TWI387234B - Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication system - Google Patents

Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication system Download PDF

Info

Publication number
TWI387234B
TWI387234B TW97146926A TW97146926A TWI387234B TW I387234 B TWI387234 B TW I387234B TW 97146926 A TW97146926 A TW 97146926A TW 97146926 A TW97146926 A TW 97146926A TW I387234 B TWI387234 B TW I387234B
Authority
TW
Taiwan
Prior art keywords
window
module
tap
channel
matrix
Prior art date
Application number
TW97146926A
Other languages
Chinese (zh)
Other versions
TW200943769A (en
Inventor
Jr Thomas Edward Pare
Original Assignee
Ralink Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/949,706 external-priority patent/US8040970B2/en
Application filed by Ralink Technology Corp filed Critical Ralink Technology Corp
Publication of TW200943769A publication Critical patent/TW200943769A/en
Application granted granted Critical
Publication of TWI387234B publication Critical patent/TWI387234B/en

Links

Description

用於無線通訊系統之自適性傳輸波束成形之方法及裝置Method and device for adaptive transmission beamforming for wireless communication systems

本發明係關於一種無線通訊系統,尤指一種用於多輸入多輸出通訊系統,可降低傳輸資料量之自適性傳輸波束成形的方法及裝置。The present invention relates to a wireless communication system, and more particularly to a method and apparatus for adaptive transmission beamforming for reducing the amount of transmitted data for a multiple input multiple output communication system.

通訊系統可分為有線及無線標準,其應用範圍可從家用的本地無線網路、國內及國際行動電話網路,以及全球網際網路。The communication system can be divided into wired and wireless standards, and its applications range from home local wireless networks, domestic and international mobile phone networks, and the global Internet.

每一通訊系統符合至少一種現有的通訊標準,以無線通訊標準來說,其包含有標準IEEE 802.11、無線本地區域網路(WLAN)、進階行動電話系統(AMPS)、藍牙、全球移動通信系統(GSM)、分碼多工存取(CDMA)、區域多點分佈系統(LMDS)、多通道多點分佈系統(MMDS),以及其他通訊標準。Each communication system conforms to at least one existing communication standard, and includes wireless IEEE standard IEEE 802.11, wireless local area network (WLAN), advanced mobile telephone system (AMPS), Bluetooth, global mobile communication system. (GSM), code division multiplex access (CDMA), regional multipoint distribution system (LMDS), multi-channel multipoint distribution system (MMDS), and other communication standards.

在一網路下之無線裝置,如筆記型電腦、個人數位助理(PDA)、影像投影機,或WLAN電話,可直接或間接與該網路下之其他用戶或裝置通訊。以直接方式通訊之通訊系統,通常又稱為點對點(Point-to-Point)通訊系統,二裝置分配到至少一無線射頻(Radio Frequency,RF)通道,並直接透過分配到的通道進行通訊。在間接通訊系統下,二裝置透過一媒介裝置,在分配到的通道上進行通訊,其中,媒介裝置可為手機服務之一基地台、家用或公用WLAN網路之一存取點(Access Point,AP)。為完成通訊連接,存取點或基地台利用一系統控制器、公眾交換電話網路(Public Switch Telephone Network,PSTN)、網際網路或其他廣域網路直接相互通訊。A wireless device, such as a notebook computer, personal digital assistant (PDA), video projector, or WLAN phone, can communicate directly or indirectly with other users or devices under the network. A communication system that communicates in a direct manner is also commonly referred to as a point-to-point communication system. The second device is assigned to at least one radio frequency (RF) channel and communicates directly through the assigned channel. In the indirect communication system, the second device communicates on the assigned channel through a media device, wherein the media device can be one of the base stations of the mobile phone service, an access point of the home or public WLAN network (Access Point, AP). To complete the communication connection, the access point or base station communicates directly with one system controller, the Public Switch Telephone Network (PSTN), the Internet, or other wide area network.

請參考第1圖,如圖所示,習知WLAN家用網路包含有一存取點(AP)或基地台(Base Station)200、一網路介面硬體204,以及其他用於WLAN家用網路之電子裝置206~214。電子裝置包含有一WiFi手機206、一個人數位數理(PDA)/WiFi相機208、一筆記型電腦210、一家庭音響系統212,以及一高清晰度電視(High Definition Television,HDTV)/投影機214。電子裝置206~214透過存取點200,在分配到的通道上相互通訊。存取點200具有一波束成形收發模組216及一多輸入多輸出(Multi Input Multi Output,MIMO)天線218。每一電子裝置206~214皆具有一波束成形收發模組及一MIMO天線。存取點200透過網路介面硬體204,連接至網際網路寬域網路(WAN)或本地區域網路(LAN)。Please refer to FIG. 1. As shown, the conventional WLAN home network includes an access point (AP) or base station 200, a network interface hardware 204, and other WLAN home networks. Electronic devices 206-214. The electronic device includes a WiFi mobile phone 206, a PDA/WiFi camera 208, a notebook computer 210, a home audio system 212, and a High Definition Television (HDTV)/projector 214. The electronic devices 206-214 communicate with each other on the assigned channel through the access point 200. The access point 200 has a beamforming transceiver module 216 and a multiple input multiple output (MIMO) antenna 218. Each of the electronic devices 206-214 has a beamforming transceiver module and a MIMO antenna. The access point 200 connects to an Internet wide area network (WAN) or a local area network (LAN) through the network interface hardware 204.

為接收一網路上的資料,習知一數位無線裝置之結構包含有連接至一無線射頻(RF)訊號處理電路的一天線。天線首先接收一RF訊號,並將RF訊號傳送至RF電路,以過濾不必要的訊號及相鄰通道之雜訊,接著將RF訊號轉換成基頻(中心頻率為0,直流電(DC)),或中頻(Intermediate Frequency,IF)。中頻或基頻之類比RF輸出訊號接著被轉換成一數位串流,並透過基頻模組處理。基頻模組解調及解碼上述基頻訊號,最後取得原始資料。To receive data on a network, the structure of a conventional digital device includes an antenna coupled to a radio frequency (RF) signal processing circuit. The antenna first receives an RF signal and transmits the RF signal to the RF circuit to filter unnecessary signals and adjacent channel noise, and then convert the RF signal to a fundamental frequency (center frequency is 0, direct current (DC)). Or Intermediate Frequency (IF). The analog RF output signal of the intermediate frequency or the fundamental frequency is then converted into a digital stream and processed by the baseband module. The baseband module demodulates and decodes the above-mentioned baseband signal, and finally obtains the original data.

同理,為傳送資料至網路上,數位基頻編碼位元串流及調變編碼串流,並轉換編碼串流至一IF訊號。數位訊號透過一數位類比轉換器,轉換為一類比訊號,接著傳送到RF電路。RF電路透過對應特定用戶端所分配通道之一載波頻率,將類比基頻轉換為一RF訊號,接著利用RF天線將訊號傳送到無線通道上。Similarly, in order to transmit data to the network, the digital baseband encodes the bit stream and the modulated encoded stream, and converts the encoded stream to an IF signal. The digital signal is converted to a analog signal by a digital analog converter and then transmitted to the RF circuit. The RF circuit converts the analog fundamental frequency into an RF signal through a carrier frequency corresponding to one of the channels allocated by the specific UE, and then transmits the signal to the wireless channel by using the RF antenna.

習知裝置,尤指2005年之前,符合802.11標準之WLAN產品,其利用一實體RF天線傳送及接收資料。RF天線係由時域雙工(Time-Domain Duplexing,TDD)共享,即收發器僅在一特定時間,傳送或接收資料,而無法同時進行資料接收及傳送。因此,天線係由接收器及傳送器共享。當一天線用於通訊鏈路的二端時,所建立之通道可稱一單輸入/單輸出通道(Single-Input/Single-Output,SISO)。近期根據802.11標準之進階系統則應用多個天線,以同時接收及傳送資料。舉例來說,一利用天線交換分集之雙天線裝置,係根據接收訊號品質,自動交換天線。若雙天線裝置同時利用二天線傳送資料,以及通訊鏈路之接收端僅有一天線時,其通道可稱為多輸入/單輸出(MISO)通道;反之,若傳送端使用單一天線,以及接收端使用二天線,其通道可稱為單輸入/多輸出(Single-Input/Multiple-Output,SIMO)通道。A conventional device, especially a WLAN product that conforms to the 802.11 standard before 2005, which utilizes a physical RF antenna to transmit and receive data. The RF antenna is shared by Time-Domain Duplexing (TDD), that is, the transceiver transmits or receives data only at a specific time, and cannot receive and transmit data at the same time. Therefore, the antenna is shared by the receiver and the transmitter. When an antenna is used for the two ends of the communication link, the established channel can be called a single-input/single-output (SISO). Recent advanced systems based on the 802.11 standard use multiple antennas to simultaneously receive and transmit data. For example, a dual antenna device that utilizes antenna switching diversity automatically exchanges antennas based on received signal quality. If the dual antenna device uses two antennas to transmit data at the same time, and the receiving end of the communication link has only one antenna, the channel can be called a multi-input/single-output (MISO) channel; conversely, if the transmitting end uses a single antenna, and the receiving end With two antennas, the channel can be called a single-input/multiple-output (SIMO) channel.

目前市場上大多為多輸入多輸出(Multiple-Input/Multiple-Output,MIMO)產品,其目地在於提升處理速率,增加連線範圍及穩定性。然而,現今MIMO產品技術已超越目前公開標準,如電機電子工程師學會(IEEE)僅提出工業標準802.11n之草案2.0,以制定多天線WLAN系統之運作。標準802.11n制定多天線系統之協議及技術,使系統可相互支援運作,使波束成形達到最大的改善。舉例來說,多天線系統透過結合時間或空間編碼功能,可同時傳送及接收一個以上的資料串流。因此,根據平行串流的數量,多天線系統可提升二倍或三倍處理效率。At present, most of the products are multiple-input/multiple-output (MIMO) products, and the purpose is to increase the processing rate, increase the connection range and stability. However, today's MIMO product technology has surpassed current open standards, such as the Institute of Electrical and Electronics Engineers (IEEE), which only proposes the draft of the industry standard 802.11n 2.0 to develop the operation of a multi-antenna WLAN system. Standard 802.11n develops protocols and technologies for multi-antenna systems that enable systems to support each other and maximize beamforming. For example, a multi-antenna system can transmit and receive more than one data stream simultaneously by combining time or spatial coding functions. Therefore, depending on the number of parallel streams, a multi-antenna system can increase processing efficiency by a factor of two or three.

為改善訊號接收品質,草案2.0包含有數個波束成形操作模式。基本上,波束成形係為一種天線陣列的技術,其透過調整陣列元素之增益及相位,可應用在一設定目標或來源。經由調整陣列元素之增益及相位,天線形態或波束可決定一較佳方向,以接收或傳送資料,或是減弱其他方向以減少干擾源。關於波束成形之方法,可參考以下資料:1998年頻譜訊號處理出版,托比海恩斯(Toby Haynes)所著之數位波束成形入門,以及1986年電子防禦期刊出版,作者Hans Steyskal所著之數位波束成形基礎。上述參考資料提供形成波束方式之基本數學,藉由集中天線陣列,以提升接收及傳送RF訊號之品質。To improve signal reception quality, Draft 2.0 includes several beamforming modes of operation. Basically, beamforming is a technique of an antenna array that can be applied to a set target or source by adjusting the gain and phase of the array elements. By adjusting the gain and phase of the array elements, the antenna shape or beam can determine a preferred direction to receive or transmit data, or to attenuate other directions to reduce sources of interference. For beamforming methods, refer to the following: Spectrum Signal Processing Publishing, 1998, Introduction to Digital Beamforming by Toby Haynes, and Digital Publications, 1986, by Hans Steyskal Beamforming foundation. The above reference provides the basic mathematics for forming a beam pattern by concentrating the antenna array to improve the quality of receiving and transmitting RF signals.

在802.11n草案2.0中,許多波束成形方法涉及正交分頻多工(Orthogonal Frequency Domain Multiplexing,OFDM)調變。OFDM調變為多載波,其利用反轉快速傅立葉轉換(Inverse Fast Fourier Transform,IFFT)程序,將N個資料符元轉換成一時域訊號傳送。在接收器中,時域訊號為符元,解調後成為N個頻域符元。接收訊號y在每一子載波(Sub-carrier)可表示為y=Hx+n,其中x=Qs,s為傳送符元(Symbol),Q為前乘法器,H為傳送器及接收器間之通道,n為有效雜訊。在MIMO鏈路下,通道H為一矩陣。舉例來說,在二傳送器及三接收器(2T3R)系統下,H為3x2矩陣,因此,接收訊號公式可表示為:In 802.11n draft 2.0, many beamforming methods involve Orthogonal Frequency Domain Multiplexing (OFDM) modulation. OFDM is modulated into multiple carriers, which converts N data symbols into a time domain signal transmission using an Inverse Fast Fourier Transform (IFFT) procedure. In the receiver, the time domain signal is a symbol, and after demodulation, it becomes N frequency domain symbols. The received signal y can be expressed as y=Hx+n on each sub-carrier, where x=Qs, s is the transmission symbol, Q is the premultiplier, and H is between the transmitter and the receiver. Channel, n is effective noise. Under the MIMO link, channel H is a matrix. For example, in a two-transmitter and three-receiver (2T3R) system, H is a 3x2 matrix, so the received signal formula can be expressed as:

而傳送訊號公式可表示為:The transmission signal formula can be expressed as:

在解碼接收資料的過程中,通道矩陣H係透過資料封包之前置部分(Preamble)估計。為完成波束成形之特定格式,通道狀態資訊(Channel State Information,CSI)首先經由接收器處理,接著回傳至傳送器。傳送器根據CSI,設定一波束成形矩陣Q,並利用矩陣Q傳送串連封包至對應的接收器。此種回傳CSI至傳送器之波束成形方式可稱為外顯式(Explicit)波束成形。In the process of decoding the received data, the channel matrix H is estimated by the Preamble of the data packet. To complete the specific format of beamforming, Channel State Information (CSI) is first processed by the receiver and then passed back to the transmitter. The transmitter sets a beamforming matrix Q according to the CSI, and uses the matrix Q to transmit the concatenated packet to the corresponding receiver. Such a beamforming method of returning a CSI to a transmitter may be referred to as Explicit beamforming.

外顯式波束成形係根據802.11n標準制定之方法,上述CSI資訊具有三種回授形式。第一種回授形式係利用矩陣H的實際規模,亦可稱為完整通道狀態資訊(Full CSI)。此種以完整CSI形式回授的方式因,會因通道衰退,而使通道需要較大的動態範圍表示,造成CSI資料被禁止傳送。為避免通道衰退,造成CSI資料無法回授,另一種回授形式係利用一引導矩陣(Steering Matrix)實現。在此形式中,通道矩陣首先使用奇異值分解(Singular Value Decomposition,SVD)分解,SVD可表示為:Explicit beamforming is a method developed according to the 802.11n standard. The above CSI information has three feedback forms. The first form of feedback uses the actual size of the matrix H, which can also be referred to as full channel state information (Full CSI). This way of returning in the form of complete CSI will cause the channel to require a large dynamic range representation due to channel degradation, causing CSI data to be prohibited from being transmitted. In order to avoid channel degradation, CSI data cannot be fed back, and another feedback form is implemented by a steering matrix (Steering Matrix). In this form, the channel matrix is first decomposed using Singular Value Decomposition (SVD), which can be expressed as:

H =U ΣV * Eq. (1) H = U Σ V * Eq. (1)

經過矩陣分解(Decomposition)後,矩陣V回傳至傳送器。其優點在於矩陣V為一單位矩陣(即矩陣V之列為單一範數(Norm)),因此通道可用較少的資料表示,且透過此方法可降低資料傳輸量。然而,此方法之缺失在於通道狀況有些微變異時,可能造成矩陣V劇烈變化。因此,此方法無法適用於所有通道,且造成處理速率及連接穩定性上之突然失效。After matrix decomposition (Decomposition), the matrix V is passed back to the transmitter. The advantage is that the matrix V is a unit matrix (ie, the matrix V is a single norm (Norm)), so the channel can be represented by less data, and the amount of data transmission can be reduced by this method. However, the lack of this method is that when the channel condition is slightly mutated, the matrix V may be drastically changed. Therefore, this method cannot be applied to all channels and causes sudden failure in processing rate and connection stability.

進一步地,為降低波束成形回授的資料量,第三種回授形式係壓縮通道狀態資料,其透過吉文斯旋轉分解(Givens rotation decomposition)及極性座標(Polar Coordinates),以參數化上述之引導矩陣,並回傳至發送器。如上所述,習知技術之缺失包含有回傳一完整CSI至發送器,造成波束成形處理可用的形態,以及矩陣分解與壓縮通道狀態資料之矩陣V對於通道變異過度敏感,造成矩陣產生較大的變化。Further, in order to reduce the amount of data for beamforming feedback, the third feedback form is a compression channel state data, which is parameterized by Givings rotation decomposition and Polar Coordinates. Matrix and pass back to the sender. As mentioned above, the lack of prior art includes the form of returning a complete CSI to the transmitter, resulting in beamforming processing, and the matrix of matrix decomposition and compressed channel state data being overly sensitive to channel variations, resulting in a larger matrix. The change.

因此,本發明提供一種用於外顯式回授傳輸波束成形之方法及裝置,可降低資訊量,並完整及正確地回傳CSI至發送器。Therefore, the present invention provides a method and apparatus for external explicit feedback transmission beamforming, which can reduce the amount of information and completely and correctly return CSI to the transmitter.

簡單來說,本發明實施例包含一多輸入/多輸出收發器,其具有一通道估計模組,用來接收樣本,以產生時域波束成形參數,其中該接收通道樣本包含有一通道狀態資訊(Channel State Information,CSI)。該多輸入/多輸出收發器更包含有一自適性波束成形參數模組,用來接收該時域波束成形參數,以產生時域自適性波束成形參數及頻域自適性波束成形參數;一解碼模組,用來接收該頻域自適性波束成形參數,以產生資料位元;一通道參數模組,用來接收該資料位元,以擷取該時域自適性波束成形參數;一編碼模組,用來接收該時域自適性波束成形參數,以產生一資料封包,以及用來編碼該資料封包,以產生一調變資料串流;以及一波束成形矩陣模組,用來接收該調變資料串流,並根據該頻域自適性波束成形參數,產生一波束成形資料串流;該多輸入多輸出收發器用來處理該波束成形資料串流,以產生輸出訊號,並透過形成波束方式,傳送該輸出訊號。Briefly, the embodiment of the present invention includes a multiple input/multiple output transceiver having a channel estimation module for receiving samples to generate time domain beamforming parameters, wherein the receiving channel samples include a channel status information ( Channel State Information, CSI). The multi-input/multi-output transceiver further includes an adaptive beamforming parameter module for receiving the time domain beamforming parameters to generate time domain adaptive beamforming parameters and frequency domain adaptive beamforming parameters; a group for receiving the frequency domain adaptive beamforming parameter to generate a data bit; a channel parameter module for receiving the data bit to obtain the time domain adaptive beamforming parameter; And receiving the time domain adaptive beamforming parameter to generate a data packet, and encoding the data packet to generate a modulated data stream; and a beamforming matrix module for receiving the modulation Data streaming, and generating a beamforming data stream according to the frequency domain adaptive beamforming parameter; the MIMO transceiver is configured to process the beamforming data stream to generate an output signal and form a beam pattern. The output signal is transmitted.

請參考第2圖,如圖所示,本發明實施例一多輸入多輸出(MIMO)收發器10包含有一傳送器接收器開關20、一無線射頻(Radio Frequency,RF)模組22,一訊號濾波模組24、一快速傅立葉轉換(Inverse Fast Fourier Transform,FFT)模組26、一通道估計模組28、一自適性波束成形參數模組44,以及一解碼模組49。本發明實施例之多輸入多輸出收發器10另包含有一編碼模組16、一波束成形矩陣模組58、一反轉快速傅立葉轉換(Inverse Fast Fourier Transform,IFFT)模組60、一循環延遲分集(Cyclic Delay Diversity,CDD)模組62,以及一通道濾波模組64為傳送路徑的一部分。此外,多輸入多輸出收發器10包含有一通道參數模組68、一快速傅立葉轉換模組70、一引導矩陣模組72,以及一記憶體模組74。Referring to FIG. 2, as shown in the figure, a multiple input multiple output (MIMO) transceiver 10 includes a transmitter receiver switch 20, a radio frequency (RF) module 22, and a signal. The filter module 24, an Inverse Fast Fourier Transform (FFT) module 26, a channel estimation module 28, an adaptive beamforming parameter module 44, and a decoding module 49. The multiple input multiple output transceiver 10 of the embodiment of the present invention further includes an encoding module 16, a beamforming matrix module 58, an inverse fast Fourier transform (IFFT) module 60, and a cyclic delay diversity. The (Cyclic Delay Diversity, CDD) module 62, and the one-channel filter module 64 are part of the transmission path. In addition, the MIMO transceiver 10 includes a channel parameter module 68, a fast Fourier transform module 70, a boot matrix module 72, and a memory module 74.

進一步來說,編碼模組16包含有一資料成形模組46、一編碼/穿刺器50、一位元交錯器(Interleaver)52、一調變器54,以及一串流解析器(parser)56。解碼模組49包含有一等化器32、一解交錯器(Deinterleaver)34、一解穿刺器36,以及一解碼器40為接收路徑的一部分。Further, the encoding module 16 includes a data shaping module 46, an encoder/puncture device 50, an interleaver 52, a modulator 54, and a stream parser 56. The decoding module 49 includes an equalizer 32, a deinterleaver 34, a de-puncturing device 36, and a decoder 40 as part of the receiving path.

天線12及14耦接傳送器接收器開關20,傳送器接收器開關20耦接無線射頻模組22,無線射頻模組22耦接訊號濾波模組24,訊號濾波模組24耦接快速傅立葉轉換模組26,快速傅立葉轉換模組26耦接通道估計模組26,以及通道估計模組26耦接自適性波束成形參數模組44。接著,自適性波束成形參數模組44耦接資料成形模組46及等化器32,而等化器32耦接解交錯器34,解交錯器34耦接反穿刺器36,以及反穿刺器36耦接解碼器40。The antennas 12 and 14 are coupled to the transmitter receiver switch 20, the transmitter receiver switch 20 is coupled to the radio frequency module 22, the radio frequency module 22 is coupled to the signal filtering module 24, and the signal filtering module 24 is coupled to the fast Fourier transform. The module 26, the fast Fourier transform module 26 is coupled to the channel estimation module 26, and the channel estimation module 26 is coupled to the adaptive beamforming parameter module 44. Next, the adaptive beamforming parameter module 44 is coupled to the data shaping module 46 and the equalizer 32, and the equalizer 32 is coupled to the deinterleaver 34, the deinterleaver 34 is coupled to the anti-puncture device 36, and the anti-puncture device The decoder 40 is coupled to the decoder 40.

解碼器40耦接通道參數模組68,通道參數模組68耦接快速傅立葉轉換模組70,快速傅立葉轉換模組70耦接引導矩陣模組72,引導矩陣模組72耦接記憶體模組74,以及記憶體模組74耦接波束成形矩陣模組58。The decoder 40 is coupled to the channel parameter module 68. The channel parameter module 68 is coupled to the fast Fourier transform module 70. The fast Fourier transform module 70 is coupled to the boot matrix module 72. The boot matrix module 72 is coupled to the memory module. 74, and the memory module 74 is coupled to the beamforming matrix module 58.

資料成形模組46耦接編碼/穿刺器50,編碼/穿刺器50耦接位元交錯器52,位元交錯器52耦接調變器54,調變器54耦接串流解析器56,串流解析器56耦接波束成形矩陣模組58,波束成形矩陣模組58耦接反轉快速傅立葉轉換模組60,反轉快速傅立葉轉換模組60耦接循環延遲分集模組62,循環延遲分集模組62耦接通道濾波模組64,以及通道濾波模組64耦接傳送器接收器開關20。The data shaping module 46 is coupled to the encoder/puncture device 50. The encoder/puncture device 50 is coupled to the bit interleaver 52. The bit interleaver 52 is coupled to the modulator 54. The modulator 54 is coupled to the stream parser 56. The stream parser module 58 is coupled to the beamforming matrix module 58. The beamforming matrix module 58 is coupled to the inversion fast Fourier transform module 60. The inverting fast Fourier transform module 60 is coupled to the cyclic delay diversity module 62. The diversity module 62 is coupled to the channel filter module 64, and the channel filter module 64 is coupled to the transmitter receiver switch 20.

二天線12及14耦接多輸入多輸出收發器10。多輸入多輸出收發器10傳送資料至一雙天線接收器(未繪於第2圖中),雙天線接收器接收資料封包後,估計下行通道狀態資訊(Channel State Information,CSI),其為前置處理的一部分。在外顯式回授波束成形系統中,通道狀態資訊透過傳送模組回傳至雙傳送器雙接收器(2T2R)的多輸入多輸出收發器10。具體來說,上述回傳流程(如第2圖所示)之通道狀態資訊包含於資料成形模組46中,以形成一資料封包並經由傳送處理路徑傳送。同理,引導矩陣模組72用於波束成形矩陣模組58中,用來回傳資料封包至通訊鏈路另一端的接收器。本發明另一實施例中,多輸入多輸出收發器10及接收器分別具有至少一天線。The two antennas 12 and 14 are coupled to the multiple input multiple output transceiver 10. The multi-input multi-output transceiver 10 transmits data to a dual antenna receiver (not shown in FIG. 2). After receiving the data packet, the dual antenna receiver estimates downlink channel state information (CSI), which is the former Part of the processing. In the explicit feedback beamforming system, the channel status information is transmitted back to the dual transmitter dual receiver (2T2R) multiple input multiple output transceiver 10 through the transmission module. Specifically, the channel status information of the backhaul process (as shown in FIG. 2) is included in the data shaping module 46 to form a data packet and transmitted via the transmission processing path. Similarly, the boot matrix module 72 is used in the beamforming matrix module 58 to return the data packet to the receiver at the other end of the communication link. In another embodiment of the invention, the multiple input multiple output transceiver 10 and the receiver each have at least one antenna.

請繼續參考第2圖,天線接收訊號後,傳送至傳送器接收器開關20,傳送器接收器開關20之運作模式預設為接收資料。無線射頻模組22過濾雜訊及不必要相鄰通道的訊號,接著將訊號從無線射頻轉換至基頻或中頻(Intermediate Frequency,IF),以產生基頻訊號。基頻訊號透過訊號濾波模組24轉換為數位串流,以及數位串流透過快速傅立葉轉換模組26轉換為頻域接收樣本。Please continue to refer to FIG. 2, after the antenna receives the signal, it is transmitted to the transmitter receiver switch 20. The operation mode of the transmitter receiver switch 20 is preset to receive data. The radio frequency module 22 filters the signals of the noise and unnecessary adjacent channels, and then converts the signals from the radio frequency to the fundamental frequency or intermediate frequency (IF) to generate the fundamental frequency signal. The baseband signal is converted into a digital stream by the signal filtering module 24, and the digital stream is converted into a frequency domain receiving sample by the fast Fourier transform module 26.

通道估計模組28處理上述的接收樣本,以產生時域波束參數。本發明實施例之通道狀態資訊係包含在接收樣本中,而通道狀態資訊的估計係在時域下進行,其提供改進習知技術的方法。通道估計模組28可配合通道狀態,使表示通道之必要資訊在通訊鏈路上傳送,以減少系統資訊過多,並增加系統處理速率。Channel estimation module 28 processes the received samples described above to generate time domain beam parameters. The channel state information of the embodiments of the present invention is included in the received samples, and the estimation of the channel state information is performed in the time domain, which provides a method of improving the prior art. The channel estimation module 28 can cooperate with the channel state to transmit the necessary information indicating the channel on the communication link, thereby reducing excessive system information and increasing the system processing rate.

自適性波束成形參數模組44處理時域波束成形參數,以產生時域自適性波束成形參數及頻域自適性波束成形參數。在本發明技術中,通道狀態資訊的估計係應用在通道估計模組28及自適性波束成形模組44,以減少回授資料,並同時提供幾近完整的通道狀態資訊。此外,本發明提供可自動配合通道狀態,減少通道狀態資訊量,進而改善回授通道狀態資訊的準確性。The adaptive beamforming parameter module 44 processes the time domain beamforming parameters to generate time domain adaptive beamforming parameters and frequency domain adaptive beamforming parameters. In the technique of the present invention, the channel state information is estimated to be applied to the channel estimation module 28 and the adaptive beamforming module 44 to reduce feedback data and provide near-complete channel status information. In addition, the present invention provides an automatic matching of the channel state, reducing the channel state information amount, thereby improving the accuracy of the feedback channel state information.

時域波束成形參數包含在回授通道狀態資訊中,並傳送至編碼模組16,接著輸入至資料成形模組46之封包中,以形成資料封包。資料封包透過編碼/穿刺器50編碼及穿刺,以產生編碼資料,編碼資料透過位元交錯器52交錯,以產生資料樣本。資料樣本透過調變器54調變形成複數個星座點(Constellation Points),並透過串流解析器56解析成串流,以形成一調變資料串流。The time domain beamforming parameters are included in the feedback channel status information and transmitted to the encoding module 16 and then input to the packet of the data shaping module 46 to form a data packet. The data packets are encoded and punctured by the encoder/puncture device 50 to produce encoded data that is interleaved by a bit interleaver 52 to produce a data sample. The data samples are modulated by the modulator 54 to form a plurality of constellation points and parsed into a stream by the stream parser 56 to form a modulated data stream.

自適性波束成形參數模組44傳送頻域自適性波束成形參數至等化器32,以形成等化樣本。等化樣本透過解交錯器34解交錯,以產生解交錯資料,避免連續位元落於一無效的子載波。解交錯資料接著透過反穿刺器36反穿刺,以產生反穿刺資料,其中,上述資料係以一半速率傳送。反穿刺資料透過解碼器40解碼,以產生資料位元。The adaptive beamforming parameter module 44 transmits the frequency domain adaptive beamforming parameters to the equalizer 32 to form an equalized sample. The equalized samples are deinterleaved by deinterleaver 34 to produce deinterleaved data, avoiding successive bits falling on an invalid subcarrier. The de-interlaced data is then reversed through the anti-puncture device 36 to produce anti-puncture data, wherein the data is transmitted at half rate. The anti-puncture data is decoded by decoder 40 to generate data bits.

資料位元傳送至通道參數模組68,通道狀態資訊係由資料位元中擷取。通道狀態資訊包含有時域自適性波束成形參數,並透過快速傅立葉轉換(FFT)模組70轉換為頻域自適性波束成形參數。更詳細說明如下,根據頻域自適性波束成形參數,引導矩陣模組計算出引導矩陣。因此,當通道狀態資訊更新時,引導矩陣被更新且儲存至記憶體模組74中。引導矩陣接著被傳送至波束成形矩陣模組58,其中波束成形矩陣接著應用至調變資料串流。The data bit is transmitted to the channel parameter module 68, and the channel status information is retrieved from the data bit. The channel state information includes time domain adaptive beamforming parameters and is converted to frequency domain adaptive beamforming parameters by a Fast Fourier Transform (FFT) module 70. As described in more detail below, the steering matrix module calculates the steering matrix based on the frequency domain adaptive beamforming parameters. Therefore, when the channel status information is updated, the boot matrix is updated and stored in the memory module 74. The steering matrix is then passed to a beamforming matrix module 58, where the beamforming matrix is then applied to the modulated data stream.

波束成形矩陣結合調變資料串流,透過波束成形矩陣模組58產生波束成形資料。在一2T2R系統中,假設調變資料串流表示為[s1 ,s2 ],2X2波束成形矩陣表示為Q,以及波束成形資料串流表示為[x1 ,x2 ],則得到下列公式:The beamforming matrix is combined with the modulated data stream to generate beamforming data through the beamforming matrix module 58. In a 2T2R system, assuming that the modulated data stream is represented as [s 1 , s 2 ], the 2X2 beamforming matrix is represented as Q, and the beamforming data stream is represented as [x 1 , x 2 ], the following formula is obtained :

引導矩陣結合波束成形資料串流,以產生輸出資料,並透過反轉快速傅立葉轉換(IFFT)模組60轉換為時域,接著傳送至循環延遲分集(CDD)模組62,其中CDD模組62所輸出的資料串流為循環轉換,可避免串流之間無效值的重疊。CDD模組62輸出資料串流,接著傳送至通道濾波模組64,以過濾不必要的訊號並產生輸出訊號。輸出訊號傳輸至發送器接收器開關20,發送器接收器開關20在發送模式下之運作係透過天線12及14傳送輸出訊號至接收器。The steering matrix combines with the beamformed data stream to produce an output data, which is converted to the time domain by an inverse fast Fourier transform (IFFT) module 60, and then transmitted to a cyclic delay diversity (CDD) module 62, wherein the CDD module 62 The output data stream is cyclically converted to avoid overlapping of invalid values between streams. The CDD module 62 outputs the data stream, which is then transmitted to the channel filtering module 64 to filter unnecessary signals and generate output signals. The output signal is transmitted to the transmitter receiver switch 20. The operation of the transmitter receiver switch 20 in the transmit mode transmits the output signal through the antennas 12 and 14 to the receiver.

在一般文獻中,由於維度已減少,故大多提出時域下的估計。另一方面來說,時域下之估計增加其複雜性。在單傳送器單接收器(1T1R)的情況下,研究顯示較佳的估計結果係為較少的未知數。舉例來說,在標準802.11g單輸入單輸出(SISO)系統中,通道估計具有52個獨立的未知數,然而時域下之通道通常包含16個有效數,指數衰退抽頭(其依據標準802.11a,未違反循環前置(Cyclic Prefix,CP))。因此,在一各音調(Tone)基礎中,52個測量值用來決定52個獨立通道抽頭(Tap),當52個測量值可用來估計潛在的16點時域序列,以增加等化步驟精確度。換句話說,基本問題在於過度決定三個以上係數,因此,透過單純頻域通道估計時,目前標準802.11g及”聰明”天線(SA)系統中的某些功能無法執行。若使用16階通道模組時,均方誤差(Mean-Square Error,MSE)估計可改善每一音調大約5.1dB。(然而,並非所有音調皆可被改善,請參考以下說明,防護頻帶旁的邊緣音調無法獲得完全的改善)。過度決定系統係為較穩定且對估計錯誤較不靈敏之系統。此外,在任何估計問題中,過度參數化將降低估計表現,因此,較佳的方式係為假設通道長度愈短愈好。In the general literature, since the dimensions have been reduced, most of the estimates in the time domain are proposed. On the other hand, estimates in the time domain increase its complexity. In the case of a single transmitter single receiver (1T1R), studies have shown that the better estimate is less unknown. For example, in a standard 802.11g single-input single-output (SISO) system, the channel estimate has 52 independent unknowns, whereas the channel in the time domain typically contains 16 significant numbers, exponential decay taps (which are based on standard 802.11a, Cyclic Prefix (CP) is not violated. Therefore, in a Tone basis, 52 measurements are used to determine 52 independent channel taps, and 52 measurements can be used to estimate the potential 16-point time domain sequence to increase the accuracy of the equalization steps. degree. In other words, the basic problem is that more than three coefficients are over-determined. Therefore, some functions in the current standard 802.11g and "smart" antenna (SA) systems cannot be performed when estimating through pure frequency domain channels. If a 16th-order channel module is used, the Mean-Square Error (MSE) estimate improves the pitch by approximately 5.1 dB. (However, not all tones can be improved, please refer to the instructions below, the edge tones near the guard band cannot be completely improved). Overdetermined systems are systems that are more stable and less sensitive to estimation errors. Furthermore, in any estimation problem, over-parameterization will reduce the estimated performance, so the preferred way is to assume that the shorter the channel length, the better.

此外,另一較佳方式為使用原型資料。以最小平方(Least-Squares)估計來說,僅使用通道長度;以最小均方誤差(Minimum Mean Square Error,MMSE)估計來說,除使用通道長度,亦使用功率時延擴展資料。上述之錯誤估計技術更進一步說明如下。In addition, another preferred way is to use prototype material. In the least square (Least-Squares) estimation, only the channel length is used; in terms of Minimum Mean Square Error (MMSE) estimation, power delay extension data is used in addition to the channel length. The above error estimation technique is further explained as follows.

測量模型:單輸入單輸出情況Measurement model: single input and single output

當得到對應單傳送器單接收器(1T1R)情況之結果時,最小平方(least-squares,LS)通道估計可輕易應用至多輸入多輸出情況。正交分頻多工(orthogonal frequency domain multiplexing,OFDM)基頻模型可以下列公式表示:The least-squares (LS) channel estimate can be easily applied to multiple input multiple output situations when the result of a single transmitter single receiver (1T1R) is obtained. The orthogonal frequency domain multiplexing (OFDM) fundamental frequency model can be expressed by the following formula:

y =XFg zp +n . Eq. (3) y = XFg zp + n . Eq. (3)

變數g zp 零填補至長度N(N=64,用於標準802.11a/g/n 20MHz系統)的通道係數向量;F為一FFT運算矩陣;X為傳送符元(如前置資訊)之一對角矩陣;n為雜訊向量;以及y為FFT的輸出。在頻域上的通道可表示為:The variable g zp is zero padded to the channel coefficient vector of length N (N=64 for standard 802.11a/g/n 20MHz systems); F is an FFT operation matrix; X is one of the transmission symbols (such as preamble) Diagonal matrix; n is the noise vector; and y is the output of the FFT. The channel in the frequency domain can be expressed as:

h =Fg xp =Tg , Eq. (4) h = Fg xp = Tg , Eq. (4)

其中,T為FFT矩陣的前L列,並假設L(L<N)為通道的最大長度。此量測方程式可簡化結果估計。進一步,假設F矩陣中僅保留有對應子載波頻率的列,以減少T之大小至56XL(標準802.11n)或52XL(標準802.11a/g)。Where T is the first L column of the FFT matrix and it is assumed that L (L < N) is the maximum length of the channel. This measurement equation simplifies the estimation of the result. Further, it is assumed that only columns of corresponding subcarrier frequencies are reserved in the F matrix to reduce the size of T to 56XL (standard 802.11n) or 52XL (standard 802.11a/g).

最小均方誤差通道估計(單輸入單輸出情況)Minimum mean square error channel estimation (single input and single output case)

假設h的線性估計為:Suppose the linear estimate of h is:

由上列公式可以得到參數M。為計算出M mmse ,需將費用函數最小化,即:The parameter M can be obtained from the above formula. To calculate M mmse , the cost function needs to be minimized, ie:

J mmse =〈e ,e 〉, Eq. (6) J mmse =< e , e 〉, Eq. (6)

其中,括弧表示內積的期望值運算,且定義錯誤為:,以滿足正交條件:Wherein, the brackets represent the expected value of the inner product, and the definition error is: To meet orthogonal conditions:

e ,y 〉=0, Eq. (7)e , y 〉=0, Eq. (7)

降低費用函數,並取代錯誤,正交條件可得到下列關係:Reduce the cost function and replace the error, the orthogonal condition can get the following relationship:

其中among them

因此,頻域下之MMSE通道估計為:Therefore, the MMSE channel in the frequency domain is estimated to be:

透過減少維度(L階),時域估計為:By reducing the dimension (L-order), the time domain is estimated as:

此估計為一較複雜之計算,需事先假設通道自協方差(Auto-Covariance)及雜訊大小,以進行反轉運算並預先儲存。This estimate is a more complicated calculation. It is necessary to assume the channel auto-covariance and noise size in advance to perform the inversion operation and store it in advance.

最小平方(LS)通道估計(單輸入單輸出情況)Least Squares (LS) channel estimation (single input and single output conditions)

透過簡單線性最小平方可計算出簡化估計,在此所述之費用函數(Cost Function)為:A simplified estimate can be calculated by simple linear least squares, and the cost function described here is:

J ls =(y -XTg )*(y -XTg ). Eq. (12) J ls =( y - XTg )*( y - XTg ). Eq. (12)

取出對應通道之部分費用函數,並設定其為零。Take out the partial cost function of the corresponding channel and set it to zero.

解出通道以得到最小平方估計:Solve the channel to get the least squares estimate:

假設使用整個FFT矩陣F來取代T(表示一零填補通道長度估計為:,則將問題簡化成單音調(頻域)估計:Assume that the entire FFT matrix F is used instead of T (representing a zero-fill channel length estimate: , to simplify the problem into a single tone (frequency domain) estimate:

其為目前標準802.11g(1T1R)估計,由於過度參數化通道,故必需降階估計。It is currently the standard 802.11g (1T1R) estimate, due to the over-parameterized channel, it is necessary to reduce the order estimate.

最小平方通道估計:多輸入多輸出情況,草案802.11N序文Least Squares Channel Estimation: Multiple Input Multiple Output Case, Draft 802.11N Preamble

上述公式可應用至多輸入多輸出情況,如2T2R配置,但不失其一般性。透過相關的前置資訊,以下所述之公式可運用至1T1R、1T2R,或2T3R的情況。The above formula can be applied to multiple input and multiple output situations, such as 2T2R configuration, without losing its generality. The formula described below can be applied to 1T1R, 1T2R, or 2T3R through relevant pre-information.

MIMO之延伸應用首先擴大量測方程式。每一子載波(k=1,...56)對應有一2X2矩陣:The extended application of MIMO first expands the measurement equation. Each subcarrier (k=1,...56) corresponds to a 2X2 matrix:

每一子載波下,Walsh-Hadamard前置符元向量對應至接收向量,其可表示為:Under each subcarrier, the Walsh-Hadamard presymbol vector corresponds to the receive vector, which can be expressed as:

其中,係數k係用來簡化表示公式;S係為在k th 子載波下之雙相位位移鍵(BPSK)前置符元。循環延遲分集(CDD)包含在第二傳輸串流,其中第二傳輸串流為通道的一部分。由於資料部分包含有延遲分集,故上述資料為有效資料。由於方程式系統一次可解決四個未知的通道,故可使用單音調估計:Among them, the coefficient k is used to simplify the representation formula; S is the double phase shift key (BPSK) pre-symbol under the k th subcarrier. A cyclic delay diversity (CDD) is included in the second transport stream, where the second transport stream is part of the channel. Since the data section contains delay diversity, the above information is valid. Since the equation system can solve four unknown channels at a time, a single tone estimate can be used:

時域通道矩陣可表示為:The time domain channel matrix can be expressed as:

假設上述的時域通道係數l 被L(例如16或24)所限制,第一接收FFT模組之輸出向量可表示為:Assuming that the above-mentioned time domain channel coefficient l is limited by L (for example, 16 or 24), the output vector of the first receiving FFT module can be expressed as:

在量測方程式(19)中,每個FFT輸出向量(r 00 ,r 01 )各有56個元素,所以共有112個量測。舉例來說,若每個通道向量(g 00 ,g 01 ,等)各有16個元素,則會有64個未知數。因此,上述方程式為一過度決定的方程式系統。矩陣S為一包含11n長訓練欄位(Long training field,LTF)符元的對角矩陣。同理,第二接收FFT模組之輸出向量可表示為:在公式(20)中,上述A亦可表示為:In the measurement equation (19), each FFT output vector ( r 00 , r 01 ) has 56 elements each, so there are 112 measurements. For example, if each channel vector ( g 00 , g 01 , etc.) has 16 elements each, there will be 64 unknowns. Therefore, the above equation is an overdetermined equation system. The matrix S is a diagonal matrix containing 11n long training field (LTF) symbols. Similarly, the output vector of the second receiving FFT module can be expressed as: In formula (20), the above A can also be expressed as:

使用一般最小平方結果於上述通道估計,可得到:Using the general least squares result for the above channel estimates, you can get:

以MIMO量測取代上述矩陣可得到:Substituting the above matrix with MIMO measurement gives:

頻域最後通道向量為:The last channel vector in the frequency domain is:

由於通道參數不需回傳至發送器,時域結果並不需要被明確的計算,所有的估計過程可結合成一個矩陣,並事先儲存。總估計可表示成下列公式:Since the channel parameters do not need to be transmitted back to the transmitter, the time domain results do not need to be explicitly calculated. All estimation processes can be combined into a matrix and stored in advance. The total estimate can be expressed as the following formula:

值得注意的是,使用直線單音調頻域估計的傳統MIMO接收器在習知通信系統中,可表示成一簡化之格式:It is worth noting that conventional MIMO receivers using linear monophonic frequency domain estimation can be represented in a simplified format in conventional communication systems:

透過矩陣運算,可改善上述通道估計,且得到一格式為56X56元素的區塊對角矩陣。Through the matrix operation, the above channel estimation can be improved, and a block diagonal matrix of the format 56X56 element is obtained.

M ls =T (T *T )-1 T *.  Eq. (27) M ls = T ( T * T ) -1 T * . Eq. (27)

為簡化計算方式,唯一需要計算之矩陣運算為反轉部分:(T *T )-1 ,其原因在於T *及T 可分別透過IFFT及FFT模組計算。完整的通道估計包含時域及頻域的估計,以及關於時域通道參數的回授,請參考第3圖。To simplify the calculation, the only matrix operation that needs to be calculated is the inversion part: ( T * T ) -1 because T * and T can be calculated by the IFFT and FFT modules, respectively. The complete channel estimate includes both time and frequency domain estimates, as well as feedback on time domain channel parameters, see Figure 3.

如第3圖所示,本發明實施例一通道估計模組86耦接自適性波束成形參數模組44,其包含有前置模組90及92、交接點94及96、等級模組98及102,以及IFFT模組106及108。此外,第3圖更包含有FFT模組80及82。As shown in FIG. 3, the channel estimation module 86 of the embodiment of the present invention is coupled to the adaptive beamforming parameter module 44, which includes front modules 90 and 92, junction points 94 and 96, and level module 98. 102, and IFFT modules 106 and 108. In addition, FIG. 3 further includes FFT modules 80 and 82.

FFT模組80及82分別耦接前置模組90及92,前置模組90及92同時耦接交接點94及96,交接點94耦接等級模組98,等級模組98耦接IFFT模組106,以及交接點96耦接等級模組102,等級模組102耦接IFFT模組108。The FFT modules 80 and 82 are respectively coupled to the front modules 90 and 92. The front modules 90 and 92 are coupled to the junctions 94 and 96, the junction 94 is coupled to the level module 98, and the level module 98 is coupled to the IFFT. The module 106 and the junction point 96 are coupled to the level module 102, and the level module 102 is coupled to the IFFT module 108.

FFT模組80及82輸出接收樣本至前置模組90及92。進一步來說,上述具有二元素的第一接收樣本(r00 r01 )經由具有長前置訓練序列的前置模組90及92處理,其中長前置訓練序列包含有Walsh-Hadamard前置符元。前置模組90之輸出在交接點94與前置模組92之輸出相減,以及在等級模組98乘以1/2,以產生頻域波束成形參數之第一元素。前置模組92之輸出在交接點96與前置模組90之輸出相加,以及在等級模組102乘以1/2,以根據公式(25)產生頻域波束成形參數之第二元素。時域波束成形參數係經由IFFT模組106及108應用T*至頻域波束成形參數計算而得。值得注意的是,亦可透過前述之計算方式而得,以完成2x2時域通道矩陣估計(公式(19))。The FFT modules 80 and 82 output the received samples to the pre-modules 90 and 92. Further, the first received sample (r 00 r 01 ) having the two elements is processed by the pre-modules 90 and 92 having a long pre-training sequence, wherein the long pre-training sequence includes the Walsh-Hadamard preamble yuan. The output of the front module 90 is subtracted from the output of the pre-module 92 at the junction 94 and multiplied by 1/2 at the level module 98 to produce a first element of the frequency domain beamforming parameters. The output of the front module 92 is added to the output of the pre-module 90 at the junction 96 and multiplied by 1/2 at the level module 102 to generate a second element of the frequency domain beamforming parameters according to equation (25). . Time domain beamforming parameters and It is calculated by applying T* to frequency domain beamforming parameters via IFFT modules 106 and 108. It is worth noting that and Also through the foregoing and The calculation is done to complete the 2x2 time domain channel matrix estimation (Equation (19)).

本發明實施例一自適性波束成形參數模組88包含有視窗模組112及114、矩陣模組116及118、乘法模組120及122,以及FFT模組124及126。視窗模組112及114除分別耦接矩陣模組116及118外,並分別耦接乘法模組120及122。The adaptive beamforming parameter module 88 of the embodiment of the present invention includes window modules 112 and 114, matrix modules 116 and 118, multiplication modules 120 and 122, and FFT modules 124 and 126. The window modules 112 and 114 are coupled to the matrix modules 116 and 118, respectively, and coupled to the multiplication modules 120 and 122, respectively.

時域通道估計傳送至視窗模組112及114,視窗模組112及114具有一臨界值及可自適性通道長度之視窗,使得視窗可取得理想大小的通道估計抽頭能量或其他矩陣。舉例來說,視窗可擴大,直到在視窗外的抽頭量值小於一設定的臨界值。不包含在視窗內之抽頭對於通道模型具有較微小的影響,且不在通道估計程序中。不同的技術可用來選擇視窗中心。在本發明實施例中,具有最高抽頭能量(或稱為量值)之抽頭為視窗中心,以及視窗大約在中心開啟,直到視窗外之抽頭低於臨界值。在本發明另一實施例中,一重心演算法係係用來找到視窗中心,以及視窗可擴展,直到視窗外之總抽頭能量低於抽頭能量之二預設比例,其中預設比例包含在視窗中,並可稱為視窗抽頭能量。在以下情況中,視窗外之通道抽頭可不包含在估計程序中,其提供總通道能量的一小部分。視窗運作更進一步說明如下,請參考第4圖,其開啟通道抽頭直到取得總能量之一固定比例。當視窗在中心之後,通道抽頭資料從視窗模組112及114分別傳送至矩陣模組116及118。The time domain channel is estimated to be transmitted to the window modules 112 and 114. The window modules 112 and 114 have a window of threshold values and adaptive channel lengths such that the window can achieve a desired channel estimate of tap energy or other matrix. For example, the window can be expanded until the tap value outside the window is less than a set threshold. Taps not included in the window have a minor effect on the channel model and are not in the channel estimation procedure. Different techniques can be used to select the window center. In an embodiment of the invention, the tap with the highest tap energy (or magnitude) is the center of the window, and the window is open approximately at the center until the tap outside the window is below the threshold. In another embodiment of the present invention, a center of gravity algorithm is used to find the center of the window, and the window is expandable until the total tap energy outside the window is lower than the preset ratio of the tap energy, wherein the preset ratio is included in the window. Medium, and can be called window tap energy. In the following cases, the channel taps outside the window may not be included in the estimation procedure, which provides a fraction of the total channel energy. The operation of the window is further explained below. Please refer to Figure 4, which opens the channel tap until a fixed ratio of total energy is obtained. After the window is centered, channel tap data is transmitted from the window modules 112 and 114 to the matrix modules 116 and 118, respectively.

根據視窗長度,矩陣C =(T *T )-1 可由計算得出或從預先計算值及儲存值中選擇,接著矩陣模組116及118將其傳送至乘法模組120及122,其中時域自適性波束成形參數係根據以下公式計算出:According to the window length, the matrix C = ( T * T ) -1 can be calculated or selected from the pre-calculated value and the stored value, and then the matrix modules 116 and 118 transmit it to the multiplication modules 120 and 122, wherein the time domain The adaptive beamforming parameters are calculated according to the following formula:

時域自適性波束成形參數(如通道估計,亦可稱為通道狀態資訊(CSI))用於二不同路徑。第一路徑,時域自適性波束成形參數傳送至傳送模組128及130(如第3圖所示),傳送模組128及130將時域自適性波束成形參數轉換成資料封包,並回傳至通訊鏈路的另一端。第二路徑,CSI傳送至FFT模組124及126處理,透過零填補(Zero Padding)時域自適性波束成形參數後,FFT模組124及126對時域自適性波束成形參數進行FFT運算,以產生頻域自適性波束成形參數。上述FFT運算與公式(23)為相同運算,皆包含與T 矩陣的乘法運算。零填補係用來增加CSI參數之長度,使向量具有一適當長度(如64或128),接著進行FFT運算。頻域自適性波束成形參數接著傳送至等化器模組132及134,以調整頻域等化器(Frequency Domain Equalizer,FEQ)。Time domain adaptive beamforming parameters (such as channel estimation, also known as channel status information (CSI)) for two different paths. The first path, the time domain adaptive beamforming parameters are transmitted to the transmission modules 128 and 130 (as shown in FIG. 3), and the transmission modules 128 and 130 convert the time domain adaptive beamforming parameters into data packets and transmit back To the other end of the communication link. The second path, the CSI is sent to the FFT modules 124 and 126 for processing, and after the Zero Padding time domain adaptive beamforming parameters are passed, the FFT modules 124 and 126 perform FFT operations on the time domain adaptive beamforming parameters to Generating frequency domain adaptive beamforming parameters. The above FFT operation is the same as equation (23), and both include multiplication with the T matrix. Zero padding is used to increase the length of the CSI parameters so that the vector has an appropriate length (such as 64 or 128) and then perform an FFT operation. The frequency domain adaptive beamforming parameters are then passed to equalizer modules 132 and 134 to adjust the Frequency Domain Equalizer (FEQ).

請參考第4圖,本發明實施例一視窗模組與一矩陣模組之方塊圖。首先步驟138計算所有通道之總抽頭能量,接著設定一kcp 值及臨界值(THRESH);在RATIO<THRESH及w(視窗長度值)<w_max情況下,步驟142透過將視窗內之抽頭能量除以總抽頭能量,計算出比值(RATIO),其可稱為最佳視窗比值(RATIO)。於每次計算出比值(RATIO)後,將w值加1,直到計算出的比值(RATIO)等於或大於設定之臨界值。Please refer to FIG. 4, which is a block diagram of a window module and a matrix module according to an embodiment of the present invention. First, step 138 calculates the total tap energy of all channels, and then sets a k cp value and a critical value (THRESH); in the case of RATIO < THRESH and w (window length value) < w_max, step 142 divides the tap energy in the window. The ratio (RATIO), which can be referred to as the optimal window ratio (RATIO), is calculated as the total tap energy. After each calculation of the ratio (RATIO), the value of w is incremented by one until the calculated ratio (RATIO) is equal to or greater than the set threshold.

臨界值(THRESH)及w_max需為可編寫成程式之值。增加能量臨界值(THRESH)可使大多數的通道抽頭包含在估計內,且具有較大的C 矩陣(如C 24 )可供選擇。反之,減少臨界值(THRESH)會使更多抽頭排除在估計中,並將其視為可忽略的,造成使用較小的C 矩陣來進行估計。w_max參數可限定通道估計視窗大小。上述方式較佳地可用於通道預先設定有可忽視之多路徑效應以及一短脈衝回應(如具有較少重要抽頭)。The threshold (THRESH) and w_max need to be values that can be programmed. Increasing the energy threshold (THRESH) allows most of the channel taps to be included in the estimate and has a larger C matrix (such as C 24 ) to choose from. Conversely, decreasing the threshold (THRESH) will exclude more taps from the estimate and treat them as negligible, resulting in the use of smaller C matrices for estimation. The w_max parameter defines the channel estimation window size. The above approach is preferably used for channel presets with negligible multipath effects and a short pulse response (e.g., with fewer important taps).

根據最佳視窗RATIO,步驟144決定一C 矩陣。舉例來說,在實際應用上,當傳送輸出訊號之距離相對無線通道之多路徑長度短時,則前面較少抽頭,如w<4,包含大多數的資訊,並從步驟144選擇維度8x8之矩陣C 8 Based on the best window RATIO, step 144 determines a C matrix. For example, in practical applications, when the distance of the transmitted output signal is shorter than the path length of the wireless channel, the front is less tapped, such as w<4, containing most of the information, and the dimension 8x8 is selected from step 144. Matrix C 8 .

同理,當傳送距離為中等時,如w<8,則選擇維度16x16之矩陣C 16 ,以及當傳送距離較長時,則選擇維度24x24之矩陣C 24 。因此,C 矩陣可適應通道狀況,以及於步驟146輸出。Similarly, when the transmission distance is medium, such as w < 8, the matrix C 16 of the dimension 16x16 is selected, and when the transmission distance is long, the matrix C 24 of the dimension 24x24 is selected. Therefore, the C matrix can be adapted to the channel condition and output at step 146.

在通道估計程序中,最主要之元素為矩陣C =(T *T )-1 。以下說明矩陣C 之基本特徵:In the channel estimation procedure, the most important element is the matrix C = ( T * T ) -1 . The basic features of matrix C are explained below:

1.C 為實數(無複數)及對稱矩陣。1. C is a real number (no complex number) and a symmetric matrix.

2. 此外,每一對角線(主要對角線及次要對角線)為一對稱序列,因此可簡少其儲存空間及其複雜性。2. In addition, each diagonal (primary diagonal and secondary diagonal) is a symmetrical sequence, thus reducing its storage space and its complexity.

3.C 矩陣為移轉不變(Shift Invariant),即不同時域視窗用於不同子串流估計時,C 矩陣保持不變。由於循環移轉分集應用於不同前置資訊子串流,系統需遵守802.11n標準。3. The C matrix is Shift Invariant, that is, different time domain windows are used for different substring estimation. and When the C matrix remains unchanged. Since cyclic shift diversity is applied to different preamble substreams, the system must comply with the 802.11n standard.

經由簡化矩陣,根據不同的通道狀況,可儲存多個矩陣。舉例來說,三個不同矩陣被儲存,其分別為維度8x8之矩陣C 8 、維度16x16之矩陣C 16 ,及維度24x24之矩陣C 24 。中間向量可被視窗計算以取得視窗寬度,使得在向量下,部分向量之通道抽頭能量超過總抽頭能量之一預設比例。通道視窗之實施可參考第4圖。Through the simplified matrix, multiple matrices can be stored depending on the channel conditions. For example, the three different matrices are stored, respectively as a 8x8 matrix C of dimension 8, 16x16 matrix C of dimension 16, and dimension of the 24x24 matrix C 24. Intermediate vector Can be calculated by the window to get the width of the window, so that in the vector Next, the channel tap energy of the partial vector exceeds a preset ratio of the total tap energy. Refer to Figure 4 for the implementation of the channel window.

較佳地,矩陣C 乘法運算使用一奇異值分解(SVD),即C =(T *T )-1 =VV ,並預先儲存矩陣V及Σ。此分解法允許所有特徵值(Eigenvalues)準確地儲存在對角矩陣Σ,當方向矩陣填滿時,其具有等級相同的列及行。Preferably, the matrix C multiplication operation uses a singular value decomposition (SVD), that is, C = ( T * T ) -1 = V * Σ V , and the matrices V and Σ are stored in advance. This decomposition method allows all eigenvalues to be accurately stored in the diagonal matrix Σ, which has the same rank and row when the directional matrix is filled.

上述方法可延伸應用至MIMO系統,其詳細說明請參考如下。The above method can be extended to the MIMO system, and the detailed description thereof is as follows.

延伸應用至2T3R情況Extended application to 2T3R

以完整性來說,為支援3個接收器,額外增加之子通道使用相同估計方式估測,即得到:In terms of completeness, to support 3 receivers, the additional subchannels are estimated using the same estimation method, ie:

其中r 2 為第三FFT模組之輸出。Where r 2 is the output of the third FFT module.

延伸應用至3串流及3T3R情況Extended application to 3 streams and 3T3R

上述說明技術可延伸至三個串流的情況。根據802.11n標準第283頁之Eq. 20-27,802.11n標準Walsh-Hadamard前置資訊的極性結構將可表示成:The above described technique can be extended to the case of three streams. According to Eq. 20-27 on page 283 of the 802.11n standard, the polar structure of the Walsh-Hadamard preamble of the 802.11n standard will be expressed as:

當三個串流被傳輸時,最前面三行可決定傳輸前置資訊的極性結構。在此情況下,矩陣的四列表示需利用一額外量測來決定3X3的通道矩陣。使用上述公式,可得到時域通道係數為:When three streams are transmitted, the first three lines determine the polarity structure of the transmitted preamble. In this case, the four columns of the matrix represent the need to use an additional measurement to determine the 3X3 channel matrix. Using the above formula, the time domain channel coefficients are:

上述公式可得到通道矩陣的第一列,以及上述方法可藉由r 10 取代r 00 ,以及r 11 取代r 01 來決定通道矩陣的第二列與第三列。The above formula can obtain the first column of the channel matrix, and the above method can determine the second column and the third column of the channel matrix by substituting r 10 for r 00 and r 11 for r 01 .

延伸應用至4串流及4T4R情況Extended application to 4 streams and 4T4R

由於前置資訊具有四列,以及僅具有一額外傳輸行,Walsh-Hadamard延伸應用至四個串流情況係直接根據3個串流的情況。通道估計之第四元素可表示成:Since the preamble has four columns and only one extra transmission line, the application of Walsh-Hadamard extension to the four stream cases is based directly on the case of three streams. The fourth element of the channel estimate can be expressed as:

為顯示本發明實施例之均方誤差(MSE)的改進,以一標準802.11g之1T1R系統來說,其估計公式如下:In order to show the improvement of the mean square error (MSE) of the embodiment of the present invention, the estimation formula of a standard 802.11g 1T1R system is as follows:

M ls ,1 T =T (T *T )-1 T *S 0 . Eq. (33) M ls ,1 T = T ( T * T ) -1 T * S 0 . Eq. (33)

在標準802.11g系統中,由於兩個訓練符元及64個當中的52個子載波被使用,基礎頻域(單音調)估計為:In the standard 802.11g system, since two training symbols and 52 of the 64 subcarriers are used, the fundamental frequency domain (single tone) is estimated as:

Channel_Estimate_MSE=Channel_SNR+10*log(2)+10*log(64/52)~34dB。Channel_Estimate_MSE=Channel_SNR+10*log(2)+10*log(64/52)~34dB.

此外,若實際通道僅具有16抽頭,則時域估計預期改善均方誤差(MSE):MSE_gain(16抽頭)=10*log(52/16)=5.1dB,或MSE_gain(24抽頭)=10*log(52/24)=3.4dB。In addition, if the actual channel has only 16 taps, the time domain estimation is expected to improve the mean square error (MSE): MSE_gain (16 taps) = 10 * log (52 / 16) = 5.1 dB, or MSE_gain (24 taps) = 10 * Log (52/24) = 3.4 dB.

如第5圖所示,除少數旁側音調及接近直流電或0頻率(DC),可清楚看出其增益效果。8抽頭之情況亦可得到如第5圖之相似曲線。As shown in Figure 5, except for a few sidetones and near DC or 0 frequency (DC), the gain effect is clearly seen. A similar curve as in Fig. 5 can also be obtained for the case of 8 taps.

請繼續參考第5圖,其為本發明實施例一頻域估計152、一24抽頭時域估計154,及16抽頭時域估計156之均方誤差與子載波之曲線圖。第5圖所示之曲線係為一可加性白高斯雜訊通道之結果。Please refer to FIG. 5, which is a graph of the mean square error and subcarrier of the frequency domain estimation 152, the 24-tap time domain estimation 154, and the 16-tap time domain estimation 156 according to an embodiment of the present invention. The curve shown in Figure 5 is the result of an additive white Gaussian noise channel.

一衰退通道可得到類似曲線結果。請參考第6圖,其為本發明實施例一衰退通道g=(1 0.1 1)之均方誤差估計,如圖所示,其具有二無效內頻帶。第6圖包含有一頻域估計158、一24抽頭時域估計160,及一16抽頭時域估計162之標準均方誤差與子載波之曲線圖。A decaying channel yields a similar curve result. Please refer to FIG. 6 , which is a mean square error estimation of a decay channel g=(1 0.1 1) according to an embodiment of the present invention. As shown, it has two invalid inner frequency bands. Figure 6 contains a plot of a standard mean square error and subcarriers for a frequency domain estimate 158, a 24-tap time domain estimate 160, and a 16 tap time domain estimate 162.

如圖所示,時域通道估計可改善抽頭估計之均方誤差大約5.4分貝(decibels,dB),透過RT2830C編碼基數模擬估計,可得到1.25~2.0dB改善。請參考第7圖,其為本發明實施例1、2及3個接收器傳送封包(單輸入多輸出情況)之封包錯誤率(Packet-Error Rate,PER)時域通道估計分析。如圖所示,當平滑時,最大比值合併(Maximum Ratio Combining,MRC)具有將近2dB的改善,例如應用時域通道估計至配置有3個接收器的通道估計。As shown in the figure, the time domain channel estimation can improve the mean square error of the tap estimation by about 5.4 decibels (dB), and the 1.25~2.0 dB improvement can be obtained by the RT2830C code base simulation estimation. Please refer to FIG. 7 , which is a packet-error rate (PER) time domain channel estimation analysis of the first, second, and third receiver transmission packets (single input and multiple output cases) according to the embodiment of the present invention. As shown, when smoothing, Maximum Ratio Combining (MRC) has an improvement of nearly 2 dB, such as applying a time domain channel estimate to a channel estimate configured with 3 receivers.

請參考第8圖,在多路徑情況下,工業標準IEEE 802.11n調變編碼方法(Modulation Coding Scheme,MCS)12,其為一雙串流十六點正交振幅調變(Quadratic Amplitude Modulation,QAM)用於標準IEEE通道B及E狀況下之3T2R收發器,由圖可知,當使用上述平滑演算法時,本發明實施例可改善通道B情況大約1.8dB,以及改善通道E情況(較大多路徑)大約0.8dB。Please refer to Figure 8. In the case of multipath, the industry standard IEEE 802.11n Modulation Coding Scheme (MCS) 12 is a dual-stream six-point quadrature amplitude modulation (QAM). For 3T2R transceivers in standard IEEE channel B and E conditions, it can be seen from the figure that embodiments of the present invention can improve channel B conditions by about 1.8 dB and improve channel E (larger multipath) when using the smoothing algorithm described above. ) about 0.8dB.

為詳細說明本發明減少耗時之優點,將本發明之回授方法與其他習知技術比較,其結果請見第9圖,其針對不同回授方法列出計算0元負載之公式,以下說明公式內之參數用途:通道行數(或接收器數量)N r 、通道列數(或發送器數量)N c 、每一係數之位元數N b 、子載波數N sc 滿以及時域通道估計之抽頭數N L 。假設每一參數具有8位元係數,一3x3通道(N r =N c =3),及56個正交分頻多工子載波。In order to explain in detail the advantages of the present invention in reducing time consumption, the feedback method of the present invention is compared with other conventional techniques. The results are shown in Fig. 9, which lists the formula for calculating the zero-element load for different feedback methods. The purpose of the parameters in the formula: the number of channel rows (or the number of receivers) N r , the number of channel columns (or the number of transmitters) N c , the number of bits per coefficient N b , the number of subcarriers N sc full and the time domain channel Estimated number of taps N L . Assume that each parameter has an 8-bit coefficient, a 3x3 channel ( N r = N c = 3), and 56 orthogonal frequency-division multiplex sub-carriers.

由第9圖可知,根據通道長度的情況,本發明實施例(方法4)較完整CSI(方法1)減少86%、72%及58%的資料超載。根據標準802.11n,在通道情況不佳的狀況下,若NL =24必需取得多路徑之完整長度,本發明方法較完整CSI方法減少58%的資料超載。值得注意的是,在一般通道情況下,本發明方法與壓縮回授(方法3)之位元數相近,但壓縮回授方法係回授不完整之CSI,相較之下,本發明可回授幾乎完整之CSI至通訊鏈路的另一端。As can be seen from Fig. 9, according to the channel length, the embodiment (method 4) of the present invention reduces the data overload by 86%, 72% and 58% compared with the complete CSI (method 1). According to the standard 802.11n, in the case of poor channel conditions, if N L = 24 must obtain the full length of the multipath, the method of the present invention reduces the data overload by 58% compared to the complete CSI method. It should be noted that in the case of a general channel, the method of the present invention is similar to the number of bits of the compression feedback (method 3), but the compression feedback method is to return an incomplete CSI. In contrast, the present invention can be returned. Grant almost complete CSI to the other end of the communication link.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

200...存取點、基地台200. . . Access point, base station

204...網路介面硬體204. . . Network interface hardware

206...WiFi手機206. . . WiFi mobile phone

208...個人數位數理/WiFi相機208. . . Personal digital number / WiFi camera

210...筆記型電腦210. . . Notebook computer

212...家庭音響系統212. . . Home audio system

214...高清晰度電視/投影機214. . . HDTV/projector

216...波束成形收發模組216. . . Beamforming transceiver module

218...多輸入多輸出天線218. . . Multiple input multiple output antenna

10...多輸入多輸出收發器10. . . Multiple input multiple output transceiver

12、14...天線12, 14. . . antenna

16...編碼模組16. . . Coding module

20...傳送器接收器開關20. . . Transmitter receiver switch

22...無線射頻模組twenty two. . . Wireless RF module

24...訊號濾波模組twenty four. . . Signal filter module

26、80、82、124、126...快速傅立葉轉換模組26, 80, 82, 124, 126. . . Fast Fourier Transform Module

28...通道估計模組28. . . Channel estimation module

46...資料成形模組46. . . Data shaping module

50...編碼/穿刺器50. . . Coding/piercing device

52...位元交錯器52. . . Bit interleaver

54...調變器54. . . Modulator

56...串流解析器56. . . Stream parser

32...等化器32. . . Equalizer

34...解交錯器34. . . Deinterleaver

36...解穿刺器36. . . Detachment

40...解碼器40. . . decoder

44...自適性波束成形參數模組44. . . Adaptive beamforming parameter module

49...解碼模組49. . . Decoding module

58...波束成形矩陣模組58. . . Beamforming matrix module

60、106、108...反轉快速傅立葉轉換模組60, 106, 108. . . Inverted fast Fourier transform module

62...循環延遲分集模組62. . . Cyclic delay diversity module

64...通道濾波模組64. . . Channel filter module

68...通道參數模組68. . . Channel parameter module

70...快速傅立葉轉換模組70. . . Fast Fourier Transform Module

72...引導矩陣模組72. . . Boot matrix module

74...記憶體模組74. . . Memory module

90、92...前置模組90, 92. . . Front module

94、96...交接點94, 96. . . Junction point

98、102...等級模組98, 102. . . Level module

88...參數模組88. . . Parameter module

112、114...視窗模組112, 114. . . Window module

116、118...矩陣模組116, 118. . . Matrix module

120、122...乘法模組120, 122. . . Multiplication module

128、130...傳送模組128, 130. . . Transfer module

132、134...等化器模組132, 134. . . Equalizer module

138、140、142、144、146...步驟138, 140, 142, 144, 146. . . step

152、158...頻域估計152, 158. . . Frequency domain estimation

154、160...24抽頭時域估計154, 160. . . 24-tap time domain estimation

156、162...16抽頭時域估計156, 162. . . 16-tap time domain estimation

第1圖為習知一無線本地區域網路之示意圖。Figure 1 is a schematic diagram of a conventional wireless local area network.

第2圖為本發明實施例一多輸入多輸出收發器之示意圖。2 is a schematic diagram of a multiple input multiple output transceiver according to an embodiment of the present invention.

第3圖為本發明實施例一通道估計模組耦接一自適性波束成形參數模組之示意圖。FIG. 3 is a schematic diagram of a channel estimation module coupled to an adaptive beamforming parameter module according to an embodiment of the present invention.

第4圖為本發明實施例一視窗模組及一矩陣模組之方塊圖。4 is a block diagram of a window module and a matrix module according to an embodiment of the present invention.

第5圖為本發明實施例一頻域估計值、一24抽頭時域估計及一16抽頭時域估計之均方差曲線圖。FIG. 5 is a graph showing the mean square error of the frequency domain estimation value, a 24-tap time domain estimation, and a 16-tap time domain estimation according to an embodiment of the present invention.

第6圖為本發明實施例一g=(1 0.1 1)之衰退通道之均方差曲線圖。Figure 6 is a graph showing the mean square error of the decay channel of g = (1 0.1 1) in the first embodiment of the present invention.

第7圖為本發明實施例一單輸入多輸出收發器之時域通道估計封包錯誤率曲線圖。FIG. 7 is a graph showing a time domain channel estimation packet error rate of a single input multiple output transceiver according to an embodiment of the present invention.

第8圖為本發明實施例一IEEE通道B及C之封包錯誤率曲線圖。FIG. 8 is a graph showing packet error rate of IEEE channels B and C according to an embodiment of the present invention.

第9圖為本發明實施例一回授方法之比較圖。FIG. 9 is a comparison diagram of a feedback method according to an embodiment of the present invention.

10...多輸入多輸出收發器10. . . Multiple input multiple output transceiver

12、14...天線12, 14. . . antenna

16...編碼模組16. . . Coding module

20...傳送器接收器開關20. . . Transmitter receiver switch

22...無線射頻模組twenty two. . . Wireless RF module

24...訊號濾波模組twenty four. . . Signal filter module

26...快速傅立葉轉換模組26. . . Fast Fourier Transform Module

28...通道估計模組28. . . Channel estimation module

46...資料成形模組46. . . Data shaping module

50...編碼/穿刺器50. . . Coding/piercing device

52...位元交錯器52. . . Bit interleaver

54...調變器54. . . Modulator

56...串流解析器56. . . Stream parser

32...等化器32. . . Equalizer

34...解交錯器34. . . Deinterleaver

36...解穿刺器36. . . Detachment

40...解碼器40. . . decoder

44...自適性波束成形參數模組44. . . Adaptive beamforming parameter module

49...解碼模組49. . . Decoding module

58...波束成形矩陣模組58. . . Beamforming matrix module

60...反轉快速傅立葉轉換模組60. . . Inverted fast Fourier transform module

62...循環延遲分集模組62. . . Cyclic delay diversity module

64...通道濾波模組64. . . Channel filter module

68...通道參數模組68. . . Channel parameter module

70...快速傅立葉轉換模組70. . . Fast Fourier Transform Module

72...引導矩陣模組72. . . Boot matrix module

74...記憶體模組74. . . Memory module

Claims (17)

一種多輸入多輸出(Multi Input Multi Output)收發器,包含有:一通道估計模組,用來處理接收通道樣本,以產生時域波束成形參數,其中該接收通道樣本包含有通道狀態資訊(Channel State Information,CSI);一自適性波束成形參數模組,用來接收該時域波束成形參數,以產生時域自適性波束成形參數及頻域自適性波束成形參數;一解碼模組,用來接收該頻域自適性波束成形參數,以產生資料位元;一通道參數模組,用來接收該資料位元,以擷取該時域自適性波束成形參數;一編碼模組,用來接收該時域自適性波束成形參數,以產生一資料封包,以及編碼該資料封包,以產生一調變資料串流;以及一波束成形矩陣模組,用來接收該調變資料串流,以根據該頻域自適性波束成形參數,產生一波束成形資料串流;其中該自適性波束成形參數模組係用來估計該通道狀態資訊之一視窗(Window),該接收樣本包含有複數個抽頭(Tap),其中每一抽頭具有一抽頭能量(Tap Energy),以及該視窗包含有至少一抽頭及一視窗抽頭能量;該多輸入多輸出收發器用來處理該波束成形資料串流,以產生 輸出訊號,並透過形成波束方式,傳送該輸出訊號;其中該視窗具有一自適性長度,用以置入該視窗抽頭能量之期望水準,該視窗的中心開啟在最高抽頭量之抽頭處,該視窗配置有一預設臨界值,以及該接收樣本具有至少一抽頭位於視窗之外,且該至少一抽頭的能量低於該臨界值;或者,該視窗透過一重心演算法找到視窗中心,該接收樣本具有至少一抽頭位於視窗之外,且該抽頭具有之抽頭能量小於該視窗內抽頭能量之一預設比例。 A multi-input and multi-output transceiver includes a channel estimation module for processing a receive channel sample to generate a time domain beamforming parameter, wherein the receive channel sample includes channel status information (Channel State information (CSI); an adaptive beamforming parameter module for receiving the time domain beamforming parameters to generate time domain adaptive beamforming parameters and frequency domain adaptive beamforming parameters; a decoding module for Receiving the frequency domain adaptive beamforming parameter to generate a data bit; a channel parameter module for receiving the data bit to obtain the time domain adaptive beamforming parameter; and an encoding module for receiving The time domain adaptive beamforming parameter to generate a data packet and to encode the data packet to generate a modulated data stream; and a beamforming matrix module for receiving the modulated data stream to The frequency domain adaptive beamforming parameter generates a beamforming data stream; wherein the adaptive beamforming parameter module is used to estimate the channel shape a window of information, the received sample includes a plurality of taps, wherein each tap has a Tap Energy, and the window includes at least one tap and one window tap energy; the multi-input a multi-output transceiver for processing the beamformed data stream to generate Outputting a signal and transmitting the output signal by forming a beam; wherein the window has an adaptive length for placing a desired level of energy of the window tap, the center of the window being opened at a tap of the highest tap amount, the window Configuring a predetermined threshold, and the received sample has at least one tap outside the window, and the energy of the at least one tap is lower than the threshold; or the window finds a window center through a gravity algorithm, the received sample has At least one tap is located outside the window, and the tap has a tap energy that is less than a predetermined ratio of tap energy in the window. 如請求項1所述之多輸入多輸出收發器,其中該視窗具有一預設臨界值,用來決定該視窗的長度,該臨界值增加以增加該視窗長度,以置入該抽頭之一較大值,該臨界值減少以減少該視窗長度,以置入該抽頭之較小值。 The multi-input multi-output transceiver of claim 1, wherein the window has a predetermined threshold for determining a length of the window, the threshold being increased to increase the length of the window to be placed in the tap. A large value that is reduced to reduce the length of the window to place a smaller value for the tap. 如請求項2所述之多輸入多輸出收發器,其中該視窗具一w_max參數,透過預設該通道狀態資訊為一短脈衝回應,置入該視窗中,以限制該視窗之長度,其中該短脈衝回應具有較少的重要抽頭。 The multi-input multi-output transceiver of claim 2, wherein the window has a w_max parameter, and the channel status information is preset as a short pulse response, and is placed in the window to limit the length of the window, wherein the window Short pulse responses have fewer important taps. 如請求項3所述之多輸入多輸出收發器,其中該自適性波束成形參數模組係用來產生該視窗之一比值(RATIO),以決定一最佳視窗比值。 The multiple input multiple output transceiver of claim 3, wherein the adaptive beamforming parameter module is configured to generate a ratio (RATIO) of the window to determine an optimal window ratio. 如請求項4所述之多輸入多輸出收發器,其中該自適性波束成形參數模組更包含有一矩陣模組,用來根據該最佳視窗比率之長度,產生一C矩陣,該臨界值增加以增加該C矩陣之大小,該臨界值減少以減少該C矩陣之大小。 The multi-input multi-output transceiver of claim 4, wherein the adaptive beamforming parameter module further comprises a matrix module for generating a C matrix according to the length of the optimal window ratio, the threshold is increased. To increase the size of the C matrix, the threshold is reduced to reduce the size of the C matrix. 如請求項5所述之多輸入多輸出收發器,另包含有一雙天線(Two Transmitter Two Receiver,2T2R),該通道估計模組處理一矩陣S,其包含有傳輸11n長訊練欄位(Long training field,LTE)符元,該通道估計模組處理包含有(r00 ,r01 )之該接收符元,並根據以下公式,產生該頻域波束成形參數 The multi-input multi-output transceiver as claimed in claim 5, further comprising a two-channel transmitter (Two Transmitter Two Receiver, 2T2R), the channel estimation module processing a matrix S, which includes a transmission 11n long training field (Long Training field, LTE) symbol, the channel estimation module processes the received symbol including (r 00 , r 01 ), and generates the frequency domain beamforming parameter according to the following formula and : 如請求項6所述之多輸入多輸出收發器,其中該通道估計模組更包含有一反轉快速傳立葉(Inverse Fast Fourier Transform,IFFT)模組,用來處理該頻域波束成形參數,以產生時域波束 成形參數The multiple input multiple output transceiver of claim 6, wherein the channel estimation module further comprises an Inverse Fast Fourier Transform (IFFT) module for processing the frequency domain beamforming parameters, Generating time domain beamforming parameters and . 如請求項7所述之多輸入多輸出收發器,其中該自適性波束成形參數模組更包含有一乘法模組,用來處理該C矩陣,其中矩陣C =(T * T )-1 可由計算得出或從預先計算值及儲存值中選擇,以及 根據下列公式,產生時域自適性波束成形參數 The multiple input multiple output transceiver of claim 7, wherein the adaptive beamforming parameter module further comprises a multiplication module for processing the C matrix, wherein the matrix C = ( T * T ) -1 can be calculated Deriving or selecting from pre-calculated values and stored values, and generating time domain adaptive beamforming parameters according to the following formula and : 如請求項8所述之多輸入多輸出收發器,其中該自適性波束成形參數模組更包含有一快速傳立葉(Fast Fourier Transform,FFT)模組,用來處理該時域自適性波束成形參數,以及透過增加該時域自適性波束成形參數之長度,進行零填補(Zero Padding),並透過零填補產生一適當長度向量。 The multiple input multiple output transceiver according to claim 8, wherein the adaptive beamforming parameter module further comprises a Fast Fourier Transform (FFT) module for processing the time domain adaptive beamforming parameter. And by increasing the length of the time domain adaptive beamforming parameters, performing Zero Padding and generating an appropriate length vector through zero padding. 如請求項9所述之多輸入多輸出收發器,其中該快速傅立葉(Fast Fourier Transform,FFT)模組,用來處理該長度向量, 以根據下列公式,產生頻域自適性波束成形參數 The multiple input multiple output transceiver of claim 9, wherein the Fast Fourier Transform (FFT) module is configured to process the length vector to generate frequency domain adaptive beamforming parameters according to the following formula: and : 如請求項10所述之多輸入多輸出收發器,另包含有一快速傳立葉(Fast Fourier Transform,FFT)模組,其耦接該通道參數模組,以接收該時域自適性波束成形參數,並進行零填補,以處理該時域自適性波束成形參數,以產生頻域自適性波束成形參數。 The multi-input multi-output transceiver of claim 10, further comprising a Fast Fourier Transform (FFT) module coupled to the channel parameter module for receiving the time domain adaptive beamforming parameter, Zero padding is performed to process the time domain adaptive beamforming parameters to generate frequency domain adaptive beamforming parameters. 如請求項10所述之多輸入多輸出收發器,另包含有一引導矩陣模組,用來處理該頻域自適性波束成形參數,以及產生一引導 矩陣,用來當頻域自適性波束成形參數更新時,更新該引導矩陣。 The multiple input multiple output transceiver of claim 10, further comprising a steering matrix module for processing the frequency domain adaptive beamforming parameters and generating a guide A matrix is used to update the steering matrix when the frequency domain adaptive beamforming parameters are updated. 如請求項12所述之多輸入多輸出收發器,其中該引導矩陣模組處理該調變資料串流[s1,s2],以及根據以下公式,產生一波束成形資料串流[x1,x2]: 其中,係2X2波束成形矩陣。The multiple input multiple output transceiver of claim 12, wherein the steering matrix module processes the modulated data stream [s1, s2], and generates a beamforming data stream [x1, x2] according to the following formula: : among them, A 2X2 beamforming matrix. 如請求項13所述之多輸入多輸出收發器,其中該引導矩陣模組結合該引導矩陣與該波束成形資料串流,以產生一輸出資料。 The multiple input multiple output transceiver of claim 13, wherein the boot matrix module combines the steering matrix with the beamformed data stream to generate an output data. 如請求項1所述之多輸入多輸出收發器,其中該編碼模組更包含有:一編碼/穿刺模組,用來處理該資料封包,以產生編碼資料;一位元交錯器,用來接收該編碼資料,以產生資料樣本;一調變器,用來接收該資料樣本,以產生星座點;以及一串流分析器,用來接收該星座點,以產生該調變資料串流。 The multi-input multi-output transceiver of claim 1, wherein the encoding module further comprises: an encoding/piercing module for processing the data packet to generate encoded data; and a one-bit interleaver for Receiving the encoded data to generate a data sample; a modulator for receiving the data sample to generate a constellation point; and a stream analyzer for receiving the constellation point to generate the modulated data stream. 如請求項1所述之多輸入多輸出收發器,其中該解碼模組更包含有:一等化器,用來處理該頻域自適性波束成形參數,以產生等化 樣本;一解交錯器,用來接收該等化樣本,以產生解交錯資料;一解穿刺器,用來接收該解交錯資料,以產生解穿刺資料;以及一解碼器,用來接收該解穿刺資料,以產生資料位元。 The multiple input multiple output transceiver of claim 1, wherein the decoding module further comprises: an equalizer for processing the frequency domain adaptive beamforming parameters to generate equalization a sample; a deinterleaver for receiving the equalized samples to generate deinterleaved data; a depuncturing device for receiving the deinterleaved data to generate depuncturing data; and a decoder for receiving the solution Puncture data to generate data bits. 一種用來傳送及接收資料之方法,包含有:產生時域波束成形參數;產生時域自適性波束成形參數;產生頻域自適性波束成形參數;產生資料位元;從該資料位元,擷取該時域自適性波束成形參數;產生一用來估計該通道狀態資訊之一視窗,該通道狀態資訊包含在接收樣本中,該接收樣本包含有複數個抽頭,其中每一抽頭具有一抽頭能量,以及該視窗包含有至少一抽頭及一視窗抽頭能量;設置該視窗的中心開啟在最高抽頭量之抽頭處,其中該視窗具有一自適性長度,用以置入該視窗抽頭能量之期望水準,該視窗配置有一預設臨界值,以及該接收樣本具有至少一抽頭位於視窗之外,且該至少一抽頭的能量低於該臨界值;或者,透過一重心演算法找到該視窗的中心,該接收樣本具有至少一抽頭位於視窗之外,且該抽頭具有之抽頭能量小於該視窗內抽頭能量之一預設比例; 產生一資料封包;編碼該資料封包,以產生一調變資料串流;產生一波束成形資料串流;以及產生輸出訊號,並透過形成波束方式,傳送該輸出訊號。 A method for transmitting and receiving data, comprising: generating time domain beamforming parameters; generating time domain adaptive beamforming parameters; generating frequency domain adaptive beamforming parameters; generating data bits; from the data bits, Taking the time domain adaptive beamforming parameter; generating a window for estimating the channel state information, the channel state information being included in the received sample, the receiving sample comprising a plurality of taps, wherein each tap has a tap energy And the window includes at least one tap and one window tap energy; the center of the window is set to be opened at the highest tap amount tap, wherein the window has an adaptive length for placing the desired level of the window tap energy. The window is configured with a predetermined threshold, and the received sample has at least one tap outside the window, and the energy of the at least one tap is lower than the threshold; or the center of the window is found through a centroid algorithm, the receiving The sample has at least one tap located outside the window, and the tap has a tap energy less than the tap in the window One of the ratio of the amount of default; Generating a data packet; encoding the data packet to generate a modulated data stream; generating a beamformed data stream; and generating an output signal and transmitting the output signal by forming a beam.
TW97146926A 2007-12-03 2008-12-03 Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication system TWI387234B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/949,706 US8040970B2 (en) 2007-08-17 2007-12-03 Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication systems

Publications (2)

Publication Number Publication Date
TW200943769A TW200943769A (en) 2009-10-16
TWI387234B true TWI387234B (en) 2013-02-21

Family

ID=44869098

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146926A TWI387234B (en) 2007-12-03 2008-12-03 Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication system

Country Status (1)

Country Link
TW (1) TWI387234B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575901B (en) * 2015-06-17 2017-03-21 晨星半導體股份有限公司 Device and method for eliminating channel effect

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064830A1 (en) * 2005-09-16 2007-03-22 Samsung Electronics Co., Ltd. Apparatus and method for extending number of antennas in a wireless communication system using multiple antennas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064830A1 (en) * 2005-09-16 2007-03-22 Samsung Electronics Co., Ltd. Apparatus and method for extending number of antennas in a wireless communication system using multiple antennas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Matsuoka, H.; Kasami, H.; Tsuruta, M.; Shoki, H.; , "A smart antenna with pre- and post-FFT hybrid domain beamforming for broadband OFDM system," Wireless Communications and Networking Conference, 2006. WCNC 2006. IEEE , vol.4, no., pp.1916-1920, 2006/04/06 *

Also Published As

Publication number Publication date
TW200943769A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
US8040970B2 (en) Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication systems
US9876542B2 (en) Beamforming feedback format
KR100945963B1 (en) Training symbol format for mimo ofdm systems
US7912141B2 (en) Pre-coding method for MIMO system and apparatus using the method
US7583982B2 (en) Method and apparatus to improve channel quality for use in wireless communications systems with multiple-input multiple-output (MIMO) antennas
US8824583B2 (en) Reduced complexity beam-steered MIMO OFDM system
RU2452129C2 (en) Open loop precoder cycling in mimo communications
US7649861B2 (en) Multiple antenna multicarrier communication system and method with reduced mobile-station processing
US8780771B2 (en) Cyclic delay diversity and precoding for wireless communication
KR101718403B1 (en) Method for wifi beamforming, feedback, and sounding (wibeam)
US7167526B2 (en) Wireless communication apparatus and method
JP5993006B2 (en) Apparatus and method for combining baseband processing and radio frequency beam steering in a wireless communication system
EP1538772A1 (en) Apparatus and method for transmitting data using eigenvector selection in MIMO mobile communication systems
US8306089B2 (en) Precoding technique for multiuser MIMO based on eigenmode selection and MMSE
CN113728558B (en) Method and system for hybrid beamforming for MIMO communication
US20110028108A1 (en) Method and apparatus to provide low cost transmit beamforming for network devices
WO2006031506A1 (en) Calibration in mimo systems
JP2010537595A (en) Wireless communication system and wireless communication method
US8331481B2 (en) Method for channel state feedback by quantization of time-domain coefficients
KR100984053B1 (en) Data processing method, equalizer, receiver, communication system, network element, and terminal using simplified channel matrix inversion
US20130022143A1 (en) Beamforming apparatus and method in multi-antenna system
US20120082193A1 (en) Beamforming feedback options for mu-mimo
EP2608443A2 (en) Communications terminal, apparatus, and method for detecting rank indication
US20120314594A1 (en) Measuring and improving multiuser downlink reception quality in wireless local area networks
TWI387234B (en) Method and apparatus for adaptive reduced overhead transmit beamforming for wireless communication system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees