所示,主式栓鎖器(master latch)1做資料取樣的動作,僕式栓鎖器(slave latch)2做資料保持的動作,使用時,關於資料的移動,從一資料輸入端(Din)3到一資料輸出端(Qout)4是同步於一時脈信號輸入端(Clock)5的邊緣信號,而正緣觸發模式為只取樣該資料輸入端(Din)3於該時脈信號輸入端(Clock)5的正緣信號,而負緣觸發模式則取樣該資料輸入端(Din)3於該時脈信號輸入端(Clock)5的負緣信號,如此才能完成資料傳遞的工作,因此每一次傳送資料的變動狀態就必須要用到兩個時脈信號才能完成整個工作。 Please refer to the structure of the conventional flip-flop as shown in "Figures 1, 2". It consists of two latches, which control the data sampling and data retention by the positive/negative edge of the clock signal. As shown in Figure 1, the master latch 1 performs data sampling. , the slave lock (slave latch) 2 to do the data retention action, in use, about the movement of the data, from a data input (Din) 3 to a data output (Qout) 4 is synchronized with a clock signal input The edge signal of the block 5, and the positive edge trigger mode is to sample only the positive edge signal of the data input terminal (Din) 3 at the clock signal input terminal (Clock) 5, and the negative edge trigger mode samples the data. The input terminal (Din) 3 is at the negative edge signal of the clock signal input terminal (Clock) 5, so that the data transfer operation can be completed, so each time the data transmission state needs to use two clock signals to complete The whole job.

而「圖2」中所示,為「圖1」中正反器之時序圖,代表在一時脈信號6的正、負緣作一取樣資料(Sample Data)7與一保持資料8(Hold Data),但這就會產生一例如:訊號競賽(race trough)的問題,故應考慮時間條件,是否符合讓正反器維持正常工作之能力。 As shown in Figure 2, the timing diagram of the flip-flop in Figure 1 represents a sample data (Sample Data) 7 and a hold data 8 (Hold Data) on the positive and negative edges of a clock signal 6. ), but this will produce a problem such as a race trough, so the time conditions should be considered and whether it is in line with the ability to keep the flip-flops working properly.

而習知雙緣觸發正反器(double edge triggered flip flop,DETFF),意指它能在每一次傳送資料的變動狀態就只要用到一個時脈信號6就能完成整個傳送資料工作,典型的雙緣觸發正反器可以在時脈信號的正緣或負緣做儲存資料,但會有傳遞延遲時間較長,且該時脈信號輸入端(Clock)5所推動的電容負載較大,雖然還是可以在正緣或負緣的該時脈信號輸入端(Clock)5把資料儲存,因此該時脈信號輸入端(Clock)5為原始的時脈信號必須加以倍 頻而成為另一新的時脈信號,因此雙緣觸發正反器使用的時脈頻率是一般單緣觸發正反器時脈頻率的二分之一,但是可以達到相同的資料傳輸率,因為功率消耗與操作的時脈頻率成正比,所以其功率消耗也會跟著降低,因此雙緣觸發正反器常被提出使用在降低功率的設計。 The double edge triggered flip flop (DETFF) means that it can use the clock signal 6 to complete the entire data transmission work every time the data is transmitted. Typically, The double-edge triggering flip-flop can store data in the positive or negative edge of the clock signal, but there is a long transmission delay time, and the capacitive load pushed by the clock signal input terminal (Clock) 5 is large, although It is still possible to store the data at the clock signal input terminal (Clock) 5 of the positive or negative edge, so the clock signal input terminal (Clock) 5 must be doubled as the original clock signal. The frequency becomes another new clock signal, so the clock frequency used by the double-edge triggering flip-flop is one-half of the clock frequency of the general single-edge triggering flip-flop, but the same data transmission rate can be achieved because The power consumption is proportional to the clock frequency of the operation, so its power consumption will also decrease, so double-edge triggered flip-flops are often proposed for use in power-reduced designs.

而關於單緣觸發正反器與雙緣觸發正反器的比較上,由於雙緣觸發正反器的結構比較於單緣觸發正反器時是需要更為複雜的結構,不只是在使用了更大的晶片面積,同時更多的內部結點及交換電容,而減少降低頻率的好處。 Compared with the single-edge flip-flop and the double-edge flip-flop, the structure of the double-edge flip-flop is more complicated than the single-edge flip-flop. It is not only used. The larger the wafer area, the more internal junctions and the switching capacitors, while reducing the benefits of reduced frequency.

習知技術應用上,另發展出外加式脈波觸發型正反器(explicit-pulsed-triggered flip-flop)與嵌入式脈波觸發型正反器(IMPlicit-pulsed-triggered flip-flop),兩者均可再區分為單緣脈波觸發型和雙緣脈波觸發型正反器兩大類;外加式脈波觸發型正反器電路在多元串、並聯時,其脈波產生器電路是可以共用,而嵌入式脈波觸發型正反器此類電路之脈波產生器是無法共用的,所以外加式脈波觸發型正反器使得整體的功率消耗就可以被降低許多,但其在串、並聯時其脈波可能會因為負載電容太大,而導致脈波無法產生,所以外加式脈波觸發型正反器其優點並沒有嵌入式脈波觸發型正反器多,且因電路有明顯的脈波產生器所以會造成較多的能量消耗,嵌入式脈波觸發型正反器之工作頻率平均比外加式脈波觸發產生器來得要高。 In the application of the conventional technology, an additional explicit-pulsed-triggered flip-flop and an IMPlicit-pulsed-triggered flip-flop are developed. It can be divided into two types: single-edge pulse-trigger type and double-edge pulse-wave-type flip-flop. The external pulse-trigger type flip-flop circuit can be used in multi-string and parallel connection. Sharing, and the pulse wave generator of the embedded pulse-trigger type flip-flop is not shared, so the external pulse-trigger type flip-flop can reduce the overall power consumption, but it is in the string. When connected in parallel, the pulse wave may be too large, so the pulse wave cannot be generated. Therefore, the advantage of the external pulse-trigger type flip-flop has no embedded pulse-trigger type flip-flop, and the circuit has The obvious pulse generator will cause more energy consumption, and the operating frequency of the embedded pulse-triggered flip-flop is higher than that of the external pulse-trigger generator.

所以,脈波觸發型正反器因低複雜度的電路設計,使 其在暫存器的應用中越來越受歡迎;脈波產生器的另一個重要的特徵是控制它的操作模式,傳統的脈波產生器只能固定在一模式,或是請參閱「圖3」所示,為傳統雙模式的邏輯電路,其利用一MUX電路9A來控制兩個邏輯電路:一AND邏輯電路9B與一XNOR邏輯電路9C,再由一模式選擇信號輸入E對該MUX電路9A傳輸模式選擇信號,但其邏輯電路組成需要耗費許多的電晶體,儘管其電路組成方式簡單,但在一時脈信號輸入(CLK)9D上的負載電容卻相當大,而造成極大的功率消耗。 Therefore, the pulse-triggered flip-flop is designed due to the low complexity of the circuit design. It is becoming more and more popular in the application of the register; another important feature of the pulse generator is to control its operation mode. The traditional pulse generator can only be fixed in one mode, or please refer to Figure 3. As shown in the figure, it is a conventional dual mode logic circuit that uses a MUX circuit 9A to control two logic circuits: an AND logic circuit 9B and an XNOR logic circuit 9C, and a mode selection signal input E to the MUX circuit 9A. Transmission mode selection signal, but its logic circuit composition requires a lot of transistors, although its circuit composition is simple, but the load capacitance on a clock signal input (CLK) 9D is quite large, resulting in great power consumption.

而在關於低功率設計技術發展的同時,經常要求單脈波觸發或雙脈波觸發的觸發的模式必須有多種工作模式,例如,在數據通訊電路(data communication circuit)中在資料同步階段,可以透過雙緣觸發方式使其有效的工作的頻率加倍,一旦同步被達成,電路可以轉換成單緣觸發以降低有效時脈來減少功率消耗等等,過去若要設計此種電路,會設計兩種不同模式的脈波產生器電路,單緣脈波觸發之電路多用反相器加上AND或OR邏輯閘組成,來產生正或負脈波訊號;而雙緣脈波觸發電路則多用反相器加上XNOR邏輯閘和XOR邏輯閘組成,再利用另一MUX電路做選擇。 While the development of low-power design technology, it is often required that the mode of single-pulse or double-pulse triggering must have multiple modes of operation, for example, in the data communication circuit during the data synchronization phase. Double-edge triggering doubles the frequency of effective work. Once synchronization is achieved, the circuit can be converted to single-edge triggering to reduce the effective clock to reduce power consumption. In the past, if such a circuit was designed, two designs would be designed. Different mode pulse generator circuits, single-edge pulse-triggered circuits are mostly composed of inverters plus AND or OR logic gates to generate positive or negative pulse signals; and double-edge pulse trigger circuits use inverters. Add XNOR logic gate and XOR logic gate to form another selection of MUX circuit.

而習知關於邏輯電路的CMOS電路組成,其中XOR、XNOR、AND、OR和MUX的邏輯電路使用,儘管其電路組成方式簡單,可是卻另有臨界電壓衰退(threshold voltage loss)問題存在,此為當電路無法在低電壓動作,因此會 造成較多的功率消耗,由於有臨界電壓衰退(threshold voltage loss)問題,此問題會使電路出現驅動能力不足和短路電流的問題,故就習知技術研究來說,建立一訂製電路相當費時費工,且需要時間加以設計、執行、特性化以及整合,因此,期望提供一更佳的時序規格、最低功率消耗以提高處理速度。 The conventional CMOS circuit composition of logic circuits, in which the logic circuits of XOR, XNOR, AND, OR, and MUX are used, although the circuit composition is simple, but there is another threshold voltage loss problem, this is When the circuit can't operate at low voltage, it will This causes more power consumption. Due to the threshold voltage loss problem, this problem causes the circuit to have insufficient driving capability and short-circuit current. Therefore, in the case of conventional technology research, it is quite time-consuming to establish a custom circuit. It takes a lot of work, and it takes time to design, implement, characterize, and integrate. Therefore, it is desirable to provide a better timing specification and lowest power consumption to increase processing speed.

爰是,本創作的目的在於利用兩種邏輯電路以組成低複雜度的一種雙觸發邏輯電路。 Therefore, the purpose of this creation is to utilize two logic circuits to form a low-complexity dual-trigger logic circuit.

基於上述目的,本創作為一種雙觸發邏輯電路,其供一時脈信號輸入端與一時脈延遲信號輸入端連結設置,其包含有:一第一PMOS電晶體、一第二PMOS電晶體、一第一NMOS電晶體、一第二NMOS電晶體與一第三PMOS電晶體。 Based on the above object, the present invention is a dual-trigger logic circuit, which is provided with a clock signal input terminal and a clock delay signal input terminal, and includes: a first PMOS transistor, a second PMOS transistor, and a first An NMOS transistor, a second NMOS transistor and a third PMOS transistor.

該第一PMOS電晶體與一模式選擇信號輸入E連結,該第一PMOS電晶體與該時脈延遲信號輸入端連結,該第二PMOS電晶體與該第一PMOS電晶體連結,該第二PMOS電晶體與該時脈信號輸入端連結,該第一NMOS電晶體與該第一PMOS電晶體連結,該第二NMOS電晶體與該時脈信號輸入端A連結,且該第二NMOS電晶體與一第三PMOS電晶體耦接,該第二PMOS電晶體、該第一NMOS電晶體、該第二NMOS電晶體與該第三PMOS電晶體經連結設置並產生輸出訊號。 The first PMOS transistor is coupled to a mode select signal input E, the first PMOS transistor is coupled to the clock delay signal input terminal, and the second PMOS transistor is coupled to the first PMOS transistor, the second PMOS transistor The transistor is coupled to the clock signal input end, the first NMOS transistor is coupled to the first PMOS transistor, the second NMOS transistor is coupled to the clock signal input terminal A, and the second NMOS transistor is coupled to A third PMOS transistor is coupled to the second PMOS transistor, the first NMOS transistor, the second NMOS transistor, and the third PMOS transistor are coupled to each other to generate an output signal.

藉由上述技術方案,本創作為一種雙觸發邏輯電路具有下列優點: With the above technical solution, the present invention is a dual trigger logic circuit having the following advantages:

一、這樣的組合邏輯電路,透過少數的電晶體設計為 邏輯閘,一方面減少電子元件的使用,以低複雜度以降低時脈系統的負載電容設計,可大幅減少電力的消耗,另一方面為雙重操作模式,不被局限於某一種使用要求。 First, such a combinational logic circuit is designed through a small number of transistors Logic gates, on the one hand, reduce the use of electronic components, with low complexity to reduce the load capacitance design of the clock system, can greatly reduce power consumption, and on the other hand, the dual operation mode is not limited to a certain use requirement.

二、本創作為了降低其電路之複雜度,並無電源直接到地的路徑,所以當電晶體在轉換的過渡期間不會產生明顯的短路電流,而造成功率消耗,利用XNOR和AND邏輯電路的運作差異來當作控制模式的選擇線,藉以去掉習知技術的該MUX電路,這樣可以使其延遲時間更為降低,並使得功率延遲積(power-delay-product,PDP)也跟著下降許多。 Second, in order to reduce the complexity of the circuit, there is no power supply to the ground path, so when the transistor does not generate obvious short-circuit current during the transition of the conversion, resulting in power consumption, using XNOR and AND logic The difference in operation is used as a selection line for the control mode, so that the MUX circuit of the prior art is removed, which can reduce the delay time and make the power-delay-product (PDP) decrease a lot.

茲有關本創作的詳細內容及技術說明,現以實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本創作實施之限制。 The detailed description of the present invention and the technical description thereof are now described in the following examples, but it should be understood that these examples are for illustrative purposes only and are not to be construed as limiting.

請參閱「圖4」所示,本創作為一種雙觸發邏輯電路,其供一時脈信號輸入端A與一時脈延遲信號輸入端B連結設置,其包含有:一第一PMOS電晶體P1、一第二PMOS電晶體P2、一第一NMOS電晶體N1、一第二NMOS電晶體N2與一第三PMOS電晶體P3。 Please refer to FIG. 4 , which is a dual-trigger logic circuit for connecting a clock signal input terminal A and a clock delay signal input terminal B, which includes: a first PMOS transistor P1, a The second PMOS transistor P2, a first NMOS transistor N1, a second NMOS transistor N2 and a third PMOS transistor P3.

該第一PMOS電晶體P1的源極與一模式選擇信號輸入E連結,該第一PMOS電晶體P1以其閘極與該時脈延遲信號輸入端B連結,該第二PMOS電晶體P2的源極與該第一PMOS電晶體P1的汲極連結,該第二PMOS電晶體之閘極與該時脈信號輸入端A連結,該第一NMOS電晶體N1以其閘極與該第一 PMOS電晶體P1的閘極連結,該第二NMOS電晶體N2以其閘極與該時脈信號輸入端A連結,且該第二NMOS電晶體N2與一第三PMOS電晶體P3耦接,該第二PMOS電晶體P2的汲極、該第一NMOS電晶體N1汲極、該第二NMOS電晶體N2的汲極與該第三PMOS電晶體P3的源極經連結設置並產生輸出訊號。 The source of the first PMOS transistor P1 is coupled to a mode selection signal input E. The first PMOS transistor P1 is coupled to the clock delay signal input terminal B by a gate thereof, and the source of the second PMOS transistor P2. The pole is connected to the drain of the first PMOS transistor P1, and the gate of the second PMOS transistor is coupled to the clock signal input terminal A. The first NMOS transistor N1 has its gate and the first The gate of the PMOS transistor P1 is coupled to the second NMOS transistor N2. The second NMOS transistor N2 is coupled to the clock signal input terminal A, and the second NMOS transistor N2 is coupled to a third PMOS transistor P3. The drain of the second PMOS transistor P2, the drain of the first NMOS transistor N1, the drain of the second NMOS transistor N2 and the source of the third PMOS transistor P3 are connected and generate an output signal.

另,在該時脈延遲信號輸入端B前方設置有至少一第一反相器10,該至少一反相器10於本創作設置數量為3個,該些反相器10之間與該第三PMOS電晶體P3連結設置。 In addition, at least one first inverter 10 is disposed in front of the clock delay signal input terminal B, and the number of the at least one inverter 10 is set to three in the original creation, and the inverters 10 and the first The three PMOS transistors P3 are connected.

請再一併參閱「圖5」所示,為AND與XNOR的真值表,本創作為了降低電路複雜度,藉由觀察AND和XNOR真值表,發現兩者之差別只在於當該時脈信號輸入端A與該時脈延遲信號輸入端B的信號輸入同時為「0」時,AND輸出為「0」而XNOR輸出為「1」,便可利用此差異來當作該模式選擇信號輸入E的控制選擇方式。 Please refer to Figure 5 again for the truth table of AND and XNOR. In order to reduce the circuit complexity, by observing the AND and XNOR truth tables, the difference between the two is only when the clock is used. When the signal input terminal A and the signal input terminal B of the clock delay signal input terminal are both "0", the AND output is "0" and the XNOR output is "1", and the difference can be used as the mode selection signal input. E's control selection method.

請再參閱「圖6」所示,係為參考「圖5」而設計的AND/XNOR邏輯電路圖,此電路設計當中並無電源直接到地的路徑,所以在轉換過渡期間不會因為明顯的短路電流而造成功率消耗,且於「圖6」電路圖也去掉習知「圖3」中的該MUX電路9A,這樣可以使其延遲時間更為降低,並使得功率延遲積(power-delay-product,PDP)也跟著下降許多,但仍具有其缺點;請同時參閱「圖5、6」所示,當該時脈信號輸入端A、該時脈延遲信號輸入端B與該模式選擇信號輸入E的輸入信號為「000、011、111」此三種情況時,輸出還是會有臨界電壓衰退 (threshold voltage loss)的問題存在,當電路應用於脈波產生器時,其中「011和111」這兩種狀況式產生在時脈正緣「0→1」時,請參閱「圖7」所示,此問題只要在「圖7」中多加一第二反相器20和一電晶體30便可解決,其係為解決臨界電壓衰退的電路圖,若此電路應用在一脈波產生器(圖未示)時,當該時脈信號輸入端A、該時脈延遲信號輸入端B與該模式選擇信號輸入E的輸入信號的EAB為「000」時,電路並不用產生脈波訊號,因此輸入訊號之問題不會影響到該脈波產生器的電路,所以當與該脈波產生器連結,因為脈波變得較窄,所以短路電流所造成的功率消耗也會降低,而沒有臨界電壓衰退(threshold voltage loss)的問題。 Please refer to Figure 6 for the AND/XNOR logic circuit diagram designed with reference to Figure 5. There is no power supply to the ground path in this circuit design, so there will be no obvious short circuit during the transition. The current causes power consumption, and the circuit diagram of Fig. 6 also removes the MUX circuit 9A in the conventional "Fig. 3", so that the delay time can be further reduced and the power delay product (power-delay-product, PDP) also drops a lot, but still has its shortcomings; please also refer to "Figure 5, 6", when the clock signal input terminal A, the clock delay signal input terminal B and the mode selection signal input E When the input signal is "000, 011, 111", the output will still have a threshold voltage decay. The problem of threshold voltage loss exists. When the circuit is applied to the pulse generator, when the two states "011 and 111" are generated at the positive edge of the clock, "0→1", please refer to "Figure 7". It can be seen that this problem can be solved by adding a second inverter 20 and a transistor 30 in "FIG. 7", which is a circuit diagram for solving the threshold voltage decay, if the circuit is applied to a pulse generator (Fig. When not shown, when the EAB of the input signal of the clock signal input terminal A, the clock delay signal input terminal B and the mode selection signal input E is "000", the circuit does not generate a pulse wave signal, so the input The problem of the signal does not affect the circuit of the pulse generator, so when connected to the pulse generator, since the pulse wave becomes narrower, the power consumption caused by the short-circuit current is also reduced, and there is no threshold voltage decay. (threshold voltage loss) problem.

於是,再請同時參閱「圖4、7」中,「圖7」中所增加的該第二反相器20其實是可以被「圖4」中的該第一反相器10所取代的,所以實際上共只需如「圖4」中的五個電晶體來組成雙模式邏輯電路,本創作再由3個該第一反相器10作為時脈延遲功能並配合「圖7」的電路圖所組成,即為「圖4」雙模式邏輯電路,其電路之布林代數式如下: Therefore, please refer to "Fig. 4, 7" at the same time, and the second inverter 20 added in "Fig. 7" can be replaced by the first inverter 10 in "Fig. 4". Therefore, in fact, only five transistors in "Figure 4" are required to form a dual-mode logic circuit. In this creation, three first inverters 10 are used as the clock delay function and the circuit diagram of "FIG. 7" is used. The composition is the "Figure 4" dual-mode logic circuit, and the circuit's Boolean algebra is as follows:

實施例: Example:

請配合同時參閱「圖5、8」為例,「圖8」中的一時脈輸入信號CLK、一時脈延遲輸入信號CLKD與該模式選 擇信號輸入E1對照於「圖5」中的該時脈信號輸入端A、該時脈延遲信號輸入端B與該模式選擇信號輸入E的輸入信號,其利用本創作設置為一雙脈波模式觸發正反器的電路圖,其電路實施動作為: Please refer to "Figures 5 and 8" as an example. One clock input signal CLK, one clock delay input signal CLKD and the mode selection in Figure 8 The selection signal input E1 is compared with the input signal of the clock signal input terminal A, the clock delay signal input terminal B and the mode selection signal input E in "Fig. 5", which is set to a double pulse mode by using the original creation. The circuit diagram of the flip-flop is triggered, and the circuit implementation action is:

(1)當一模式選擇信號輸入E1為“1”(雙緣脈波觸發產生模式):a.一時脈輸入信號CLK和一時脈延遲輸入信號CLKD均為“0”時(該時脈輸入信號CLK的下降緣):一第一電晶體MP1與一第二電晶體MP2為ON狀態,其產生脈波訊號Pulse為“1”,以導通一栓鎖器40,並將資料由一資料輸入端50傳至一資料輸出端60;b.該時脈輸入信號CLK和該時脈延遲輸入信號CLKD均為“1”時(該時脈輸入信號CLK的上升緣):一第三電晶體MN1、一第四電晶體MN2與一第五電晶體MP3為ON狀態,則產生該脈波訊號Pulse為“1”,以導通該栓鎖器40,並將資料由一資料輸入端50傳至一資料輸出端60;c.該時脈輸入信號CLK和該時脈延遲輸入信號CLKD為“01”或“10”時(該時脈輸入信號CLK為固定時):該第三電晶體MN1或該第四電晶體MN2為ON狀態,則脈波訊號Pulse為“0”(無脈波產生),該栓鎖器40由其一第三反相器70配合兩電晶體以維持該資料輸出端60的電壓。 (1) When a mode selection signal input E1 is "1" (double edge pulse trigger generation mode): a. When a clock input signal CLK and a clock delay input signal CLKD are both "0" (the clock input signal) CLK falling edge): a first transistor MP1 and a second transistor MP2 are in an ON state, which generates a pulse signal Pulse of "1" to turn on a latch 40, and the data is input from a data input terminal. 50 is transmitted to a data output terminal 60; b. when the clock input signal CLK and the clock delay input signal CLKD are both "1" (the rising edge of the clock input signal CLK): a third transistor MN1 When a fourth transistor MN2 and a fifth transistor MP3 are in an ON state, the pulse signal Pulse is generated to be "1" to turn on the latch 40, and the data is transmitted from a data input terminal 50 to a data. The output terminal 60; c. the clock input signal CLK and the clock delay input signal CLKD are "01" or "10" (when the clock input signal CLK is fixed): the third transistor MN1 or the first When the fourth transistor MN2 is in the ON state, the pulse signal Pulse is "0" (no pulse generation), and the latch 40 is matched by a third inverter 70 thereof. Transistor to maintain the voltage of the output terminal 60 of the information.

(2)當該模式選擇信號輸入E1為“0”(單緣脈波觸發產生模式):a.該時脈輸入信號CLK和該時脈延遲輸入信號CLKD均為“0”時(該時脈輸入信號CLK的下降緣):該第一電晶體MP1與該第二電晶體MP2為ON狀態,則脈波訊號Pulse為“0”(無脈波產生),該栓鎖器40由該第三反相器70作電路回授動作以維持該資料輸出端60的電壓;b.該時脈輸入信號CLK和該時脈延遲輸入信號CLKD均為“1”時(該時脈輸入信號CLK的上升緣):該第三電晶體MN1、該第四電晶體MN2與該第五電晶體MP3為ON狀態,脈波訊號Pulse為“1”(脈波產生),並導通該栓鎖器40,並將資料由該資料輸入端50傳至該資料輸出端60;c.該時脈輸入信號CLK和該時脈延遲輸入信號CLKD為“01”或“10”時(該時脈輸入信號CLK為固定時):該第三電晶體MN1或該第四電晶體MN2為ON狀態,脈波訊號Pulse為“0”(無脈波產生),該栓鎖器40由該第三反相器70作電路回授維持該資料輸出端60的電壓。 (2) When the mode selection signal input E1 is "0" (single edge pulse wave generation mode): a. when the clock input signal CLK and the clock delay input signal CLKD are both "0" (the clock) The falling edge of the input signal CLK: the first transistor MP1 and the second transistor MP2 are in an ON state, and the pulse signal Pulse is "0" (no pulse generation), and the latch 40 is the third The inverter 70 performs a circuit feedback operation to maintain the voltage of the data output terminal 60. b. When the clock input signal CLK and the clock delay input signal CLKD are both "1" (the rise of the clock input signal CLK) The third transistor MN1, the fourth transistor MN2 and the fifth transistor MP3 are in an ON state, the pulse signal Pulse is "1" (pulse generation), and the latch 40 is turned on, and Data is transmitted from the data input terminal 50 to the data output terminal 60; c. when the clock input signal CLK and the clock delay input signal CLKD are "01" or "10" (the clock input signal CLK is fixed) Time): the third transistor MN1 or the fourth transistor MN2 is in an ON state, the pulse signal Pulse is "0" (no pulse generation), and the latch 40 is caused by the third counter The phaser 70 acts as a circuit to maintain the voltage at the data output 60.

綜上所述,我們提出使用AND-XNOR邏輯模組之雙觸發 型邏輯電路,其能夠支援兩種脈波觸發模式:單緣觸發(single-edge triggered)和雙緣觸發(double-edge triggered),且在使用電晶體數和佈局面積上均節省許多,所以本創作能夠達到高速且低電力的操作期待,因此不論是在產業界推廣或應用,其後續產生的巨大效益,希望能為電子業界盡一己之力。 In summary, we propose dual triggering using AND-XNOR logic modules. Type logic circuit capable of supporting two pulse trigger modes: single-edge triggered and double-edge triggered, and saves a lot in using the number of transistors and layout area, so this Creation can achieve high-speed and low-power operation expectation, so whether it is promoted or applied in the industry, the subsequent huge benefits will hope to do its part for the electronics industry.

惟上述僅為本創作之較佳實施例而已,並非用來限定本創作實施之範圍。即凡依本創作申請專利範圍所做的均等變化與修飾,皆為本創作專利範圍所涵蓋。 However, the foregoing is only a preferred embodiment of the present invention and is not intended to limit the scope of the present invention. That is, the equal changes and modifications made by the patent application scope of this creation are covered by the scope of the creation patent.

習知部份: Conventional part:

1‧‧‧主式栓鎖器(master latch) 1‧‧‧Master lock (master latch)

2‧‧‧僕式栓鎖器(slave latch) 2‧‧‧servant latch (slave latch)

3‧‧‧資料輸入端(Din) 3‧‧‧Data input (Din)

4‧‧‧資料輸出端(Qout) 4‧‧‧ Data output (Qout)

5‧‧‧時脈信號輸入端(Clock) 5‧‧‧clock signal input (Clock)

6‧‧‧時脈信號 6‧‧‧ clock signal

7‧‧‧取樣資料(Sample Data) 7‧‧‧Sampling data (Sample Data)

8‧‧‧保持資料(Hold Data) 8‧‧‧Hold Data

9A‧‧‧MUX電路 9A‧‧‧MUX circuit

9B‧‧‧AND邏輯電路 9B‧‧‧AND logic circuit

9C‧‧‧XNOR邏輯電路 9C‧‧‧XNOR logic circuit

9D‧‧‧時脈信號輸入(CLK) 9D‧‧‧clock signal input (CLK)

E‧‧‧模式選擇信號輸入 E‧‧‧ mode selection signal input

本創作部份: This creative part:

10‧‧‧第一反相器 10‧‧‧First Inverter

20‧‧‧第二反相器 20‧‧‧Second inverter

30‧‧‧電晶體 30‧‧‧Optoelectronics

40‧‧‧栓鎖器 40‧‧‧Locker

50‧‧‧資料輸入端 50‧‧‧ data input

60‧‧‧資料輸出端 60‧‧‧ data output

70‧‧‧第三反相器 70‧‧‧ third inverter

A‧‧‧時脈信號輸入端 A‧‧‧ clock signal input

B‧‧‧時脈延遲信號輸入端 B‧‧‧clock delay signal input

C‧‧‧訊號線 C‧‧‧ signal line

CLK‧‧‧時脈輸入信號 CLK‧‧‧ clock input signal

CLKD‧‧‧時脈延遲輸入信號 CLKD‧‧‧ clock delay input signal

Pulse‧‧‧脈波訊號 Pulse‧‧‧ Pulse Signal

E‧‧‧模式選擇信號輸入 E‧‧‧ mode selection signal input

E1‧‧‧模式選擇信號輸入 E1‧‧‧ mode selection signal input

P1‧‧‧第一PMOS電晶體 P1‧‧‧First PMOS transistor

P2‧‧‧第二PMOS電晶體 P2‧‧‧Second PMOS transistor

P3‧‧‧第三PMOS電晶體 P3‧‧‧ Third PMOS transistor

N1‧‧‧第一NMOS電晶體 N1‧‧‧First NMOS transistor

N2‧‧‧第二NMOS電晶體 N2‧‧‧Second NMOS transistor

MP1‧‧‧第一電晶體 MP1‧‧‧first transistor

MP2‧‧‧第二電晶體 MP2‧‧‧second transistor

MN1‧‧‧第三電晶體 MN1‧‧‧ third transistor

MN2‧‧‧第四電晶體 MN2‧‧‧4th transistor

MP3‧‧‧第五電晶體 MP3‧‧‧ fifth transistor

圖1係習知正反器示意圖。 Figure 1 is a schematic diagram of a conventional flip-flop.

圖2係習知主僕式正反器之時序圖。 Figure 2 is a timing diagram of a conventional master-servant flip-flop.

圖3係傳統雙模式的邏輯電路示意圖。 Figure 3 is a schematic diagram of a conventional dual mode logic circuit.

圖4係本創作之一種雙觸發邏輯電路的電路圖。 Figure 4 is a circuit diagram of a dual trigger logic circuit of the present invention.

圖5係為AND和XNOR真值表。 Figure 5 is an AND and XNOR truth table.

圖6係依據AND和XNOR真值表而設計之AND/XNOR邏輯電路示意圖。 Figure 6 is a schematic diagram of an AND/XNOR logic circuit designed according to the AND and XNOR truth tables.

圖7係為解決臨界電壓衰退的電路圖。 Figure 7 is a circuit diagram for solving the threshold voltage decay.

圖8係本創作設置為一雙脈波模式觸發正反器的電路圖。 Figure 8 is a circuit diagram of the creation of a dual pulse mode trigger flip-flop.

10‧‧‧第一反相器 10‧‧‧First Inverter

A‧‧‧時脈信號輸入端 A‧‧‧ clock signal input

B‧‧‧時脈延遲信號輸入端 B‧‧‧clock delay signal input

P1‧‧‧第一PMOS電晶體 P1‧‧‧First PMOS transistor

P2‧‧‧第二PMOS電晶體 P2‧‧‧Second PMOS transistor

N1‧‧‧第一NMOS電晶體 N1‧‧‧First NMOS transistor

N2‧‧‧第二NMOS電晶體 N2‧‧‧Second NMOS transistor

P3‧‧‧第三PMOS電晶體 P3‧‧‧ Third PMOS transistor

C‧‧‧訊號線 C‧‧‧ signal line

E‧‧‧模式選擇信號輸入 E‧‧‧ mode selection signal input

Claims (5)

一種雙觸發邏輯電路,其供一時脈信號輸入端與一時脈延遲信號輸入端連結設置,其包含有:一第一PMOS電晶體,該第一PMOS電晶體的源極與一模式選擇信號輸入E連結,該第一PMOS電晶體以其閘極與該時脈延遲信號輸入端連結;一第二PMOS電晶體,該第二PMOS電晶體的源極與該第一PMOS電晶體的汲極連結,該第二PMOS電晶體之閘極與該時脈信號輸入端連結;一第一NMOS電晶體,該第一NMOS電晶體以其閘極與該第一PMOS電晶體的閘極連結;以及一第二NMOS電晶體,該第二NMOS電晶體以其閘極與該時脈信號輸入端連結,且該第二NMOS電晶體與一第三PMOS電晶體耦接,該第二PMOS電晶體的汲極、該第一NMOS電晶體汲極、該第二NMOS電晶體的汲極與該第三PMOS電晶體的源極經連結設置並產生輸出訊號。 A dual-trigger logic circuit for connecting a clock signal input end and a clock delay signal input end, comprising: a first PMOS transistor, a source of the first PMOS transistor and a mode selection signal input E Connecting, the first PMOS transistor is coupled to the clock-delay signal input terminal by a gate thereof; and a second PMOS transistor, a source of the second PMOS transistor is coupled to a drain of the first PMOS transistor, a gate of the second PMOS transistor is coupled to the clock signal input terminal; a first NMOS transistor having a gate coupled to a gate of the first PMOS transistor; and a first a second NMOS transistor, the second NMOS transistor is coupled to the clock signal input terminal, and the second NMOS transistor is coupled to a third PMOS transistor, and the second PMOS transistor has a drain The first NMOS transistor drain, the drain of the second NMOS transistor and the source of the third PMOS transistor are connected and generate an output signal. 如申請專利範圍第1項所述之雙觸發邏輯電路,其中時脈信號輸入端A連結設置於正反器、加法器與多工器、栓鎖器、暫存器與計數器之任一種。 The dual-trigger logic circuit of claim 1, wherein the clock signal input terminal A is connected to any one of a flip-flop, an adder and a multiplexer, a latch, a register, and a counter. 如申請專利範圍第1項所述之雙觸發邏輯電路,其中時脈信號輸入端與該時脈延遲信號輸入端之間設置有至少一反相器。 The dual-trigger logic circuit of claim 1, wherein at least one inverter is disposed between the clock signal input end and the clock delay signal input end. 如申請專利範圍第3項所述之雙觸發邏輯電路,其中該至少一反相器最佳設置數量為3個。 The dual-trigger logic circuit of claim 3, wherein the optimal number of the at least one inverter is three. 如申請專利範圍第4項所述之雙觸發邏輯電路,其中該些反相器之間以一訊號線C連結該第三PMOS電晶體。 The dual-trigger logic circuit of claim 4, wherein the third PMOS transistor is coupled between the inverters by a signal line C.
TW97139123A 2008-10-13 2008-10-13 Double trigger logic circuit TWI389457B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97139123A TWI389457B (en) 2008-10-13 2008-10-13 Double trigger logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97139123A TWI389457B (en) 2008-10-13 2008-10-13 Double trigger logic circuit

Publications (2)

Publication Number Publication Date
TW201015858A TW201015858A (en) 2010-04-16
TWI389457B true TWI389457B (en) 2013-03-11

Family

ID=44830217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97139123A TWI389457B (en) 2008-10-13 2008-10-13 Double trigger logic circuit

Country Status (1)

Country Link
TW (1) TWI389457B (en)

Also Published As

Publication number Publication date
TW201015858A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
Lin Low-power pulse-triggered flip-flop design based on a signal feed-through
Tsai et al. An ultra-low-power true single-phase clocking flip-flop with improved hold time variation using logic structure reduction scheme
Ramanarayanan et al. Characterizing dynamic and leakage power behavior in flip-flops
Mahmoodi-Meimand et al. Dual-edge triggered level converting flip-flops
EP2364525B1 (en) Synchronous sequential logic device using double triggered flip-flops and method for skewed triggering such state storing registers
TWI389457B (en) Double trigger logic circuit
Li et al. Design of novel, semi-transparent flip-flops (STFF) for high speed and low power application
Zhao et al. Power optimization for VLSI circuits and systems
CET Review of low power design techniques for flip-flops
Marufuzzaman et al. Design perspective of low power, high efficiency shift registers
Lee et al. A PVT variation-tolerant static single-phase clocked dual-edge triggered flip-flop for aggressive voltage scaling
Dai et al. An explicit-pulsed double-edge triggered JK flip-flop
Arunya et al. Design Of 3 bit synchronous Counter using DLDFF
Pandey et al. Implementation of Low-Power Frequency Divider Circuit using GDI Technique
Thangam et al. performance improved low power d-flip flop with Pass Transistor design and its comparative study
Hu et al. A new type of high-performance low-power low clock-swing TSPC flip-flop
Thapliyal et al. Analysis of True Single Phase Clocked Flip-Flop at 180 nm Technology
Rao et al. Design of low power pulsed flip-flop using sleep transistor scheme
Mahendrakan CERTAIN INVESTIGATIONS ON DUAL EDGE TRIGGERED SENSE AMPLIFIER FLIP-FLOPS FOR LOW POWER AND HIGH PERFORMANCE APPLICATIONS
Singh et al. Design & analysis of modified conditional data mapping flip-flop to ultra low power and high-speed applications
Selvakumar et al. Design of Pulse Triggered Flip Flop using Pulse Enhancement scheme
Shanthi et al. Design and Implementation of High-Speed, Low-Power CMOS D Flip-Flop and Counters using Double Gate FinFET Technology
SOWMYA et al. Design of a Signal Feed Back Through Pulse Triggered Flip-Flop
Linganna et al. Design and analysis of energy-efficient and very high speed conditional push-pull pulsed latches
NAGARAJU et al. Design and Simulation of Power Efficient Pulse Triggered Flip-Flop

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees