TWI389052B - System and method of generating color correction matrix for an image sensor - Google Patents

System and method of generating color correction matrix for an image sensor Download PDF

Info

Publication number
TWI389052B
TWI389052B TW98122216A TW98122216A TWI389052B TW I389052 B TWI389052 B TW I389052B TW 98122216 A TW98122216 A TW 98122216A TW 98122216 A TW98122216 A TW 98122216A TW I389052 B TWI389052 B TW I389052B
Authority
TW
Taiwan
Prior art keywords
color
image sensor
color correction
cmf
psd
Prior art date
Application number
TW98122216A
Other languages
Chinese (zh)
Other versions
TW201102965A (en
Inventor
Yang Wu
Original Assignee
Himax Imagimg Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Imagimg Inc filed Critical Himax Imagimg Inc
Priority to TW98122216A priority Critical patent/TWI389052B/en
Publication of TW201102965A publication Critical patent/TW201102965A/en
Application granted granted Critical
Publication of TWI389052B publication Critical patent/TWI389052B/en

Links

Landscapes

  • Color Image Communication Systems (AREA)
  • Color Television Image Signal Generators (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

產生影像感測器之色彩校正陣列的系統及方法System and method for generating color correction array of image sensor

本發明係有關影像感測器,特別是關於一種產生影像感測器之色彩校正陣列(color correction matrix)的系統及方法。The present invention relates to image sensors, and more particularly to a system and method for generating a color correction matrix for an image sensor.

為了達到色彩的高真實度,影像感測器必須表現的類似於人類的眼睛一般,如國際照明委員會(Commission internationale de或International commission on Illumination,CIE)所訂定的色彩匹配函數(color matching function,CMF),用以作為標準的色彩響應(standard color response)。色彩匹配函數(CMF)可藉由一組顏色成分(例如R、G、B(紅、綠、藍))以量化人類可視頻帶(例如380-750奈米(nm))的每一波長色彩。每一組色彩成分定義一色彩空間(color space),其可涵蓋人眼所能感知色彩的部分(例如sRGB或NTSC),或者感知色彩的全部(例如XYZ)。In order to achieve high true color, the image sensor must behave like a human eye, such as the Commission Internationale de Commission. Or the color matching function (CMF) specified by International Commission on Illumination (CIE) is used as a standard color response. A color matching function (CMF) can quantize each wavelength color of a human visible frequency band (eg, 380-750 nanometers (nm)) by a set of color components (eg, R, G, B (red, green, blue)). Each set of color components defines a color space that can cover portions of the human eye that are capable of perceiving color (eg, sRGB or NTSC), or all of the perceived color (eg, XYZ).

色彩可由色彩空間中的一點來表示,而每一色彩也可映射至不同的色彩空間。實際上,影像感測器的色彩匹配函數(CMF)通常會和人眼響應有所偏差。因此,必須使用一種擬合演算法(fitting algorithm)以獲取色彩校正陣列(color correction matrix,CCM),用以達到最小的色彩感知誤差。Colors can be represented by a point in the color space, and each color can be mapped to a different color space. In fact, the image sensor's color matching function (CMF) usually deviates from the human eye response. Therefore, a fitting algorithm must be used to obtain a color correction matrix (CCM) to achieve the minimum color perception error.

為得到正確色彩感知的另一種重要技術為白平衡(white balance),其藉由等化R、G、B(紅、綠、藍)色彩頻道,用以回復非理想影像感測器的理想白色響應。Another important technique for correct color perception is the white balance, which equalizes the R, G, B (red, green, blue) color channels to restore the ideal white color of non-ideal image sensors. response.

進行色彩校正陣列(CCM)及白平衡的傳統方法一般係根據系統層級的量測,其使用標準色圖(color chart),例如Macbeth ColoChecker的24色校色卡。使用白或灰校色片以達到影像感測器的白平衡,並將影像感測器的R、G、B(紅、綠、藍)輸出與人眼響應作比較。接著,再以擬合(fitting)技術以獲取色彩校正陣列(CCM)。Conventional methods for color correction array (CCM) and white balance are generally based on system level measurements using a color chart, such as the Macbeth ColoChecker 24-color color correction card. White or gray color patches are used to achieve the white balance of the image sensor, and the image sensor's R, G, B (red, green, blue) output is compared to the human eye response. Next, a fitting technique is used to obtain a color correction array (CCM).

對於傳統系統層級的量測系統,缺點之一為其複雜的校準(calibration)及維護程序,且必須花費相當心力以防止物理量測所產生的錯誤。One of the disadvantages of conventional system-level measurement systems is their complex calibration and maintenance procedures, and considerable effort must be taken to prevent errors from physical measurements.

由於傳統量測系統及方法無法有效且精準地提供色彩校正陣列(CCM)及白平衡,因此亟需提出一種新穎機制,用以簡化及改進色彩校正陣列(CCM)及白平衡程序,並增進其準確度。Since conventional measurement systems and methods cannot provide color correction array (CCM) and white balance efficiently and accurately, there is a need to propose a novel mechanism for simplifying and improving color correction array (CCM) and white balance programs, and enhancing them. Accuracy.

鑑於上述,本發明的目的之一在於提出一種系統及方法,其根據影像感測器之量子效率頻譜(quantum efficiency spectrum)以產生色彩校正陣列(CCM)。藉此,可增進色彩校正陣列(CCM)的準確度以及避免物理量測之誤差。In view of the foregoing, it is an object of the present invention to provide a system and method for generating a color correction array (CCM) based on a quantum efficiency spectrum of an image sensor. Thereby, the accuracy of the color correction array (CCM) can be improved and the error of the physical measurement can be avoided.

根據本發明實施例,首先量測受實體光源照射之影像感測器的量子效率(QE)頻譜。接著,根據量子效率(QE)頻譜及預設參考資料,用以決定影像感測器之色彩值及預設色彩空間的色彩值。在一實施例中,預設參考資料包含預設色彩匹配函數(CMF)、亮度之功率頻譜密度(PSD)及預設校色片之反射度(reflectance)頻譜。最後,對影像感測器之色彩值及預設色彩空間的色彩值進行擬合(fitting)演算,用以產生影像感測器的色彩校正陣列(CCM)。在一實施例中,更將色彩校正陣列(CCM)轉換至其他色彩空間。In accordance with an embodiment of the invention, the quantum efficiency (QE) spectrum of an image sensor illuminated by a physical light source is first measured. Then, according to the quantum efficiency (QE) spectrum and the preset reference data, the color value of the image sensor and the color value of the preset color space are determined. In an embodiment, the preset reference material includes a preset color matching function (CMF), a power spectral density (PSD) of the luminance, and a reflectance spectrum of the preset color correction patch. Finally, a fitting calculation is performed on the color value of the image sensor and the color value of the preset color space to generate a color correction array (CCM) of the image sensor. In an embodiment, the color correction array (CCM) is further converted to other color spaces.

第一圖之方塊圖顯示本發明實施例的系統及方法,其用以產生影像感測器(例如互補金屬氧化半導體(CMOS)影像感測器)的色彩校正陣列(CCM),藉以降低色彩感知誤差。The block diagram of the first diagram shows a system and method for generating a color correction array (CCM) of an image sensor (eg, a complementary metal oxide semiconductor (CMOS) image sensor) to reduce color perception. error.

在本實施例中,影像感測器10為非理想的裝置且容易造成感知誤差。影像感測器10受到一實體光源11的照射。本實施例的光源11係一種波長可調之光源,其可掃描人類可視頻帶(例如380-750奈米(nm))的波長。使用量子效率(quantum efficiency,QE)量測裝置12以產生影像感測器10的量子效率頻譜。量子效率(QE)量測裝置12可包含一功率計(power meter)或色彩儀表(color meter),用以量測進入影像感測器10之像素的光子數目,並收集來自同一像素的信號電子數目。在本實施例中,將後者(亦即電子數目)與前者(亦即光子數目)的比值定義為該像素的量子效率(QE)。針對每一波長重複上述的量測,因而可得到量子效率頻譜,例如描繪出R、G、B(紅、綠、藍)像素對於各波長的量子效率(QE)的頻譜圖。In the present embodiment, the image sensor 10 is a non-ideal device and is susceptible to perceptual errors. The image sensor 10 is illuminated by a solid light source 11. The light source 11 of the present embodiment is a wavelength-adjustable light source that can scan a wavelength of a human visible frequency band (e.g., 380-750 nanometers (nm)). A quantum efficiency (QE) measurement device 12 is used to generate a quantum efficiency spectrum of the image sensor 10. The quantum efficiency (QE) measuring device 12 can include a power meter or a color meter for measuring the number of photons entering the pixels of the image sensor 10 and collecting signal electrons from the same pixel. number. In the present embodiment, the ratio of the latter (i.e., the number of electrons) to the former (i.e., the number of photons) is defined as the quantum efficiency (QE) of the pixel. The above measurement is repeated for each wavelength, and thus a quantum efficiency spectrum can be obtained, for example, a spectrogram depicting the quantum efficiency (QE) of the R, G, B (red, green, blue) pixels for each wavelength.

繼續參閱第一圖,計算單元13接收(來自量子效率量測裝置12的)量子效率頻譜以及一些預設參考資料,用以計算得到影像感測器10的色彩值(color value)以及理想(標準)色彩值。這些預設參考資料通常可由標準組織來獲得,或者從已知源收集得到。在一較佳實施例中,這些預設參考資料包含(但不限定於)國際照明委員會(CIE)的標準XYZ色彩匹配函數(CMF)、亮度之功率頻譜密度(power spectral density,PSD)及標準色彩校色片之反射度(reflectance)。根據量子效率頻譜以及這些預設參考資料,計算單元13產生影像感測器10的色彩值(例如R、G、B)及理想色彩值。With continued reference to the first figure, computing unit 13 receives the quantum efficiency spectrum (from quantum efficiency measuring device 12) and some preset references for calculating the color value and ideal of image sensor 10 (standard) ) color value. These preset references are usually available from standard organizations or collected from known sources. In a preferred embodiment, these preset references include, but are not limited to, the International Commission on Illumination (CIE) standard XYZ color matching function (CMF), luminance power spectral density (PSD), and standards. The reflectance of the color correction film. Based on the quantum efficiency spectrum and these predetermined references, the computing unit 13 produces color values (e.g., R, G, B) and ideal color values for the image sensor 10.

接著,理想色彩值及(非理想)影像感測器10色彩值被饋至擬合(fitting)單元14,其包含擬合演算法以產生影像感測器10的色彩校正陣列(CCM),藉以降低色彩感知誤差。用以產生色彩校正陣列(CCM)的擬合演算法可以使用傳統技術來實施,例如美國專利第7,265,781號(題為”Method and apparatus for determining a color correction matrix by minimizing a color difference maximum or average value”)。若有需要,可由轉換單元15進一步將所產生的色彩校正陣列(CCM)轉換至其他的色彩空間。例如,可將色彩校正陣列(CCM)轉換至sRGB色彩空間,其普遍使用於消費性電子產業。The ideal color value and (non-ideal) image sensor 10 color values are then fed to a fitting unit 14 that includes a fitting algorithm to generate a color correction array (CCM) of the image sensor 10, whereby Reduce color perception errors. A fitting algorithm for generating a color correction array (CCM) can be implemented using conventional techniques, such as, for example, "Method and apparatus for determining a color correction matrix by minimizing a color difference maximum or average value", for example, U.S. Patent No. 7,265,781. ). The resulting color correction array (CCM) can be further converted to other color spaces by conversion unit 15 if desired. For example, a color correction array (CCM) can be converted to the sRGB color space, which is commonly used in the consumer electronics industry.

在一實施例中,計算單元13、擬合單元14及轉換單元15可以使用一通用電腦來實施,其藉由程式化來計算得到輸出。在另一實施例中,這些單元13、14、15也可單獨使用電路,或者配合韌體程式來實施。In an embodiment, the computing unit 13, the fitting unit 14, and the converting unit 15 can be implemented using a general purpose computer that calculates the output by programming. In another embodiment, the units 13, 14, 15 can also be implemented using separate circuits or in conjunction with a firmware program.

根據本發明實施例的特徵之一,計算單元13的絕大部分並不包含傳統系統、方法中所使用的實體裝置,例如實體校色卡。藉此,本發明實施例不但可以降低整體的成本,更可以增進色彩校正陣列(CCM)的準確度,而不會受到實體量測誤差(例如老舊或未校正之實體裝置)的影響。換句話說,在本發明實施例中,色彩校正陣列(CCM)的準確度係決定於裝置層級的量子效率量測裝置12。再者,預設參考資料的獲取非常的簡便及經濟。相反地,傳統係使用系統層級量測以產生色彩校正陣列(CCM),其需要複雜的校正及維護,否則即會造成實體量測的誤差。According to one of the features of embodiments of the present invention, the vast majority of computing unit 13 does not include physical devices used in conventional systems, methods, such as physical color correction cards. Thereby, the embodiment of the invention can not only reduce the overall cost, but also improve the accuracy of the color correction array (CCM) without being affected by physical measurement errors (such as old or uncorrected physical devices). In other words, in the embodiment of the present invention, the accuracy of the color correction array (CCM) is determined by the quantum efficiency measuring device 12 of the device level. Furthermore, the acquisition of preset references is very simple and economical. Conversely, traditional systems use system level measurements to produce a color correction array (CCM) that requires complex corrections and maintenance that would otherwise cause errors in the physical measurements.

第二圖之流程圖顯示第一圖的詳細操作步驟及資料流程。於步驟1,量測影像感測器10(第一圖)之R、G、B像素的量子效率(QE)頻譜。量子效率頻譜QE(λ)可以表示如下:The flow chart of the second figure shows the detailed operation steps and data flow of the first figure. In step 1, the quantum efficiency (QE) spectrum of the R, G, and B pixels of the image sensor 10 (first image) is measured. The quantum efficiency spectrum QE(λ) can be expressed as follows:

其中,λ代表波長,e#代表電子數目,P#代表光子數目。Where λ represents the wavelength, e# represents the number of electrons, and P# represents the number of photons.

由於量子效率(QE)係受光子數目常態化(normalize),而影像感測器10的色彩匹配函數(CMF)係受光功率常態化,因此需要進行兩者間的轉換。其中,於步驟2a,量子效率(QE)頻譜被轉化至功率頻譜響應(power spectral response)PSR(λ)(亦即,相當於影像感測器的CMF),如下所示:Since the quantum efficiency (QE) is normalized by the number of photons, and the color matching function (CMF) of the image sensor 10 is normalized by the optical power, conversion between the two is required. Wherein, in step 2a, the quantum efficiency (QE) spectrum is converted to a power spectral response PSR(λ) (ie, equivalent to the CMF of the image sensor) as follows:

其中,h代表浦郎克(Planck)常數,c代表真空中的光速。Where h represents the Planck constant and c represents the speed of light in vacuum.

接下來,於步驟2b,獲取一標準(預設或已知)色彩匹配函數(CMF)。在本實施例中,從國際照明委員會(CIE)獲取標準XYZ色彩匹配函數(CMF),其描述一般人眼的R、G、B功率頻譜響應(PSR)。Next, in step 2b, a standard (preset or known) color matching function (CMF) is acquired. In this embodiment, a standard XYZ color matching function (CMF) is obtained from the International Commission on Illumination (CIE), which describes the R, G, B power spectral response (PSR) of a typical human eye.

於步驟3,獲取光亮度(例如白光亮度)的功率頻譜密度(PSD)。例如,3200K鎢或D65之白光光源。在本實施例中,光亮度之功率頻譜密度(PSD)係由預設資料檔來定義。藉此,不會再有傳統系統/方法中所出現的光源衰減及量測誤差等問題。再者,本實施例中的光源型態種類也不會受到限制。本實施例可自任何可靠資料庫或預先執行量測中獲取標準或慣用光源。In step 3, a power spectral density (PSD) of lightness (eg, white light brightness) is acquired. For example, a white light source of 3200K tungsten or D65. In this embodiment, the power spectral density (PSD) of the lightness is defined by a preset data file. In this way, there are no longer problems such as source attenuation and measurement errors that occur in conventional systems/methods. Furthermore, the type of light source in this embodiment is also not limited. This embodiment can obtain standard or conventional light sources from any reliable database or pre-executed measurements.

根據(步驟3)光亮度之功率頻譜密度(PSD)以及(步驟2a)影像感測器10之R、G、B功率頻譜響應(PSR),即可於步驟4a中決定影像感測器10的白平衡係數。在本實施例中,影像感測器10對於白光亮度反應所產生的R、G、B值可由上述PSD及PSR兩者的重疊積分得到。該積分之計算間隔為人類可視頻帶(例如380-750奈米(nm))範圍:According to the (step 3) power spectral density (PSD) of the lightness and (step 2a) the R, G, B power spectral response (PSR) of the image sensor 10, the image sensor 10 can be determined in step 4a. White balance factor. In this embodiment, the R, G, and B values generated by the image sensor 10 for the white light luminance reaction can be obtained by overlapping integration of the PSD and the PSR. The calculation interval for this integral is in the range of human visible frequency bands (eg 380-750 nanometers (nm)):

R /G /B =∫PSD (λ)‧PSR (λ)d λ R / G / B =∫ PSD (λ)‧ PSR (λ) d λ

以各色彩通道之最大色彩值來進行常態化,所得到的常態增益值即可作為影像感測器10的白平衡係數。例如,假設G為最大值,而R和B分別為0.7及0.8。因此,R通道的白平衡係數即為1/0.7,而B通道的白平衡係數即為1/0.8。The normalization is performed by the maximum color value of each color channel, and the obtained normal gain value can be used as the white balance coefficient of the image sensor 10. For example, suppose G is the maximum value, and R and B are 0.7 and 0.8, respectively. Therefore, the white balance coefficient of the R channel is 1/0.7, and the white balance coefficient of the B channel is 1/0.8.

另一方面,於步驟4b,根據(步驟3)光亮度之功率頻譜密度(PSD)以及(步驟2b)標準XYZ色彩匹配函數(CMF),據以決定標準XYZ色彩匹配函數(CMF)的白平衡係數,其細節類似於步驟4a。On the other hand, in step 4b, the white balance of the standard XYZ color matching function (CMF) is determined according to (step 3) the power spectral density (PSD) of the lightness and (step 2b) the standard XYZ color matching function (CMF). The coefficient, the details of which are similar to step 4a.

接著,於步驟5a,將(步驟4a)白平衡係數應用於(或者乘以)(步驟2a)影像感測器功率頻譜響應(PSR)(或CMF),因而得到影像感測器10之白平衡後(white balanced)色彩匹配函數(CMF)。本實施例(或傳統)所獲得的白平衡後CMF尚無法匹配於人眼的響應,因此需要進行底下後續的進一步處理。Next, in step 5a, the (step 4a) white balance coefficient is applied (or multiplied) (step 2a) the image sensor power spectral response (PSR) (or CMF), thereby obtaining the white balance of the image sensor 10. White balanced color matching function (CMF). The white balance CMF obtained in this embodiment (or conventional) is still unable to match the response of the human eye, and therefore further subsequent processing is required.

另一方面,於步驟5b,將(步驟4b)白平衡係數應用於(步驟2b)標準XYZ色彩匹配函數(CMF),因而得到XYZ之白平衡後(white balanced)色彩匹配函數(CMF)。On the other hand, in step 5b, the (step 4b) white balance coefficient is applied (step 2b) to the standard XYZ color matching function (CMF), thus obtaining a white balanced color matching function (CMF) of XYZ.

於步驟6a,根據(步驟3)光亮度之功率頻譜密度(PSD)以及步驟6b得到的標準(預設或已知)校色片反射度(reflectance)頻譜,用以決定校色片之反射光功率頻譜密度(PSD)。在本實施例中,反射光功率頻譜密度(PSD)可由上述光亮度PSD及標準校色片反射度(reflectance)頻譜兩者的重疊積分得到。該積分之計算間隔為人類可視頻帶(例如380-750奈米(nm))範圍。本實施例的校色片係以預設資料檔的反射度頻譜所定義的。藉此,不會再有傳統系統/方法中所出現的校色片衰減及色彩儀表(color meter)準確度等問題。再者,本實施例中的校色片數目也不會受到限制。只要增加相關的反射度頻譜,即可獲取標準或(非標準)慣用之實體或非實體校色卡。In step 6a, according to (step 3) the power spectral density (PSD) of the light intensity and the standard (preset or known) color correction reflectance spectrum obtained in step 6b, the reflected light of the color correction sheet is determined. Power spectral density (PSD). In this embodiment, the reflected light power spectral density (PSD) can be obtained by overlapping integration of both the above-described lightness PSD and the standard color correction plate reflectance spectrum. The calculation interval for this integral is in the range of human visible frequency bands (eg, 380-750 nanometers (nm)). The color correction film of this embodiment is defined by the reflectance spectrum of the preset data file. As a result, there is no longer any problem with the color correction of the color correction and the accuracy of the color meter appearing in the conventional system/method. Furthermore, the number of color correction sheets in this embodiment is also not limited. Standard or (non-standard) customary physical or non-physical color cards can be obtained by simply adding the relevant reflectance spectrum.

接著,於步驟7a,根據(步驟6a)校色片之反射光功率頻譜密度(PSD)以及(步驟5a)影像感測器10之白平衡後色彩匹配函數(CMF),用以決定(非理想)影像感測器10的色彩值(例如R、G、B)。在本實施例中,影像感測器10的色彩值可由上述校色片之反射光功率頻譜密度(PSD)及影像感測器10之白平衡後色彩匹配函數(CMF)兩者的重疊積分得到。該積分之計算間隔為人類可視頻帶(例如380-750奈米(nm))範圍。Next, in step 7a, according to (step 6a) the reflected light power spectral density (PSD) of the color correction sheet and (step 5a) the white balance color matching function (CMF) of the image sensor 10 are used to determine (non-ideal) The color value (eg, R, G, B) of the image sensor 10. In this embodiment, the color value of the image sensor 10 can be obtained by overlapping integration of the reflected light power spectral density (PSD) of the color correction sheet and the white balance color matching function (CMF) of the image sensor 10. . The calculation interval for this integral is in the range of human visible frequency bands (eg, 380-750 nanometers (nm)).

另一方面,於步驟7b,根據(步驟6a)校色片之反射光功率頻譜密度(PSD)以及(步驟5b)XYZ之白平衡後色彩匹配函數(CMF),用以決定標準色彩空間的色彩值(例如R、G、B)。在本實施例中,標準色彩空間的色彩值可由上述校色片之功率頻譜密度(PSD)以及標準之白平衡後色彩匹配函數(CMF)兩者的重疊積分得到。該積分之計算間隔為人類可視頻帶(例如380-750奈米(nm))範圍。On the other hand, in step 7b, according to (step 6a) the reflected light power spectral density (PSD) of the color correction sheet and (step 5b) XYZ white balance color matching function (CMF), used to determine the color of the standard color space. Value (eg R, G, B). In this embodiment, the color value of the standard color space can be obtained by the overlap integration of the power spectral density (PSD) of the color correction chip and the standard white balance color matching function (CMF). The calculation interval for this integral is in the range of human visible frequency bands (eg, 380-750 nanometers (nm)).

接下來,將(步驟7b)理想色彩值以及(步驟7a)影像感測器10的色彩值進行擬合演算,藉以產生影像感測器10的色彩校正陣列(CCM),以降低色彩感知誤差。擬合的演算準則為基於人類的感知,降低所有校色卡之整體色彩感知差異。再者,在一些應用當中,可對一些校色卡自訂予以不同的權重。於實施擬合演算以產生色彩校正陣列(CCM)時,可以使用傳統技術,其技術細節在此予以省略。Next, (step 7b) the ideal color value and (step 7a) the color value of the image sensor 10 are fitted to calculate a color correction array (CCM) of the image sensor 10 to reduce the color perception error. The fitted calculation criteria are based on human perception, reducing the overall color perception difference of all school color cards. Moreover, in some applications, some school color card customizations can be given different weights. When performing a fitting calculus to produce a color correction array (CCM), conventional techniques can be used, the technical details of which are omitted herein.

若有需要,可將步驟8所產生的色彩校正陣列(CCM)進一步轉換為其他色彩空間。例如,於步驟9a,色彩校正陣列(CCM)被轉換至國際照明委員會(CIE)的XYZ色彩空間,其可涵蓋更多人眼可感知色彩。更可以藉由步驟9b將色彩校正陣列(CCM)進一步轉換至sRGB色彩空間,其普遍使用於消費性電子產業。從XYZ至sRGB的轉換可以使用標準3x3線性色彩轉換陣列(CTM)。The color correction array (CCM) generated in step 8 can be further converted to other color spaces if needed. For example, in step 9a, the Color Correction Array (CCM) is converted to the International Lighting Commission (CIE) XYZ color space, which can cover more human eye perceptible colors. The color correction array (CCM) can be further converted to the sRGB color space by step 9b, which is commonly used in the consumer electronics industry. Conversion from XYZ to sRGB can use a standard 3x3 linear color conversion array (CTM).

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application.

1-9b...步驟1-9b. . . step

10...影像感測器10. . . Image sensor

11...光源11. . . light source

12...量子效率(QE)量測裝置12. . . Quantum efficiency (QE) measuring device

13...計算單元13. . . Computing unit

14...擬合單元14. . . Fitting unit

15...轉換單元15. . . Conversion unit

第一圖之方塊圖顯示本發明實施例的系統及方法,其用以產生影像感測器的色彩校正陣列(CCM)。The block diagram of the first diagram shows a system and method for generating a color correction array (CCM) of an image sensor in accordance with an embodiment of the present invention.

第二圖之流程圖顯示第一圖的詳細操作步驟及資料流程。The flow chart of the second figure shows the detailed operation steps and data flow of the first figure.

1-9b...步驟1-9b. . . step

Claims (16)

一種產生影像感測器之色彩校正陣列(CCM)的系統,包含:一量子效率(QE)量測裝置,用以產生受實體光源照射之影像感測器的量子效率(QE)頻譜;一計算單元,根據該量子效率(QE)頻譜及預設參考資料,用以產生該影像感測器之色彩值及理想色彩值;及一擬合(fitting)單元,用以產生該影像感測器的色彩校正陣列(CCM);其中上述之預設參考資料包含預設色彩匹配函數(CMF)、亮度之功率頻譜密度(PSD)及預設校色片之反射度(reflectance)頻譜,且該計算單元執行以下步驟:根據該量子效率頻譜,決定該影像感測器的色彩匹配函數(CMF);獲取該預設色彩匹配函數(CMF);獲取該亮度功率頻譜密度(PSD);根據該亮度功率頻譜密度(PSD)及該影像感測器的色彩匹配函數(CMF),決定白平衡後色彩匹配函數(CMF);根據該亮度功率頻譜密度(PSD)及該預設色彩匹配函數(CMF),決定白平衡後之該預設色彩匹配函數(CMF); 根據該亮度功率頻譜密度(PSD)及該預設校色片之反射度(reflectance)頻譜,決定校色片之反射光功率頻譜密度(PSD);根據該校色片之反射光功率頻譜密度(PSD)及該白平衡後色彩匹配函數(CMF),決定該影像感測器之色彩值;及根據該校色片之反射光功率頻譜密度(PSD)及該白平衡後之預設色彩匹配函數(CMF),決定一預設色彩空間之色彩值。 A system for generating a color correction array (CCM) of an image sensor, comprising: a quantum efficiency (QE) measuring device for generating a quantum efficiency (QE) spectrum of an image sensor illuminated by a physical light source; a unit for generating a color value and an ideal color value of the image sensor according to the quantum efficiency (QE) spectrum and a preset reference material; and a fitting unit for generating the image sensor a color correction array (CCM); wherein the preset reference material includes a preset color matching function (CMF), a power spectral density (PSD) of luminance, and a reflectance spectrum of a preset color correction patch, and the calculation unit Performing the following steps: determining a color matching function (CMF) of the image sensor according to the quantum efficiency spectrum; acquiring the preset color matching function (CMF); acquiring the luminance power spectral density (PSD); and according to the luminance power spectrum Density (PSD) and the color matching function (CMF) of the image sensor determine the color balance function (CMF) after white balance; according to the brightness power spectral density (PSD) and the preset color matching function (CMF), After white balance The preset color matching function (CMF); Determining a reflected light power spectral density (PSD) of the color correction sheet according to the brightness power spectral density (PSD) and a reflectance spectrum of the preset color correction sheet; and a spectral density of the reflected light power according to the color correction sheet ( PSD) and the white balance color matching function (CMF), determining the color value of the image sensor; and the reflected light power spectral density (PSD) according to the color correction slice and the preset color matching function after the white balance (CMF), determines the color value of a preset color space. 如申請專利範圍第1項所述產生影像感測器之色彩校正陣列的系統,其中上述之實體光源係一種波長可調之光源,其可掃描人類可視頻帶。 A system for generating a color correction array of an image sensor as described in claim 1, wherein the physical light source is a wavelength-adjustable light source that scans a human visible frequency band. 如申請專利範圍第2項所述產生影像感測器之色彩校正陣列的系統,其中上述之量子效率(QE)量測裝置包含一功率計(power meter),用以量測進入該影像感測器之像素的光子數目,並收集來自該像素的信號電子數目,其中,該電子數目與該光子數目的比值定義為量子效率(QE)。 The system for generating a color correction array of an image sensor according to claim 2, wherein the quantum efficiency (QE) measuring device comprises a power meter for measuring the entering the image sensing. The number of photons of the pixel of the device, and the number of signal electrons from the pixel is collected, wherein the ratio of the number of electrons to the number of photons is defined as quantum efficiency (QE). 如申請專利範圍第3項所述產生影像感測器之色彩校正陣列的系統,更針對每一色彩頻道及每一波長,重複上述的量子效率(QE)量測,因而累積得到該量子效率頻譜。 The system for generating a color correction array of an image sensor according to claim 3 of the patent application further repeats the quantum efficiency (QE) measurement for each color channel and each wavelength, thereby accumulating the quantum efficiency spectrum. . 如申請專利範圍第1項所述產生影像感測器之色彩校正陣列的系統,其中上述之預設色彩匹配函數(CMF)為國際照明委員會(CIE)的標準XYZ色彩匹配函數(CMF)。 A system for generating a color correction array of an image sensor as described in claim 1, wherein the predetermined color matching function (CMF) is a standard XYZ color matching function (CMF) of the International Commission on Illumination (CIE). 如申請專利範圍第1項所述產生影像感測器之色彩校正陣列的系統,其中上述之擬合單元包含一擬合演算法,以產生該色彩校正陣列(CCM),用以降低色彩感知誤差。 A system for generating a color correction array of an image sensor according to claim 1, wherein the fitting unit comprises a fitting algorithm to generate the color correction array (CCM) for reducing color perception error. . 如申請專利範圍第1項所述產生影像感測器之色彩校正陣列的系統,更包含一轉換單元,用以將該色彩校正陣列(CCM)轉換至其他色彩空間。 The system for generating a color correction array of an image sensor as described in claim 1 further includes a conversion unit for converting the color correction array (CCM) to other color spaces. 如申請專利範圍第7項所述產生影像感測器之色彩校正陣列的系統,其中上述之色彩校正陣列(CCM)被轉換至sRGB色彩空間。 A system for generating a color correction array of an image sensor as described in claim 7 wherein the color correction array (CCM) is converted to an sRGB color space. 一種產生影像感測器之色彩校正陣列(CCM)的方法,包含: 量測受實體光源照射之影像感測器的量子效率(QE)頻譜;根據該量子效率(QE)頻譜及預設參考資料,用以決定該影像感測器之色彩值及預設色彩空間的色彩值;及對該影像感測器之色彩值及該預設色彩空間的色彩值進行擬合(fitting)演算,用以產生該影像感測器的色彩校正陣列(CCM)其中上述之預設參考資料包含預設色彩匹配函數(CMF)、亮度之功率頻譜密度(PSD)及預設校色片之反射度(reflectance)頻譜,且上述色彩值之決定步驟包含以下步驟:根據該量子效率頻譜,決定該影像感測器的色彩匹配函數(CMF);獲取該預設色彩匹配函數(CMF);獲取該亮度功率頻譜密度(PSD);根據該亮度功率頻譜密度(PSD)及該影像感測器的色彩匹配函數(CMF),決定白平衡後色彩匹配函數(CMF);根據該亮度功率頻譜密度(PSD)及該預設色彩匹配函數(CMF),決定白平衡後之該預設色彩匹配函數(CMF);根據該亮度功率頻譜密度(PSD)及該預設校色片之反射度(reflectance)頻譜,決定校色片之反射光功率頻譜密度(PSD); 根據該校色片之反射光功率頻譜密度(PSD)及該白平衡後色彩匹配函數(CMF),決定該影像感測器之色彩值;及根據該校色片之反射光功率頻譜密度(PSD)及該白平衡後之預設色彩匹配函數(CMF),決定一預設色彩空間之色彩值。 A method of generating a color correction array (CCM) of an image sensor, comprising: Measuring a quantum efficiency (QE) spectrum of an image sensor illuminated by a physical light source; determining a color value of the image sensor and a preset color space according to the quantum efficiency (QE) spectrum and preset reference data a color value; and a fitting calculation of the color value of the image sensor and the color value of the preset color space to generate a color correction array (CCM) of the image sensor, wherein the preset is The reference material includes a preset color matching function (CMF), a power spectral density (PSD) of the luminance, and a reflectance spectrum of the preset color correction patch, and the determining step of the color value includes the following steps: according to the quantum efficiency spectrum Determining a color matching function (CMF) of the image sensor; acquiring the preset color matching function (CMF); acquiring the luminance power spectral density (PSD); and determining the luminance power spectral density (PSD) and the image sensing Color matching function (CMF) determines the white balance color matching function (CMF); determines the preset color matching after white balance according to the brightness power spectral density (PSD) and the preset color matching function (CMF) Function (CMF) The brightness of the power spectral density (PSD) and the predetermined degree of reflection of the color correction sheet (Reflectance) spectrum of the reflected light determined power spectral density of the color correction sheet (PSD); Determining a color value of the image sensor according to a reflected light power spectral density (PSD) of the school color patch and a color matching function (CMF) after the white balance; and a spectral density of the reflected light power according to the color correction sheet (PSD) And the preset color matching function (CMF) after the white balance determines the color value of a preset color space. 如申請專利範圍第9項所述產生影像感測器之色彩校正陣列的方法,其中上述之實體光源係一種波長可調之光源,其可掃描人類可視頻帶。 A method of producing a color correction array of an image sensor as described in claim 9, wherein the physical light source is a wavelength-adjustable light source that scans a human visible frequency band. 如申請專利範圍第10項所述產生影像感測器之色彩校正陣列的方法,使用一功率計(power meter),用以量測進入該影像感測器之像素的光子數目,並收集來自該像素的信號電子數目,其中,該電子數目與該光子數目的比值定義為量子效率(QE)。 A method for generating a color correction array of an image sensor according to claim 10, wherein a power meter is used to measure the number of photons entering a pixel of the image sensor, and collects the number of photons from the image sensor. The number of signal electrons of a pixel, wherein the ratio of the number of electrons to the number of photons is defined as quantum efficiency (QE). 如申請專利範圍第11項所述產生影像感測器之色彩校正陣列的方法,更針對每一色彩頻道及每一波長,重複上述的量子效率(QE)量測,因而累積得到該量子效率頻譜。 The method for generating a color correction array of an image sensor according to claim 11 further repeats the quantum efficiency (QE) measurement for each color channel and each wavelength, thereby accumulating the quantum efficiency spectrum. . 如申請專利範圍第9項所述產生影像感測器之色彩校正陣列的方法,其中上述之預設色彩匹配函數(CMF)為國際照明委員會(CIE)的標準XYZ色彩匹配函數(CMF)。 A method of generating a color correction array of an image sensor as described in claim 9, wherein the preset color matching function (CMF) is a standard XYZ color matching function (CMF) of the International Commission on Illumination (CIE). 如申請專利範圍第9項所述產生影像感測器之色彩校正陣列的方法,其中上述之亮度功率頻譜密度(PSD)係由一白色光源所定義。 A method of generating a color correction array of an image sensor as described in claim 9 wherein said brightness power spectral density (PSD) is defined by a white light source. 如申請專利範圍第9項所述產生影像感測器之色彩校正陣列的方法,更包含一轉換步驟,用以將該色彩校正陣列(CCM)轉換至其他色彩空間。 The method for generating a color correction array of an image sensor according to claim 9 further includes a converting step for converting the color correction array (CCM) to another color space. 如申請專利範圍第15項所述產生影像感測器之色彩校正陣列的方法,其中上述之色彩校正陣列(CCM)被轉換至sRGB色彩空間。A method of producing a color correction array of an image sensor as described in claim 15 wherein the color correction array (CCM) is converted to an sRGB color space.
TW98122216A 2009-07-01 2009-07-01 System and method of generating color correction matrix for an image sensor TWI389052B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122216A TWI389052B (en) 2009-07-01 2009-07-01 System and method of generating color correction matrix for an image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122216A TWI389052B (en) 2009-07-01 2009-07-01 System and method of generating color correction matrix for an image sensor

Publications (2)

Publication Number Publication Date
TW201102965A TW201102965A (en) 2011-01-16
TWI389052B true TWI389052B (en) 2013-03-11

Family

ID=44837687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122216A TWI389052B (en) 2009-07-01 2009-07-01 System and method of generating color correction matrix for an image sensor

Country Status (1)

Country Link
TW (1) TWI389052B (en)

Also Published As

Publication number Publication date
TW201102965A (en) 2011-01-16

Similar Documents

Publication Publication Date Title
US10168215B2 (en) Color measurement apparatus and color information processing apparatus
JP5174307B2 (en) Color signal processing
Mendoza et al. Calibrated color measurements of agricultural foods using image analysis
US7999978B2 (en) Matrix coefficient determining method and image input apparatus
CN108020519B (en) Virtual multi-light-source spectrum reconstruction method based on color constancy
JP5796348B2 (en) Feature amount estimation apparatus, feature amount estimation method, and computer program
US20050219380A1 (en) Digital camera for determining chromaticity coordinates and related color temperature of an object and method thereof
JP2008532401A (en) Reflection spectrum estimation and color space conversion using reference reflection spectrum
JP2005249602A (en) Film thickness measurement method and apparatus
JP2016194456A5 (en)
US20040197020A1 (en) Color machine vision system for colorimetry
US20060146330A1 (en) Color measurements of ambient light
JP2012507013A (en) Light source measurement method and light source measurement system
CN104062010B (en) A kind of light splitting light source colour illumination photometry instrument optimizing scaling algorithm
JP2020012668A (en) Evaluation device, measurement device, evaluation method and evaluation program
JP2010139324A (en) Color irregularity measuring method and color irregularity measuring device
US8300933B2 (en) System and method of generating color correction matrix for an image sensor
JP2015178995A (en) Tone calibration device, imaging device and tone inspection device
JP2018004509A (en) Colorimetric system and inspection device
US8481973B2 (en) Fluorescent estimating apparatus, fluorescent estimating method, and fluorescent measuring apparatus
TWI389052B (en) System and method of generating color correction matrix for an image sensor
TWI719610B (en) Method of spectral analysing with a color camera
TWI384159B (en) Method of calibrating a light source
JP2003337067A (en) Spectrophotometry system and color reproduction system
WO2019167806A1 (en) Method for setting colorimetric conversion parameters in a measuring device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees