TWI385971B - Network congestion control parameter measurement system and its method and proportional integral differential control module design method - Google Patents

Network congestion control parameter measurement system and its method and proportional integral differential control module design method Download PDF

Info

Publication number
TWI385971B
TWI385971B TW97123802A TW97123802A TWI385971B TW I385971 B TWI385971 B TW I385971B TW 97123802 A TW97123802 A TW 97123802A TW 97123802 A TW97123802 A TW 97123802A TW I385971 B TWI385971 B TW I385971B
Authority
TW
Taiwan
Prior art keywords
gain
chromosome
integral
differential
proportional
Prior art date
Application number
TW97123802A
Other languages
Chinese (zh)
Other versions
TW201001980A (en
Original Assignee
Univ Shu Te
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Shu Te filed Critical Univ Shu Te
Priority to TW97123802A priority Critical patent/TWI385971B/en
Publication of TW201001980A publication Critical patent/TW201001980A/en
Application granted granted Critical
Publication of TWI385971B publication Critical patent/TWI385971B/en

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Feedback Control In General (AREA)

Description

網路壅塞控制參數量測系統及其方法與比例積分微分控制模組設計方法Network congestion control parameter measurement system and method thereof and proportional integral differential control module design method

一種量測系統及其方法,特別是指一種結合基因演算法、迅速計算出控制網路的比例積分微分控制模組之最佳參數值的網路壅塞控制參數量測系統及其方法與比例積分微分控制模組的設計方法。A measurement system and method thereof, in particular to a network congestion control parameter measurement system and a proportional integral thereof, which combines a genetic algorithm and quickly calculates an optimal parameter value of a proportional integral differential control module of a control network The design method of the differential control module.

按,目前的網路控制理論中,即使已有很多不同的方法,可以用來設計各種不同型式之網路控制系統,以解決各種複雜的網路控制問題。According to the current network control theory, even if there are many different methods, it can be used to design various types of network control systems to solve various complex network control problems.

就目前的網路控制系統多以比例積分微分控制器(PID Controller)為主軸,因其架構簡單,成本較低,維修也較容易。As far as the current network control system is based on the proportional integral derivative controller (PID Controller), the structure is simple, the cost is low, and the maintenance is relatively easy.

然先前技術具有無法避免之缺失: 其一,Ziegler-Nichols(Z-N)、Cohen-Coon(C-C)所提出的調整方法,常被引用在PID控制器的設計中。但針對較複雜之非線性系統及無特定延遲特性之系統,如:網路壅塞控制系統,及一些較高階之系統,這些方法並不適用。However, the prior art has an inevitable deficiency: First, the adjustment methods proposed by Ziegler-Nichols (Z-N) and Cohen-Coon (C-C) are often cited in the design of PID controllers. However, for more complex nonlinear systems and systems without specific delay characteristics, such as network congestion control systems, and some higher-order systems, these methods are not applicable.

其二,網路系統多為複雜之非線性系統控制系統,若以試誤法(try-error)或根據經驗法則來調整PID控制器的最佳參數,受控系統可能會因不佳之參數設定,而使整個網路系統變的更不穩定及難以精準的控制。而且,試誤法本身就存在調整時間不可預測性,很可能會花費極大的 時間成本,進而使網路壅塞控制參數的量測作業更為緩慢。Second, the network system is mostly a complex nonlinear system control system. If the optimal parameters of the PID controller are adjusted by try-error or according to the rule of thumb, the controlled system may be set due to poor parameters. , making the entire network system more unstable and difficult to control accurately. Moreover, the trial and error method itself has unpredictability of adjustment time, and it is likely to cost a lot. The cost of time, in turn, makes the measurement of network congestion control parameters slower.

有鑑於此,本發明所欲解決之問題係在於提供一種以受控網路的狀態與設計者理想值之誤差,導入基因演算法,取得PID控制器的最佳參數,令PID控制器有效的控制受控網路,使得網路系統得以快速控制到設計者理想的系統響應。In view of this, the problem to be solved by the present invention is to provide an error in the state of the controlled network and the ideal value of the designer, to introduce a genetic algorithm, to obtain the optimal parameters of the PID controller, and to make the PID controller effective. Controlling the controlled network allows the network system to quickly control the designer's ideal system response.

為解決上述系統問題,本發明所提供之技術手段係揭露一種網路壅塞控制參數量測系統。此系統包含一受控網路模組、一計算模組、一比例積分微分控制模組與一演算模組。In order to solve the above system problem, the technical means provided by the present invention discloses a network congestion control parameter measurement system. The system comprises a controlled network module, a computing module, a proportional integral differential control module and a calculus module.

受控網路模組係提供一瞬間序列長度;計算模組係根據一理想序列長度與瞬間序列長度計算出一系統誤差;演算模組係以系統誤差為輸入,根據一基因演算法計算出一比例增益、一積分增益與一微分增益;比例積分微分控制模組則以比例增益、積分增益與微分增益為輸入條件,計算出控制輸入變數來修正受控網路模組的瞬間序列長度。The controlled network module provides a momentary sequence length; the computing module calculates a systematic error based on an ideal sequence length and the instantaneous sequence length; the calculus module takes the systematic error as input and calculates a system based on a genetic algorithm. Proportional gain, one integral gain and one differential gain; the proportional integral differential control module takes the proportional gain, the integral gain and the differential gain as input conditions, and calculates the control input variable to correct the instantaneous sequence length of the controlled network module.

為解決上述方法問題,本發明所提供之技術手段係揭露一種網路壅塞控制參數量測方法,係適用於一網路壅塞控制參數量測系統。此方法係先建構一受控網路模組,並透過受控網路模組之資料封包傳輸量計算出一瞬間序列長度;利用一計算模組根據理想序列長度與瞬間序列長度計 算出一系統誤差;將系統誤差作為輸入,根據一基因演算法計算出一比例增益、一積分增益與一微分增益;將比例增益、積分增益與微分增益輸入一比例積分微分控制模組以產生一控制輸入變數;輸入控制輸入變數至受控網路模組以修正瞬間序列長度;再根據系統誤差的變化判斷網路壅塞控制參數量測系統是否達到平衡收斂,以決定是否記錄比例增益、積分增益與微分增益。In order to solve the above method problem, the technical means provided by the present invention discloses a network congestion control parameter measurement method, which is applicable to a network congestion control parameter measurement system. The method first constructs a controlled network module, and calculates the instantaneous sequence length through the data packet transmission amount of the controlled network module; and uses a computing module according to the ideal sequence length and the instantaneous sequence length Calculate a systematic error; take the systematic error as input, calculate a proportional gain, an integral gain and a differential gain according to a genetic algorithm; input proportional gain, integral gain and differential gain into a proportional integral differential control module to generate a Control the input variable; input the control input variable to the controlled network module to correct the instantaneous sequence length; and then judge whether the network congestion control parameter measurement system reaches equilibrium convergence according to the change of the system error to determine whether to record the proportional gain and the integral gain. And differential gain.

本發明更揭露一種應用基因演算法的比例積分微分控制模組之設計方法,其方法係先利用類隨機序列法產生複數個染色體以形成一族群;計算每一染色體之適應值並判斷出一最佳染色體,令其適應值作為族群之第一適應值,再以輪盤式選擇方式產生次一代之複數個染色體來更新族群;將族群進行交配與突變,計算族群之一第二適應值,以利用第二適應值與第一適應值判斷是否保留交配與突變後之族群;以及判斷第一適應值是否收斂,來決定是否換算出比例增益、積分增益與微分增益或重新計算每一染色體之適應值。The invention further discloses a design method of a proportional integral differential control module using a gene algorithm, which firstly uses a random sequence method to generate a plurality of chromosomes to form a group; calculating an adaptation value of each chromosome and determining a maximum A good chromosome, the adaptation value is used as the first adaptation value of the ethnic group, and then the robin-type selection method is used to generate a plurality of chromosomes of the next generation to update the ethnic group; the ethnic group is mated and mutated, and the second adaptive value of one of the ethnic groups is calculated. Using the second fitness value and the first fitness value to determine whether to retain the mating and mutation population; and determining whether the first fitness value converges to determine whether to convert the proportional gain, the integral gain and the differential gain or recalculate the adaptation of each chromosome value.

本發明具有先前技術無法達到之功效: 其一,藉由基因演算法,此系統可短時間即形成系統平衡收斂,以供分析所有控制、設定與狀態參數,及受控網路模組的變化。The invention has the effects that the prior art cannot achieve: First, by genetic algorithm, the system can form a system balance convergence in a short time for analyzing all control, setting and state parameters, and changes of the controlled network module.

其二,透過基因演算程序,可很容易得到最佳的比例積分微分控制模組參數,並使得控制性能指標(IAE)達到最 小值,使系統之響應,滿足設計者之需求。Second, through the genetic algorithm, it is easy to get the best proportional integral differential control module parameters, and make the control performance index (IAE) reach the most Small value, so that the system responds to meet the needs of the designer.

其三,利用比例積分微分控制模組(Proportional-Integral-Derivative Controller,PIDController)進行控制,其具有架構簡單、成本較低及維修容易等優點,同時對於控制系統保有很好的性能。Thirdly, the Proportional-Integral-Derivative Controller (PIDController) is used for control, which has the advantages of simple structure, low cost and easy maintenance, and maintains good performance for the control system.

其四,藉由基因演算法所設計的比例積分微分控制模組,在控制受控網路模組時,除能長時間維持系統平衡,即便是傳輸量差異十分大的受控網路模組,相於先前的技術,仍可維持一定的網路擁塞控制的品質。Fourth, the proportional integral differential control module designed by the genetic algorithm can control the controlled network module, in addition to maintaining the system balance for a long time, even if the transmission network module has a very large difference in transmission volume. Compared with the previous technology, it can still maintain a certain quality of network congestion control.

為使對本發明的目的、構造特徵及其功能有進一步的了解,茲配合相關實施例及圖式詳細說明如下: 請參照圖1,其為本發明實施例之網路壅塞控制參數量測系統方塊圖。此系統包含一受控網路模組110、一計算模組120、一比例積分微分控制模組140與一演算模組130。In order to further understand the object, structural features and functions of the present invention, the following detailed description is given in conjunction with the related embodiments and drawings: Please refer to FIG. 1, which is a block diagram of a network congestion control parameter measurement system according to an embodiment of the present invention. The system includes a controlled network module 110, a computing module 120, a proportional integral derivative control module 140, and a calculus module 130.

受控網路模組110係為多個網路裝置透過一網路控制器(如路由器)來連接於網際網路的網路模型。此受控網路模組110可根據自身資料封包的傳輸量來計算出一瞬間序列長度。計算模組120可取得外部接收之一理想序列長度,計算出理想序列長度與瞬間序列長度之一系統誤差,此理想序列長度係為設計者認定的理想網路狀態的數值。 系統誤差係供演算模組130透過基因演算法計算出一比例 增益、一積分增益與一微分增益。比例積分微分控制模組140再以比例增益、積分增益與微分增益計算出一控制輸入變數,令受控網路模組110根據控制輸入變數修正瞬間序列長度。The controlled network module 110 is a network model in which a plurality of network devices are connected to the Internet through a network controller such as a router. The controlled network module 110 can calculate the instantaneous sequence length according to the transmission amount of the data packet. The calculation module 120 can obtain an ideal sequence length of the external reception, and calculate a systematic error of the ideal sequence length and the instantaneous sequence length, which is the value of the ideal network state determined by the designer. The systematic error is used by the calculus module 130 to calculate a ratio through a genetic algorithm. Gain, an integral gain and a differential gain. The proportional integral derivative control module 140 calculates a control input variable by using the proportional gain, the integral gain, and the differential gain, so that the controlled network module 110 corrects the instantaneous sequence length according to the control input variable.

請參照圖2,其為本發明實施例之網路壅塞控制參數量測方法流程圖,係適用於上述網路壅塞控制參數量測系統。此方法包含: 建構一受控網路模組110,並透過受控網路模組110之資料封包傳輸量計算出一瞬間序列長度(步驟S210)。 此受控網路模組110乃是根據實際的網路系統結構,所建立的一個虛擬網路模型。Please refer to FIG. 2 , which is a flowchart of a network congestion control parameter measurement method according to an embodiment of the present invention, which is applicable to the network congestion control parameter measurement system. This method includes: A controlled network module 110 is constructed, and an instantaneous sequence length is calculated through the data packet transmission amount of the controlled network module 110 (step S210). The controlled network module 110 is a virtual network model established according to the actual network system structure.

而建構方式主要是應用Hollot等,於2001年提出之TCP/AQM(Transmission Control Protocol/Active Queue Management;傳輸控制通訊協定/主動式佇列管理)網路壅塞模型,如圖7所示,可得到以下具無特定延遲特性之非線性系統: 其中w 為平均窗口大小(packets);q 為瞬間序列長度(packets);T p 為 傳遞延遲時間(second);R 為封包來回時間(round-trip time,RTT)並可等效為q /C+T p ;其中C為網路連結容量(packets/sec or bps);N 為網路用戶個數;p 為封包標記或丟失率用來控制封包發送速度與管理序列長度。以上所有的變數皆為正數。(1.a)式描述TCP壅塞控制之平均窗口累加遞增及倍數遞減(additive-increase & multiplicative-decrease,AIMD)之特性。(1.b)式則是說明受控網路模組110傳輸的瞬間序列長度的動態行為。The construction method is mainly the application of Hollot et al., TCP/AQM (Transmission Control Protocol/Active Queue Management) network congestion model proposed in 2001, as shown in Figure 7, The following non-linear systems with no specific delay characteristics: Where w is the average window size (packets); q is the instantaneous sequence length (packets); T p is the transfer delay time (second); R is the round-trip time (RTT) and can be equivalent to q / C + T p ; where C is the network connection capacity (packets/sec or bps); N is the number of network users; p is the packet marking or loss rate used to control the packet transmission speed and the management sequence length. All of the above variables are positive numbers. (1.a) describes the characteristics of the additive-increase & multiplicative-decrease (AIMD) of TCP congestion control. The equation (1.b) is a dynamic behavior indicating the length of the instantaneous sequence transmitted by the controlled network module 110.

由於系統的控制輸入,封包標記或丟失率介於0與1之間,因此,改寫(1)式為一具輸入飽和之非線性延遲系統。Because the control input of the system, the packet mark or loss rate is between 0 and 1, therefore, the formula (1) is rewritten as a non-linear delay system with input saturation.

其中輸入飽和u (t )=p (t-R (t ))可以由以下非線性項取代 Where the input saturation u ( t )= p (t- R ( t )) can be replaced by the following nonlinear term

其中w 為平均窗口大小、q 為瞬間序列長度、T p 為傳遞延遲時間、R (t )為資料封包來回時間並可等效為、C為網路連結容量、N 為受控網路模組110之網路用戶個數、sat(u (t ))為資料封包標記或丟失率、u min =0及u max =1。Where w is the average window size, q is the instantaneous sequence length, T p is the transit delay time, R ( t ) is the data packet round trip time and can be equivalent C is the network connection capacity, N is the number of network users of the controlled network module 110, sat( u ( t )) is the data packet label or loss rate, u min =0 and u max =1.

其中比例積分微分控制模組140為連續之型式,其 標準型式如下: The proportional integral derivative control module 140 is of a continuous type, and its standard type is as follows:

其中e (t )=q (t )-q d 為系統誤差、q 為瞬間序列長度、q d 為理想序列長度,u (t )為控制輸入變數,K P 為比例增益,T D 為微分時間常數,T I 為積分時間常數,(4)式亦可表示成 Where e ( t )= q ( t )- q d is the systematic error, q is the instantaneous sequence length, q d is the ideal sequence length, u ( t ) is the control input variable, K P is the proportional gain, and T D is the differential time Constant, T I is the integral time constant, and equation (4) can also be expressed as

其中K D K P T D 分別為積分增益與微分增益。among them , K D = K P T D are the integral gain and the differential gain, respectively.

利用一計算模組120根據理想序列長度與瞬間序列長度計算出一系統誤差(步驟S220)。如前所述,透過e (t )=q (t )-q d 計算出系統誤差。A system error is calculated by a calculation module 120 according to the ideal sequence length and the instantaneous sequence length (step S220). As mentioned earlier, the systematic error is calculated by e ( t ) = q ( t ) - q d .

將系統誤差作為輸入,根據一基因演算法計算出一比例增益、一積分增益與一微分增益(步驟S230)。Taking the systematic error as an input, a proportional gain, an integral gain, and a differential gain are calculated according to a genetic algorithm (step S230).

此等參數之推導涉及比例積分微分控制模組140的設計方式,此設計方式主要的問題在於如何取得選取適當的K P K I K D 三個參數,使系統具較佳之控制性能,而典型之輸出規格中常包含最大超越量,上升時間,穩定時間和穩態誤差等,而較常用的性能指標有誤差平方的積分(ISE)和誤差絕對值的積分(IAE)兩種,其數學式定義分別如下: The derivation of these parameters involves the design of the proportional integral derivative control module 140. The main problem of this design method is how to obtain the appropriate parameters of K P , K I and K D to make the system have better control performance. Typical output specifications often include maximum overshoot, rise time, settling time, and steady-state error. The more common performance indicators are the error squared integral (ISE) and the absolute value of the error (IAE). The definitions are as follows:

如圖3所示,可以知道當IAE(即圖3陰影部分面積)愈小,表示控制之誤差愈小,亦即控制結果愈佳,所以,如何設計出一個簡單易用的方法,使設計者均可很容易的決定K P K I K D ,而且系統具有最佳(小)之性能指標(IAE),是本發明之主要目的之一。As shown in Figure 3, it can be known that the smaller the IAE (ie, the shaded area of Figure 3), the smaller the control error, that is, the better the control result, so how to design an easy-to-use method to make the designer It is easy to determine K P , K I , K D , and the system has the best (small) performance index (IAE), which is one of the main purposes of the present invention.

一般而言,基因演算法(GA)包含三個步驟:1.產生初始族群2.族群競爭3.交配、突變。而且為了避免系統在搜尋過程中陷入局部最佳值,初始族群的選擇亦相當重要,一般常使用類隨機序列(Quasi-Random Sequence,QRS)。因為QRS分佈較隨機均勻,所以被用來產生初始族群,以避免系統陷於局部最佳值,QRS和一般隨機變數之差異可由圖4與圖5中了解。一般隨機取樣在有限的個體條件下,可能產生局部聚集的現象,而QRS就分佈較均勻。In general, the gene algorithm (GA) consists of three steps: 1. Generating the initial population 2. Group competition 3. Mating, mutation. Moreover, in order to avoid the system getting into the local optimum value during the search process, the selection of the initial ethnic group is also very important, and the Quasi-Random Sequence (QRS) is often used. Because the QRS distribution is more random and uniform, it is used to generate the initial population to avoid the system being trapped in local optimum values. The difference between QRS and general random variables can be understood from Figure 4 and Figure 5. Generally, random sampling under the limited individual conditions may result in local aggregation, and the QRS is more evenly distributed.

因此,若我們將待控制之網路數學模式(2a與2b),代入圖1中之控制系統方塊中,並利用基因演算法則之演化過程,就可以容易地得到K P K I K D 三個參數,且依基因演算法則之精神,此求得之比例積分微分控制模組140,將可以使受控系統之性能指標IAE儘可能最小。Therefore, if we substitute the network mathematics mode (2a and 2b) to be controlled into the control system block in Figure 1, and use the genetic algorithm to evolve, we can easily get K P , K I , K D . Three parameters, and according to the spirit of the gene algorithm, the proportional integral derivative control module 140 can minimize the performance index IAE of the controlled system.

經融入基因演算法則的觀念,令變數S =[K P ,K I ,K D ],則在此,可定義本發明中之最佳化問題如下:即找到一組參數,使得閉迴路系統之性能指標IAE 最小,更精確地,此最佳化問題可以數學式描述如下: By incorporating the concept of gene algorithm, let the variable S = [ K P , K I , K D ], then here, the optimization problem in the present invention can be defined as follows: a set of parameters is found To minimize the performance index IAE of the closed loop system, more precisely, this optimization problem can be mathematically described as follows:

最小化。minimize.

又演算模組130執行基因演算法之方法如圖6所示,其步驟詳細描述如下: 利用類隨機序列法產生複數個染色體以形成一族群,定義一適應函數,每一染色體具有一比例參數、一積分參數與一微分參數(步驟S710)。The method for performing the gene algorithm by the calculus module 130 is as shown in FIG. 6, and the steps are described in detail as follows: A plurality of chromosomes are generated by a random sequence-like method to form a group, and an adaptive function is defined. Each chromosome has a proportional parameter, an integral parameter and a differential parameter (step S710).

先利用QRS產生起始族群,族群大小為N p ,其中每個染色體S i ,i =1,2,...,N p 都具有固定長度之2進制字串(M 1M 2M 3 )之長度,分別對比例參數K p 、積分參數K I 、微分參數K D 進行編碼,因此,可以得到下述之染色體 First use QRS to generate the starting group , the population size is N p , wherein each chromosome S i , i =1, 2, ..., N p has a fixed length binary string ( M 1 + M 2 + M 3 ) length, respectively The proportional parameter K p , the integral parameter K I , and the differential parameter K D are encoded, so that the following chromosome can be obtained

接著定義適應函數,如下式所示: Then define the adaptation function as shown below:

其中h (S )為性能指標IAE,當IAE越小時,則f (S )值越大,代表適應值也越高。為了方便運算,上式的適應函數可由式(11)之正規化後的結果取代。Where h ( S ) is the performance index IAE. When the IAE is smaller, the larger the f ( S ) value is, the higher the fitness value is. In order to facilitate the operation, the adaptation function of the above formula can be replaced by the normalized result of equation (11).

其中f min 為所有適應值之最小者、f max 為所有適應值之最 大者。為根據適應函數計算每一染色體之適應值,再根據所有適應值判斷出一最佳染色體,並以最佳染色體之適應值作為族群之一第一適應值,再根據所有適應值之比例,以輪盤式選擇方式產生次一代之複數個染色體來更新族群(步驟S720)。Where f min is the smallest of all fitness values and f max is the largest of all fitness values. In order to calculate the fitness value of each chromosome according to the adaptive function, and then determine an optimal chromosome based on all the fitness values, and use the fitness value of the best chromosome as the first fitness value of one of the ethnic groups, and then according to the ratio of all the fitness values, The roulette selection method generates a plurality of chromosomes of the next generation to update the ethnic group (step S720).

針對第k 個世代P k ,計算k 世代的各個染色體S i 的適應值,並找出k 世代的最佳染色體,使得視其為第一適應值。若最佳染色體不只一個,選擇其中任一個做為最佳染色體。最後按照比例分配,以輪盤式選擇(roulette wheel selection)的方式複製新的子代以更新族群。For the k-th generation P k, k calculated fitness value of each chromosome generation of S i, k and find the best chromosome generations Make Think of it as the first fitness value. If there is more than one optimal chromosome, choose either one as the best chromosome. Finally, according to the proportional allocation, the new children are copied in the way of roulette wheel selection to update the group.

將族群進行交配與突變,計算族群之一第二適應值,並比較第二適應值是否大於第一適應值,決定是否保留交配與突變後之族群(步驟S730)。The population is mated and mutated, and one of the second adaptation values of the population is calculated, and whether the second fitness value is greater than the first fitness value is compared, and whether the mating and the mutated population are retained is determined (step S730).

建立交配池並由下式(12)計算交配率pc 與突變率pm ,並將經由交配與突變過程後的染色體之表示。Establish a mating pool and calculate the mating rate p c and the mutation rate p m from the following formula (12), and the chromosomes after mating and mutation Said.

其中為正規化後所有適應值之最大者、為正規化後欲交配的二母代染色體中,適應值較大者;正規化後為突變時染色體的適應值;為正規化後所有適應值之平均;k 1 ,k 2 ,k 3 ,k 4 為小於1的正數用來限制交配率p c 與突 變率p m 介於[0,1]。p c _last p m _last 分別為上一個世代的交配率與突變-率;a為權重;δ為一個較小的常數,避免上式發生無法求解的狀況。比較染色體S i 的第一適應值與的第二適應值。若,則保留原來染色體S i 之基因組合,否則以交配與突變過程後的染色體之做為為新的族群之基因組合。among them The largest of all fitness values after formalization, In the second mother chromosome to be mated after normalization, the fitness value is larger; After normalization, it is the adaptive value of the chromosome at the time of mutation; The average of all fitness values after normalization; k 1 , k 2 , k 3 , k 4 are positive numbers less than 1 to limit the mating rate p c and the mutation rate p m between [0, 1]. p c _ last and p m _ last are the mating rate and mutation-rate of the previous generation; a is the weight; δ is a small constant, avoiding the situation that the above formula cannot be solved. Comparing the first fitness value of chromosome S i with The second adaptation value. If , the gene combination of the original chromosome S i is retained, otherwise the chromosome after mating and mutation process As a combination of genes for the new ethnic group.

判斷第一適應值是否收斂(步驟S740),若f' (S )值尚未收斂,則返回步驟S720以計算次一世代每一染色體之適應值。It is judged whether the first fitness value converges (step S740), and if the f' ( S ) value has not converge, the process returns to step S720 to calculate the fitness value of each chromosome of the next generation.

f' (S )之值收斂至最小值,即取得匹配第一適應值之染色體,並將染色體之比例參數、積分參數與微分參數轉換為比例增益、積分增益與微分增益(步驟S750)。即s * 為最佳值,而且其基因即為比例積分微分控制模組140的最佳參數,此等參數將使得系統之性能指標IAE最小。If the value of f' ( S ) converges to a minimum value, a chromosome matching the first fitness value is obtained, and the proportional parameter, the integral parameter, and the differential parameter of the chromosome are converted into a proportional gain, an integral gain, and a differential gain (step S750). That is, s * is the best value, and its gene That is, the optimal parameters of the proportional integral derivative control module 140, which will minimize the system performance index IAE.

將比例增益、積分增益與微分增益輸入一比例積分微分控制模組140以產生一控制輸入變數(步驟S240)。再輸入控制輸入變數至受控網路模組110以修正瞬間序列長度(步驟S250)。The proportional gain, integral gain and differential gain are input to a proportional integral derivative control module 140 to generate a control input variable (step S240). The control input variable is then input to the controlled network module 110 to correct the instantaneous sequence length (step S250).

利用計算模組120重新計算系統誤差(步驟S260),並判斷系統誤差是否小於一限定值(步驟S270)。此限定值為用戶所設定,用以判斷系統為最佳狀態時,系統誤差應處於的數值範圍內。The system error is recalculated by the calculation module 120 (step S260), and it is determined whether the system error is less than a limit value (step S270). This limit value is set by the user to determine the system error should be within the range of values when the system is in the best state.

若判斷為小於限定值,判斷網路壅塞控制參數量測系 統達到一系統平衡,並記錄比例增益、積分增益與微分增益(步驟S280)。比例積分微分控制參數即可根據此等參數來實際應用於真實的網路系統。If it is judged to be less than the limit value, determine the network congestion control parameter measurement system The system balance is achieved, and the proportional gain, the integral gain, and the differential gain are recorded (step S280). Proportional integral differential control parameters can be applied to real network systems based on these parameters.

若判斷為未小於限定值,即返回步驟S230。直至整個系統平衡並取得最佳的K P K I K D 三個參數為止。If it is determined that the value is not less than the limit value, the process returns to step S230. Until the entire system is balanced and the best K P , K I , K D parameters are obtained.

由以上之討論,首先將受控網路模組110之參數,代入(2)式,並利用SIMULINK(模擬程序)建立本發明網路壅塞控制參數量測系統的控制方塊圖,如圖7所示:From the above discussion, the parameters of the controlled network module 110 are first substituted into the formula (2), and the control block diagram of the network congestion control parameter measurement system of the present invention is established by using SIMULINK (simulation program), as shown in FIG. 7 Show:

圖7中,網路用戶的設定數量為N=100。對外連結的頻寬容量為10Mbps(相對應的連結容量為1250packets/sec,封包大小為1000bytes),窗口大小(windows size)為網路運行所產生的參數。此外,傳遞延遲時間T p 為0.08 sec,傳延延遲參數(propagation delay)為資料封包於兩地間傳輸的時間延遲;理想序列長度為q d =150;控制輸入變數飽和的上下限分別為u min =0及u max =1。在基因演算法的部份,令族群大小N p =50,初代的交配率與突變率為,另外,其他變數給定如下。k 1k 3 =0.8,k 2k 4 =0.3,a=0.6及δ=0.01並使用Matlab 6.5、Simulink及NS-2(Network Simulator ver.2)等網路狀態模擬程序所提供之工具函數,利用上述所提出之基因演算法則來解以比例積分微分控制模組140為主軸的網路系統的最佳化問題。根據上述基因演算法則,首先利用QRS產生起始族群,其中每個染色體s i 具有30 bits的長度(1.e.M j =10,j =1,2,3)。經過一連串競爭進化後,系統之IAE收斂曲線如圖8所示,由圖8中可以知道系統之IAE在進化1000代之後便收斂,且其最佳值為f' (S * )=0.6644,同時,比例積分微分控制模組140之最佳參數可以得到如下:。我們將此最佳參數代入網路壅塞控制系統,其狀態響應情形如圖9所示。In Figure 7, the number of network users is set to N=100. The external link has a bandwidth capacity of 10 Mbps (the corresponding link capacity is 1250 packets/sec, and the packet size is 1000 bytes), and the window size is a parameter generated by the network operation. In addition, the transmission delay time T p is 0.08 sec, and the propagation delay parameter is the time delay of data packet transmission between the two places; the ideal sequence length is q d =150; the upper and lower limits of the control input variable saturation are respectively u Min =0 and u max =1. In the part of the gene algorithm, the population size N p = 50, the mating rate and mutation rate of the first generation with In addition, other variables are given as follows. k 1 = k 3 =0.8, k 2 = k 4 =0.3, a=0.6 and δ=0.01 and use the tools provided by the network state simulation program such as Matlab 6.5, Simulink and NS-2 (Network Simulator ver.2) The function uses the gene algorithm described above to solve the optimization problem of the network system with the proportional integral derivative control module 140 as the main axis. According to the above gene algorithm, the QRS is first used to generate the starting ethnic group. , wherein each chromosome s i has a length of 30 bits (1.e. M j =10, j =1, 2, 3). After a series of competitive evolutions, the system's IAE convergence curve is shown in Figure 8. It can be seen from Figure 8 that the system's IAE converges after the evolution of 1000 generations, and its optimal value is f' ( S * ) = 0.6644. The optimal parameters of the proportional integral derivative control module 140 can be obtained as follows: . We substitute this optimal parameter into the network congestion control system, and its state response situation is shown in Figure 9.

由圖9中之比例積分微分控制模組140為'',可以觀察到系統之響應無論是在響應上升時間,最大超越量及穩態誤差和安定時間等控制性能表現上,均非常好。The proportional integral derivative control module 140 in FIG. 9 is ' ' It can be observed that the response of the system is very good in terms of response rise time, maximum overshoot, and steady-state error and settling time.

由圖10A至圖10D中,基因演算法類型的比例積分微分控制模組140,不論利用於何種網路系統狀態(包含常態、網路使用者數量變動狀態、低傳輸延遲狀態與高傳輸延遲狀態),皆可達到一平衡的系統穩定狀態。 不會因為資料封包多、寡,或是特殊情事發生而產生網路傳輸不穩定的狀態。如圖10A至圖10D,一般比例積分控制模組(圖中的PI曲線)於壅塞控制系統的響應十分不穩定,而本發明的比例積分微分控制模組140(圖中GA-PID曲線)卻可較穩定的保持於理想序列長度q d =150的數值,因此可驗証了本發明之可行性及進步性。From FIG. 10A to FIG. 10D, the proportional integral differential control module 140 of the gene algorithm type, regardless of the network system state (including the normal state, the number of network users, the low transmission delay state, and the high transmission delay) State), a balanced system steady state can be achieved. There will be no unstable network transmission due to multiple data packets, or special circumstances. As shown in FIG. 10A to FIG. 10D, the general proportional integral control module (the PI curve in the figure) is very unstable in response to the congestion control system, and the proportional integral differential control module 140 (the GA-PID curve in the figure) of the present invention is It can be stably maintained at a value of the ideal sequence length q d = 150, thus verifying the feasibility and progress of the present invention.

雖然本發明以前述之較佳實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,所作更動與潤飾之等效替換,仍為本發 明之專利保護範圍內。While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the equivalent of the modification and retouching of the present invention is still within the spirit and scope of the present invention. This hair Within the scope of patent protection.

110‧‧‧受控網路模組110‧‧‧Controlled network module

120‧‧‧計算模組120‧‧‧Computation Module

130‧‧‧演算模組130‧‧‧ calculus module

140‧‧‧比例積分微分控制模組140‧‧‧Proportional Integral Differential Control Module

圖1係本發明實施例之網路壅塞控制參數量測系統圖; 圖2係本發明實施例之網路壅塞控制參數量測流程圖; 圖3係本發明實施例之性能指標示意圖; 圖4係本發明實施例之一般隨機變數示意圖; 圖5係本發明實施例之類隨機變數示意; 圖6係本發明實施例之基因演算法流程圖; 圖7係本發明實施例之網路壅塞控制參數量測系統的控制方塊圖; 圖8係本發明實施例之IAE收斂曲線示意圖; 圖9係本發明實施例之系統響應曲線示意圖; 圖10A係本發明實施例之壅塞控制系統常態響應圖; 圖10B係本發明實施例之壅塞控制系統在網路使用者 變動下的響應圖; 圖10C係本發明實施例之壅塞控制系統在低傳輸延遲狀態下之響應圖;以及 圖10D係本發明實施例之壅塞控制系統在高傳輸延遲狀態下之響應圖。1 is a diagram of a network congestion control parameter measurement system according to an embodiment of the present invention; 2 is a flow chart of measuring network congestion control parameters according to an embodiment of the present invention; 3 is a schematic diagram of performance indicators of an embodiment of the present invention; 4 is a schematic diagram of a general random variable of an embodiment of the present invention; FIG. 5 is a schematic diagram of a random variable such as an embodiment of the present invention; FIG. 6 is a flow chart of a gene algorithm according to an embodiment of the present invention; 7 is a control block diagram of a network congestion control parameter measurement system according to an embodiment of the present invention; 8 is a schematic diagram of an IAE convergence curve according to an embodiment of the present invention; 9 is a schematic diagram of a system response curve according to an embodiment of the present invention; 10A is a diagram showing a normal response of a congestion control system according to an embodiment of the present invention; FIG. 10B is a network user of a congestion control system according to an embodiment of the present invention; FIG. Response map under change; 10C is a response diagram of the congestion control system of the embodiment of the present invention in a low transmission delay state; Figure 10D is a response diagram of the congestion control system of the embodiment of the present invention in a high transmission delay state.

110‧‧‧受控網路模組110‧‧‧Controlled network module

120‧‧‧計算模組120‧‧‧Computation Module

130‧‧‧演算模組130‧‧‧ calculus module

140‧‧‧比例積分微分控制模組140‧‧‧Proportional Integral Differential Control Module

Claims (18)

一種網路壅塞控制參數量測系統,其包含; 一受控網路模組,係透過資料封包的傳輸量以計算出一瞬間序列長度,並根據一控制輸入變數修正該瞬間序列長度; 一計算模組,係取得外部接收之一理想序列長度,並根據該理想序列長度與該瞬間序列長度計算出一系統誤差; 一比例積分微分控制模組,係以一比例增益、一積分增益與一微分增益為輸入條件,計算出該控制輸入變數;以及 一演算模組,係以該系統誤差為輸入,根據一基因演算法計算出該比例增益、該積分增益與該微分增益。A network congestion control parameter measurement system, comprising: a controlled network module calculates the instantaneous sequence length through the transmission amount of the data packet, and corrects the length of the instantaneous sequence according to a control input variable; A computing module obtains an ideal sequence length of external reception, and calculates a systematic error according to the ideal sequence length and the length of the instantaneous sequence; A proportional integral derivative control module calculates the control input variable by using a proportional gain, an integral gain and a differential gain as input conditions; A calculus module calculates the proportional gain, the integral gain and the differential gain according to a genetic algorithm by using the systematic error as an input. 如申請專利範圍第1項所述之網路壅塞控制參數量測 系統,其中該受控網路模組之建構式可表示為 ,其中w 為平均窗口大小、q 為該瞬 間序列長度、T p 為傳遞延遲時間、R (t )為資料封包來回時間並可等效為C 為網路連結容量、N 為該受控網路模組之網路用戶個數、sat(u (t ))為資料封包標記或丟失率、u min =0及u max =1。The network congestion control parameter measurement system described in claim 1, wherein the configuration of the controlled network module can be expressed as Where w is the average window size, q is the length of the instant sequence, T p is the transit delay time, R ( t ) is the data packet round trip time and can be equivalent , C is the network connection capacity, N is the number of network users of the controlled network module, sat( u ( t )) is the data packet label or loss rate, u min =0 and u max =1. 如申請專利範圍第1項所述之網路壅塞控制參數量測系 統,其中該比例積分微分控制模組之建構式為,其中e (t )=q (t )-q d 為系統誤差、q (t )為該瞬間序列長度、q d 為該理想序列長度,u (t )為該控制輸入變數,K P 為該比例增益,T D 為微分時間常數,T I 為積分時間常數。The network congestion control parameter measurement system described in claim 1, wherein the proportional integral differential control module is constructed Where e ( t )= q ( t )- q d is the systematic error, q ( t ) is the length of the instantaneous sequence, q d is the length of the ideal sequence, u ( t ) is the control input variable, and K P is the Proportional gain, T D is the differential time constant, and T I is the integral time constant. 如申請專利範圍第1項所述之網路壅塞控制參數量測系 統,其中該比例積分微分控制模組之建構式為,其中e (t )=q (t )-q d 為系統誤差、q (t )為該瞬間序列長度、q d 為該理想序列長度,u (t )為該控制輸入變數,K P 為該比例增益,K I 為積分增益、及K D 為微分增益。The network congestion control parameter measurement system described in claim 1, wherein the proportional integral differential control module is constructed Where e ( t )= q ( t )- q d is the systematic error, q ( t ) is the length of the instantaneous sequence, q d is the length of the ideal sequence, u ( t ) is the control input variable, and K P is the Proportional gain, K I is the integral gain, and K D is the differential gain. 如申請專利範圍第1項所述之網路壅塞控制參數量測系 統,其中該演算模組執行該基因演算法之方法包含下列步驟: 利用類隨機序列法產生複數個染色體以形成一族群,定義一適應函數,每一染色體具有一比例參數、一積分參數與一微分參數; 根據該適應函數計算每一染色體之適應值,再根據該等適應值判斷出一最佳染色體,並以該最佳染色體之適應值作為該族群之一第一適應值,再根據該等適應值之比例,以輪盤式選擇方式產生次一代之複數個染色體來更新該族群; 將該族群進行交配與突變,計算該族群之一第二適應值,並比較該第二適應值是否大於該第一適應值,以決定是否保留交配與突變後之該族群;以及 判斷該第一適應值是否收斂,若判斷為未收斂,則返回該計算每一染色體之適應值步驟,若判斷為收斂,即取得匹配該第一適應值之該染色體,並將該染色體之比例參數、積分參數與微分參數轉換為該比例增益、該積分增益與該微分增益。The network congestion control parameter measurement system described in item 1 of the patent application scope The method in which the calculus module executes the gene algorithm includes the following steps: Using a random sequence method to generate a plurality of chromosomes to form a group, defining an adaptation function, each chromosome having a proportional parameter, an integral parameter and a differential parameter; Calculating the fitness value of each chromosome according to the adaptation function, and determining an optimal chromosome according to the adaptation values, and using the fitness value of the optimal chromosome as the first fitness value of the ethnic group, and then according to the fitness values The ratio of robin-type selection to generate a plurality of chromosomes of the next generation to update the ethnic group; Performing mating and mutation on the population, calculating a second fitness value of the one of the ethnic groups, and comparing whether the second fitness value is greater than the first fitness value to determine whether to retain the mating and the mutant population; Determining whether the first fitness value converges, and if it is determined that the convergence is not converged, returning the step of calculating the fitness value of each chromosome, and if it is determined to be convergent, obtaining the chromosome matching the first fitness value, and proportion of the chromosome The parameters, integral parameters, and differential parameters are converted to the proportional gain, the integral gain, and the differential gain. 如申請專利範圍第5項所述之網路壅塞控制參數量測系統,其中該族群之代表式為,族群大小為N p ,每一染色體代表S i 並具有(M 1M 2M 3 )的編碼長度,i =1,2,...,N p ,故每一染色體可表示為 For example, the network congestion control parameter measurement system described in claim 5, wherein the representative expression of the group is , the population size is N p , each chromosome represents S i and has a coding length of ( M 1 + M 2 + M 3 ), i =1, 2, ..., N p , so each chromosome can be expressed as 如申請專利範圍第5項所述之網路壅塞控制參數量測系統,其中該適應函數可表示為,其中h (S )為一性能指標,K P 為 該比例參數、K I 為該積分參數、K D 為該微分參數。The network congestion control parameter measurement system according to claim 5, wherein the adaptation function is expressed as Where h ( S ) is a performance indicator, K P is the proportional parameter, K I is the integral parameter, and K D is the differential parameter. 如申請專利範圍第7項所述之網路壅塞控制參數量測系統,其中該性能指標可表示為The network congestion control parameter measurement system described in claim 7, wherein the performance indicator can be expressed as . 如申請專利範圍第5項所述之網路壅塞控制參數量測系統,其中該族群進行交配之交配率為,而該族群進行突變之突變率為為正規化後所有適應值之最大者、為正規化後欲交配的二母代染色體中,適應值較大者;正規化後為突變時染色體的適應值;為正規化後所有適應值之平均、k 1 ,k 2 ,k 3 ,k 4 為小於1的正數用來限制交配率p c 與突變率p m 介於[0,1]、p c_last p m_last 分別為上一代的交配率與突變率、a 為權重與δ 為一個較小的常數。The network congestion control parameter measurement system described in claim 5, wherein the mating rate of the population is mating And the mutation rate of the mutation in this group , The largest of all fitness values after formalization, In the second mother chromosome to be mated after normalization, the fitness value is larger; After normalization, it is the adaptive value of the chromosome at the time of mutation; The average of all fitness values after normalization, k 1 , k 2 , k 3 , k 4 is a positive number less than 1 to limit the mating rate p c and the mutation rate p m between [0, 1], p c_last and p M_last is the mating rate and mutation rate of the previous generation, and a is a small constant for the weight and δ . 一種網路壅塞控制參數量測方法,係適用於一網路壅塞控制參數量測系統,其包含:建構一受控網路模組,並透過該受控網路模組之資料封包傳輸量計算出一瞬間序列長度;利用一計算模組根據該理想序列長度與該瞬間序列長度計算出一系統誤差;將該系統誤差作為輸入,根據一基因演算法計算出 一比例增益、一積分增益與一微分增益;將該比例增益、該積分增益與該微分增益輸入一比例積分微分控制模組以產生一控制輸入變數;輸入該控制輸入變數至該受控網路模組以修正該瞬間序列長度;以及重新計算該系統誤差,判斷該系統誤差是否小於一限定值,若判斷為小於該限定值,判斷該網路壅塞控制參數量測系統達到一系統平衡,並記錄該比例增益、該積分增益與該微分增益,若判斷為未小於該限定值,即返回該將該系統誤差作為輸入步驟。 A network congestion control parameter measurement method is applicable to a network congestion control parameter measurement system, which comprises: constructing a controlled network module, and calculating a data packet transmission amount through the controlled network module Instantly calculating the length of the sequence; using a computing module to calculate a systematic error according to the length of the ideal sequence and the length of the instantaneous sequence; using the systematic error as an input, calculating according to a genetic algorithm a proportional gain, an integral gain and a differential gain; the proportional gain, the integral gain and the differential gain are input to a proportional integral differential control module to generate a control input variable; and the control input variable is input to the controlled network The module is configured to correct the length of the instantaneous sequence; and recalculate the system error to determine whether the system error is less than a limit value, and if it is determined to be less than the limit value, determine that the network congestion control parameter measurement system reaches a system balance, and The proportional gain, the integral gain, and the differential gain are recorded, and if it is determined that the value is not less than the limit value, the systematic error is returned as an input step. 如申請專利範圍第10項所述之網路壅塞控制參數量測方法,其中該受控網路模組之建構式可表示為 ,其中w 為平均窗口大小、q 為該瞬間序列長度、T p 為傳遞延遲時間、R (t )為資料封包來回時間並可等效為C 為網路連結容量、N 為該受控網路模組之網路用戶個數、sat(u (t ))為資料封包標記或丟失率、u min =0及u max =1。The method for measuring a network congestion control parameter according to claim 10, wherein the configuration of the controlled network module can be expressed as Where w is the average window size, q is the length of the instant sequence, T p is the transit delay time, R ( t ) is the data packet round trip time and can be equivalent , C is the network connection capacity, N is the number of network users of the controlled network module, sat( u ( t )) is the data packet label or loss rate, u min =0 and u max =1. 如申請專利範圍第10項所述之網路壅塞控制參數量測方法,其中該比例積分微分控制模組之建構式為,其中e (t )=q (t )-q d 為系統誤差、q (t )為該瞬間序列長度、q d 為該理想序列長度,u (t )為該控制輸入變數,K P 為該比例增益,T D 為微分時間常數,T I 為積分時間常數。For example, the network congestion control parameter measurement method described in claim 10, wherein the proportional integral differential control module is constructed Where e ( t )= q ( t )- q d is the systematic error, q ( t ) is the length of the instantaneous sequence, q d is the length of the ideal sequence, u ( t ) is the control input variable, and K P is the Proportional gain, T D is the differential time constant, and T I is the integral time constant. 如申請專利範圍第10項所述之網路壅塞控制參數量測方法,其中該比例積分微分控制模組之建構式為,其中e (t )=q (t )-q d 為系統誤差、q (t )為該瞬間序列長度、q d 為該理想序列長度,u (t )為該控制輸入變數,K P 為該比例增益,K I 為積分增益、及K D 為微分增益。For example, the network congestion control parameter measurement method described in claim 10, wherein the proportional integral differential control module is constructed Where e ( t )= q ( t )- q d is the systematic error, q ( t ) is the length of the instantaneous sequence, q d is the length of the ideal sequence, u ( t ) is the control input variable, and K P is the Proportional gain, K I is the integral gain, and K D is the differential gain. 如申請專利範圍第10項所述之網路壅塞控制參數量測方法,其中該演算模組執行該基因演算法之方法包含下列步驟:利用類隨機序列法產生複數個染色體以形成一族群,定義一適應函數,每一染色體具有一比例參數、一積分參數與一微分參數;根據該適應函數計算每一染色體之適應值,再根據該等適應值判斷出一最佳染色體,並以該最佳染色體之適應值作為該族群之一第一適應值,再根據該等適應值 之比例,以輪盤式選擇方式產生次一代之複數個染色體來更新該族群;將該族群進行交配與突變,計算該族群之一第二適應值,並比較該第二適應值是否大於該第一適應值,以決定是否保留交配與突變後之該族群;以及判斷該第一適應值是否收斂,若判斷為未收斂,則返回該計算每一染色體之適應值步驟,若判斷為收斂,即取得匹配該第一適應值之該染色體,並將該染色體之比例參數、積分參數與微分參數轉換為該比例增益、該積分增益與該微分增益。 The method for measuring a network congestion control parameter according to claim 10, wherein the method for performing the gene algorithm comprises the following steps: generating a plurality of chromosomes by using a random sequence method to form a group, defining An adaptive function, each chromosome has a proportional parameter, an integral parameter and a differential parameter; calculating an adaptive value of each chromosome according to the adaptive function, and then determining an optimal chromosome based on the adapted values, and using the optimal one The fitness value of the chromosome is taken as one of the first adaptation values of the ethnic group, and then according to the adaptation values a ratio of robin-type selection to generate a plurality of chromosomes of the next generation to update the ethnic group; mating and mutating the population, calculating a second adaptation value of the one of the ethnic groups, and comparing whether the second fitness value is greater than the first An adaptation value to determine whether to retain the mating and the mutation of the ethnic group; and determining whether the first fitness value converges, and if it is determined that the convergence is not converged, returning the step of calculating the fitness value of each chromosome, if it is determined to be convergent, The chromosome matching the first fitness value is obtained, and the proportional parameter, the integral parameter and the differential parameter of the chromosome are converted into the proportional gain, the integral gain and the differential gain. 如申請專利範圍第14項所述之網路壅塞控制參數量測方法,其中該族群之代表式為P 0 ={S i ,S 2 ,…,S Np },族群大小為N p ,每一染色體代表S i 並具有(M 1 +M 2 +M 3 )的編碼長度,i =1 ,2 ,...,N p ,故每一染色體可表示為The method for measuring a network congestion control parameter according to claim 14, wherein the representative formula of the group is P 0 = { S i , S 2 , ..., S Np }, and the population size is N p , each The chromosome represents S i and has a coding length of ( M 1 + M 2 + M 3 ), i = 1 , 2 ,..., N p , so each chromosome can be expressed as . 如申請專利範圍第5項所述之網路壅塞控制參數量測方法,其中該適應函數可表示為,其中h (S )為一性能指標,K P 為該比例參數、K I 為該積分參數、K D 為該微分參數。The method for measuring a network congestion control parameter according to claim 5, wherein the adaptation function is expressed as Where h ( S ) is a performance indicator, K P is the proportional parameter, K I is the integral parameter, and K D is the differential parameter. 如申請專利範圍第16項所述之網路壅塞控制參數量測方法,其中該性能指標可表示為The method for measuring a network congestion control parameter according to claim 16 of the patent application scope, wherein the performance indicator can be expressed as . 如申請專利範圍第14項所述之網路壅塞控制參數量測方法,其中該族群進行交配之交配率為,而該族群進行突變之突變率為為正規化後所有適應值之最大者、為正規化後欲交配的二母代染色體中,適應值較大者;正規化後為突變時染色體的適應值;為正規化後所有適應值之平均、k1,k2,k3,k4為小於1的正數用來限制交配率pc與突變率pm介於[0,1]、p c_last p m_last 分別為上一代的交配率與突變率、a為權重與δ 為一個較小的常數。The method for measuring the network congestion control parameter described in claim 14 of the patent application, wherein the mating rate of the population is mating And the mutation rate of the mutation in this group , The largest of all fitness values after formalization, In the second mother chromosome to be mated after normalization, the fitness value is larger; After normalization, it is the adaptive value of the chromosome at the time of mutation; For the normalization of all the fitness values after normalization, k1, k2, k3, and k4 are positive numbers less than 1 to limit the mating rate pc and the mutation rate pm between [0, 1], p c_last and p m_last respectively. The mating rate and mutation rate, a is the weight and δ is a small constant.
TW97123802A 2008-06-25 2008-06-25 Network congestion control parameter measurement system and its method and proportional integral differential control module design method TWI385971B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97123802A TWI385971B (en) 2008-06-25 2008-06-25 Network congestion control parameter measurement system and its method and proportional integral differential control module design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97123802A TWI385971B (en) 2008-06-25 2008-06-25 Network congestion control parameter measurement system and its method and proportional integral differential control module design method

Publications (2)

Publication Number Publication Date
TW201001980A TW201001980A (en) 2010-01-01
TWI385971B true TWI385971B (en) 2013-02-11

Family

ID=44825025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97123802A TWI385971B (en) 2008-06-25 2008-06-25 Network congestion control parameter measurement system and its method and proportional integral differential control module design method

Country Status (1)

Country Link
TW (1) TWI385971B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470167B (en) * 2015-08-17 2020-09-01 阿里巴巴集团控股有限公司 Method and device for controlling network transmission speed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI244285B (en) * 2002-02-05 2005-11-21 Via Tech Inc Ethernet switch controller and its congestion control method
TWI308012B (en) * 2006-01-11 2009-03-21 Univ Nat Chiao Tung Method for adaptive estimation of retransmission timeout in wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI244285B (en) * 2002-02-05 2005-11-21 Via Tech Inc Ethernet switch controller and its congestion control method
TWI308012B (en) * 2006-01-11 2009-03-21 Univ Nat Chiao Tung Method for adaptive estimation of retransmission timeout in wireless communication systems

Also Published As

Publication number Publication date
TW201001980A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
Chen et al. Application of improved genetic algorithm in PID controller parameters optimization
CN110426953B (en) AGC performance evaluation method based on thermal power generating unit power generation model
Zheng et al. An H∞ approach to the controller design of AQM routers supporting TCP flows
CN116527567B (en) Intelligent network path optimization method and system based on deep reinforcement learning
Zheng et al. An H∞ approach to congestion control design for AQM routers supporting TCP flows in wireless access networks
CN105759607A (en) Design method for PAC controller based on intelligent control algorithms
CN103269458B (en) A kind of adjustment control method for transmission of video in narrowband network situation
CN107689919A (en) The dynamic adjustment weight fuzzy routing method of SDN
CN113612692B (en) Centralized optical on-chip network self-adaptive route planning method based on DQN algorithm
CN104639293B (en) Packet Loss Compensation Device and Method for Networked Control System
CN113349267A (en) Method and system for intelligently adjusting environment of black tea fermentation chamber
TWI385971B (en) Network congestion control parameter measurement system and its method and proportional integral differential control module design method
Chebli et al. PI stabilization for congestion control of AQM routers with tuning parameter optimization
KR102382047B1 (en) Automatic learning tuning system of motor controller using PSO
CN109146131A (en) A kind of wind-power electricity generation prediction technique a few days ago
CN113258154B (en) Battery charging method, device, equipment and medium
CN112529148B (en) Intelligent QoS inference method based on graph neural network
CN112925207A (en) Greenhouse environment temperature self-adaption method based on parameter identification
CN111798163A (en) Active power distribution network security assessment method
CN111880406B (en) Self-adaptive prediction control main queue management method based on Hebb learning
CN115693655A (en) Load frequency control method, device and equipment based on TS fuzzy control
CN113991752A (en) Power grid quasi-real-time intelligent control method and system
CN112467752A (en) Voltage regulating method and device for distributed energy distribution system
CN112134807A (en) SDN load balancing method, system, equipment and storage medium based on Nash bargaining
Han et al. Optimal active queue management for internet with reduced-order state-observer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees