TWI384478B - Minute structure and information recording medium - Google Patents

Minute structure and information recording medium Download PDF

Info

Publication number
TWI384478B
TWI384478B TW97109679A TW97109679A TWI384478B TW I384478 B TWI384478 B TW I384478B TW 97109679 A TW97109679 A TW 97109679A TW 97109679 A TW97109679 A TW 97109679A TW I384478 B TWI384478 B TW I384478B
Authority
TW
Taiwan
Prior art keywords
microstructure
light
optical
layer
substrate
Prior art date
Application number
TW97109679A
Other languages
Chinese (zh)
Other versions
TW200844996A (en
Inventor
Mori Tetsuji
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007071485A external-priority patent/JP4607139B2/en
Priority claimed from JP2007276730A external-priority patent/JP5526474B2/en
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of TW200844996A publication Critical patent/TW200844996A/en
Application granted granted Critical
Publication of TWI384478B publication Critical patent/TWI384478B/en

Links

Description

微結構與資訊記錄媒體Microstructure and information recording media

本發明有關於微結構與寫一次(WORM、或寫一次讀許多次)資訊記錄媒體。The present invention relates to microstructures and write-once (WORM, or write once many times) information recording media.

最近,此具有大小從奈米尺寸至微米尺寸之微結構之研究與發展在許多領域中進行,此等領域包括:超微光子學、高密度記錄媒體、光學元件、以及生化晶片。對於使用光電子學之此等裝置為不可或缺者為一種材料,其在可見光範圍為光學地透明,且具有少的光學損失。為此原因,此從透明材料以產生微結構之技術之研究與發展活躍地進行。Recently, research and development of microstructures having sizes ranging from nanometers to micrometers have been carried out in many fields, including: ultramicrophotonics, high density recording media, optical components, and biochemical wafers. A device that is indispensable for such devices using optoelectronics is optically transparent in the visible range and has little optical loss. For this reason, this research and development of technologies for producing microstructures from transparent materials is actively carried out.

鋅氧化物在可見光範圍為光學透明,且具有吸收紫外光之性質。鋅氧化物使用於例如:發光二極體、透明電晶體、紫外光切割材料、電子攝影術等目的。Zinc oxide is optically transparent in the visible range and has the property of absorbing ultraviolet light. Zinc oxide is used for, for example, a light-emitting diode, a transparent transistor, an ultraviolet light cutting material, an electrophotography, and the like.

此形成鋅氧化物之方法之例包括:濺鍍法、離子電鍍法(請參考日本公開專利申請案號2006-117462)、以及先質之熱分解(請參考日本公開專利申請案號2007-022851)。Examples of the method of forming the zinc oxide include: a sputtering method, an ion plating method (refer to Japanese Laid-Open Patent Application No. 2006-117462), and a thermal decomposition of a precursor (refer to Japanese Laid-Open Patent Application No. 2007-022851) ).

通常,當產生具有一度空間或二度空間周期性微結構之量子線、點等時,可以使用任何此等電子束曝光系統、離子束曝光系統、以及步進式曝光系統。然而,此等曝光系統需要昂貴之真空源,且其製造成本變高。為此原因,令人想要以低成本實施簡單圖案化,且製成周期性微結構。Generally, any such electron beam exposure system, ion beam exposure system, and stepwise exposure system can be used when producing quantum lines, dots, etc. having a one-dimensional or two-degree spatial periodic microstructure. However, such exposure systems require expensive vacuum sources and their manufacturing costs become high. For this reason, it is desirable to implement simple patterning at a low cost and to make a periodic microstructure.

如果以光線照射此在其中微結構規則配置之周期性結構,則會產生例如光帶效應(photonic band effect)之獨特現象。令人期待將此周期性結構應用至使用光線共振或光子包括:光學波導、光學濾波器、光學開關、低臨界雷射等。然而,此為已知,此在其中微結構以小於次波長之間隔規則配置之周期性結構用於:藉由稱為蛾眼結構之結構(參考OPTICAL REVIEW、2003年第2期第10卷、第63-73頁)防止Fresnel反射,且顯示非反射特徵。If the periodic structure in which the microstructure is regularly arranged is illuminated by light, a unique phenomenon such as a photonic band effect is produced. It is expected that the application of this periodic structure to the use of ray resonance or photons includes: optical waveguides, optical filters, optical switches, low critical lasers, and the like. However, it is known that the periodic structure in which the microstructures are regularly arranged at intervals smaller than the sub-wavelength is used for: by a structure called a moth-eye structure (refer to OPTICAL REVIEW, No. 2, 2003, Vol. 10, Pages 63-73) Prevents Fresnel reflections and displays non-reflective features.

在另一方面,在生物技術之領域中,強烈要求使用微結構作為DNA晶片,在其中將分子與原子選擇地組合。DNA晶片使得基因可以存在,此為疾病之原因而可容易地研究,且被使用於疾病之基因與診斷之研究。On the other hand, in the field of biotechnology, it is strongly required to use a microstructure as a DNA wafer in which molecules are selectively combined with atoms. DNA wafers allow genes to be present, which can be easily studied for disease reasons and used in the study of genes and diagnosis of diseases.

DNA晶片通常由矽或玻璃之薄基板所構成,此為疾病原因之基因是由去氧核糖核酸(DNA)構成,而黏著在DNA晶片上。如果此由病人取得且經處理之血液滴在DNA晶片上,且此為疾病原因之基因存在於血液中,則此血液中之DNA黏著於DNA晶片之DNA。因此,可以容易判斷此病人是否生病。如果研究基因之行為,則可以獲得疾病之及早偵測與藥物副作用之預測。在醫學領域,此對於基因篩選之需求快速成長。A DNA wafer is usually composed of a thin substrate of ruthenium or glass. The gene for disease causes is composed of deoxyribonucleic acid (DNA) and adheres to a DNA wafer. If the blood obtained by the patient and the treated blood is dripped on the DNA wafer, and the gene for the cause of the disease is present in the blood, the DNA in the blood adheres to the DNA of the DNA wafer. Therefore, it can be easily judged whether or not the patient is ill. If the behavior of the gene is studied, early detection of the disease and prediction of the side effects of the drug can be obtained. In the medical field, this demand for genetic screening is growing rapidly.

此外,此關於規律配置成二度空間形狀之金屬微結構,可以期望會有使用藉由表面電漿激子激發與光線與分子交互作用之應用佈置。Furthermore, with regard to metal microstructures that are regularly arranged in a two-dimensional shape, it may be desirable to have an application arrangement that uses surface plasmon exciton excitation and light-molecule interaction.

此產生微結構與周期結構、其中微結構規律配置之現有方法使用:在半導體微製造技術中之光學微影術。由於現有方法須要昂貴之電子束微影系統,其具有高成本之問題。然而,此所製成微結構之尺寸取決於製造設備之性能表現。This is the use of existing methods of generating microstructures and periodic structures in which microstructures are regularly configured: optical lithography in semiconductor microfabrication techniques. Since the existing method requires an expensive electron beam lithography system, it has a problem of high cost. However, the size of the microstructures made here depends on the performance of the manufacturing equipment.

在另一方面,製成遮罩且此現有方法所具有之優點為其適用於大量生產。然而,其在規格改變與在實驗階段簡單實驗之時,並不適用於簡單電路設計。On the other hand, masks are made and this prior method has the advantage that it is suitable for mass production. However, it is not suitable for simple circuit design when the specification changes and the simple experiment in the experimental stage.

此亦為已知方法,其使用藉由雷射光之2-光子吸收、以製造一三度空間微結構或三度空間光結晶體(參考日本公開專利申請案號2003-001599與2005-122002)。然而,此種製造須要許多時間,且所使用材料受限於、可由光聚合反應所產生之樹脂。為此原因,須要一種簡單便宜之方法以製造可以進一步改善資源節省之微結構。This is also a known method which uses 2-photon absorption by laser light to produce a three-dimensional spatial microstructure or a three-dimensional spatial light crystal (refer to Japanese Laid-Open Patent Application Nos. 2003-001599 and 2005-122002). However, such manufacturing requires a lot of time, and the materials used are limited by the resin which can be produced by photopolymerization. For this reason, a simple and inexpensive method is needed to create a microstructure that can further improve resource savings.

現有形成微結構或周期結構之逆結構之方法、其中使用包括射出成形之浮雕處理而將規律配置之微結構。近年來,已經發展出超微印刷技術,其準確地移轉超微尺寸結構之逆結構。此使用光聚合或熱聚合之超微印刷技術,可以足夠高之準確度產生主模式之逆結構,且其適用於大量生產。當使用逆結構作為光結晶體時,從主模型產生不同效應。There is a conventional method of forming an inverse structure of a microstructure or a periodic structure in which a microstructure which is regularly arranged using an embossing process including injection molding is used. In recent years, ultra-micro printing technology has been developed which accurately shifts the inverse structure of ultra-micro-sized structures. This ultra-micro printing technique using photopolymerization or thermal polymerization can produce a reverse structure of the main mode with high enough accuracy, and it is suitable for mass production. When an inverse structure is used as the light crystal, different effects are generated from the main model.

近年來,注意力給予熱微影術作為低成本處理方法,其較使用光微影術之微製造技術更具成本效益。熱微影術為一種微製造技術,其所使用之原理為:當吸熱層被加熱(當由雷射光線照射時,此層作用為光線吸收層)時,此加熱部份之特徵(光線透射、折射率、導電性、化學抗腐蝕性等)改變。 此被光線照射區域之溫度分佈轉變成高斯分佈,此在分佈中心中高溫區域之面積為光點面積之大約1/10,且僅該面積之特徵改變,因此,可以製造微圖案。In recent years, attention has been paid to thermolithography as a low-cost treatment method that is more cost effective than microfabrication techniques using photolithography. Thermography is a microfabrication technique that uses the principle that when the endothermic layer is heated (when the layer acts as a light absorbing layer when illuminated by laser light), the characteristics of the heated portion (light transmission) , refractive index, electrical conductivity, chemical corrosion resistance, etc.). The temperature distribution of the region illuminated by the light is converted into a Gaussian distribution, wherein the area of the high temperature region in the center of the distribution is about 1/10 of the area of the spot, and only the characteristics of the area are changed, and therefore, the micropattern can be manufactured.

日本公開專利申請案號2005-158191揭示一種製造光學記錄媒體之方法,其包括:將在支持基板上之第一介電層、光線吸收層、以及第二介電層逐層堆疊之至少一步驟;發射雷射光線以記錄資訊之步驟;以及藉由濕性蝕刻以去除第二介電層之未記錄區域、以形成第二介電層之凹入部份之步驟。Japanese Laid-Open Patent Application No. 2005-158191 discloses a method of manufacturing an optical recording medium, comprising: at least one step of stacking a first dielectric layer, a light absorbing layer, and a second dielectric layer on a support substrate layer by layer a step of emitting laser light to record information; and a step of removing the unrecorded region of the second dielectric layer by wet etching to form a recessed portion of the second dielectric layer.

在日本公開專利申請案號2005-158191所揭示一種方法中,此所形成第二介電層之凹入部份所具有橫截面為矩形或逆漸尖形狀,且由於蝕刻阻抗僅在熱分佈(高斯分佈)中最大值附近增加,此凹入部份之尺寸小於光之繞射極限。且在此吸收雷射光線之光線吸收層上第二介電層之蝕刻阻抗(resist)改善,且形成凸部份。然而,由於有許多用途須要去除光線吸收層,要求形成凸部份,而無須形成光線吸收層。而且,亦存在此問題,當在第二介電層中形成凹入部份時,此凹入部份之終端會變得粗糙。In a method disclosed in Japanese Laid-Open Patent Publication No. 2005-158191, the concave portion of the second dielectric layer formed has a rectangular or inverted tapered shape, and since the etching resistance is only in the heat distribution ( The Gaussian distribution increases in the vicinity of the maximum value, and the size of the concave portion is smaller than the diffraction limit of light. Moreover, the etching resistance of the second dielectric layer on the light absorbing layer that absorbs the laser light is improved, and a convex portion is formed. However, since there are many uses for removing the light absorbing layer, it is required to form a convex portion without forming a light absorbing layer. Moreover, there is also a problem that when a concave portion is formed in the second dielectric layer, the terminal portion of the concave portion becomes rough.

在近年來要求具有光結晶體之次波長結構或精細結構之光學元件。此種精細結構之應用並不受限於光學元件。例如,有機電致發光(OEL)顯示器或有機發光二極體顯示器(OLED)為:使用有機複合物之新一代發光顯示器。當與傳統顯示器比較時,此由LED所發射光線為亮且清楚、視角大、此顯示器為薄型、且其操作溫度範圍廣泛。此LED被觀察為具有傑出特性之顯示器。此外,此為已知OLED之發光效率藉由將其與二度空間光晶體結構組合而改善。例如,請參考“M. Fujita, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada and N. Shimoji所著電子學報,2003年、第39卷、第1750頁”、“Y. Lee, S. Kim, J. Huh, G. Kim and Y. Lee所著應用物理學報2003年、第82卷、第3779頁”、“M. Kitamura, S. Iwamoto and Y. Arakawa所著日本應用物理學報2005年、第44卷、第2844頁”、“K. Ishihara, M. fujita, I. Matsubara, T. Asano and S. Noda所著日本應用物理學報2006年、第45卷、第7號、第L210頁”、以及“M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada and N. Shimoji所著應用物理學報2005年、第 44卷、第3669頁”。In recent years, an optical element having a sub-wavelength structure or a fine structure of a photocrystal has been demanded. The application of such fine structures is not limited to optical components. For example, an organic electroluminescence (OEL) display or an organic light emitting diode display (OLED) is a new generation of light emitting display using an organic composite. When compared with a conventional display, the light emitted by the LED is bright and clear, the viewing angle is large, the display is thin, and its operating temperature range is wide. This LED was observed as a display with outstanding characteristics. Furthermore, this is known to improve the luminous efficiency of OLEDs by combining them with a two-dimensional spatial light crystal structure. For example, please refer to "M. Fujita, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada and N. Shimoji, Electronic Journal, 2003, Vol. 39, 1750 Page, "Y. Lee, S. Kim, J. Huh, G. Kim and Y. Lee, Journal of Applied Physics, 2003, Vol. 82, p. 3779", "M. Kitamura, S. Iwamoto and Y Arakawa, Journal of Applied Physics, 2005, Vol. 44, p. 2844, "K. Ishihara, M. fujita, I. Matsubara, T. Asano and S. Noda, Journal of Applied Physics, 2006, pp. Volume 45, No. 7, page L210", and "M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada and N. Shimoji Journal of Applied Physics, 2005, Volume 44, page 3669".

而且,已知在例如太陽電池之光電轉換裝置中須要精細結構。此等太陽電池被編組為:乾式太陽電池,其由單晶矽、多晶矽、非晶矽等所形成;以及濕式太陽電池,例如、Graetzel電持或染料敏感太陽電池。在染料敏感式太陽電池中,使用鈦氧化物作為半導體電極。然而,理論上,可以獲得使用其他氧化物半導體之太陽電池,且用於此目的之各種研究正在進行中。Moreover, it is known that a fine structure is required in a photoelectric conversion device such as a solar cell. Such solar cells are grouped into: dry solar cells formed from single crystal germanium, polycrystalline germanium, amorphous germanium, and the like; and wet solar cells, such as Graetzel electric holding or dye sensitive solar cells. In dye-sensitive solar cells, titanium oxide is used as the semiconductor electrode. However, in theory, solar cells using other oxide semiconductors can be obtained, and various studies for this purpose are underway.

根據本發明之觀點,揭示一種改良式微結構,其中可以去除以上說明之問題。In accordance with the teachings of the present invention, an improved microstructure is disclosed in which the above-described problems can be eliminated.

根據本發明之觀點,揭示一種微結構,其可以藉由使用熱微影術而容易地形成。In accordance with the teachings of the present invention, a microstructure is disclosed that can be readily formed by the use of thermal lithography.

根據本發明之觀點,揭示一種微結構製造方法,其可以藉由使用熱微影術而容易地形成微結構。In accordance with the teachings of the present invention, a microstructure fabrication method is disclosed that can readily form microstructures using thermal lithography.

根據本發明之觀點,揭示一種寫一次資訊記錄媒體,其可以低成本製成,且可以在其中形成微記錄記號。In accordance with the teachings of the present invention, a write-once information recording medium is disclosed which can be made at low cost and in which micro-record marks can be formed.

在本發明之一實施例中,揭示一種包含硫複合物與矽氧化物之微結構,以解決或減少上述一個或更多個問題。In one embodiment of the invention, a microstructure comprising a sulfur complex and a cerium oxide is disclosed to address or reduce one or more of the above problems.

可以配置上述微結構,以致於此微結構可以在:具有彎曲表面之凸組態、一組態其中具有彎曲表面之凸結構形成於圓柱體結構上、以及圓柱體組態之任何一個中。The microstructures described above may be configured such that the microstructures may be in a convex configuration having a curved surface, a configuration in which a convex structure having a curved surface is formed on a cylindrical structure, and a configuration of a cylinder.

可以配置上述微結構,以致於此微結構可以在:具有彎曲表面之凸組態、一組態其中具有彎曲表面之凸結構形成於圓柱體結構上、以及組態其中持續地形成圓柱體橫截面之任何一個中。The microstructure may be configured such that the microstructure may be: a convex configuration having a curved surface, a configuration in which a convex structure having a curved surface is formed on the cylindrical structure, and a configuration in which the cylindrical cross section is continuously formed Any one of them.

可以配置上述微結構,以致於此硫複合物包含ZnS。The above microstructure can be configured such that the sulfur composite contains ZnS.

可以配置上述微結構,以致於此硫複合物包含第一硫複合物,用於提高對於具有預定波長之光線之光學吸收能力。The microstructure can be configured such that the sulfur composite comprises a first sulfur complex for enhancing the optical absorption capacity for light having a predetermined wavelength.

可以配置上述微結構,以致於此硫複合物包含FeS與GeS2 至少之一。The above microstructure may be configured such that the sulfur composite contains at least one of FeS and GeS 2 .

可以配置上述微結構,以致於此微結構更包括一種材料,用於提高對於具有預定波長之光線之光學吸收能力。The microstructures described above can be configured such that the microstructure further includes a material for enhancing optical absorption for light having a predetermined wavelength.

可以配置上述微結構,以致於此用於提高對於具有預定波長之光線之光學吸收能力之材料包含以下至少之一:鋁(Al)、銀(Ag)、金(Au)、銅(Cu)、鋅(Zn)、鉑(Pt)、銻(Sb)、碲(Te)、鍺(Ge)、矽(Si)、鉍(Bi)、錳(Mn)、鎢(W)、鈮(Nb)、鈷(Co)、鍶(Sr)、鐵(Fe)、銦(In)、錫(Sn)、鎳(Ni)、鉬(Mo)、鎂(Mg)、以及鈣(Ca)。The above microstructure may be configured such that the material for improving the optical absorption ability for light having a predetermined wavelength includes at least one of aluminum (Al), silver (Ag), gold (Au), copper (Cu), Zinc (Zn), platinum (Pt), antimony (Sb), antimony (Te), germanium (Ge), antimony (Si), antimony (Bi), manganese (Mn), tungsten (W), antimony (Nb), Cobalt (Co), strontium (Sr), iron (Fe), indium (In), tin (Sn), nickel (Ni), molybdenum (Mo), magnesium (Mg), and calcium (Ca).

可以配置上述微結構,以致於此微結構更包括氧化物材料,用於提高對於具有預定波長之光線之光學吸收能力。The microstructures described above can be configured such that the microstructure further includes an oxide material for enhancing optical absorption for light having a predetermined wavelength.

可以配置上述微結構,以致於此用於提高對於具有預定波長之光線之光學吸收能力之材料包含第二硫複合物與鋅複合物之一。The above microstructure may be configured such that the material for enhancing the optical absorption capability for light having a predetermined wavelength comprises one of the second sulfur complex and the zinc composite.

可以配置上述微結構,以致於此用於提高對於具有預定波長之光線之光學吸收能力之材料包含ZnTe、ZnSe、以及MnS之至少之一。The above microstructure may be configured such that the material for improving the optical absorption ability for light having a predetermined wavelength contains at least one of ZnTe, ZnSe, and MnS.

可以配置上述微結構,以致於此用於提高對於具有預定波長之光線之光學吸收能力之材料包含螢光材料。The above microstructure may be configured such that the material for improving the optical absorption capability for light having a predetermined wavelength comprises a fluorescent material.

可以配置上述微結構,以致於此螢光材料包含CsSe或CdTe。The above microstructure may be configured such that the phosphor material comprises CsSe or CdTe.

可以配置上述微結構,以致於矽氧化物含量之百分比是在10摩耳(mol)%至30摩耳(mol)%間之範圍中。The microstructures described above can be configured such that the percentage of niobium oxide content is in the range of from 10 moles to 30 mole percent.

在本發明之解決或減輕上述一或更多個問題之實施例中,揭示一種製造微結構之方法,此方法包含以下步驟:在基板上形成一包含硫複合物與矽氧化物之層;藉由雷射光線以照射此包含硫複合物與矽氧化物之層;蝕刻此由雷射光線以照射之層以形成微結構,其中,此硫複合物包含第一硫複合物,用於提高對於具有預定波長之光線之光學吸收能力,或此包含硫複合物與矽氧化物之層更包含一種用於提高光學吸收能力之材料。In an embodiment of the present invention for solving or alleviating one or more of the above problems, a method of fabricating a microstructure is disclosed, the method comprising the steps of: forming a layer comprising a sulfur complex and a tantalum oxide on a substrate; Irradiating the layer comprising the sulfur complex and the cerium oxide by laser light; etching the layer irradiated by the laser light to form a microstructure, wherein the sulfur compound comprises the first sulfur compound for improving The optical absorption capability of light having a predetermined wavelength, or the layer comprising the sulfur composite and the cerium oxide, further comprises a material for improving optical absorption.

在解決或減輕上述一或更多個問題之本發明實施例中,揭示一種寫一次資訊記錄媒體,其包括:一基板;以及一記錄層,其由混合無機材料所形成且沉積在基板上,其中,混合無機材料包含硫複合物與矽氧化物。In an embodiment of the present invention that solves or alleviates one or more of the above problems, a write-once information recording medium is disclosed, comprising: a substrate; and a recording layer formed of a mixed inorganic material and deposited on the substrate, Wherein, the mixed inorganic material comprises a sulfur composite and a cerium oxide.

可以配置上述寫一次資訊記錄媒體,以致於混合無機材料更包含:一種無機材料,其與硫複合物與矽氧化物所不同,且由以下所選出金屬、半金屬、以及半導體;以及一記錄層,其所具有對預定波長之光線之光學吸收能力大於、相同厚度但並不包含無機材料之記錄層之光學吸收能力。The information recording medium can be configured to be written as described above, so that the mixed inorganic material further comprises: an inorganic material different from the sulfur composite and the tantalum oxide, and the metal, the semimetal, and the semiconductor selected by the following; and a recording layer The optical absorption capacity of the recording layer having a light absorption capacity for a predetermined wavelength greater than that of the same thickness but not containing the inorganic material.

可以配置上述寫一次資訊記錄媒體,以致於寫一次資訊記錄媒體更包括:沉積在基板上之介電層與反射層。The information recording medium can be configured to be written once, so that writing the information recording medium further includes: a dielectric layer and a reflective layer deposited on the substrate.

可以配置上述寫一次資訊記錄媒體,以致於該無機材料包含一構成硫複合物與矽氧化物之元素。The information recording medium may be configured to be written as described above such that the inorganic material contains an element constituting the sulfur composite and the cerium oxide.

可以配置上述寫一次資訊記錄媒體,以致於該無機材料包含由以下所選出之至少一元素:鋁(Al)、銀(Ag)、金(Au)、銅(Cu)、鋅(Zn)、鉑(Pt)、銻(Sb)、碲(Te)、鍺(Ge)、矽(Si)、鉍(Bi)、錳(Mn)、鎢(W)、鈮(Nb)、鈷(Co)、鍶(Sr)、鐵(Fe)、銦(In)、錫(Sn)、鎳(Ni)、鉬(Mo)、鎂(Mg)、鈣(Ca)、鉛(Pb)、以及鋇(Ba)。The information recording medium can be configured to be written as described above, such that the inorganic material contains at least one element selected from the group consisting of aluminum (Al), silver (Ag), gold (Au), copper (Cu), zinc (Zn), and platinum. (Pt), bismuth (Sb), tellurium (Te), germanium (Ge), germanium (Si), germanium (Bi), manganese (Mn), tungsten (W), germanium (Nb), cobalt (co), germanium (Sr), iron (Fe), indium (In), tin (Sn), nickel (Ni), molybdenum (Mo), magnesium (Mg), calcium (Ca), lead (Pb), and barium (Ba).

根據本發明之實施例,可以提供:微結構,其可以藉由使用熱微影術而容易地形成;以及微結構製造方法,其可以藉由使用熱微影術而容易地形成微結構。According to an embodiment of the present invention, it is possible to provide a microstructure which can be easily formed by using thermal lithography, and a microstructure manufacturing method which can easily form a microstructure by using thermal lithography.

根據本發明之實施例,可以使用以下物件以提供基板之製造圖案化方法:微結構、結構、資訊記錄媒體、主基板、光學元件、光學通信裝置、DNA晶片、發光裝置、光電轉換器、以及包含此微結構之光學透鏡。According to an embodiment of the present invention, the following articles may be used to provide a method of fabricating a substrate: microstructure, structure, information recording medium, main substrate, optical element, optical communication device, DNA wafer, light emitting device, photoelectric converter, and An optical lens comprising this microstructure.

根據本發明之實施例,可以提供寫一次資訊記錄媒體,其可以低成本製成,且可在其中形成微記錄記號。According to an embodiment of the present invention, it is possible to provide a write-once information recording medium which can be manufactured at low cost and in which micro-record marks can be formed.

本發明之其他目的、特徵、以及優點將由於以下詳細說明並閱讀所附圖式而為明顯。Other objects, features, and advantages of the present invention will be apparent from the description and appended claims.

現在參考所附圖式說明本發明之實施例。Embodiments of the invention will now be described with reference to the drawings.

本發明實施例1之微結構包含混合組成成份,其包含:至少一種硫複合物(稱為材料A)、與至少一種矽氧化物(稱為材料B)。此當形成微結構時藉由加熱而由於其包含材料A而促進燒結,且此使用蝕刻之圖案化由於其包含材料B而為可能。此光學非反射薄膜或光結晶體之設計、在其中可以反映微結構之組態,且可以容易地調整此微結構之折射率。The microstructure of Embodiment 1 of the present invention comprises a mixed composition comprising: at least one sulfur complex (referred to as material A), and at least one tantalum oxide (referred to as material B). When the microstructure is formed, sintering is promoted by heating because it contains the material A, and this patterning using etching is possible because it contains the material B. The design of the optical non-reflective film or photocrystal can reflect the configuration of the microstructure therein, and the refractive index of the microstructure can be easily adjusted.

材料A之例可以包括:ZnS、CaS、BaS、CdS、K2 S、Ag2 S、GeS、CoS、Bi2 S3 、PbS、Na2 S、Cu2 S、CuS、Al2 S3 、Sb2 S3 、SmS、PbS、Na2 S、LiS、 SiS、SiS2 ,以及可以使用包括兩個或更多個複合物之任何組合。在此之中,ZnS受到偏好,這是由於其容易與材料B混合,且其可以低價格供使用作為濺擊靶。由於隨著光學照射或藉由雷射光線加熱而結晶度改善,而在被照射區域與未照射區域間產生蝕刻阻抗差異。可以藉由使用此原理而製成微結構,亦可以達成微結構折射率之調整。因此,此藉由熱微影術之處理為可能,且可以獲得具有可行光學性質之光學元件與資訊記錄媒體。Examples of the material A may include: ZnS, CaS, BaS, CdS, K 2 S, Ag 2 S, GeS, CoS, Bi 2 S 3 , PbS, Na 2 S, Cu 2 S, CuS, Al 2 S 3 , Sb 2 S 3 , SmS, PbS, Na 2 S, LiS, SiS, SiS 2 , and any combination comprising two or more complexes may be used. Among them, ZnS is favored because it is easily mixed with material B, and it can be used as a splash target at a low price. Since the crystallinity is improved as the optical irradiation or the laser light is heated, a difference in etching resistance is generated between the irradiated region and the non-irradiated region. The microstructure can be made by using this principle, and the adjustment of the refractive index of the microstructure can also be achieved. Therefore, this is possible by the processing of thermal lithography, and optical elements and information recording media having viable optical properties can be obtained.

材料B主要為SiO2 ,且SiO可以包含於其中。由於在形成靶時、或在形成混合材料層時由於缺氧,而可以產生SiO。Material B is mainly SiO 2 and SiO may be contained therein. SiO can be produced due to lack of oxygen when forming a target or when forming a mixed material layer.

本發明實施例2之微結構包含:混合組成成份,其包含硫複合物(稱為材料A')、材料B、以及一種材料(稱為材料C),用於提高對於具有預定波長光線之光學吸收能力;或混合組成成份,其包含材料A',用於提高對於具有預定波長光線之光學吸收能力、與材料B。此微結構可以藉由使用熱微影術而形成於不具有光吸收層之基板上。The microstructure of Embodiment 2 of the present invention comprises: a mixed composition comprising a sulfur composite (referred to as material A'), a material B, and a material (referred to as material C) for improving optical light having a predetermined wavelength of light. Absorptive capacity; or a mixed composition comprising material A' for improving the optical absorption capacity for light having a predetermined wavelength, and material B. This microstructure can be formed on a substrate having no light absorbing layer by using thermal lithography.

此微結構之尺寸較佳在數十奈米與數百奈米間之範圍中。此尺寸等於高密度記錄媒體之記錄記號之尺寸、或周期性結構之構成單元之尺寸。在後者之情形中,此用於提高對於具有預定波長光線之光學吸收能力之材料A'可以與材料C、或不會提高對於具有預定波長光線之光學吸收能力之材料A'一起使用。The size of the microstructure is preferably in the range between tens of nanometers and hundreds of nanometers. This size is equal to the size of the recording mark of the high-density recording medium or the size of the constituent unit of the periodic structure. In the latter case, this material A' for improving the optical absorption ability for light having a predetermined wavelength can be used together with the material C, or the material A' which does not improve the optical absorption ability for light having a predetermined wavelength.

現在說明光學吸收能力。此具有光學吸收能力之物質反射光線且同時吸收光線。此光線吸收數量取決於光線進入物質中之深度z而改變,且此光線吸收數量由吸光係數k而決定。此吸光係數k由以下Beer法則所代表:I=I0 exp(-αz),α=4πk/λThe optical absorption capacity will now be explained. This optically absorptive material reflects light while absorbing light. The amount of light absorption varies depending on the depth z of light entering the material, and the amount of light absorption is determined by the absorption coefficient k. This absorption coefficient k is represented by the following Beer law: I = I 0 exp (-αz), α = 4πk / λ

I代表光線滲透物質後之強度,I0 代表光線滲透物質前之強度,α代表吸收係數,以及λ代表光線之波長。I represents the intensity of the light-permeable substance, I 0 represents the intensity before the light penetrates the substance, α represents the absorption coefficient, and λ represents the wavelength of the light.

即,如果此光線進入物質中之深度(物質之厚度)增加,此物質吸收光線數量越大,滲透物質之光線強度降低。此根據本發明提高光學吸收能力意 味著:此包含有關材料之微結構之吸光係數k較不包含此材料之相同厚度微結構之吸光係數k增大。That is, if the depth of the light entering the substance (the thickness of the substance) increases, the greater the amount of light absorbed by the substance, the lower the intensity of the light that permeates the substance. This improves the optical absorption capacity according to the present invention. Taste: This absorbance coefficient k, which contains the microstructure of the material, is greater than the absorption coefficient k of the same thickness microstructure that does not contain the material.

此吸光係數k之波長依賴性取決於材料而變化。例如,即使當某種材料之k在可見光範圍中為小時,相同材料之k在紫外光範圍中為大。將此點列入考慮,而須要選擇用於照射混合材料雷射光線之波長。此所使用雷射光線之波長並不受限制,且可使用深紫外線雷射光、可見雷射光、紅外線雷射光等之任何者。特別是,紅色半導體雷射光線與藍色半導體雷射光線受到偏好,這是由於其並不昂貴,且可以實施多重脈衝光線照射。此所使用光源之例可以包括:可見光雷射、F2 雷射、ArF雷射、KrF雷射等。在其中,可見光雷射受到偏好,這是由於其可以低成本獲得,且可以容易地使用。The wavelength dependence of this absorption coefficient k varies depending on the material. For example, even when k of a material is small in the visible range, k of the same material is large in the ultraviolet range. This point is taken into account and the wavelength of the laser light used to illuminate the mixed material needs to be selected. The wavelength of the laser light used herein is not limited, and any of deep ultraviolet laser light, visible laser light, infrared laser light, or the like can be used. In particular, red semiconductor laser light and blue semiconductor laser light are preferred because they are inexpensive and can perform multiple pulsed light illumination. Examples of the light source used herein may include: visible light laser, F 2 laser, ArF laser, KrF laser, and the like. Among them, visible light lasers are favored because they can be obtained at low cost and can be easily used.

吸光係數k與折射率n之測量可以使用光譜橢圓器而實施。吸光係數k與折射率n一起依據光線波長而改變。例如,在ZnS-SiO2 之情形(摩耳比為80:20)中,相對於405nm雷射光線(藍色)、n大約為2.33且k大約為1x10-3 ,相對於350nm雷射光線(紫外色)、n大約為2.33且k大約為1x10-2 ,以及相對於680nm雷射光線(紅色)、n大約為2.16且k大約為1x10-8 。將材料C添加於微結構,可以允許調整折射率n與吸光係數k。The measurement of the absorption coefficient k and the refractive index n can be carried out using a spectroscopic elliptical. The absorption coefficient k varies with the refractive index n depending on the wavelength of the light. For example, in the case of ZnS-SiO 2 (molar ratio of 80:20), relative to 405 nm of laser light (blue), n is about 2.33 and k is about 1 x 10 -3 , relative to 350 nm of laser light ( UV color, n is about 2.33 and k is about 1 x 10 -2 , and relative to 680 nm laser light (red), n is about 2.16 and k is about 1 x 10 -8 . Adding material C to the microstructure allows adjustment of the refractive index n and the absorption coefficient k.

此除了材料A而可以用於提高光學吸收能力之材料A'之例為例如:FeS與GeS2 。可以將兩個或更多種材料A'組合使用。在其中,ZnS受到偏好,這是由於其容易與材料B混合,且可以低成本獲得作為濺擊靶。ZnS在可見光範圍中幾乎為透明,且將材料C添加至微結構將允許調整此微結構對於可見光之透射率。Examples of the material A' which can be used for improving the optical absorption ability in addition to the material A are, for example, FeS and GeS 2 . Two or more materials A' can be used in combination. Among them, ZnS is favored because it is easily mixed with the material B, and can be obtained as a splash target at low cost. ZnS is nearly transparent in the visible range, and the addition of material C to the microstructure will allow adjustment of the transmission of this microstructure to visible light.

此由包含ZnS(材料A')、SiO2 (材料B)、以及金屬或半導體(材料C)之混合材料所形成微結構之例,將作為本發明之微結構之例而說明。An example of a microstructure formed of a mixed material containing ZnS (material A'), SiO 2 (material B), and a metal or a semiconductor (material C) will be described as an example of the microstructure of the present invention.

SiO2 具有對於氫氟酸少許蝕刻阻抗,且其根據下式反應:SiO2 +6HF→H2 SiF6 +H2O。此由混合材料所形成之層在氫氟酸中蝕刻,且其吸收可見雷射光線。此經加熱混合材料對於氫氟酸之蝕刻阻抗改善,以及其保持未 被蝕刻且留下一微結構。SiO 2 has a little etching resistance to hydrofluoric acid, and it reacts according to the following formula: SiO 2 + 6 HF → H 2 SiF 6 + H 2 O. This layer of mixed material is etched in hydrofluoric acid and absorbs visible laser light. The heated mixed material improves the etching resistance to hydrofluoric acid, and it remains unetched and leaves a microstructure.

特定而言,如果此混合材料吸收具有多於一個給定輸出功率之可見雷射光線且被加熱,則產生一種ZnS與SiO2 之結晶化,且對於氫氟酸之蝕刻阻抗改善。如果在此時此混合材料中之ZnS之含量百分比小於60mol%,則其對於氫氟酸之蝕刻阻抗可能不足。In particular, if the hybrid material absorbs visible laser light having more than one given output power and is heated, a crystallization of ZnS and SiO 2 is produced, and the etching resistance to hydrofluoric acid is improved. If the content percentage of ZnS in the mixed material at this time is less than 60 mol%, the etching resistance to hydrofluoric acid may be insufficient.

須要SiO2 以便蝕刻混合材料。然而,如果此混合材料中之SiO2 之含量百分比小於10mol%,則即使當此混合材料並不吸收可見雷射光線,其顯示對於氫氟酸之一些蝕刻阻抗。如果此混合材料中之SiO2 之含量百分比超過30mol%,則此微結構可能無法存留。ZnS-SiO2 可以透過可見光線。如果此混合材料吸收可見光線、且並不包含用於產生熱之材料C,則即使當其以可見雷射光照射時,加熱可能不足。如果使用有機材料作為材料C,加熱可能不足。這可能是因為在此情形中添加有機材料並不會允許吸光係數k增加。SiO 2 is required in order to etch the mixed material. However, if the content of SiO 2 in the mixed material is less than 10 mol%, it exhibits some etching resistance to hydrofluoric acid even when the mixed material does not absorb visible laser light. If the content of SiO 2 in the mixed material exceeds 30 mol%, the microstructure may not remain. ZnS-SiO 2 can transmit visible light. If the mixed material absorbs visible light and does not contain the material C for generating heat, heating may be insufficient even when it is irradiated with visible laser light. If an organic material is used as the material C, heating may be insufficient. This may be because adding organic material in this case does not allow the absorption coefficient k to increase.

為此原因,材料C較佳為半導體材料或金屬材料。雖然,此由混合材料所形成之層可以藉由濺擊法而形成,其可以使用於且執行混合靶之焊渣排除而非同時焊渣排除。此混合靶可以材料A'、藉由將材料B與材料C之粉末混合、且使其燒結而製成。For this reason, the material C is preferably a semiconductor material or a metal material. Although the layer formed of the mixed material can be formed by a splashing method, it can be used and performed to perform the slag removal of the mixed target instead of simultaneously removing the slag. This mixed target can be produced by mixing the material B with the powder of the material C and sintering it.

材料C較佳包含與材料A'所不同之鋅複合物與硫複合物之一。當使用ZnS作為材料A'時,此包含於材料A'中之硫或鋅是包含於材料C中,其使得此微結構之終端之組態平滑。材料C之例可以包括ZnTe、ZnSe、MnS等,雖然此並非限制,但其可以接收作為濺擊靶之供應。可以將其兩個或更多種組合使用。Material C preferably comprises one of the zinc complex and sulfur complexes different from material A'. When ZnS is used as the material A', the sulfur or zinc contained in the material A' is contained in the material C, which smoothes the configuration of the terminal of the microstructure. Examples of the material C may include ZnTe, ZnSe, MnS, etc., although this is not a limitation, it may be received as a supply of a splash target. Two or more of them may be used in combination.

材料C之例可以包括:鋁(Al)、銀(Ag)、金(Au)、銅(Cu)、鋅(Zn)、鉑(Pt)、銻(Sb)、碲(Te)、鍺(Ge)、矽(Si)、鉍(Bi)、錳(Mn)、鎢(W)、鈮(Nb)、鈷(Co)、鍶(Sr)、鐵(Fe)、銦(In)、錫(Sn)、鎳(Ni)、鉬(Mo)、鎂(Mg)、鈣(Ca)等,可以將其兩個或更多種組合地使用。材料C之例可以包括任何此等合金、例如:InSb、AgInSbTe、GeSbTe、ZnMgTe、CsZnTe、SbZn,以及任 何此等複合物、例如:ZnMgSSe、ZnCrO4 、ZnCrO3 、ZnWO4 、ZnTiO3 、Zn3 N2 、ZnF2 、ZnSnO3 、以及ZnMoO4 。此種材料可以容易地獲得作為濺擊靶,且可以調整微結構之折射率。Examples of the material C may include: aluminum (Al), silver (Ag), gold (Au), copper (Cu), zinc (Zn), platinum (Pt), antimony (Sb), tellurium (Te), germanium (Ge). ), bismuth (Si), bismuth (Bi), manganese (Mn), tungsten (W), niobium (Nb), cobalt (Co), antimony (Sr), iron (Fe), indium (In), tin (Sn ), nickel (Ni), molybdenum (Mo), magnesium (Mg), calcium (Ca), or the like, which may be used in combination of two or more kinds. Examples of the material C may include any such alloys, for example, InSb, AgInSbTe, GeSbTe, ZnMgTe, CsZnTe, SbZn, and any such composites, for example, ZnMgSSe, ZnCrO 4 , ZnCrO 3 , ZnWO 4 , ZnTiO 3 , Zn 3 N 2 , ZnF 2 , ZnSnO 3 , and ZnMoO 4 . Such a material can be easily obtained as a splash target, and the refractive index of the microstructure can be adjusted.

材料C較佳包括螢光材料。此微結構之位置可以在當其由紫外光或可見光照射時、藉由從此微結構所發射螢光偵測而檢查。為此原因,可以使用螢光半導體量子點之螢光偵測以偵測特定部份,且可以使用作為資訊記錄媒體。作為螢光材料提及CdSe、CdTe等,且可以將兩種或更多種一起使用。此種螢光材料具有高螢光特徵,且其可以容易地獲得此特徵。Material C preferably comprises a fluorescent material. The location of the microstructure can be examined by detecting the fluorescence emitted from the microstructure when it is illuminated by ultraviolet or visible light. For this reason, fluorescent detection of fluorescent semiconductor quantum dots can be used to detect specific portions, and can be used as an information recording medium. As the fluorescent material, CdSe, CdTe, or the like is mentioned, and two or more kinds may be used together. Such a fluorescent material has a high fluorescence characteristic and it can be easily obtained.

當其由雷射光線照射時,材料C可以被氧化。其中,材料C氧化程度是依據:雷射光線照射情況(脈衝光線輸出、脈衝寬度),材料C之種類,材料A'、材料B、以及材料C等之組成成份。Material C can be oxidized when it is illuminated by laser light. Among them, the degree of oxidation of the material C is based on: laser light irradiation (pulse light output, pulse width), material C type, material A', material B, and material C and the like.

然而,如果將材料A'使用於矽基板上,則在實施材料B與材料C之多靶濺擊之後使用電爐,且實施30分鐘之熱固化(回火)數百次,則在傾斜入射X-光繞射實驗中將可看出材料C之氧化物之尖峰。However, if the material A' is used on the crucible substrate, the electric furnace is used after the multi-target splashing of the material B and the material C is performed, and the heat curing (tempering) is performed for 30 minutes, and the incident X is obliquely incident. - The peak of the oxide of material C will be seen in the light diffraction experiment.

例如,當在矽基板上形成200nm厚之ZnS、SiO2 、以及Zn之薄膜時,並無法看出ZnO之尖蜂,但當在500℃實施回火30分鐘時,可以看出ZnO之尖峰。可以設想Zn(材料C)之至少一部份被氧化,且將此設定為ZnO。For example, when a film of ZnS, SiO 2 , and Zn having a thickness of 200 nm is formed on a tantalum substrate, the tip of ZnO cannot be seen, but when tempering is performed at 500 ° C for 30 minutes, the peak of ZnO can be seen. It is conceivable that at least a portion of Zn (material C) is oxidized and this is set to ZnO.

類似地,在ZnS、SiO2 、以及Mn之情形中,在回火前並無法看出Mn3 O4 之尖峰,但在回火之後,可以看出Mn3 O4 之尖峰。當在此時由雷射光線照射時,並不清楚此雷射光線照射部份之加熱程度、以及以何速率冷卻。然而,在由氫氟酸所蝕刻微結構中預定數量材料C可以被氧化。為此原因,在以下實施例中,雖然說明此微結構之組成成份與雷射光線照射之前相同,其亦有此種情形,其中,微結構包含材料C之氧化物。因此,如果預定數量材料C被氧化,則可以提高微結構之硬度。特定而言,此使用微探測器所測量微結構之硬度較在形成微結構之前薄膜之硬度為高。在此時之光學性質例如透射率與折射率亦隨著材料C之氧化而變化。雖然,本發明微結構之組態並不受限制,其可以為凸組態而例如具有半球形表面之彎曲表面。如果此微結構之微製造使用X-光或光學微影術實施,但這是昂貴的。 此微結構之製造是使用熱微影術以低成本獲得,且可以應用至光學元件或 超微印刷之主模型。光學元件藉由在微結構中所形成之物理特徵或化學性質分佈而獲得。Similarly, in the case of ZnS, SiO 2 , and Mn, the peak of Mn 3 O 4 was not observed before tempering, but after tempering, the peak of Mn 3 O 4 was observed. When irradiated with laser light at this time, it is not clear how much the portion of the laser beam is heated and at what rate. However, a predetermined amount of material C may be oxidized in the microstructure etched by hydrofluoric acid. For this reason, in the following embodiments, although it is explained that the composition of the microstructure is the same as before the irradiation of the laser light, there is also a case in which the microstructure contains the oxide of the material C. Therefore, if a predetermined amount of material C is oxidized, the hardness of the microstructure can be increased. In particular, the hardness of the microstructure measured using the micro-detector is higher than the hardness of the film prior to forming the microstructure. Optical properties such as transmittance and refractive index at this time also vary with the oxidation of the material C. Although the configuration of the microstructure of the present invention is not limited, it may be a convex configuration such as a curved surface having a hemispherical surface. If the microfabrication of this microstructure is implemented using X-ray or optical lithography, this is expensive. The fabrication of this microstructure is obtained at low cost using thermal lithography and can be applied to the main model of optical components or ultra-fine printing. Optical elements are obtained by physical or chemical distributions formed in the microstructure.

此具有彎曲表面凸組態之微結構之一端變得平滑,且此微結構具有彎曲表面。然而,取決於製造情況,而可以產生尖銳邊緣或平坦側表面。在三度空間中,此具有彎曲表面之區域是由於:依據主要照射此由混合材料所形成層之雷射光線之熱分佈之微結構之組態而存在。This one end of the microstructure having a curved surface convex configuration becomes smooth, and this microstructure has a curved surface. However, depending on the manufacturing situation, sharp edges or flat side surfaces may be produced. In a three-degree space, this region having a curved surface is due to the configuration of the microstructure based on the thermal distribution of the laser light that primarily illuminates the layer formed by the hybrid material.

由於此雷射光線並未照射到之區域藉由實施溼性蝕刻而以氫氟酸去除,此微結構作為凸組態。為此原因,如果其使用光固化式樹脂等而移轉,則在所移轉基板中將形成凹形圖案。Since the region where the laser light is not irradiated is removed by hydrofluoric acid by performing wet etching, the microstructure is configured as a convex. For this reason, if it is transferred using a photocurable resin or the like, a concave pattern will be formed in the transferred substrate.

本發明之微結構可以為一種組態,其中此具有彎曲表面例如半球形表面之凸結構形成於圓柱體結構上。由於此微結構具有兩個步階式結構,而可以維持此等具有相鄰彎曲表面凸結構間之間隙,且可以使用螢光將在資訊記錄媒體中之記錄記號清楚地分開。亦可以設計反映此種形式之光學非反射薄膜與光結晶體,且可以調整折射率。在微影術中,其中此敏感部份進行化學變化,而無法製成此種形式之微結構。The microstructure of the present invention can be a configuration in which a convex structure having a curved surface such as a hemispherical surface is formed on the cylindrical structure. Since the microstructure has two step structures, the gap between the convex structures having adjacent curved surfaces can be maintained, and the recording marks in the information recording medium can be clearly separated using the fluorescent light. It is also possible to design an optical non-reflective film and a light crystal reflecting such a form, and the refractive index can be adjusted. In lithography, this sensitive part undergoes chemical changes and cannot be made into such a form of microstructure.

本發明之微結構可以為圓柱體組態。如果使用X-光或光學微影術實施微製造,則此結構之製造將為昂貴。然而,此結構之製造可以使用熱微影術以低成本獲得,且其亦可以應用至光學元件或超微印刷之主模型。此外,亦可以設計反映此種組態之光學非反射薄膜與光結晶體,且可以調整折射率。如果使用此微影術其中敏感部份顯示化學變化,則難以製成具有此種組態之微結構。The microstructure of the present invention can be a cylindrical configuration. If microfabrication is performed using X-ray or optical lithography, the fabrication of this structure would be expensive. However, the fabrication of this structure can be obtained at low cost using thermal lithography, and it can also be applied to the main model of optical components or ultra-fine printing. In addition, optical non-reflective films and photocrystals reflecting such a configuration can also be designed and the refractive index can be adjusted. If this lithography is used in which the sensitive portion shows a chemical change, it is difficult to fabricate a microstructure having such a configuration.

在本發明中,藉由改變脈衝光線輸出與脈衝寬度(照射時間),而可以將微結構之直徑從一光點之尺寸改變至大約1/4光點尺寸之尺寸。例如,當使用具有0.85數值孔徑(NA)之物鏡將具有405nm波長之雷射光線聚焦時,此微結構之直徑可以改變至80-400nm範圍中之任何者。In the present invention, the diameter of the microstructure can be changed from the size of a spot to a size of about 1/4 of the spot size by varying the pulsed light output and the pulse width (irradiation time). For example, when a laser beam having a wavelength of 405 nm is focused using an objective lens having a numerical aperture (NA) of 0.85, the diameter of the microstructure can be changed to any of the range of 80-400 nm.

本發明之微結構可以為以下組態之任一:具有彎曲表面凸組態、此其中具有彎曲表面凸結構形成於圓柱體結構上之組態、以及其中持續形成橫截面之圓柱體組態。此種線性微結構可以藉由持續照射此由混合材料所形成之層而形成,且可以應用至繞射光柵、DNA晶片等。The microstructure of the present invention can be any of the following configurations: a configuration having a curved surface convex configuration, a configuration in which a curved surface convex structure is formed on a cylindrical structure, and a cylindrical configuration in which a cross section is continuously formed. Such a linear microstructure can be formed by continuously irradiating the layer formed of the mixed material, and can be applied to a diffraction grating, a DNA wafer, or the like.

此微結構終端之平滑度可以藉由此由於實施雷射光缐持續照射所形成之線性微結構之線邊緣粗糙度(LER)而估計。在一情形中,其中此微結構使用作為阻抗且蝕刻基板。在此種情形中,本發明之微結構具有與在電子束微影術中所使用巨分子阻抗之特徵所不同特徵。在此巨分子阻抗中,此巨分子阻抗本身在當圖案變得小時具有數奈米之尺寸,亦將此阻抗之LER設定至數奈米。The smoothness of the microstructure termination can be estimated by the line edge roughness (LER) of the linear microstructure formed by the continuous illumination of the laser beam. In one case, where the microstructure is used as an impedance and the substrate is etched. In this case, the microstructure of the present invention has characteristics different from those of the macromolecular impedance used in electron beam lithography. In this macromolecular impedance, the macromolecular impedance itself has a size of several nanometers when the pattern becomes small, and the LER of this impedance is also set to several nanometers.

在另一方面,在本發明之微結構中可以將LER設定至1nm或更小。在近年來,在用於半導體之國際技術路圖中,將此專有名詞"LER"修正成“線寬度粗糙度”(LWR)。雖然,並未嚴格界定LER之測量標準,判斷此根據本發明之LER,以致於將測量線長度設定至2微米,將測量間隙設定至10nm,以及LER藉由最小平方法從直線之3σ而決定。In another aspect, the LER can be set to 1 nm or less in the microstructure of the present invention. In recent years, in the international technology road map for semiconductors, this proper noun "LER" has been corrected to "line width roughness" (LWR). Although the measurement criteria of the LER are not strictly defined, the LER according to the present invention is judged such that the measurement line length is set to 2 μm, the measurement gap is set to 10 nm, and the LER is determined from the 3σ of the straight line by the least squares method. .

本發明之微結構可以應用至:資訊記錄媒體、主基板、光學元件、磁性記錄媒體、DNA晶片、生物感測器、DNA電腦、DNA記憶體、生物分子整合裝置等。The microstructure of the present invention can be applied to: an information recording medium, a main substrate, an optical element, a magnetic recording medium, a DNA wafer, a biosensor, a DNA computer, a DNA memory, a biomolecular integration device, and the like.

本發明微結構之製造方法包括以下步驟:在基板上形成一層,此層由材料A'、與包含材料B與材料C之混合材料所形成;藉由雷射光線局部照射此由混合材料所形成之層;以及對於由混合材料所形成之層實施蝕刻,且由雷射光線照射。為此原因,將此被局部加熱且具有改變蝕刻阻抗之混合材料經由濕式或乾式蝕刻,而產生具有平滑終端之微結構。The manufacturing method of the microstructure of the present invention comprises the steps of: forming a layer on the substrate, the layer being formed of a material A' and a mixed material comprising the material B and the material C; and forming the mixed material by partial irradiation of the laser light a layer; and etching the layer formed of the mixed material and irradiating with the laser beam. For this reason, the mixed material which is locally heated and has an altered etching resistance is subjected to wet or dry etching to produce a microstructure having a smooth termination.

可以製成一種結構在其中形成本發明之微結構。雖然可以局部施加熱,而非局部照射雷射光線,由於雷射光線有關於方向性與穩定性之性能優越,而由於製造準確度較佳使用雷射光線。A structure can be made in which the microstructure of the present invention is formed. Although it is possible to locally apply heat instead of locally illuminating the laser light, since the laser light has superior performance in terms of directivity and stability, it is preferable to use laser light due to manufacturing accuracy.

本發明基板之圖案化方法包括以下步驟:在基板上形成包含材料A'、材料B、以及材料C之微結構;使用微結構作為遮罩以實施基板蝕刻。在此時,如果須要,可以將使用作為遮罩之微結構去除。因此,在其中形成圖案之基板可以應用至:主基板、光學元件、DNA晶片、發光裝置、以及光電轉換器等。The patterning method of the substrate of the present invention comprises the steps of forming a microstructure comprising a material A', a material B, and a material C on a substrate; and using the microstructure as a mask to perform substrate etching. At this time, if necessary, the microstructure used as a mask can be removed. Therefore, the substrate in which the pattern is formed can be applied to: a main substrate, an optical element, a DNA wafer, a light-emitting device, a photoelectric converter, and the like.

雖然,本發明之結構具有在基板上本發明之微結構,本發明之結構較佳具有區域(稱為周期區域),其中將微結構周期性地配置。可以獲得此等使 用光帶間隙之光學濾波器與光學開關,其藉由周期區域以反射特定波長光線。Although the structure of the present invention has the microstructure of the present invention on a substrate, the structure of the present invention preferably has regions (referred to as periodic regions) in which the microstructures are periodically arranged. Can get these An optical filter with an optical band gap and an optical switch that reflects a specific wavelength of light by a periodic region.

在周期區域中較佳對於預定波帶光線之透射大於:未配置微結構之透射。因此,可以藉由蛾眼結構而獲得光學非反射薄膜,其中對於預定波長光線顯示非反射特徵。Preferably, the transmission of the predetermined band of light in the periodic region is greater than: the transmission of the unconfigured microstructure. Therefore, an optical non-reflective film can be obtained by a moth-eye structure in which a non-reflective feature is displayed for a predetermined wavelength of light.

如果本發明之結構包括區域(稱為非周期區域)、其中並未配置微結構,則可以獲得:資訊記錄媒體,其使用周期區域與非周期區域之差異;以及光學波導,其包括在周期區域中之非周期區域、且使用光帶間隙,其藉由周期區域而反射特定波帶之光線。在使用於資訊記錄媒體之本發明之微結構中,螢光材料包含於材料C中。If the structure of the present invention includes a region (referred to as a non-periodic region) in which a microstructure is not disposed, an information recording medium using a difference between a periodic region and a non-periodic region, and an optical waveguide included in the periodic region can be obtained; In the non-periodic region, and using the optical band gap, it reflects the light of a specific wave band by the periodic region. In the microstructure of the present invention used in an information recording medium, a fluorescent material is contained in the material C.

此藉由使用本發明基板之圖案化方法而在基板上所形成圖案可以被移轉與再製,以及在基板上所形成微結構可以被移轉與再製。當再製時,此圖案與微結構可以經由超微印刷技術而移轉成此種材料,其包含樹脂作為主要組成成份。當製造以下物件時可以使用此種方法:主基板、光學元件、DNA晶片、發光裝置、以及光電轉換器、以及光學透鏡等。The pattern formed on the substrate by the patterning method using the substrate of the present invention can be transferred and reproduced, and the microstructure formed on the substrate can be transferred and reproduced. When remanufactured, the pattern and microstructure can be transferred to such a material via ultra-fine printing techniques, which comprise a resin as a primary component. Such a method can be used when manufacturing the following objects: a main substrate, an optical element, a DNA wafer, a light-emitting device, and a photoelectric converter, an optical lens, and the like.

本發明之主基板使用此結構製成,此結構包括區域,其中本發明之微結構周期地配置於基板上。為此原因,本發明主基板之製造成本可以低於使用傳統光學微影術之主基板,且可以使得記錄圖案清楚。當製造光學資訊記錄媒體等時,可以使用此種主基板。The main substrate of the present invention is fabricated using this structure including a region in which the microstructure of the present invention is periodically disposed on a substrate. For this reason, the manufacturing cost of the main substrate of the present invention can be lower than that of the main substrate using conventional optical lithography, and the recording pattern can be made clear. Such a main substrate can be used when manufacturing an optical information recording medium or the like.

本發明之光學元件使用此結構製成,此結構包括區域,其中本發明之微結構周期地配置於基板上。此光學元件之例可以包括:繞射光柵、偏極化分離元件、光學濾波器、光學開關、光學非反射薄膜、以及光學波導。The optical element of the present invention is fabricated using this structure comprising a region in which the microstructure of the present invention is periodically disposed on a substrate. Examples of such an optical element may include: a diffraction grating, a polarization separation element, an optical filter, an optical switch, an optical non-reflective film, and an optical waveguide.

本發明之光學元件可以應用至已知光學通信裝置例如波長多工裝置,而使用於波長多重電信。如同於第31圖中所顯示,在波長多重電信中,其使用一光纖301、用於各多個波長之一組發射器311、312、313、以及一組接收器321、322、以及323,以傳送數個不同波長(λ1、λ2、以及λ3)之光信號。為了使得傳輸路徑為寬頻帶寬度,使用光學組成電路331與光學分解器電路332。在此時,可以藉由將許多光學開關組合而形成光學組成電路331與光學分解器電路332。The optical component of the present invention can be applied to known optical communication devices such as wavelength multiplexing devices for use in wavelength multiple telecommunications. As shown in FIG. 31, in wavelength multiple telecommunications, it uses an optical fiber 301, a transmitter 311, 312, 313 for each of a plurality of wavelengths, and a set of receivers 321, 322, and 323, To transmit optical signals of several different wavelengths (λ1, λ2, and λ3). In order to make the transmission path a wide bandwidth, the optical composition circuit 331 and the optical resolver circuit 332 are used. At this time, the optical composition circuit 331 and the optical resolver circuit 332 can be formed by combining a plurality of optical switches.

在本發明之DNA晶片中,將DNA斷片(fragement)固定於基板上。本發明之DNA晶片之基板是使用此結構製成,其中本發明之微結構配置在基板上。在此時,此微結構具有大的特定表面區域,此偵測效率變得高,且可以將整個晶片之尺寸製得小。In the DNA wafer of the present invention, DNA fragments are immobilized on a substrate. The substrate of the DNA wafer of the present invention is fabricated using this structure in which the microstructure of the present invention is disposed on a substrate. At this time, the microstructure has a large specific surface area, the detection efficiency becomes high, and the size of the entire wafer can be made small.

在本發明之發光裝置中,將第一電極、發光層、以及第二電極,以此順序依序沉積在基板上。本發明之發光裝置使用此結構製成,此結構包含區域、其中周期地配置本發明之微結構,或使用此結構製成、其中本發明之微結構周期地配置於基板上。In the light-emitting device of the present invention, the first electrode, the light-emitting layer, and the second electrode are sequentially deposited on the substrate in this order. The light-emitting device of the present invention is fabricated using a structure including a region in which the microstructure of the present invention is periodically disposed, or a structure in which the microstructure of the present invention is periodically disposed on a substrate.

在此時,第一電極、發光層、以及第二電極可以沉積在並未配置本發明微結構之表面上、或配置本發明微結構之表面上。根據此包含微結構之不平坦結構,此發光裝置之光線擷取效率改善,且提高發光效率。At this time, the first electrode, the light-emitting layer, and the second electrode may be deposited on the surface on which the microstructure of the present invention is not disposed, or on the surface on which the microstructure of the present invention is disposed. According to this uneven structure including the microstructure, the light extraction efficiency of the light-emitting device is improved, and the luminous efficiency is improved.

在本發明之光電轉換器中,第一電極、光電轉換層、以及第二電極以此順序依序地沉積在基板上。本發明光電轉換器之基板是使用此具有周期性配置區域之本發明微結構之結構所製成,或此基板是製成於此基板上、此基板使用此具有周期性配置區域之本發明微結構之結構。此具有高光電轉換效率之光電轉換器藉由:此在其中光電轉換器包含微結構之不平坦結構而獲得。In the photoelectric converter of the present invention, the first electrode, the photoelectric conversion layer, and the second electrode are sequentially deposited on the substrate in this order. The substrate of the photoelectric converter of the present invention is fabricated using the structure of the microstructure of the present invention having a periodically disposed region, or the substrate is formed on the substrate, and the substrate uses the periodically arranged region. The structure of the structure. This photoelectric converter having high photoelectric conversion efficiency is obtained by the fact that the photoelectric converter includes an uneven structure of a microstructure.

本發明之光學透鏡使用此包括本發明微結構之結構而製成、或使用此其中本發明之微結構配置在基板上之結構所製成。因此,獲得可靠之微光學透鏡。The optical lens of the present invention is made using the structure comprising the microstructure of the present invention, or using a structure in which the microstructure of the present invention is disposed on a substrate. Therefore, a reliable micro-optical lens is obtained.

實施例1Example 1

第1A與1B圖顯示本發明之實施例1之資訊記錄媒體100A之組成成份。第1A圖為資訊記錄媒體之橫截面圖,以及第1B圖為資訊記錄媒體之頂視圖。1A and 1B are diagrams showing the components of the information recording medium 100A of the first embodiment of the present invention. Fig. 1A is a cross-sectional view of the information recording medium, and Fig. 1B is a top view of the information recording medium.

在資訊記錄媒體100A中,ZnS-SiO2 (摩耳比:8:2)之50nm厚之介電層102、AgInSbTe之10nm-厚之光線吸收層103、以及微結構104形成於:具有1mm厚度與10cmx10cm尺寸之矽基板101上。In the information recording medium 100A, a 50 nm-thick dielectric layer 102 of ZnS-SiO 2 (MoR ratio: 8:2), a 10 nm-thick light absorbing layer 103 of AgInSbTe, and a microstructure 104 are formed: having a thickness of 1 mm. On a substrate 101 having a size of 10 cm x 10 cm.

配置此微結構104如同於第1B圖中所示,且藉由微結構104之存在以決定資訊。特定而言,當以雷射光線照射記錄媒體100A時,由微結構104 發出螢光,且由此未配置微結構104之區域105並未發出螢光,以致於此記錄媒體100A可以作用為資訊記錄媒體。This microstructure 104 is configured as shown in FIG. 1B and is determined by the presence of the microstructures 104. In particular, when the recording medium 100A is irradiated with laser light, the microstructure 104 is Fluorescence is emitted, and thus the area 105 in which the microstructures 104 are not disposed is not illuminated, so that the recording medium 100A can function as an information recording medium.

各微結構104是在半球體組態中,其底部直徑大約150nm,且其高度大約30nm。此微結構104以200nm周期(記號間距)配置,即,以50nm之間隔配置。Each microstructure 104 is in a hemispherical configuration with a bottom diameter of approximately 150 nm and a height of approximately 30 nm. This microstructure 104 is arranged at a 200 nm period (mark pitch), that is, at intervals of 50 nm.

各微結構104包含ZnS、SiO2 、以及CdTe(摩耳比:77:20:3),且顯示類似於螢光量子點之行為。藉由在第1B圖中箭頭所顯示方向掃描螢光偵測光學頭、而從記錄媒體讀取資訊。在螢光偵測光學頭中,此所發射螢光光線藉由透鏡而聚焦,且通過光纖與光學濾波器,以致於藉由使用光乘法器管將其放大以偵測螢光。經由光學頭、光學濾波器、以及光信號處理方法,即使此螢光為弱,而可以偵測到螢光。Each microstructure 104 contains ZnS, SiO 2 , and CdTe (Morby: 77:20:3) and exhibits behavior similar to fluorescent quantum dots. The information is read from the recording medium by scanning the fluorescence detecting optical head in the direction indicated by the arrow in FIG. 1B. In the fluorescence detecting optical head, the emitted fluorescent light is focused by a lens and passed through an optical fiber and an optical filter so as to be amplified by using a photomultiplier tube to detect fluorescence. Through the optical head, the optical filter, and the optical signal processing method, even if the fluorescent light is weak, fluorescence can be detected.

第2A至2D圖顯示資訊記錄媒體100A之製造方法。2A to 2D are views showing a method of manufacturing the information recording medium 100A.

首先,將介電層102、光線吸收層103、以及混合材料層106藉由使用(來自Shibaura Mechatronics Co.)濺擊裝置CFS-8EP-55(參考第2A圖)、以此順序沉積在矽基板101上。混合材料層106包含ZnS、SiO2 、以及CdTe(摩耳比:77:20:3),且其厚度為160nm。First, the dielectric layer 102, the light absorbing layer 103, and the mixed material layer 106 are deposited on the ruthenium substrate in this order by using (from Shibaura Mechatronics Co.) a splash device CFS-8EP-55 (refer to FIG. 2A). 101. The mixed material layer 106 contains ZnS, SiO 2 , and CdTe (Mohr ratio: 77:20:3), and has a thickness of 160 nm.

其次,將所獲得之矽基板101實施真空吸引至XY平台,以及此矽基板101之脈衝照射是以此來自半導體雷射之具有405nm波長之雷射光線107、在200nm之周期中、經由具有0.85NA之物鏡108而實施(參考第2B圖)。在此時,由此雷射光線107所照射基板之部份是由程式預定。且使用2%重量之氫氟酸109實施蝕刻10秒鐘(參考第2C圖)。然後,使用掃描電子顯微鏡以觀察在由雷射光線107照射部份所形成之微結構104(參考第2D圖)。由於一種燒結效應、與由雷射光線107照射部份保持未蝕刻、以及所存留之半球形圖案,其顯示此混合材料層106對於氫氟酸之蝕刻阻抗改善。Next, the obtained germanium substrate 101 is vacuum-attracted to the XY stage, and the pulsed illumination of the germanium substrate 101 is such that the laser light 107 having a wavelength of 405 nm from the semiconductor laser is in the period of 200 nm, via 0.85. The objective lens 108 of NA is implemented (refer to FIG. 2B). At this time, the portion of the substrate illuminated by the laser beam 107 is predetermined by the program. Etching was carried out using 2% by weight of hydrofluoric acid 109 for 10 seconds (refer to Fig. 2C). Then, a scanning electron microscope is used to observe the microstructures 104 formed by the portions irradiated by the laser rays 107 (refer to FIG. 2D). The etching resistance of the mixed material layer 106 to hydrofluoric acid is improved due to a sintering effect, a portion that remains unetched by the portion irradiated by the laser light 107, and a remaining hemispherical pattern.

因此,藉由使用熱微影術可以容易地製成微結構104。由於在此混合材料層106中之CdTe含量之重量百分比為3%,可以使用螢光偵測以製成資訊記錄媒體100A,而不會影響微結構104之製造。由於此記錄區域與未記錄區域藉由微結構104之存在而區別,而可以使用此所獲得之資訊記錄媒體100作為唯讀記憶體(ROM)。由於混合材料層106包含ZnS與SiO2 ,可 以使用所改變之蝕刻阻抗,且可以調整折射率。Therefore, the microstructures 104 can be easily fabricated by using thermal lithography. Since the weight percentage of the CdTe content in the mixed material layer 106 is 3%, fluorescence detection can be used to form the information recording medium 100A without affecting the manufacture of the microstructures 104. Since the recording area and the unrecorded area are distinguished by the presence of the microstructures 104, the information recording medium 100 obtained as such can be used as the read only memory (ROM). Since the mixed material layer 106 contains ZnS and SiO 2 , the changed etching resistance can be used, and the refractive index can be adjusted.

實施例2Example 2

第3A與3B圖顯示本發明之實施例2之資訊記錄媒體100B之組成成份。第3A圖為資訊記錄媒體之橫截面圖,以及第3B圖為資訊記錄媒體之頂視圖。3A and 3B are diagrams showing the components of the information recording medium 100B of the embodiment 2 of the present invention. Fig. 3A is a cross-sectional view of the information recording medium, and Fig. 3B is a top view of the information recording medium.

在資訊記錄媒體100B中,ZnS-SiO2 (摩耳比:8:2)之50nm厚之介電層102、鍺(Ge)之10nm-厚之光線吸收層103、20nm厚之ZnS層111、以及微結構104形成於聚碳酸酯基板110上。聚碳酸酯基板110為用於光碟之碟形板,而具有12cm之直徑與20nm之高度,且其具有440nm之周期(軌間距)之突起(land)與溝槽。In the information recording medium 100B, a 50 nm-thick dielectric layer 102 of ZnS-SiO 2 (MoR ratio: 8:2), a 10 nm-thick light absorbing layer 103 of germanium (Ge), and a 20 nm thick ZnS layer 111, The microstructures 104 are formed on the polycarbonate substrate 110. The polycarbonate substrate 110 is a dish-shaped plate for an optical disk having a diameter of 12 cm and a height of 20 nm, and has a land and a groove of a period (track pitch) of 440 nm.

此微結構104配置如同於第3B圖中所示,且藉由微結構104之存在以決定資訊。特定而言,當以雷射光線照射記錄媒體100B時,由微結構104發出螢光,且由此未配置微結構104之區域並未發出螢光。This microstructure 104 is configured as shown in Figure 3B and is determined by the presence of the microstructures 104. In particular, when the recording medium 100B is irradiated with laser light, the microstructures 104 emit fluorescence, and thus the area where the microstructures 104 are not disposed does not emit fluorescence.

各微結構104是在半球體組態中,其底部直徑大約150nm,且高度是在30-160nm範圍中。此微結構104是以400nm之周期(記號間距)配置。Each microstructure 104 is in a hemispherical configuration with a bottom diameter of about 150 nm and a height in the range of 30-160 nm. This microstructure 104 is configured with a period of 400 nm (mark pitch).

各微結構104包含ZnS、SiO2 、以及CdTe(摩耳比:77:20:3),且顯示類似於螢光量子點之行為。藉由在第3B圖中箭頭所顯示方向中掃描螢光偵測光學頭、而從記錄媒體讀取資訊。在螢光偵測光學頭中,此所發射螢光光線藉由透鏡而聚焦,且通過光纖與光學濾波器,以致於藉由使用光乘法器管將螢光放大以偵測螢光。經由光學頭、光學濾波器、以及光信號處理方法,即使此螢光為弱,而可以偵測到螢光。Each microstructure 104 contains ZnS, SiO 2 , and CdTe (Morby: 77:20:3) and exhibits behavior similar to fluorescent quantum dots. The information is read from the recording medium by scanning the fluorescence detecting optical head in the direction indicated by the arrow in FIG. 3B. In the fluorescence detecting optical head, the emitted fluorescent light is focused by a lens and passed through an optical fiber and an optical filter so that the fluorescent light is amplified by using a photomultiplier tube to detect fluorescence. Through the optical head, the optical filter, and the optical signal processing method, even if the fluorescent light is weak, fluorescence can be detected.

其次,說明此資訊記錄媒體100B之製造方法。Next, a method of manufacturing the information recording medium 100B will be described.

首先,將介電層102、光線吸收層103、ZnS層111、以及混合材料層106藉由使用(來自Shibaura Mechatronics Co.)濺擊裝置CFS-8EP-55、以此順序沉積在聚碳酸酯基板110上。混合材料層包含ZnS、SiO2 、以及CdTe(摩耳比:77:20:3),且其厚度為大約160nm。First, the dielectric layer 102, the light absorbing layer 103, the ZnS layer 111, and the mixed material layer 106 are deposited on the polycarbonate substrate in this order by using (from Shibaura Mechatronics Co.) a splash device CFS-8EP-55. 110 on. The mixed material layer contains ZnS, SiO 2 , and CdTe (Mohr ratio: 77:20:3), and has a thickness of about 160 nm.

其次,當將所獲得之聚碳酸酯基板110以4.5米/秒之線性速率旋轉時,使用表面記錄式碟測試器LM330(來自Shibasoku Co.)以實施聚焦與追蹤。 此聚碳酸酯基板110之脈衝照射是以具有405nm波長之雷射光線、在400nm之周期中、經由具有0.85NA之物鏡(5.0mW之脈衝光線輸出)而實施。此雷射光線所照射基板之部份是由程式預定。且使用2%重量之氫氟酸實施蝕刻10秒鐘。然後,使用掃描電子顯微鏡以觀察在由雷射光線照射部份所形成之微結構104。由於一種燒結效應、與由雷射光線照射部份保持未蝕刻、以及形成半球形圖案,似乎此混合材料層對於氫氟酸之蝕刻阻抗改善。Next, when the obtained polycarbonate substrate 110 was rotated at a linear velocity of 4.5 m/sec, a surface recording disc tester LM330 (from Shibasoku Co.) was used to carry out focusing and tracking. The pulsed irradiation of the polycarbonate substrate 110 was carried out by using a laser beam having a wavelength of 405 nm in a period of 400 nm via an objective lens having a 0.85 NA (5.0 mW pulse light output). The portion of the substrate illuminated by the laser light is predetermined by the program. Etching was carried out using 2% by weight of hydrofluoric acid for 10 seconds. Then, a scanning electron microscope is used to observe the microstructures 104 formed by the portions irradiated by the laser light. The etching resistance of the mixed material layer to hydrofluoric acid seems to be improved due to a sintering effect, a portion that remains unetched by the portion irradiated with the laser light, and a hemispherical pattern.

因此,藉由使用熱微影術可以容易地製成微結構104。由於在此混合材料層中之CdTe含量之重量百分比為3%,可以使用螢光偵測以製成資訊記錄媒體100B,而不會影響微結構104之製造。由於此記錄區域與未記錄區域藉由微結構104之存在而區別,而可以使用此資訊記錄媒體100B作為唯讀記憶體(ROM)。由於混合材料層106包含ZnS與SiO2 ,可以使用所改變之蝕刻阻抗,且可以調整折射率。Therefore, the microstructures 104 can be easily fabricated by using thermal lithography. Since the weight percentage of the CdTe content in the mixed material layer is 3%, fluorescence detection can be used to form the information recording medium 100B without affecting the manufacture of the microstructures 104. Since the recorded area and the unrecorded area are distinguished by the presence of the microstructure 104, the information recording medium 100B can be used as a read-only memory (ROM). Since the mixed material layer 106 contains ZnS and SiO 2 , the changed etching resistance can be used, and the refractive index can be adjusted.

由於當使用在其上形成用於光碟之突起與溝槽之基板時,可以實施雷射光照射,而同時實施聚焦與追蹤,而可以良好準確度快速地製成微結構104。Since the laser light irradiation can be performed while the substrate on which the protrusions and the grooves for the optical disc are formed, while focusing and tracking are simultaneously performed, the microstructures 104 can be formed with good accuracy and speed.

實施例3Example 3

對於此脈衝光線輸出之微結構依賴性進行研究。此脈衝光線輸出在1.5-7mW範圍中變化。此製造微結構之方法與實施例2之方式相同。這是由於使用ZnS-SiO2 (摩耳比:8:2)作為微結構材料。The microstructure dependence of this pulsed light output was investigated. This pulsed light output varies in the range of 1.5-7 mW. This method of manufacturing the microstructure is the same as that of the embodiment 2. This is due to the use of ZnS-SiO 2 (Mohr ratio: 8:2) as a microstructured material.

第4A圖至第9B圖顯示所製成微結構之掃描電子顯微鏡照片。使用場發射掃描電子顯微鏡FE-SEM S-4100(來自Hitachi Ltd.)以實施觀察。Figures 4A through 9B show scanning electron micrographs of the microstructures produced. A field emission scanning electron microscope FE-SEM S-4100 (from Hitachi Ltd.) was used to carry out observation.

在第4A圖至第9B圖中顯示:從頂表面方向所攝取之SEM照片、與從傾斜方向所攝取之SEM照片。由此等SEM照片而為明顯,此包括高度與寬度之微結構組態依據脈衝光線輸出之變化而改變。In the 4A to 9B drawings, SEM photographs taken from the top surface direction and SEM photographs taken from the oblique direction are shown. This is evident from the SEM photographs, which include changes in the microstructure of the height and width depending on the change in pulsed light output.

在實施例3中,即使當此微結構形成為任何所顯示組態時,其可以使用為資訊記錄媒體。In Embodiment 3, even when this microstructure is formed into any of the displayed configurations, it can be used as an information recording medium.

第10圖顯示在脈衝光線輸出與微結構最大直徑間之關係。由於從第10圖而為明顯,此微結構最大直徑對於脈衝光線輸出並未顯示線性。此在其 上形成不平坦之聚碳酸酯基板上所形成微結構之組態根據脈衝光線輸出之值而可以主要分類為如下之階段I-IV之組態(參考第11A-11D圖)。Figure 10 shows the relationship between the pulsed light output and the maximum diameter of the microstructure. As is apparent from Figure 10, the maximum diameter of this microstructure does not exhibit linearity for pulsed light output. This is in it The configuration of the microstructure formed on the unevenly formed polycarbonate substrate can be mainly classified into the following stages I-IV according to the value of the pulse light output (refer to Figs. 11A-11D).

階段I(脈衝光線輸出3.5-5.2mW):此微結構104是在非球形組態中,但是在半球形組態中。此微結構104之最大直徑依據脈衝光線輸出之增加而增加(參考第11A圖)。Phase I (pulse ray output 3.5-5.2 mW): This microstructure 104 is in a non-spherical configuration, but in a hemispherical configuration. The maximum diameter of this microstructure 104 increases as the pulsed light output increases (see Figure 11A).

階段II(脈衝光線輸出5.2-6.8mW):此微結構104包括:圓柱形結構104a;以及形成於上圓柱形結構104a中央之半球形結構104b。圓柱形結構104a包括兩個上與下圓柱形結構。下圓柱形結構之尺寸依據脈衝光線輸出之增加而增加(參考第11B圖)。Stage II (pulsed light output 5.2-6.8 mW): This microstructure 104 comprises: a cylindrical structure 104a; and a hemispherical structure 104b formed in the center of the upper cylindrical structure 104a. The cylindrical structure 104a includes two upper and lower cylindrical structures. The size of the lower cylindrical structure increases as the pulsed light output increases (refer to Figure 11B).

階段III(脈衝光線輸出6.8-8.0mW):此微結構104包括:圓柱形結構104a;以及形成於上圓柱形結構104a中央之半球形結構104b。圓柱形結構104a包括兩個上與下圓柱形結構。上圓柱形結構之尺寸大於下圓柱形結構之尺寸(參考第11C圖)。Stage III (pulse light output 6.8-8.0 mW): This microstructure 104 comprises: a cylindrical structure 104a; and a hemispherical structure 104b formed in the center of the upper cylindrical structure 104a. The cylindrical structure 104a includes two upper and lower cylindrical structures. The size of the upper cylindrical structure is larger than the size of the lower cylindrical structure (refer to Fig. 11C).

階段IV(脈衝光線輸出超過8.0mW):此微結構104是在圓柱形組態中(參考第11D圖)。Stage IV (pulse light output exceeds 8.0 mW): This microstructure 104 is in a cylindrical configuration (refer to Figure 11D).

第4A圖至第5B圖中顯示階段I中,此微結構104是在半球形組態中(參考第11A圖)。第6A圖至第9B圖中顯示階段II與階段III,此微結構104包括圓柱形結構104a與半球形結構104b。在階段II中,此微結構104在此等圓柱形結構104a之下者具有最大直徑(參考第11B圖)。在另一方面,在階段III中,此微結構104在此等圓柱形結構104a之上者具有最大直徑(參考第11C圖)。在階段IV中,此微結構104具有形成於其中央之開口,且其為圓柱形組態(參考第11D圖)。In phase I, shown in Figures 4A through 5B, this microstructure 104 is in a hemispherical configuration (see Figure 11A). Stages II and III are shown in Figures 6A through 9B, and the microstructures 104 include a cylindrical structure 104a and a hemispherical structure 104b. In stage II, the microstructure 104 has a maximum diameter below the cylindrical structure 104a (see Figure 11B). In another aspect, in stage III, the microstructures 104 have a maximum diameter above the cylindrical structures 104a (see Figure 11C). In stage IV, this microstructure 104 has an opening formed in its center and is in a cylindrical configuration (refer to Figure 11D).

混合材料層之蝕刻阻抗藉由雷射光線照射而改善之原因並不十分清楚。此似乎為此混合材料層幾乎為光學透明,且此光線吸收層吸收雷射光線且被加熱,以致於此混合材料層由於燒結效應而緊密封裝。The reason why the etching resistance of the mixed material layer is improved by the irradiation of the laser light is not very clear. This seems to be almost optically transparent for this layer of mixed material, and this light absorbing layer absorbs the laser light and is heated, so that the layer of the mixed material is tightly packed due to the sintering effect.

此來自此吸收雷射光線之光線吸收層光線之熱分佈為高斯分佈。以及當使用平坦基板時,此微結構之組態在基本上為半球形。然而,如果使用具有不平坦而用於光碟之基板,則此空間熱分佈以三度空間方式變得有些複雜,以及因此微結構之組態如同在階段I-IV中所示。The heat distribution from the light absorbing layer that absorbs the laser light is a Gaussian distribution. And when a flat substrate is used, the configuration of this microstructure is substantially hemispherical. However, if a substrate for an optical disc having unevenness is used, this spatial heat distribution becomes somewhat complicated in a three-dimensional manner, and thus the configuration of the microstructure is as shown in the stage I-IV.

熱主要在自由空間中央發生,此階段I之蝕刻阻抗在使用作為混合材料層之高溫部份中改善。在階段II中,由於混合材料層之厚度受到限制,熱幅射停止成為同心圓之形狀,且靠近光線吸收層之部份容易變成高溫。在階段III中,一些因素像是聚碳酸酯基板之不平坦與作為空氣空間之上部而非下部會影響,混合材料層之上部會有熱耗散,且被認為容易地成為高溫。 在階段IV中,光線吸收層之蒸發被認為是關鍵因素,且在圓柱形微結構之中央形成開口。The heat mainly occurs in the center of the free space, and the etching resistance of this stage I is improved in the high temperature portion used as the mixed material layer. In the stage II, since the thickness of the mixed material layer is limited, the heat radiation stops to be in the shape of a concentric circle, and a portion close to the light absorbing layer tends to become a high temperature. In stage III, some factors such as the unevenness of the polycarbonate substrate and the upper portion of the air space rather than the lower portion, the upper portion of the mixed material layer is thermally dissipated and is considered to be easily high temperature. In stage IV, evaporation of the light absorbing layer is considered to be a critical factor and an opening is formed in the center of the cylindrical microstructure.

階段I-IV之各此等微結構為適用於以下物件之任何者之結構:資訊記錄媒體、光結晶體、光學非反射薄膜、光學開關、光學濾波器、以及電漿結晶體等。由於微結構之組態與折射率影響光學性質,而須要調整用於各組態之尺寸與折射率。Each of the microstructures of the stages I-IV is a structure suitable for any of the following objects: an information recording medium, a light crystal, an optical non-reflective film, an optical switch, an optical filter, and a plasma crystal. Due to the configuration of the microstructure and the refractive index affecting the optical properties, it is necessary to adjust the size and refractive index for each configuration.

在實施例3中,此微結構是由使用ZnS-SiO2 之掃描電子顯微鏡之觀察解析度之關係而製成。在高密度資訊記錄媒體中,窄間距軌與記錄記號之減少為重要,且實施例3之微結構可以被製成數十奈米直徑之尺寸。如果改變突起與溝槽之間距間隔、光線吸收層之材料、厚度、ZnS與SiO2 之組成成份比,則此微結構之組態與脈衝光線輸出特徵亦稍微改變。即使當使用ZnS-SiO2 以外之材料、或將另一物質與ZnS-SiO2 混合、或組成成份比改變時,亦可製成微結構。In Example 3, the microstructure was prepared by observing the resolution of a scanning electron microscope using ZnS-SiO 2 . In the high-density information recording medium, the reduction of the narrow pitch track and the recording mark is important, and the microstructure of Embodiment 3 can be made into a size of several tens of nanometers in diameter. If the spacing between the protrusions and the grooves, the material of the light absorbing layer, the thickness, and the composition ratio of ZnS to SiO 2 are changed, the configuration of the microstructure and the pulse light output characteristics are also slightly changed. Even when a material other than ZnS-SiO 2 is used, or another substance is mixed with ZnS-SiO 2 or the composition ratio is changed, a microstructure can be obtained.

使用以上所提及熱微影術而可以容易地製成微結構。當混合材料層包含ZnS與SiO2 時,可以使用所改變之蝕刻阻抗,且可以調整折射率。The microstructure can be easily fabricated using the thermal lithography mentioned above. When the mixed material layer contains ZnS and SiO 2 , the changed etching resistance can be used, and the refractive index can be adjusted.

由於當使用在其中形成用於光碟之突起與溝槽之基板時,可以實施雷射光照射,而同時實施聚焦與追蹤,而可以良好準確度快速地製成微結構。Since the laser light irradiation can be performed while the substrate for forming the protrusions and the grooves for the optical disc is used, while focusing and tracking are simultaneously performed, the microstructure can be quickly formed with good accuracy.

實施例4Example 4

第12A圖與第12B圖顯示本發明實施例4之光學非反射薄膜100C之組成成份,此與實施例1所不同者為,此所使用混合材料層是由ZnS-ZnO-SiO2 (摩耳比:6:2:2)所形成,而其他是與實施例1者相同。12A and 12B show the composition of the optical non-reflective film 100C of the embodiment 4 of the present invention, which is different from the embodiment 1 in that the mixed material layer is made of ZnS-ZnO-SiO 2 (moire). Ratio: 6:2:2) is formed, and the others are the same as in Embodiment 1.

第12A圖為光學非反射薄膜之橫截面圖,以及第12B圖為光學非反射薄膜之頂視圖。Fig. 12A is a cross-sectional view of the optical non-reflective film, and Fig. 12B is a top view of the optical non-reflective film.

由於此具有第11圖之階段II-III之組態之微結構104被配置成200nm之周期,光學非反射薄膜100C所控制特定波長範圍(350-600nm)光線之Fresnel反射,以及藉由蛾眼結構所顯示非反射特徵。Since the microstructure 104 having the configuration of the stage II-III of FIG. 11 is configured to have a period of 200 nm, the optical non-reflective film 100C controls the Fresnel reflection of light in a specific wavelength range (350-600 nm), and by moth-eye The non-reflective features shown by the structure.

使用以上所提及熱微影術可以容易地製成微結構104。當混合材料層包含ZnS與SiO2 時,可以使用所改變之蝕刻阻抗,且可以調整折射率。The microstructures 104 can be easily fabricated using the thermal lithography mentioned above. When the mixed material layer contains ZnS and SiO 2 , the changed etching resistance can be used, and the refractive index can be adjusted.

第11圖之階段I-IV之任何此等組態可以應用至光學非反射薄膜,而不論微結構之組態。然而,根據微結構組態中之差異,而須要適當地調整此微結構之高度、折射率、以及周期。雖然,材料之折射率會影響光學非反射薄膜,此光學非反射薄膜可以使用蛾眼結構之逆結構而形成。且可以光學非反射薄膜形成多重層。Any of these configurations of Phases I-IV of Figure 11 can be applied to optical non-reflective films regardless of the configuration of the microstructure. However, depending on the differences in the microstructure configuration, the height, refractive index, and period of the microstructure need to be appropriately adjusted. Although the refractive index of the material affects the optical non-reflective film, the optical non-reflective film can be formed using the inverse structure of the moth-eye structure. And the optical non-reflective film can form multiple layers.

實施例5Example 5

第13圖中所顯示光學波導是與實施例1中相同方式製成,所不同者為所使用之混合材料層是由ZnS-ZnO-SiO2 (摩耳比:6:2:2)所形成。第13A圖與第13B圖各為光學波導之橫截面圖與頂視圖。在此其中光學波導100D反射光線之區域中,此具有在第11圖之階段II-III之組態之微結構104以300nm之周期配置,且此微結構104並未配置在光線傳送部份。The optical waveguide shown in Fig. 13 was produced in the same manner as in Example 1, except that the mixed material layer used was formed of ZnS-ZnO-SiO 2 (Morror ratio: 6:2:2). . Figures 13A and 13B are each a cross-sectional view and a top view of the optical waveguide. In the region where the optical waveguide 100D reflects light, the microstructure 104 having the configuration of the phase II-III of Fig. 11 is arranged at a period of 300 nm, and the microstructure 104 is not disposed at the light transmitting portion.

由於此反射由於平均折射率、與由光帶間隙之周期結構之周期間隙所產生特定波長範圍(400-600nm)之光線、如同於第13B圖中所示,光線可以傳送。Since this reflection is due to the average refractive index and the light of a specific wavelength range (400-600 nm) generated by the periodic gap of the periodic structure of the optical band gap, as shown in Fig. 13B, the light can be transmitted.

此藉由光結晶體之光學波導中,為了依靠入射角之角度、所反射光線之波長,須要調整入射角之角度,且須要進入對應於光帶間隙波長帶之波長之光線。In the optical waveguide by the light crystal, in order to depend on the angle of the incident angle and the wavelength of the reflected light, it is necessary to adjust the angle of the incident angle, and it is necessary to enter the light having a wavelength corresponding to the wavelength band of the optical band gap.

使用以上所提及熱微影術可以容易地製成微結構。當混合材料層包含ZnS與SiO2 時,可以使用所改變之蝕刻阻抗,且亦可以調整折射率。The microstructure can be easily fabricated using the thermal lithography mentioned above. When the mixed material layer contains ZnS and SiO 2 , the changed etching resistance can be used, and the refractive index can also be adjusted.

此使用光帶間隙之光學波導可以應用於:光學濾波器、光學開關、以及雷射等。雖然並未反射光線、且其透過於靠近光帶間隙之波長帶中,此超過解析度限制之光學性質、例如對準效應與透鏡效應,而具有在理論上且於現象中可看出光晶體之獨特特徵。此效應亦須使用本發明之微結構。The optical waveguide using the optical band gap can be applied to: optical filters, optical switches, and lasers. Although the light is not reflected and transmitted through the wavelength band close to the gap of the optical band, this exceeds the optical properties of the resolution limit, such as the alignment effect and the lens effect, and the optical crystal can be seen theoretically and in the phenomenon. Unique features. This effect also requires the use of the microstructure of the present invention.

此光學波導並非根據微結構之組態,但是可以配置具有第11A-11D圖之階段I-IV之組態之微結構。此在微結構組態中之差異為:須要適當地調整微結構之高度、折射率、以及周期。This optical waveguide is not configured according to the microstructure, but a microstructure having the configuration of stages I-IV of Figures 11A-11D can be configured. This difference in the microstructure configuration is that the height, refractive index, and period of the microstructure need to be properly adjusted.

雖然,在微結構組態中之特徵不同,而且在微結構之周期結構之逆結構中之特徵不同,所以須要光帶效應。為此原因,作為光結晶體而可以使用微結構之周期結構與其逆結構。Although the features in the microstructure configuration are different and the features in the inverse structure of the periodic structure of the microstructure are different, an optical band effect is required. For this reason, as the light crystal, the periodic structure of the microstructure and its inverse structure can be used.

實施例6Example 6

第14A-14B圖中所顯示光學濾波器是與實施例1中相同方式製成,所不同者為所使用之混合材料層是由ZnS-SrS-SiO2 (摩耳比:7:1:2)所形成,且使用10cmx10cm尺寸之石英基板112。第14A圖與第14B圖各為光學濾波器之橫截面圖與頂視圖。The optical filters shown in Figures 14A-14B were made in the same manner as in Example 1, except that the mixed material layer used was made of ZnS-SrS-SiO 2 (Mohr: 7:1:2). It was formed and a quartz substrate 112 of a size of 10 cm x 10 cm was used. Figures 14A and 14B are each a cross-sectional view and a top view of the optical filter.

此在光學濾波器100E中微結構104為半球形,其底部直徑為150nm,高度為30nm,且以200nm之周期(記號間距)配置。為此原因,當以雷射光線照射時,此光學濾波器100E反射特定波長範圍(300nm-500nm)之光線,以作為根據入射角之角度之次-波長結構之效應。In the optical filter 100E, the microstructures 104 are hemispherical, have a bottom diameter of 150 nm, a height of 30 nm, and are arranged at a cycle of 200 nm (mark pitch). For this reason, when irradiated with laser light, the optical filter 100E reflects light of a specific wavelength range (300 nm - 500 nm) as an effect of the sub-wavelength structure according to the angle of the incident angle.

如果此具有波長405nm之光線進入在此時其中形成微結構104之場而改變角度,則入射光線以特定角度反射。If this light having a wavelength of 405 nm enters the field where the microstructure 104 is formed at this time and changes the angle, the incident light is reflected at a specific angle.

使用以上所提及熱微影術可以容易地製成微結構104。當混合材料層包含ZnS、SrS、以及SiO2 時,可以使用所改變之蝕刻阻抗,且亦可以調整折射率。The microstructures 104 can be easily fabricated using the thermal lithography mentioned above. When the mixed material layer contains ZnS, SrS, and SiO 2 , the changed etching resistance can be used, and the refractive index can also be adjusted.

從此微結構104之周期結構不僅可以製成次波長結構,而且可以產生光晶體效應。此作用為:光學濾波器以反射特定波長範圍之光線;或光學開關。此反射光線之入射角度與波長取決於彼此次-波長結構或光結晶體。 當光學濾波器與光學開關使用相同現象、且並不想要使得特定波長帶之光線完全透過時,則其操作為光學濾波器。其變成為光學開關而使用作為光學元件,以控制光線透過之開(ON)與關(OFF)。From this, the periodic structure of the microstructures 104 can not only be made into a sub-wavelength structure, but also can produce a photonic crystal effect. This effect is: an optical filter to reflect light in a specific wavelength range; or an optical switch. The angle of incidence and wavelength of this reflected light depends on the sub-wavelength structure or the photocrystal of each other. When an optical filter and an optical switch use the same phenomenon and do not want to completely transmit light of a specific wavelength band, they operate as an optical filter. It becomes an optical switch and is used as an optical element to control the ON and OFF of light transmission.

在實施例1至6中,此特別使用作為光線吸收層之材料並未受到限制,但提及除了AgInSbTe與Ge之外之Si、族III-V半導體、4Yuan混合晶體複 合物等。此施加熱之方法而非局部照射雷射光線以作為熱微影術之方法亦為可能。然而,其在方向性與穩定性方面優異,且由於微結構之製造準確度高,其受到偏好以發射雷射光線。In Examples 1 to 6, the material particularly used as the light absorbing layer is not limited, but Si, a group III-V semiconductor, and a 4Yuan mixed crystal complex other than AgInSbTe and Ge are mentioned. Compounds, etc. This method of applying heat, rather than locally illuminating the laser light, is also possible as a method of thermal lithography. However, it is excellent in directionality and stability, and because of the high manufacturing accuracy of the microstructure, it is favored to emit laser light.

實施例7Example 7

製造在第15圖中所顯示之主基板。此主基板200A為一物件,其具有用於藍光碟-唯讀記憶體(BD-ROM)之25GB之容量,在其所具有區域周期地配置記錄坑洞之圖案201a,且軌間距為0.32微米。主基板200A之材料為石英,且可以基於主基板200A依據射出成形移轉過程,以製成壓模與光學資訊記錄媒體(例如:電影記錄內容)。The main substrate shown in Fig. 15 was fabricated. The main substrate 200A is an object having a capacity of 25 GB for a Blu-ray Disc-Read Only Memory (BD-ROM), and a pattern 201a of recording pits is periodically arranged in a region having the same, and the track pitch is 0.32 μm. . The material of the main substrate 200A is quartz, and may be based on the main substrate 200A in accordance with the injection molding transfer process to form a stamper and an optical information recording medium (for example, a movie recording content).

在第16A-16F圖中顯示之主基板200A之製造方法。首先,使用濺擊裝置CFS-8EP(來自Shibaura Mechatronics Co.)經由RF濺擊從ZnS、SiO2 、以及ZnTe(摩耳比:70:20:10)形成具有厚度40nm之混合材料層202、此將成為平坦碟形石英基板201(參考第16A圖)。A method of manufacturing the main substrate 200A shown in Figs. 16A-16F. First, a mixed material layer 202 having a thickness of 40 nm was formed from ZnS, SiO 2 , and ZnTe (Mohr ratio: 70:20:10) by RF sputtering using a splash device CFS-8EP (from Shibaura Mechatronics Co.). It will become a flat disk quartz substrate 201 (refer to Fig. 16A).

其次,此藍色雷射光線204之焦點,藉由此光線將此雷射光線照射設備之數值孔徑(NA)以0.85之物鏡203聚焦、此光線之波長為405nm、且此聚焦是針對混合材料層202之表面實施,以及此預定區域是以5mW之脈衝光線輸出照射(參考第16B圖)。其使得能夠使用在此時在ROM上資訊所形成策略以形成圖案。Secondly, the focus of the blue laser light 204, by which the light source illuminates the numerical aperture (NA) of the laser illumination device with an objective lens 203 of 0.85, the wavelength of the light is 405 nm, and the focus is for the mixed material. The surface of layer 202 is implemented and this predetermined area is illuminated with a 5 mW pulsed light output (see Figure 16B). It enables the formation of a pattern using the strategy formed by the information on the ROM at this time.

然後,將其浸入於重量2%之氫氟酸205中10秒鐘(參考第16C圖),並被使得變乾。因此,在石英基板201上形成此由ZnS、SiO2 、以及ZnTe(摩耳比:70:20:10)所形成幾乎半球形微結構206(參考第16D圖)。Then, it was immersed in hydrofluoric acid 205 having a weight of 2% for 10 seconds (refer to Fig. 16C), and was allowed to dry. Therefore, the almost hemispherical microstructure 206 formed of ZnS, SiO 2 , and ZnTe (MoR ratio: 70:20:10) is formed on the quartz substrate 201 (refer to Fig. 16D).

然後,將其安裝於反應性離子蝕刻(RIE)設備中,且藉由CF4氣體實施蝕刻。因此,使用石英基板201之微結構206作為遮罩,且進行蝕刻(參考第16E圖)。Then, it was mounted in a reactive ion etching (RIE) apparatus, and etching was performed by CF4 gas. Therefore, the microstructure 206 of the quartz substrate 201 is used as a mask, and etching is performed (refer to FIG. 16E).

去除微結構206所形成此映遮罩組態之圖案201a(參考第16F圖)。The pattern 201a of the shadow mask configuration formed by the microstructures 206 is removed (refer to FIG. 16F).

由於以原子力顯微鏡(AFM)測量之由石英所形成圖案201a之高度大約為40nm。雖然,形成點似圖案201a,如果實施藍色雷射光線204之持續照射,則可以形成線性圖案(溝槽),且亦可以製成用於:可重新記錄基板(R 基板)或可複寫基板(RW基板)之用於物件之壓模。The height of the pattern 201a formed of quartz as measured by an atomic force microscope (AFM) is about 40 nm. Although a dot-like pattern 201a is formed, if continuous illumination of the blue laser light 204 is performed, a linear pattern (groove) can be formed, and can also be made for: a re-recordable substrate (R) A substrate or a rewritable substrate (RW substrate) for a stamper of an object.

在另一方面,並不確定是否可以形成微結構,且此取決於ZnS、SiO2 、以及ZnTe之組成成份比。當實施有關於組成成份比與圖案形成適當性間之關係之評估時,獲得在表1中所顯示之結果。On the other hand, it is not certain whether a microstructure can be formed, and this depends on the composition ratio of ZnS, SiO 2 , and ZnTe. When the evaluation regarding the relationship between the composition ratio and the pattern formation appropriateness was carried out, the results shown in Table 1 were obtained.

如同由表1而為明顯,在樣本1、5、以及7之情形中可以形成圖案,以及在樣本2、3、4、以及6之情形中並無法形成圖案。為了檢查在組成成份比例與圖案形成適當性間之關係,而實施樣本1-7之評估。當以1-8mW脈衝光線輸出、以0.85數值孔徑(NA)之物鏡所聚焦具有405nm波長之藍色雷射光線照射之前與後,評估各樣本對於氫氟酸之蝕刻阻抗,而獲得表2中所顯示之結果。As is apparent from Table 1, patterns can be formed in the case of the samples 1, 5, and 7, and in the case of the samples 2, 3, 4, and 6, the pattern cannot be formed. The evaluation of samples 1-7 was carried out in order to examine the relationship between the composition ratio and the appropriateness of pattern formation. The etch resistance of each sample for hydrofluoric acid was evaluated before and after irradiation with a 1-8 mW pulsed light output and a blue laser light having a wavelength of 405 nm focused by an objective lens of 0.85 numerical aperture (NA), and obtained in Table 2 The results shown.

如同由表2而為明顯,此在實施雷射光線照射之前之樣本所形成圖案並不具有蝕刻阻抗,以及在實施雷射光線照射之後之樣本所形成圖案具有一些蝕刻阻抗。當檢視樣本1、3、以及4時,為了樣本在雷射光線照射之前不具有蝕刻阻抗、而須要SiO2 ,且估計所須SiO2 組成成份百分比為大於10mol%。As is apparent from Table 2, the pattern formed by the sample before the irradiation of the laser light does not have an etching resistance, and the pattern formed by the sample after the irradiation of the laser light has some etching resistance. When samples 1, 3, and 4 are examined, SiO 2 is required for the sample to have no etching resistance before the laser light is irradiated, and it is estimated that the required SiO 2 composition percentage is more than 10 mol%.

在另一方面,當在雷射光線照射之後有太大百分比之SiO2 內容時、如同在樣本3中者,則並無蝕刻阻抗。由於有許多組成成份(ZnS與SiO2 )其透過雷射光線如同樣本2,當有少許比例ZnTe時,雷射光線之吸收變得不足。為了ZnTe可以提高光學吸收能力而須要ZnTe,但如果其比例太高如同樣本7,則ZnS之比例將變得不足,且此將並不會促進伴隨雷射光線吸收而產生熱之系統化。此亦考慮在其中形成圖案之樣本1、5、以及7之組成比例,且對於ZnS之比例,其比例大於60mol%,且ZnTe之比例假設小於30mol%。On the other hand, when there is a large percentage of SiO 2 content after laser light irradiation, as in sample 3, there is no etching resistance. Since there are many constituent components (ZnS and SiO 2 ) which transmit laser light as sample 2, when there is a slight proportion of ZnTe, the absorption of the laser light becomes insufficient. ZnTe is required for ZnTe to increase optical absorption capacity, but if the ratio is too high as sample 7, the ratio of ZnS will become insufficient, and this will not promote systematization of heat generated by absorption of laser light. This also considers the composition ratio of the samples 1, 5, and 7 in which the pattern is formed, and the ratio of ZnS is greater than 60 mol%, and the ratio of ZnTe is assumed to be less than 30 mol%.

此外,當使用Ag而非ZnTe且類似地實施評估時,則所獲得之結果顯示於表3與表4中。Further, when Ag was used instead of ZnTe and evaluation was similarly carried out, the results obtained are shown in Tables 3 and 4.

如同由表3與表4而為明顯,在樣本8-14中,即使使用Ag而非ZnTe,其可以說是:ZnS、SiO2 、以及Ag之組成比例與圖案形成適當性間之關係 為相同。在另一方面,在樣本16中可以形成圖案,但樣本8之圖案更清楚。在樣本15與樣本17中並未完成圖案形成,雖然,樣本15與樣本17具有接近如同樣本16之組成比例。As is apparent from Tables 3 and 4, in Samples 8-14, even if Ag is used instead of ZnTe, it can be said that the relationship between the composition ratio of ZnS, SiO 2 , and Ag and the pattern formation appropriateness is the same. . On the other hand, a pattern can be formed in the sample 16, but the pattern of the sample 8 is clearer. Pattern formation is not completed in sample 15 and sample 17, although sample 15 and sample 17 have a composition ratio close to that of sample 16.

在樣本15中,如同在表4中所示,在由雷射光線照射之前有蝕刻阻抗,且無法形成圖案,且其顯示SiO2 之比例9mol%為不足。在另一方面,在樣本17中,在由雷射光線照射之前並無蝕刻阻抗,但Ag之百分比為9mol%,且其可以設想雷射光線之劑量不足,且無法形成圖案。在此種情形中可以設想,如果由較大輸出雷射光線照射,則可以形成圖案。In the sample 15, as shown in Table 4, there was an etching resistance before irradiation with laser light, and a pattern could not be formed, and it showed that the ratio of SiO 2 was 9 mol%. On the other hand, in the sample 17, there was no etching resistance before the irradiation with the laser light, but the percentage of Ag was 9 mol%, and it was conceivable that the dose of the laser light was insufficient and the pattern could not be formed. In this case it is conceivable that a pattern can be formed if illuminated by a larger output of laser light.

由於如果此添加作為材料C之材料改變,則此跟隨雷射光線吸收之卡路里值將改變,此用於圖案形成所須雷射光線照射情況(脈衝光線輸出、脈衝寬度)亦改變。相同原理亦適用於材料A'。當使用氫氟酸實施蝕刻時,此形成圖案之SiO2 比例可以大於10mol%,且相同原理亦適用於此包含SiO之情形。如同由樣本18-20而為明顯,此形成圖案之SiO2 比例可以小於30mol%。在樣本18中,SiO2 含量之百分比為30mol%,可以形成圖案,但此圖案並不清楚。在樣本19與20中,SiO2 含量之百分比為31mol%,且此微結構大部份並不存留。Since the calorific value following the absorption of the laser light will change if this addition is changed as the material of the material C, the laser light irradiation (pulse light output, pulse width) for pattern formation also changes. The same principle applies to material A'. When etching is performed using hydrofluoric acid, the patterned SiO 2 ratio may be greater than 10 mol%, and the same principle is also applicable to the case where SiO is included. As is apparent from samples 18-20, the patterned SiO 2 ratio can be less than 30 mol%. In the sample 18, the percentage of the SiO 2 content was 30 mol%, and a pattern could be formed, but the pattern was not clear. In the samples 19 and 20, the percentage of the SiO 2 content was 31 mol%, and most of the microstructure did not remain.

即使雷射光線之脈衝光線輸出增加、材料C的比例減少、且材料A'之比例增加,此形成圖案之SiO2 比例可以小於30mol%。為了形成清楚圖案,較佳將SiO2 適度地包含於10-30mol%之範圍中。Even if the pulsed light output of the laser light increases, the ratio of the material C decreases, and the ratio of the material A' increases, the patterned SiO 2 ratio may be less than 30 mol%. In order to form a clear pattern, it is preferred to suitably include SiO 2 in the range of 10 to 30 mol%.

當藉由濺擊法以形成混合材料層時,可以使用由混合材料所形成之濺擊靶、或可以備製用於各材料之濺擊靶、且可以實施共同濺擊。根據濺擊法而存在此種情形,此在SiO2 中氧不足且製成SiOx (x=1-2),以及此種情形,混合材料層之表面粗糙度不同,但此混合材料層之薄膜之品質並未大幅改變。When a mixed material layer is formed by a splashing method, a splash target formed of a mixed material may be used, or a splash target for each material may be prepared, and a common splash may be performed. According to the sputtering method, there is such a case that oxygen is insufficient in SiO 2 and SiO x (x = 1-2) is formed, and in this case, the surface roughness of the mixed material layer is different, but the mixed material layer is The quality of the film has not changed significantly.

可以設想此種情形,當此混合材料層由雷射光線照射時,此等材料混合於混合材料層中。It is conceivable that when the mixed material layer is irradiated with laser light, the materials are mixed in the mixed material layer.

ZnS-SiO2 (摩耳比:80:20)之吸光係數k對於波長為405nm之藍色雷射光為大約1x10-3 。在另一方面,樣本5之混合材料層之吸光係數k為1x10-1The absorption coefficient k of ZnS-SiO 2 (molar ratio: 80:20) is about 1 x 10 -3 for blue laser light having a wavelength of 405 nm. On the other hand, the absorption coefficient k of the mixed material layer of the sample 5 was 1 x 10 -1 .

因此,藍色雷射吸收能力可以藉由將ZnTe添加至混合材料層而提高。 由於混合材料層中卡路里值是根據雷射光線之脈衝光線輸出,當其由商業紅色或藍色半導體雷射光線照射時,此大約為1x10-1 之吸光係數k對於混合材料層為足夠。Therefore, the blue laser absorption capability can be improved by adding ZnTe to the mixed material layer. Since the calorie value in the mixed material layer is based on the pulsed light output of the laser light, when it is illuminated by commercial red or blue semiconductor laser light, the absorption coefficient k of about 1 x 10 -1 is sufficient for the mixed material layer.

雖然,此40nm厚ZnS-SiO2 (摩耳比:50:50-90:10)在可見光範圍中之透射為大約100%,而如果添加ZnTe或Ag,則光線透射下降,且隨著ZnTe或Ag之比例增加,其光線吸收能力改善。然而,混合材料層之組成成份對於產生下列組成成份之微結構為重要:較佳為大於60mol%之ZnS、10-30mol%之SiO2 、以及小於30mol%之ZnTe或Ag。Although, the transmission of this 40 nm thick ZnS-SiO 2 (Morby ratio: 50:50-90:10) in the visible light range is about 100%, and if ZnTe or Ag is added, the light transmission decreases, and with ZnTe or The proportion of Ag increases and the light absorption capacity is improved. However, the composition of the mixed material layer is important for producing a microstructure of the following composition: preferably more than 60 mol% of ZnS, 10-30 mol% of SiO 2 , and less than 30 mol% of ZnTe or Ag.

除非滿足此等條件,否則可能無法形成此幾乎為半球形微結構,其藉由蝕刻而具有圓滑之終端。由於在混合材料層中SiO2 含量之重量百分比為10%或更多,其在氫氟酸中蝕刻,但此幾乎為半球形微結構保存,這是因為所接收雷射光線之照射,且其對於氫氟酸之蝕刻阻抗改善。由於當使用ZnTe時包含與ZnS相同元素作為材料C,因此相較於使用Ag之情形,此微結構之終端變得更平滑。Unless these conditions are met, this almost hemispherical microstructure may not be formed, which has a smooth terminal by etching. Since the SiO 2 content in the mixed material layer is 10% by weight or more, it is etched in hydrofluoric acid, but this is almost a hemispherical microstructure preservation because of the irradiation of the received laser light, and The etching resistance for hydrofluoric acid is improved. Since the same element as ZnS is used as the material C when ZnTe is used, the terminal of this microstructure becomes smoother than in the case of using Ag.

在實施例7中,由於微結構206幾乎為半球形,而可以製成主基板200A。如果此藍色雷射光線204之脈衝光線輸出為7mW而非在第16D圖中所顯示之微結構206,則如同在第17圖中所示,可以形成微結構207,其形狀為藉由此形狀此半球形結構形成於此通常為圓柱形結構上。In Embodiment 7, since the microstructure 206 is almost hemispherical, the main substrate 200A can be formed. If the pulsed light output of the blue laser ray 204 is 7 mW instead of the microstructure 206 shown in Fig. 16D, as shown in Fig. 17, a microstructure 207 can be formed, the shape of which is thereby Shape This hemispherical structure is formed on this generally cylindrical structure.

為了最後蝕刻進入石英基板201中,此微結構之組態影響記錄坑洞之圖案形狀。在此時,其特徵為,此使用微結構207作為遮罩且將其蝕刻之方向、相較於使用微結構206之情形幾乎為垂直。For the final etching into the quartz substrate 201, the configuration of the microstructure affects the pattern shape of the recording pit. At this time, it is characterized in that the direction in which the microstructure 207 is used as a mask and etched is almost perpendicular to the case where the microstructure 206 is used.

實施例8Example 8

在第18圖中顯示所製造之光學非反射薄膜。第18A圖與第18B圖各為光學非反射薄膜之橫截面圖與頂視圖。光學非反射薄膜200B是由石英製成、且包含圓柱形圖案201b,其各具有大約150nm之直徑與大約250nm之高度,且以200nm周期配置。The optical non-reflective film produced is shown in Fig. 18. 18A and 18B are each a cross-sectional view and a top view of an optical non-reflective film. The optical non-reflective film 200B is made of quartz and includes a cylindrical pattern 201b each having a diameter of about 150 nm and a height of about 250 nm, and is disposed at a period of 200 nm.

相較於相同厚度之石英基板201,此光學非反射薄膜200B提高對於波長範圍為400-600nm之光線之透射至接近100%。此將周期結構轉換成蛾眼 結構,以控制反射且使光線透過。Compared to the quartz substrate 201 of the same thickness, the optical non-reflective film 200B increases the transmission to light of a wavelength range of 400-600 nm to nearly 100%. This converts the periodic structure into a moth eye Structure to control reflection and transmit light.

此光學非反射薄膜200B之製造方法與實施例7中所示者相同,所不同者為其以200nm周期以藍色雷射光線204照射。在製成晶圓後,將光學非反射薄膜200B切割成數個毫米角度,且其藉由清洗而獲得以去除雜質。The optical non-reflective film 200B was produced in the same manner as in the embodiment 7, except that it was irradiated with blue laser light 204 at a period of 200 nm. After the wafer is formed, the optical non-reflective film 200B is cut into several millimeter angles, and it is obtained by washing to remove impurities.

如同在第16D圖中所示,在石英基板201上形成微結構206作為光學非反射薄膜。由於微結構206之材料與石英不同,此光學非反射薄膜之效應可能會衰退,或在切割過程會造成剝離,且良率會變低。由於此,如果須要在蝕刻至石英基板201後,可以將圖案移轉且再製。在此時,在石英基板201表面中形成圖案之組態轉換成接近微結構206之形狀,其在基本上作為遮罩。As shown in Fig. 16D, the microstructures 206 are formed on the quartz substrate 201 as optical non-reflective films. Since the material of the microstructure 206 is different from quartz, the effect of the optical non-reflective film may be degraded, or peeling may occur during the cutting process, and the yield may be lowered. Because of this, if it is necessary to etch to the quartz substrate 201, the pattern can be transferred and reproduced. At this time, the configuration in which the pattern is formed in the surface of the quartz substrate 201 is converted into a shape close to the microstructure 206, which is basically used as a mask.

然而,由於對於微結構206之CF4之蝕刻率足夠小,此高寬比亦可以產生高形狀圖案201b。當再製時,圖案可以被轉換成材料,其使用超微印刷技術、例如熱超微印刷、光學超微印刷、以及軟微影術,以製成樹脂與主要組成成份。However, since the etch rate for CF4 of microstructures 206 is sufficiently small, this aspect ratio can also produce a high shape pattern 201b. When reproduced, the pattern can be converted into a material that uses ultra-fine printing techniques, such as thermal ultra-fine printing, optical ultra-fine printing, and soft lithography to make the resin and the main components.

實施例9Example 9

在第19A-19B圖中顯示所製造之光學非反射薄膜。第19A圖與第19B圖各為光學非反射薄膜之橫截面圖與頂視圖。在光學非反射薄膜200C中,微結構208以400nm之周期配置在石英基板201上。此微結構208之材料為ZnS、SiO2 、以及ZnTe-ZnO(摩耳比:64:18:10:8)。此微結構208大部份為圓柱體組態,其外直徑大約300nm、其內直徑大約90nm、以及其高度大約為50nm。The optical non-reflective film produced is shown in Figures 19A-19B. 19A and 19B are each a cross-sectional view and a top view of an optical non-reflective film. In the optical non-reflective film 200C, the microstructure 208 is disposed on the quartz substrate 201 at a period of 400 nm. The material of this microstructure 208 is ZnS, SiO 2 , and ZnTe-ZnO (Mohr ratio: 64:18:10:8). The microstructure 208 is mostly cylindrical in configuration with an outer diameter of about 300 nm, an inner diameter of about 90 nm, and a height of about 50 nm.

相較於相同厚度之石英基板,此光學非反射薄膜200C提高對於波長範圍為400-600nm之光線之透射至接近100%。此用於藉由微結構208將周期結構轉換成蛾眼結構,以控制反射且使光線透過。The optical non-reflective film 200C increases transmission to light near the wavelength of 400-600 nm in the vicinity of 100% compared to a quartz substrate of the same thickness. This is used to convert the periodic structure into a moth eye structure by the microstructure 208 to control reflection and transmit light.

此光學非反射薄膜200C之製造方法與實施例7中所示者相同(忽略第16E-16F圖),所不同者為其以400nm周期以具有9mW之脈衝光線輸出之藍色雷射光線204照射。由於ZnS、SiO2 、ZnTe、以及ZnO(摩耳比:64:18:10:8)具有高透射率,而須要將藍色雷射光線204之脈衝光線輸出放大。如果此藍色雷射光線204之脈衝光線輸出改變至8mW,如同於第20圖中所示, 則將形成具有中空部份與放大底部之圓柱形組態之微結構209。This optical non-reflective film 200C is manufactured in the same manner as that shown in Embodiment 7 (ignoring the 16E-16F diagram), except that it is irradiated with blue laser light 204 having a pulse light output of 9 mW at a period of 400 nm. . Since ZnS, SiO 2 , ZnTe, and ZnO (Mohr ratio: 64:18:10:8) have high transmittance, it is necessary to amplify the pulsed light output of the blue laser light 204. If the pulsed light output of this blue laser ray 204 is changed to 8 mW, as shown in Fig. 20, a microstructure 209 having a cylindrical configuration with a hollow portion and an enlarged bottom will be formed.

實施例10Example 10

第21圖中顯示所製造之資訊記錄媒體。The information recording medium manufactured is shown in Fig. 21.

微結構211以160nm之周期配置在具有直徑12cm之碟形聚碳酸酯基板210上,且此資訊記錄媒體200D具有突起與溝槽之重複不平坦。各微結構211具有在底部大約90nm之直徑、大約30nm之高度、以及幾乎半球體組態。在資訊記錄媒體200D中,資訊是由微結構211之存在而決定。The microstructure 211 is disposed on a disk-shaped polycarbonate substrate 210 having a diameter of 12 cm at a period of 160 nm, and this information recording medium 200D has a repeating unevenness of protrusions and grooves. Each microstructure 211 has a diameter of about 90 nm at the bottom, a height of about 30 nm, and an almost hemispherical configuration. In the information recording medium 200D, information is determined by the presence of the microstructure 211.

當由雷射光線照射資訊記錄媒體200D時,微結構211發出螢光,且在未配置微結構211處之區域並未發出螢光。為此原因,當掃描螢光偵測光學頭時,可以根據所偵測螢光從記錄媒體讀取資訊。When the information recording medium 200D is irradiated with the laser light, the microstructure 211 emits fluorescence, and the area where the microstructure 211 is not disposed does not emit fluorescence. For this reason, when the fluorescent detecting optical head is scanned, information can be read from the recording medium based on the detected fluorescent light.

微結構211之材料為ZnS、SiO2 、以及CdTe(摩耳比:77:20:3),且微結構211具有與瑩光量子點相同之效應。當讀取資訊時,此所發射之螢光藉由使用光學頭之透鏡而聚焦,藉由以光乘法器管將螢光放大經由光纖與光學濾波器而偵測此螢光。因而,即使當螢光為弱時,可以偵測到螢光。The material of the microstructure 211 is ZnS, SiO 2 , and CdTe (MoR ratio: 77:20:3), and the microstructure 211 has the same effect as the fluorescent quantum dot. When the information is read, the emitted fluorescent light is focused by using the lens of the optical head, and the fluorescent light is detected by amplifying the fluorescent light through the optical multiplier tube via the optical fiber and the optical filter. Thus, even when the fluorescence is weak, fluorescence can be detected.

此製造資訊記錄媒體200D之方法與實施例7者相同(忽略第16E-16F圖),所不同者為其由具有脈衝光線輸出8mW之藍色雷射光線204所照射。雖然,在實施例10中,資訊記錄媒體製成於碟形聚碳酸酯基板210上,其可以製成於使用XY平台之矩形基板上。在此情形中,實施真空吸引至XY平台,且實施雷射光線之脈衝照射。This method of manufacturing the information recording medium 200D is the same as that of the embodiment 7 (ignoring the 16E-16F map), except that it is illuminated by the blue laser light 204 having a pulse light output of 8 mW. Although, in Embodiment 10, the information recording medium is formed on the disk-shaped polycarbonate substrate 210, it can be fabricated on a rectangular substrate using an XY stage. In this case, vacuum attraction is performed to the XY stage, and pulsed irradiation of the laser light is performed.

實施例11Example 11

在第22A圖與第22B圖中顯示所製造之光學波導。The manufactured optical waveguide is shown in Figs. 22A and 22B.

第22A圖與第22B圖各為光學波導之橫截面圖與頂視圖。光學波導200E具有周期區域,而在此處微結構213以400nm之周期配置於矽基板212上,且此具有波長780nm之光線藉由以下方式而反射:周期區域之平均折射率所造成之光帶間隙、以及微結構213之間隙。並無微結構213形成於光行進之部份中。22A and 22B are each a cross-sectional view and a top view of the optical waveguide. The optical waveguide 200E has a periodic region, and the microstructure 213 is disposed on the germanium substrate 212 at a period of 400 nm, and the light having a wavelength of 780 nm is reflected by the following method: the optical band caused by the average refractive index of the periodic region The gap, and the gap of the microstructure 213. No microstructures 213 are formed in the portion of the light travel.

在此形成於圓柱形結構上之半球形結構中,其底部直徑為大約為 200nm,且其高度大約為50nm。微結構213之材料為ZnS、SiO2 、以及ZnO(摩耳比:65:20:15)。Here, the hemispherical structure formed on the cylindrical structure has a bottom diameter of about 200 nm and a height of about 50 nm. The material of the microstructure 213 is ZnS, SiO 2 , and ZnO (Morby: 65:20:15).

此製造光學波導200E之方法與實施例7者相同(忽略第16E-16F圖),所不同者為其由具有脈衝光線輸出7mW之藍色雷射光線204所照射。This method of fabricating the optical waveguide 200E is the same as that of the embodiment 7 (ignoring the 16E-16F map), except that it is illuminated by a blue laser ray 204 having a pulsed light output of 7 mW.

此使用光帶間隙之光結晶體可以應用至:光學波導以外之光學元件,例如光學濾波器與光學開關。雖然並未反射光線,且其透過入靠近光帶間隙之波長帶中,此解析度極限以外之光學性質,例如對準效應與透鏡效應,其在理論上與現象上看來具有光結晶體之獨特特徵。此種效應亦為石英基板之光學元件所須。This light crystal using a light band gap can be applied to optical elements other than optical waveguides, such as optical filters and optical switches. Although it does not reflect light and penetrates into the wavelength band near the gap of the optical band, optical properties other than the resolution limit, such as alignment effect and lens effect, appear to be unique in terms of theory and phenomenon. feature. This effect is also required for the optical components of the quartz substrate.

實施例12Example 12

在第23圖中顯示所製造之光學濾波器。光學濾波器200F使用次波長結構,且微結構214以300nm之周期配置於石英基板201上。The manufactured optical filter is shown in Fig. 23. The optical filter 200F uses a sub-wavelength structure, and the microstructure 214 is disposed on the quartz substrate 201 at a period of 300 nm.

在此形成於圓柱體結構上之半球形結構中,其底部之直徑大約為200nm,且高度為大約50nm。此微結構214之材料為ZnS、SiO2 、以及Au(摩耳比:72:18:10)。Here, the hemispherical structure formed on the cylindrical structure has a bottom having a diameter of about 200 nm and a height of about 50 nm. The material of this microstructure 214 is ZnS, SiO 2 , and Au (Moire ratio: 72:18:10).

此製造光學濾波器200F之方法與實施例7者相同(忽略第16E-16F圖),所不同者為其由具有脈衝光線輸出8mW之藍色雷射光線204所照射。This method of fabricating the optical filter 200F is the same as that of the embodiment 7 (ignoring the 16E-16F diagram), except that it is illuminated by a blue laser ray 204 having a pulsed light output of 8 mW.

以替代方式,如同於第24圖中所顯示。此石英之光學濾波器200G可以經由第16E-16F圖之過程而形成。光學濾波器200G具有以周期配置之圖案201c,而其與光學濾波器200F者相同。Alternatively, as shown in Figure 24. This quartz optical filter 200G can be formed through the process of the 16E-16F diagram. The optical filter 200G has a pattern 201c arranged in a period, which is the same as that of the optical filter 200F.

當由雷射光線照射時,由於光帶間隙,光學濾波器200F與200G反射具有特定波長之光線,且此濾波器作用為光學開關。例如,如果此具有波長405nm之光線入射至光學濾波器200F與200G、而同時改變入射角,則此光線以特定入射角反射。When illuminated by laser light, the optical filters 200F and 200G reflect light having a specific wavelength due to the optical band gap, and this filter functions as an optical switch. For example, if this light having a wavelength of 405 nm is incident on the optical filters 200F and 200G while changing the incident angle, the light is reflected at a specific incident angle.

即使藉由實施藍色雷射光線204之連續照射而周期地形成區段,此線性微結構大部份為矩形而非微結構214,而獲得作為光學開關之效應。當形成線性微結構時,彼此獲得作為光學開關之效應,亦作為網之垂直網目之形狀之結構。LER亦小於在光微影術中阻抗之值,且被設定至1nm或更少。Even though the segments are periodically formed by performing continuous illumination of the blue laser ray 204, the linear microstructure is mostly rectangular rather than microstructure 214, resulting in an effect as an optical switch. When a linear microstructure is formed, the effect as an optical switch is obtained from each other, and also as the structure of the shape of the vertical mesh of the net. The LER is also smaller than the value of the impedance in photolithography and is set to 1 nm or less.

此光學濾波器根據次波長結構運作,且此光帶間隙作用為:光學濾波 器、其反射特定波長光線,或光學開關。此入射角與反射光之波長取決於彼此之次波長結構或光結晶體。使用相同現象,且光學濾波器與光學開關作用為光學濾波器,以完全地透過特定波長之光線。此成為光學開關以使用作為光學元件,以控制光線透過之開(ON)與關(OFF)。The optical filter operates according to a sub-wavelength structure, and the band gap acts as: optical filtering , it reflects light of a specific wavelength, or an optical switch. The angle of incidence and the wavelength of the reflected light depend on the sub-wavelength structure or the photocrystal of each other. The same phenomenon is used, and the optical filter and the optical switch act as optical filters to completely transmit light of a specific wavelength. This becomes an optical switch to be used as an optical element to control the ON and OFF of light transmission.

實施例13Example 13

第25A圖至第25D圖顯示實施例13之微結構之掃描電子顯微鏡之照片。此微結構形成於聚碳酸酯基板上,其中軌間距具有400nm之突起溝槽(線寬為200nm跑道溝槽寬度為200nm),以及材料為ZnS、SiO2 、以及Ag(摩耳比:72:18:10)。25A to 25D are photographs showing the scanning electron microscope of the microstructure of Example 13. The microstructure is formed on a polycarbonate substrate with a track pitch of 400 nm (line width of 200 nm runway trench width of 200 nm) and materials of ZnS, SiO 2 , and Ag (Morror ratio: 72: 18:10).

此微結構之製造方法與實施例7中所示者相同,所不同者為其改變藍色雷射光線204之脈衝光線輸出,而所使用濺擊靶是由ZnS、SiO2 、以及Ag(摩耳比:72:18:10)所形成。This microstructure is fabricated in the same manner as shown in Embodiment 7, except that it changes the pulsed light output of the blue laser light 204, and the splash target used is ZnS, SiO 2 , and Ag (Motor) Ear ratio: 72:18:10) formed.

第25A圖、第25B圖、第25C圖、以及第25D圖之脈衝光線輸出各為:6.5mW、7.0mW、8.0mW、以及9.0mW。第25A圖或第25B圖中之微結構是在半球形組態中;第25C圖中之微結構是在一種組態中,其中半球形結構形成於圓柱形結構上;以及第25D圖中之微結構是在一種圓柱形組態中。此等微結構之組態可是藉由使用:傳輸電子顯微鏡、原子力顯微鏡、而非使用掃描電子顯微鏡而評估。The pulse light outputs of the 25A, 25B, 25C, and 25D are each 6.5 mW, 7.0 mW, 8.0 mW, and 9.0 mW. The microstructure in Fig. 25A or Fig. 25B is in a hemispherical configuration; the microstructure in Fig. 25C is in a configuration in which a hemispherical structure is formed on a cylindrical structure; and in Fig. 25D The microstructure is in a cylindrical configuration. The configuration of such microstructures can be evaluated by using a transmission electron microscope, an atomic force microscope, rather than using a scanning electron microscope.

第26圖顯示在脈衝光線輸出、與微結構之外直徑或內直徑間之關係。如同於第26圖中所示,此脈衝光線輸出隨著微結構之外直徑之增加而增加,且中空部份(開口)以9mW在微結構之中央產生。此微結構之尺寸可以在雷射光線照射時(照射時間)隨著脈衝寬度而改變。在此情形中,脈衝寬度是在10至15奈秒之範圍中。雖然,此微結構之尺寸對於脈衝光線輸出是依據組成成份比例、材料等而改變,在當使用Ag以外之材料時,亦可以看出相同之脈衝光線輸出依賴性。Figure 26 shows the relationship between the pulsed light output and the outer diameter or inner diameter of the microstructure. As shown in Fig. 26, the pulsed light output increases as the diameter of the microstructure increases, and the hollow portion (opening) is generated at the center of the microstructure at 9 mW. The size of this microstructure can be varied with the pulse width as the laser light is illuminated (irradiation time). In this case, the pulse width is in the range of 10 to 15 nanoseconds. Although the size of the microstructure is varied for the pulsed light output depending on the composition ratio, material, etc., the same pulse light output dependence can be seen when using materials other than Ag.

第27A圖與第27B圖顯示實施例13之微結構之另一例之掃描電子顯微鏡照片。此微結構形成於聚碳酸酯基板上,其中突起溝槽之軌間距為400nm(線寬:200nm,溝槽寬度:200nm),以及所使用材料為ZnS、SiO2 、以 及ZnTe(摩耳比:68:17:15)。27A and 27B show scanning electron micrographs of another example of the microstructure of Example 13. The microstructure is formed on a polycarbonate substrate, wherein the pitch of the protrusion trenches is 400 nm (line width: 200 nm, trench width: 200 nm), and the materials used are ZnS, SiO 2 , and ZnTe (moire ratio: 68:17:15).

此製造微結構之方法與實施例7者相同,所不同者為藍色雷射光線204脈衝光線輸出改變,且使用ZnTe與ZnS-SiO2 (摩耳比:80:20)之兩個濺擊靶。此濺擊法所形成之薄膜之組成成份藉由元件分析而檢查。第27A圖之脈衝光線輸出為6.0mW,以及第27B圖之脈衝光線輸出為7.0mW。The method of fabricating the microstructure is the same as that of the embodiment 7, except that the pulse light output of the blue laser light 204 is changed, and two splashes of ZnTe and ZnS-SiO 2 (moire ratio: 80:20) are used. target. The composition of the film formed by this splash method is checked by elemental analysis. The pulse light output of Fig. 27A is 6.0 mW, and the pulse light output of Fig. 27B is 7.0 mW.

第28圖顯示實施例13之微結構之另一例之掃描電子顯微鏡照片。此微結構形成於聚碳酸酯基板上,其中突起與溝槽之軌間距為400nm(線寬:200nm,溝槽寬度:200nm),以及所使用材料為ZnS、SiO2 、以及Au(摩耳比:72:18:10)。Fig. 28 shows a scanning electron micrograph of another example of the microstructure of Example 13. The microstructure is formed on a polycarbonate substrate, wherein the pitch of the protrusions to the trenches is 400 nm (line width: 200 nm, trench width: 200 nm), and the materials used are ZnS, SiO 2 , and Au (Mohr ratio). :72:18:10).

此製造微結構之方法與實施例7者相同,所不同者為藍色雷射光線204脈衝光線輸出為3.0mW,且使用Au與ZnS-SiO2 (摩耳比:80:20)之兩個濺擊靶。The method of fabricating the microstructure is the same as that of the embodiment 7, except that the blue laser light 204 has a pulse light output of 3.0 mW, and two of Au and ZnS-SiO 2 (moire ratio: 80:20) are used. Splash target.

當將第25A-25D圖、第27A-27B圖、以及第28圖相比較時,其結果為第27A-27B圖之微結構之終端為最平滑。當藉由使用與第25A-25D圖、第27A-27B圖、以及第28圖之微結構相同材料、且實施雷射光線連續照射、以製成此等線性微結構、且將各LER相比較時,則使用與第27圖之微結構相同材料之情形之LER為最小。這是因為Zn包含於材料A'與材料C中作為共同元素。When the 25A-25D map, the 27A-27B map, and the 28th graph are compared, the result is that the terminal of the microstructure of the 27A-27B graph is the smoothest. By using the same materials as the microstructures of FIGS. 25A-25D, 27A-27B, and 28, and performing continuous irradiation of laser rays to make such linear microstructures, and comparing the LERs In the case where the same material as the microstructure of Fig. 27 is used, the LER is the smallest. This is because Zn is contained in the material A' and the material C as a common element.

此可以製成微結構之此等情形為使用:Al、Cu、Pt、Sb、Te、Ge、Si、Bi、Mn、W、Co、Nb之任何者,以及此等合金例如InSb、AgInSbTe、GeSbTe等之任何者作為材料C。類似地,此可以製成微結構之此等情形為使用:ZnMgTe、CsZnTe、ZnMgSSe、SbZn、ZnCrO4 、ZnCrO3 、ZnWO4 、ZnTiO3 、Zn3 N2 、ZnF2 、ZnSnO3 、ZnMoO4 、GeS2 、CoS、SnS等之任何者。如果使用具有對於藍色雷射光線相當大透射率之材料像是ZnO作為材料C,而如果所使用之材料為ZnS、SiO2 、ZnTe、以及ZnO(64:18:10:8),則可以製成具有平滑終端之微結構。而且,當使用ZnSe、MnS、以及SrS之任何者作為材料C時,可以製成具有平滑終端之微結構。The reason why this can be made into a microstructure is to use any of Al, Cu, Pt, Sb, Te, Ge, Si, Bi, Mn, W, Co, Nb, and such alloys as InSb, AgInSbTe, GeSbTe. Anyone as material C. Similarly, the reason why this can be made into a microstructure is to use: ZnMgTe, CsZnTe, ZnMgSSe, SbZn, ZnCrO 4 , ZnCrO 3 , ZnWO 4 , ZnTiO 3 , Zn 3 N 2 , ZnF 2 , ZnSnO 3 , ZnMoO 4 , Any of GeS 2 , CoS, SnS, etc. If a material having a relatively large transmittance for blue laser light is used as ZnO as material C, and if the materials used are ZnS, SiO 2 , ZnTe, and ZnO (64:18:10:8), A microstructure with a smooth termination is made. Moreover, when any of ZnSe, MnS, and SrS is used as the material C, a microstructure having a smooth terminal can be produced.

實施例14Example 14

在第18A圖與第18B圖中顯示所製造之光學非反射薄膜200B。此光學非反射薄膜200B是由石英形成,且此具有大約150nm直徑與大約250nm高度之圓柱形圖案201b是以200nm周期配置。當與相同厚度之石英基板比較時,此光學非反射薄膜200B對於波長在400-600nm範圍中波長之光線透射增加,且此所增加之透射為幾乎100%。這是因為周期性結構轉變成蛾眼結構,避免反射且允許光線透過。The manufactured optical non-reflective film 200B is shown in Figs. 18A and 18B. This optical non-reflective film 200B is formed of quartz, and this cylindrical pattern 201b having a diameter of about 150 nm and a height of about 250 nm is arranged at a period of 200 nm. When compared with a quartz substrate of the same thickness, the optical non-reflective film 200B has an increased transmission of light having a wavelength in the range of 400 to 600 nm, and the increased transmission is almost 100%. This is because the periodic structure is transformed into a moth-eye structure, which avoids reflection and allows light to pass through.

此製造光學非反射薄膜200B之方法與實施例7者相同,所不同者為藍色雷射光線204之照射以200nm周期實施,且形成FeS-SiO2 (摩耳比:80:20)之混合材料層202,且使用Au與ZnS與SiO2 之兩個濺擊靶。在使用晶圓形成光學非反射薄膜200B之後,藉由將晶圓切割而將其分割成數毫米之此等片,且藉由清洗以去除雜質而獲得此光學非反射薄膜200B。The method of manufacturing the optical non-reflective film 200B is the same as that of the embodiment 7, except that the irradiation of the blue laser light 204 is performed at a period of 200 nm, and a mixture of FeS-SiO 2 (moire ratio: 80:20) is formed. Material layer 202, and two splash targets of Au and ZnS and SiO 2 were used . After the optical non-reflective film 200B is formed using a wafer, the wafer is divided into a few millimeters by cutting the wafer, and the optical non-reflective film 200B is obtained by cleaning to remove impurities.

ZnS、CaS、以及SrS在可見光範圍中幾乎為透明,且具有小的光學吸收能力。相對的,在此等硫複合物中,FeS具有比較大的光學吸收能力。FeS-SiO2 (摩耳比:80:20)吸收此具有在可見光範圍中發射波長之雷射光線。為此原因,FeS作用為用於提高光學吸收能力之材料。ZnS, CaS, and SrS are almost transparent in the visible range and have a small optical absorption capacity. In contrast, in such sulfur compounds, FeS has a relatively large optical absorption capacity. FeS-SiO 2 (Morby ratio: 80:20) absorbs this laser light having an emission wavelength in the visible range. For this reason, FeS acts as a material for improving the optical absorption capacity.

如同於第16D圖中所示,亦可以使用一種光學非反射薄膜,其中微結構206形成於石英基板201上。由於微結構206之材料與石英不同,而會有此種情形,其中光學非反射薄膜效應為弱,或在切割過程之時產生剝離,且良率變低。為避免此種情形,如果須要,可以在實施蝕刻之後對於石英基板201之表面實施圖案移轉。在此時,此在石英基板201之表面上所形成圖案之組態基本上類似於此使用作為遮罩之微結構206之組態。然而,由於對於微結構206之CF4之蝕刻率足夠小,圖案可以形成於具有大高寬比之組態中。As shown in Fig. 16D, an optical non-reflective film may also be used in which the microstructures 206 are formed on the quartz substrate 201. Since the material of the microstructure 206 is different from quartz, there is a case where the optical non-reflective film effect is weak, or peeling occurs at the time of the cutting process, and the yield becomes low. To avoid this, a pattern shift can be performed on the surface of the quartz substrate 201 after the etching is performed, if necessary. At this time, the configuration of the pattern formed on the surface of the quartz substrate 201 is substantially similar to the configuration of the microstructure 206 used as a mask. However, since the etch rate for CF4 of microstructures 206 is sufficiently small, the pattern can be formed in configurations with large aspect ratios.

當實施再製時,可以藉由使用超微印刷技術,例如:熱超微印刷、光學超微印刷、或軟微影術,將圖案移轉至包含樹脂作為其主要組成成份之材料中。When remanufacturing is carried out, the pattern can be transferred to a material containing a resin as its main constituent by using ultra-micro printing techniques such as thermal ultra-fine printing, optical ultra-fine printing, or soft lithography.

實施例15Example 15

第29A圖至第29D圖顯示實施例15之微結構之掃描電子顯微鏡之照片。此微結構形成於聚碳酸酯基板上,其中突起溝槽之軌間距為400nm(線 寬200nm,溝槽寬度200nm),以及所使用材料為ZnS-SiO2 (摩耳比:80:20)。Figures 29A through 29D show photographs of the scanning electron microscope of the microstructure of Example 15. This microstructure was formed on a polycarbonate substrate in which the pitch of the protrusion grooves was 400 nm (line width 200 nm, groove width 200 nm), and the material used was ZnS-SiO 2 (molar ratio: 80:20).

此微結構之製造方法與實施例7之方法相同,所不同者為:形成ZnS-SiO2 (摩耳比:80:20)之混合材料層202,使用FeS與SiO2 之兩個濺擊靶,以及改變藍色雷射光線204之脈衝光線輸出。第29A圖、第29B圖、第29C圖、以及第29D圖之脈衝光線輸出各為:1.5mW、2.0mW、3.0mW、以及4.5mW。The microstructure was fabricated in the same manner as in Example 7, except that a mixed material layer 202 of ZnS-SiO 2 (Morby ratio: 80:20) was formed, and two splash targets of FeS and SiO 2 were used . And changing the pulsed light output of the blue laser light 204. The pulse light outputs of the 29A, 29B, 29C, and 29D are each 1.5 mW, 2.0 mW, 3.0 mW, and 4.5 mW.

第29A圖中之微結構是在半球形組態中;第29B圖或第29C圖中之微結構是在一種組態中,其中半球形結構形成於圓柱形結構上;以及第29D圖中之微結構是在一種圓柱形組態中。此微結構之尺寸取決於雷射光線之脈衝寬度或脈衝光線輸出而變化。The microstructure in Fig. 29A is in a hemispherical configuration; the microstructure in Fig. 29B or 29C is in a configuration in which a hemispherical structure is formed on a cylindrical structure; and in Fig. 29D The microstructure is in a cylindrical configuration. The size of this microstructure varies depending on the pulse width of the laser light or the pulsed light output.

第30A圖與第30B圖顯示實施例15之微結構之另一例之掃描電子顯微鏡之照片。此微結構形成於聚碳酸酯基板上,其中突起溝槽之軌間距為400nm(線寬200nm,溝槽寬度200nm),以及所使用材料為FeS-SiO2 (摩耳比:76:24)。30A and 30B show photographs of a scanning electron microscope of another example of the microstructure of Example 15. The microstructure was formed on a polycarbonate substrate in which the pitch of the protrusion grooves was 400 nm (line width 200 nm, groove width 200 nm), and the material used was FeS-SiO 2 (moire ratio: 76:24).

此微結構之製造方法與實施例7之方法相同,所不同者為:形成FeS-SiO2 (摩耳比:76:24)之混合材料層202,使用FeS與SiO2 之兩個濺擊靶,以及改變藍色雷射光線204之脈衝光線輸出。第30A圖與第30B圖之脈衝光線輸出各為:1.1mW與1.4mW。The microstructure was fabricated in the same manner as in Example 7, except that a mixed material layer 202 of FeS-SiO 2 (Morby ratio: 76:24) was formed, and two splash targets of FeS and SiO 2 were used . And changing the pulsed light output of the blue laser light 204. The pulse light outputs of Figs. 30A and 30B are each: 1.1 mW and 1.4 mW.

微結構206是經由以下方式形成:以藍色雷射光線204照射,浸入於氫氟酸205中,以及蝕刻。在由藍色雷射光線204所照射之區域中,FeS與SiO2 可以被系統化,且對於氫氟酸205之蝕刻阻抗可以改善。The microstructures 206 are formed by illumination with blue laser light 204, immersion in hydrofluoric acid 205, and etching. In the region illuminated by the blue laser light 204, FeS and SiO 2 can be systemized, and the etching resistance to hydrofluoric acid 205 can be improved.

實施例16Example 16

在石英基板201上形成如同第19圖中所示而建構之微結構208。微結構208之材料為ZnS、SiO2 、以及Au(摩耳比:72:18:10)。在此時,可以使用玻璃載體而非石英基板201。A microstructure 208 constructed as shown in Fig. 19 is formed on the quartz substrate 201. The material of the microstructure 208 is ZnS, SiO 2 , and Au (Mohr ratio: 72:18:10). At this time, a glass carrier can be used instead of the quartz substrate 201.

此微結構208之製造方法與實施例9之方法相同,所不同者為:脈衝光線輸出各為8mW。其次,以下列方式製成DNA晶片。藉由使用噴墨系統,將10,000或更多種DNA斷片排列且固定作為在石英基板201上之微 點,而在此基板上形成微結構208。此噴墨方法有利於:用於控制從射出孔所釋出之數量。The manufacturing method of the microstructure 208 is the same as that of the embodiment 9, except that the pulse light output is 8 mW each. Next, a DNA wafer was produced in the following manner. By using an inkjet system, 10,000 or more DNA fragments are arranged and fixed as micro on the quartz substrate 201. Point, and a microstructure 208 is formed on the substrate. This ink jet method is advantageous for controlling the amount released from the exit aperture.

使DNA晶片與樣本DNA反應(混合化),在樣本DNA中單元之發現基因之標示是以螢光著色物質Cy3(綠)與Cy5(紅色)實施。由於彼此互補DNA之反應,而將具有相對應DNA之微點著色。此等微點之顏色可以使用高解析度DNA晶片分析裝置讀出,且可以從DNA晶片上DNA獲得樣本DNA之功能資料。The DNA wafer is reacted (mixed) with the sample DNA, and the genes found in the sample DNA are labeled with the fluorescent coloring substances Cy3 (green) and Cy5 (red). The micro dots having the corresponding DNA are colored due to the reaction of complementary DNA with each other. The color of these microdots can be read using a high resolution DNA wafer analysis device, and functional data of the sample DNA can be obtained from DNA on the DNA wafer.

DNA晶片之量產以下列方式為可能。將如同在實施例7中之平坦碟形石英基板201旋轉,而使得DNA晶片形成於具有大面積之晶圓上,以及藉由切割將晶圓切割成此等DNA晶片。例如,可以低成本製成具有大約4平方毫米之尺寸之DNA晶片。可以使用XY平台製成DNA晶片。Mass production of DNA wafers is possible in the following manner. The flat disk-shaped quartz substrate 201 as in Embodiment 7 is rotated, so that the DNA wafer is formed on a wafer having a large area, and the wafer is cut into such DNA wafers by cutting. For example, a DNA wafer having a size of about 4 square millimeters can be produced at low cost. DNA wafers can be made using the XY platform.

為了提高DNA之偵測效率,而如何將DNA斷片排列且固定作為微點則為重要。實施例16中之微結構配置具有大的特定表面積。在此時,當與使用微影術等所製成之DNA晶片比較時,可以低成本製成實施例16之DNA晶片。此在第19A-19B圖中所顯示之圓柱形組態中之微結構目前對於熱微影術為獨特,且其特定表面積比較大。In order to improve the detection efficiency of DNA, it is important to arrange and fix DNA fragments as micro-dots. The microstructure configuration of Example 16 has a large specific surface area. At this time, the DNA wafer of Example 16 can be produced at a low cost when compared with a DNA wafer produced by using lithography or the like. The microstructure in the cylindrical configuration shown in Figures 19A-19B is currently unique to thermo-lithography and has a relatively large specific surface area.

DNA晶片可以使用實施例16以外之材料與製造方法製成。在此時,在SiO2 中會產生某種缺氧。可以使用一種用於提高光學吸收能力之材料例如金屬或合金作為材料C。當選擇螢光材料例如CdTe或CdSe作為材料C時,可以使用螢光偵測。當使用金屬例如金作為材料C時,可以期待會有電漿激子效應。The DNA wafer can be made using materials and manufacturing methods other than those in Example 16. At this time, some kind of oxygen deficiency occurs in SiO 2 . As the material C, a material for improving the optical absorption ability such as a metal or an alloy can be used. When a fluorescent material such as CdTe or CdSe is selected as the material C, fluorescence detection can be used. When a metal such as gold is used as the material C, a plasma exciton effect can be expected.

實施例17Example 17

第32圖顯示實施例17之偏極化分離器元件300之組成成份。偏極化分離器元件300包括:ZnS層302,其形成於聚碳酸酯基板301上;以及線性微結構303,其周期地配置在ZnS層302上。偏極化分離器元件300具有功能:根據偏極化分離器元件300之特徵(周期、折射率),將具有特定波長之光線310分離成P偏極化光線311與S偏極化光線312。此P偏極化波之光線為一種偏極化分量,其中電場向量之振動平面平行於入射平面;以 及此S偏極化波之光線為一種偏極化分量,其中電場向量之振動平面垂直於入射平面。Figure 32 shows the composition of the polarized splitter element 300 of Example 17. The polarization polarizer element 300 includes a ZnS layer 302 formed on the polycarbonate substrate 301, and a linear microstructure 303 periodically disposed on the ZnS layer 302. The polarization polarizer element 300 has a function of separating the light rays 310 having a specific wavelength into P-polarized light rays 311 and S-polarized light rays 312 according to the characteristics (period, refractive index) of the polarization separator element 300. The light of the P-polarized wave is a polarization component, wherein the vibration plane of the electric field vector is parallel to the incident plane; The light of the S-polarized wave is a polarization component, wherein the vibration plane of the electric field vector is perpendicular to the incident plane.

第33A圖與第33D圖用於說明實施例17之偏極化分離器元件300之製造方法。首先,經由已知之光碟製造過程使用主基板、壓模、以及射出成形,以製造0.6mm厚之聚碳酸酯基板301,其中具有高度20nm與間距200nm之不平坦(突起與溝槽)形成為同心圓之形狀。其次,將10nm厚之ZnS層302、200nm厚之ZnS、SiO2 、以及Zn(摩耳比:64:13:33)之混合材料層304,以此順序經由RF濺擊而使用(來自Shibaura Mechatronics Co.)濺擊裝置CFS-8EP-55(參考第33A圖)、沉積在聚碳酸酯基板301上。33A and 33D are diagrams for explaining the method of manufacturing the polarization separator element 300 of Embodiment 17. First, a main substrate, a stamper, and injection molding are used through a known optical disc manufacturing process to manufacture a 0.6 mm thick polycarbonate substrate 301 in which unevenness (protrusions and grooves) having a height of 20 nm and a pitch of 200 nm is formed concentrically. The shape of the circle. Next, a 10 nm thick ZnS layer 302, a 200 nm thick ZnS, SiO 2 , and Zn (Morby ratio: 64:13:33) mixed material layer 304 are used in this order via RF splashing (from Shibaura Mechatronics). Co.) a splash device CFS-8EP-55 (refer to Fig. 33A) deposited on a polycarbonate substrate 301.

此來自雷射光線照射裝置(來自Shibasoku Co.)之具有波長405nm之藍色雷射光線306,由具有0.85NA之物鏡305會聚而聚焦於在其中實施追蹤之混合材料層304之表面上。將此雷射光線以3.5mW光學輸出持續地施加至被旋轉之聚碳酸酯基板301(參考第33B圖)。This blue laser light 306 having a wavelength of 405 nm from a laser light irradiation device (from Shibasoku Co.) is concentrated by an objective lens 305 having a 0.85 NA and focused on the surface of the mixed material layer 304 in which tracking is performed. This laser light was continuously applied to the rotated polycarbonate substrate 301 with a 3.5 mW optical output (refer to Fig. 33B).

然後,將聚碳酸酯基板301浸入於重量2%之氫氟酸307中10秒鐘且實施蝕刻(參考第33C圖)。在以純水將其清洗後將其涼乾,以獲得此在其中微結構303周期配置之偏極化分離器元件300(參考第33D圖)。Then, the polycarbonate substrate 301 was immersed in hydrofluoric acid 307 having a weight of 2% for 10 seconds and etching was performed (refer to Fig. 33C). After washing it with pure water, it is dried to obtain the polarized separator element 300 in which the microstructure 303 is periodically configured (refer to Fig. 33D).

此混合材料層304由雷射光線306適當照射而保持未蝕刻,且其轉變成微結構303。在實施例17中,混合材料層304之一部份形成作為突起(凸)而存留,混合材料層304之一部份形成作為溝槽(凹入)而被去除。為此原因,將相鄰之此等微結構303互連。This mixed material layer 304 is suitably illuminated by the laser ray 306 to remain unetched and converted into a microstructure 303. In Embodiment 17, a part of the mixed material layer 304 is formed to exist as a protrusion (convex), and a part of the mixed material layer 304 is formed as a groove (recess) to be removed. For this reason, adjacent microstructures 303 are interconnected.

第34A圖與第34B圖顯示實施例17之偏極化分離器元件300之掃描電子顯微鏡照片。第34A圖為偏極化分離器元件之頂視圖,以及第34B圖為當使用聚焦離子束(FIB)以形成偏極化分離器元件300之橫截面時偏極化分離器元件之透視圖。為了形成橫截面,而在第34B圖中微結構303之上部上沉積碳保護層308。Figures 34A and 34B show scanning electron micrographs of the polarized splitter element 300 of Example 17. Figure 34A is a top view of the polarized splitter element, and Figure 34B is a perspective view of the polarized splitter element when a focused ion beam (FIB) is used to form a cross section of the polarized splitter element 300. To form a cross section, a carbon protective layer 308 is deposited on top of the microstructure 303 in FIG. 34B.

由第34A-34B圖而為明顯,此等線性微結構303周期配置於偏極化分離器元件300中。此其中線性圖案以此方式形成之偏極化分離器元件稱為線柵偏極化器。As is apparent from the 34A-34B diagram, the linear microstructures 303 are periodically disposed in the polarization splitter element 300. The polarized splitter element in which the linear pattern is formed in this manner is referred to as a wire grid polarizer.

藉由將S偏極化光線進入偏極化分離器元件300(參考第33A圖)中,在 其中形成聚碳酸酯基板301、ZnS層302、以及混合材料層304,而可以測量透射波長對於S偏極化光線之依賴性,如同於第35圖中所示。類似地,藉由將S偏極化光線進入旋轉90度之偏極化分離器元件300,並且使用高速光譜橢圓器M-2000DI(來自日本J.A.Woollam)作為測量裝置,此測量點直徑大約為3mm,且此測量是使用線性偏極化於透射測量模式中實施。By entering the S-polarized light into the polarization splitter element 300 (see Figure 33A), The polycarbonate substrate 301, the ZnS layer 302, and the mixed material layer 304 are formed therein, and the dependence of the transmission wavelength on the S-polarized light can be measured as shown in FIG. Similarly, the measurement point is approximately 3 mm in diameter by entering the S-polarized light into the polarized splitter element 300 rotated 90 degrees and using the high-speed spectral ellipter M-2000DI (from JAWoollam, Japan) as the measuring device. And this measurement is performed using linear polarization in the transmission measurement mode.

在此時,偏極化分離器元件300之尺寸較測量點直徑為大。At this time, the size of the polarization splitter element 300 is larger than the diameter of the measurement point.

如同由第35圖為明顯,在此偏極化分離器元件300並未旋轉90度之情形中之中央波長為大約747nm,且可以看出下降。在此偏極化分離器元件300旋轉90度之情形中並未看出下降。因此,偏極化分離器元件300在中央波長大約747nm周圍之650-840nm波長範圍中、具有偏極化分離功能。As is apparent from Fig. 35, the central wavelength in the case where the polarization polarizer element 300 is not rotated by 90 degrees is about 747 nm, and the drop can be seen. The drop was not seen in the case where the polarized splitter element 300 was rotated 90 degrees. Therefore, the polarization splitter element 300 has a polarization separation function in the wavelength range of 650-840 nm around a central wavelength of about 747 nm.

其次,以與上例相同方式製成偏極化分離器元件300,所不同者為雷射光線306之持續光學輸出改變至3.0mW與2.5mW。Next, a polarized splitter element 300 is fabricated in the same manner as the above example, except that the continuous optical output of the laser ray 306 is changed to 3.0 mW and 2.5 mW.

第36A圖與第36B圖顯示當將持續光學輸出設定至2.5mW時,偏極化分離器元件300之掃描電子顯微鏡照片。第36A圖為偏極化分離器元件之頂視圖,以及第36B圖為當使用聚焦離子束(FIB)以形成偏極化分離器元件300之橫截面時偏極化分離器元件之透視圖。為了形成橫截面,而在第36B圖中微結構303之上部上沉積碳308。Figures 36A and 36B show scanning electron micrographs of the polarized splitter element 300 when the continuous optical output is set to 2.5 mW. Figure 36A is a top view of the polarized splitter element, and Figure 36B is a perspective view of the polarized splitter element when a focused ion beam (FIB) is used to form a cross section of the polarized splitter element 300. To form a cross section, carbon 308 is deposited on top of microstructure 303 in Figure 36B.

第37圖顯示偏極化分離器元件300之透射波長對於S偏極化光線之依賴度,如同由第37圖為明顯,在此偏極化分離器元件300旋轉90度、且將持續光學輸出設定至2.5mW之情形中,並未看出類似於以上例之下降(dip)。在此偏極化分離器元件300並未旋轉90度之情形中,在此其中持續光學輸出設定至3.5mW、3.0mW、以及2.5mW之情形之任何中,可以看出下降,且當持續光學輸出設定至大值之情形中,此下降深度為大,且其位移至低波長側。Figure 37 shows the dependence of the transmission wavelength of the polarized splitter element 300 on the S-polarized light, as is evident from Figure 37, where the polarized splitter element 300 is rotated 90 degrees and will continue to optical output. In the case of setting to 2.5 mW, no drop (dip) similar to the above example was observed. In the case where the polarization polarizer element 300 is not rotated by 90 degrees, in any of the cases where the continuous optical output is set to 3.5 mW, 3.0 mW, and 2.5 mW, the drop can be seen, and when the optics are continued In the case where the output is set to a large value, the falling depth is large, and it is shifted to the low wavelength side.

測量ZnS、SiO2 、以及Zn(摩耳比:64:13:33)對於2%重量之氫氟酸之蝕刻率。在非回火之情形中,蝕刻率大約為5.26nm/秒。在使用電爐(空氣大氣)在500℃實施回火30分鐘之情形中,蝕刻率大約為0.17nm/秒。此結果顯示:藉由實施回火之蝕刻率比(etching rate ratio)(非回火情形對回火情形之比)為大約33,且藉由回火而蝕刻阻抗快速改善。The etching rates of ZnS, SiO 2 , and Zn (Moire ratio: 64:13:33) for 2% by weight of hydrofluoric acid were measured. In the case of non-tempering, the etching rate is approximately 5.26 nm/second. In the case where tempering was performed at 500 ° C for 30 minutes using an electric furnace (air atmosphere), the etching rate was about 0.17 nm / sec. This result shows that the etching rate ratio (ratio of non-tempering to tempering) by the tempering is about 33, and the etching resistance is rapidly improved by tempering.

關於雷射光線照射與回火,此最後與最高溫度之達成時間不同,但其由於被供應熱而為一致。為此原因,在實施例17中,由雷射光線306供應熱被提及為此等因素之一,對於此等因素此混合材料層304圖案形成是以下列方式實施:藉由將此層浸入於氫氟酸307中,且在以雷射光線306照射後蝕刻。Regarding laser light irradiation and tempering, this is different from the time at which the maximum temperature is reached, but it is consistent due to the heat supplied. For this reason, in Embodiment 17, the supply of heat by the laser ray 306 is mentioned as one of the factors for which the patterning of the mixed material layer 304 is performed in the following manner: by immersing the layer It is etched in hydrofluoric acid 307 and after being irradiated with laser light 306.

而且,在當使用ZnS-SiO2 (摩耳比:80:20)進行相同實驗時,可以獲得幾乎相同蝕刻選擇性,且ZnS之結晶化可以被推測為:此種蝕刻阻抗產生大幅改變。Moreover, almost the same etching selectivity can be obtained when the same experiment is performed using ZnS-SiO 2 (Morby ratio: 80:20), and crystallization of ZnS can be presumed to be such that the etching resistance is largely changed.

當由ZnS、SiO2 、以及Zn所形成薄膜在大氣中在500℃回火30分鐘時,此在可見光範圍中透射增加,且此ZnO之繞射X-光尖峰可以由X-光繞射看出。這即是,檢查Zn之氧化。為此原因,亦可推測在混合材料層304中以雷射光線306照射而將Zn氧化。When a film formed of ZnS, SiO 2 , and Zn is tempered at 500 ° C for 30 minutes in the atmosphere, the transmission increases in the visible range, and the diffracted X-ray peak of the ZnO can be seen by X-ray diffraction. Out. That is, check the oxidation of Zn. For this reason, it is also presumed that Zn is oxidized by irradiation of the laser beam 306 in the mixed material layer 304.

即,如果混合材料層304被雷射光線306照射,則Zn所具有之光學吸收能力將吸收雷射光線306,而此層被氧化,且其在微結構303之可見光範圍中之透射增加。在此時,由於其在可見光範圍中為透明,當ZnS與SiO2 發出雷射光線306時,則實施透明材料之圖案形成。That is, if the mixed material layer 304 is illuminated by the laser ray 306, the optical absorption capacity of the Zn will absorb the laser ray 306, and this layer is oxidized and its transmission in the visible range of the microstructure 303 is increased. At this time, since it is transparent in the visible light range, when ZnS and SiO 2 emit laser light 306, patterning of the transparent material is performed.

此在樣本之光線透射、在此樣本中100-nm-厚之ZnS層形成於透光率93%之玻璃基板上,在波長300nm、405nm、以及550nm光線中樣本透光率各為:大約20%、大約60%、以及大約90%。The light transmission in the sample, in which a 100-nm-thick ZnS layer is formed on a glass substrate having a light transmittance of 93%, the light transmittance of the sample in the wavelengths of 300 nm, 405 nm, and 550 nm is: about 20 %, approximately 60%, and approximately 90%.

在另一方面,在200-1700波長範圍中,SiO2 之光線透射超過90%。在此時,ZnS-SiO2 (摩耳比:80:20)之圖案形成亦可以藉由照射光線而實施;此光線由ZnS-SiO2 (摩耳比:80:20)吸收例如:此波長為266nm之深紫外線(DUV)雷射光線,以及此波長為13.5nm之極端紫外線(EUV)雷射光線。On the other hand, in the wavelength range of 200-1700, the light of SiO 2 is transmitted by more than 90%. At this time, the pattern formation of ZnS-SiO 2 (moire ratio: 80:20) can also be carried out by irradiating light; this light is absorbed by ZnS-SiO 2 (moire ratio: 80:20), for example: this wavelength It is a 266 nm deep ultraviolet (DUV) laser beam and an extreme ultraviolet (EUV) laser beam with a wavelength of 13.5 nm.

然而,設備變得昂貴且亦須要照射時間,以致於所發出雷射光線之波長變短。在實施例17中,由於混合材料層之光學吸收能力提高且無須真空,此微結構可以藉由照射半導體雷射光線而製成,此雷射光線之可見範圍例如為波長為405nm、650nm、以及780nm。亦可以使用偏極化分離器元件300作為繞射光柵。However, the device becomes expensive and also requires irradiation time, so that the wavelength of the emitted laser light becomes short. In Embodiment 17, since the optical absorption capacity of the mixed material layer is improved and vacuum is not required, the microstructure can be formed by irradiating semiconductor laser light, and the visible range of the laser light is, for example, a wavelength of 405 nm, 650 nm, and 780nm. It is also possible to use the polarization splitter element 300 as a diffraction grating.

實施例18Example 18

第38圖中顯示所製成之光學濾波器。關於光學濾波器400,ZnS層402形成於聚碳酸酯基板401上,且微點似結構403周期地形成於此層上。為此原因,其具有功能根據光學濾波器400之特徵(周期、折射率),以反射特定波長光線410之P偏極化光線411或S偏極化光線412。The optical filter produced is shown in Fig. 38. Regarding the optical filter 400, a ZnS layer 402 is formed on the polycarbonate substrate 401, and a micro-dot-like structure 403 is periodically formed on this layer. For this reason, it has a function according to the characteristics (period, refractive index) of the optical filter 400 to reflect the P-polarized light 411 or the S-polarized light 412 of the specific wavelength ray 410.

第39A-39D圖中顯示光學濾波器400之製造方法。首先,此所製成具有厚度0.6mm之聚碳酸酯基板401之間距400nm之高度20nm與不平坦(突起與溝槽)、根據此使用主基板、壓模、以及射出模型之一般光碟之製程,而形成同心圓形狀。A method of manufacturing the optical filter 400 is shown in Figs. 39A-39D. First, a process for producing a general optical disc having a height of 400 nm from a polycarbonate substrate 401 having a thickness of 0.6 mm and unevenness (protrusions and grooves), a main substrate, a stamper, and an injection model according to the method is used. And form a concentric shape.

其次,此由10-nm-厚ZnS層402所形成具有厚度200nm之混合材料層404、與ZnS、SiO2 、以及Zn(摩耳比:64:13:33)依序形成於聚碳酸酯基板401上。此藉由RF濺擊使用濺擊裝置CFS-8EP-55(來自Shibaura Mechatronics Co.)而形成(參考第39A圖)。Next, the mixed material layer 404 having a thickness of 200 nm formed by the 10-nm-thick ZnS layer 402 is sequentially formed on the polycarbonate substrate with ZnS, SiO 2 , and Zn (moire ratio: 64:13:33). 401. This was formed by RF splashing using a splash device CFS-8EP-55 (from Shibaura Mechatronics Co.) (see Figure 39A).

此藍色雷射光線406之波長、藉由此光線之波長將此雷射光線照射設備(由Shibasoku Co.製造)之數值孔徑(NA)以0.85之物鏡405聚焦、此光線之波長為405nm。此聚焦是針對混合材料層404之表面實施,藉由此焦點而實施追蹤,且在其上實施脈衝光線照射,而以10mW之脈衝光線輸出至聚碳酸酯基板401使其旋轉(參考第39B圖)。The wavelength of the blue laser light 406, by the wavelength of the light, is such that the numerical aperture (NA) of the laser beam irradiation apparatus (manufactured by Shibasoku Co.) is focused at an objective lens 405 of 0.85, and the wavelength of the light is 405 nm. This focusing is performed on the surface of the mixed material layer 404, and tracking is performed by the focus, and pulsed light irradiation is performed thereon, and pulse light of 10 mW is output to the polycarbonate substrate 401 to be rotated (refer to FIG. 39B). ).

然後,將其浸入於重量2%之氫氟酸407中10秒鐘且蝕刻之後(參考第39C圖),並以純水將其清洗且被使得變乾,以及將所獲得光學濾波器400之微結構403周期地配置(參考第33D圖)。在此時,此以雷射光線406充分照射之混合材料層404存留,且其成為微結構403。此在軌道方向之微結構403之間隙為大約400nm。Then, it was immersed in hydrofluoric acid 407 having a weight of 2% for 10 seconds and after etching (refer to Fig. 39C), and it was washed with pure water and dried, and the optical filter 400 obtained was obtained. The microstructure 403 is periodically configured (refer to Figure 33D). At this time, the mixed material layer 404 which is sufficiently irradiated with the laser light 406 remains, and it becomes the microstructure 403. The gap between the microstructures 403 in the track direction is about 400 nm.

第40A圖與第40B圖中顯示光學濾波器400之掃描電子顯微鏡照片。第40A圖與第40B圖之照片各由頂表面方向與斜方向所擷取。Scanning electron micrographs of the optical filter 400 are shown in Figures 40A and 40B. The photographs of Figs. 40A and 40B are each taken from the top surface direction and the oblique direction.

藉由將S偏極化光線412進入光學濾波器400與聚碳酸酯基板401,而可以測量波長對於S偏極化光線之依賴性,如同於第41圖中所示。類似地,藉由將S偏極化光線412進入旋轉90度之光學濾波器400,而測量波長對於S偏極化光線之依賴性。在此測量中,使用高速光譜橢圓器M-2000DI(來自日本J.A.Woollam)作為測量裝置,此測量點直徑大約為3mm,且此測量 是使用線性偏極化於透射測量模式中實施。By entering the S-polarized light 412 into the optical filter 400 and the polycarbonate substrate 401, the dependence of the wavelength on the S-polarized light can be measured, as shown in FIG. Similarly, the dependence of the wavelength on the S-polarized light is measured by entering the S-polarized light 412 into an optical filter 400 that is rotated 90 degrees. In this measurement, a high-speed spectral ellipmeter M-2000DI (from J.A. Woollam, Japan) was used as a measuring device, and the measuring point has a diameter of about 3 mm, and this measurement It is implemented using linear polarization in the transmission measurement mode.

在當光學濾波器400並未旋轉90度之情形中,將674nm與701nm製成為光學濾波器400之中央波長,比較地看來有線寬之窄的下降,且對於第41圖旋轉90度,其結果為,藉由將655nm製成為中央波長而可以看出下降。In the case where the optical filter 400 is not rotated by 90 degrees, 674 nm and 701 nm are made as the central wavelength of the optical filter 400, which relatively appears to be a narrow drop in the line width, and for the 41st picture rotated by 90 degrees, As a result, the decrease can be seen by making 655 nm into the center wavelength.

因此,光學濾波器400所具有功能為,其過濾特定波長範圍之偏極化。在此時,此反射因素測量顯示此對應於下降波長之光線並未透射而被反射。Thus, optical filter 400 has the function of filtering the polarization of a particular wavelength range. At this time, this reflection factor measurement shows that the light corresponding to the falling wavelength is not transmitted and is reflected.

其次,除了改變雷射光線406之脈衝光線輸出之外,當如同上述而製成光學濾波器400時,可以看出對於下降深度之傾向為:此脈衝光線輸出愈大則其下降愈深。在此情形中,亦如同在實施例17中,此透明材料之圖案形成是藉由照射雷射光線406而實施。Secondly, in addition to changing the pulsed light output of the laser beam 406, when the optical filter 400 is fabricated as described above, it can be seen that the tendency for the depth of fall is that the larger the pulse light output is, the deeper the drop. In this case as well, in Example 17, the patterning of the transparent material is carried out by irradiating the laser beam 406.

實施例19Example 19

作為發光裝置之例,而製成在第42A圖與第42B圖中所顯示之無機電致發光(EL)元件500A。在一EL元件中,藉由正電洞與負電子之重新組合而產生發光。雖然,平坦基板通常使用於EL元件中,如果使用此種基板其中形成不平坦圖案,則小於臨界角之入射光線依據酸阻抗效應將會透過,且此超過臨界角之入射光線無法擷取而通常可以作為繞射光線而擷取。因此,光學擷取效率增加至大約1.5倍。As an example of the light-emitting device, the inorganic electroluminescence (EL) element 500A shown in Figs. 42A and 42B is formed. In an EL element, light is generated by recombination of a positive hole and a negative electron. Although a flat substrate is generally used in an EL element, if such a substrate is used to form an uneven pattern, incident light rays smaller than a critical angle are transmitted according to an acid impedance effect, and incident light exceeding a critical angle cannot be extracted, and usually Can be taken as a diffracted light. Therefore, the optical pickup efficiency is increased to about 1.5 times.

此無機EL元件500A包括偏極化分離器元件300(繞射光柵),其中,ZnS層302形成於聚碳酸酯基板301上,以及線性微結構303周期地形成於ZnS層302上。在此未形成微結構303之聚碳酸酯基板301之表面上、以下列順序依序堆疊:由銦錫氧化物(ITO)所形成之陰極501、由ZnS-Mn(Mn之含量百分比為數個重量百分比)、以及由鋁所形成之陽極板503。This inorganic EL element 500A includes a polarization splitter element 300 (diffraction grating) in which a ZnS layer 302 is formed on a polycarbonate substrate 301, and a linear microstructure 303 is periodically formed on the ZnS layer 302. On the surface of the polycarbonate substrate 301 on which the microstructures 303 are not formed, they are sequentially stacked in the following order: a cathode 501 formed of indium tin oxide (ITO), and a ZnS-Mn content (% by weight of Mn) Percent), and an anode plate 503 formed of aluminum.

類似於無機EL元件500A,無機EL元件500B具有繞射光柵,且陰極501、發光層502、以及陽極板503以此順序依序堆疊微結構303上。Similar to the inorganic EL element 500A, the inorganic EL element 500B has a diffraction grating, and the cathode 501, the light-emitting layer 502, and the anode plate 503 are sequentially stacked on the microstructure 303 in this order.

在此實施例中,各微結構303具有在可見光範圍中高的透射,且其適合作為構成EL元件之材料。In this embodiment, each of the microstructures 303 has a high transmission in the visible light range, and it is suitable as a material constituting the EL element.

如果將直流電壓或交流電壓施加介於陰極501與陽極板503之間,則可 以看到黃-橘發光(中央波長:585nm),且在無機EL元件500A與500B各情形中,此發光效率(光學擷取效率)從未形成微結構303之情形而增加。If a DC voltage or an AC voltage is applied between the cathode 501 and the anode plate 503, In order to see the yellow-orange light emission (central wavelength: 585 nm), and in the case of the inorganic EL elements 500A and 500B, the luminous efficiency (optical extraction efficiency) is increased from the case where the microstructure 303 is not formed.

在實施例19中,將ZnS-Mn使用於發光層502,但本發明並不受限於此實施例。以替代方式,可以使用任何其他發光材料,例如:CaSSe-Eu、CaS-Eu、SrS、Cu、SrS-Ce、BaAl2 S4 -Eu、BaZnS3 -Mn、以及ZnMgO。In Example 19, ZnS-Mn was used for the light-emitting layer 502, but the present invention is not limited to this embodiment. Alternatively, any other luminescent material may be used, such as: CaSSe-Eu, CaS-Eu, SrS, Cu, SrS-Ce, BaAl 2 S 4 -Eu, BaZnS 3 -Mn, and ZnMgO.

此外,可以以下方式形成有機EL裝置:藉由使用例如以次苯基-乙烯撐為基與以芳撐基、而用於發光層502之有機發光材料;以及供應直流電壓。Further, the organic EL device can be formed in the following manner: by using, for example, an organic light-emitting material for the light-emitting layer 502 based on a phenylene-vinylene group and an arylene group; and supplying a DC voltage.

實施例20Example 20

作為光電轉換器之例而製成在第43圖中所顯示染料-敏感太陽電池600。光電轉換器具有光電轉換層,其吸收光線將其轉換成電。此所吸收光線之數量隨著此光電轉換層厚度增加而增加。此由矽半導體或有機半導體所形成之光電轉換層具有光生伏特效應。如果此p-n接面部份或Schottky接面部份由受到受激光線照射,則所產生之電子與正電洞藉由介面電場而彼此分離,且在其間產生電位差。The dye-sensitive solar cell 600 shown in Fig. 43 is produced as an example of a photoelectric converter. The photoelectric converter has a photoelectric conversion layer that absorbs light to convert it into electricity. The amount of light absorbed is increased as the thickness of the photoelectric conversion layer increases. This photoelectric conversion layer formed of a germanium semiconductor or an organic semiconductor has a photovoltaic effect. If the p-n junction portion or the Schottky junction portion is irradiated by the laser line, the generated electrons and the positive holes are separated from each other by the interface electric field, and a potential difference is generated therebetween.

通常,平坦之基板使用於光電轉換器。如果使用此基板其中形成不平坦圖案,則在此光電轉換層中多路徑反射增加,且光子包含效應提高。因此,光電轉換效率增加3%至5%。Generally, a flat substrate is used for the photoelectric converter. If an uneven pattern is formed in this substrate, multipath reflection increases in this photoelectric conversion layer, and the photon inclusion effect is improved. Therefore, the photoelectric conversion efficiency is increased by 3% to 5%.

類似於實施例17,在此染料-敏感太陽電池600中,線性微結構602形成於平坦玻璃基板601上,且陰極603更形成於微結構602上。Similar to Example 17, in this dye-sensitive solar cell 600, a linear microstructure 602 is formed on a flat glass substrate 601, and a cathode 603 is formed on the microstructure 602.

光電轉換層606設置介於陽極板605之間、形成於玻璃基板604與陰極603上。著色物質二氧化鈦為一種電解質、以及氧化還原(redox)對包含於光電轉換層606中。The photoelectric conversion layer 606 is disposed between the anode plates 605 and formed on the glass substrate 604 and the cathode 603. The coloring matter titanium dioxide is an electrolyte, and a redox pair is contained in the photoelectric conversion layer 606.

作為著色物質,RuL2(NCS)2(L=4,4'-双梭基-2,2'-双氮(雜)苯為使用於此實施例中之釕(ruthenium)複合物。然而,本發明並不受限於此實施例。以替代方式,可以替代使用另一種著色物質,例如樸磷基或花青基。As a coloring matter, RuL2(NCS)2 (L=4,4'-bisxyzol-2,2'-bisaza(hetero)benzene is a ruthenium complex used in this embodiment. However, this The invention is not limited to this embodiment. Alternatively, another color-developing substance such as a P- or a cyanine group may be used instead.

作為二氧化鈦,其顆粒之顆粒直徑尺寸為大約10-30nm而使用於本實施例中。對於二氧化鈦顆粒之X線繞射顯示其大部份為銳鈦礦型式。二氧化鈦可以由濺擊法形成。如果包含非晶體則其光電轉換效率降低。為了避免 此種情形,較佳使用具有高度結晶度之顆粒。As the titanium oxide, the particles have a particle diameter of about 10 to 30 nm and are used in the present embodiment. The X-ray diffraction of the titanium dioxide particles shows that most of them are anatase type. Titanium dioxide can be formed by splashing. If amorphous is included, its photoelectric conversion efficiency is lowered. in order to avoid In this case, particles having a high degree of crystallinity are preferably used.

作為電解質與氧化還原對,在本實施例中使用此用於低輸出電池(來自Solaronix Co.)之電解溶液Iodolyte TG 50(其中,將0.5M之鋰碘化物LiI)與0.05M之金屬碘(I2)添加至分子量200之聚乙烯甘醇)。然而,本發明並不受限於此實施例。作為電解質可以使用:陽離子例如鋰離子,以及陰離子例如氯離子。作為氧化還原對,可以使用碘-碘複合物、溴-溴複合物之任何者。As the electrolyte and the redox pair, this electrolytic solution Iodolyte TG 50 (where 0.5 M lithium iodide LiI) for low output battery (from Solaronix Co.) and 0.05 M metal iodine (in this example) were used in this example ( I2) is added to polyethylene glycol having a molecular weight of 200). However, the invention is not limited to this embodiment. As the electrolyte, a cation such as a lithium ion, and an anion such as a chloride ion can be used. As the redox pair, any of an iodine-iodine complex and a bromine-bromine complex can be used.

在光電轉換層606中,此著色物質吸收光線以發射電子,且此半導體之二氧化鈦(TiO2 )接收電子,而將其轉送至陰極603。此等電洞(h+)保存在著色物質中而氧化碘離子(I-),且形成三碘離子(I3-)。此I3-由陽離子板605還原。藉由重複以上循環而產生電。In the photoelectric conversion layer 606, the coloring matter absorbs light to emit electrons, and the titanium dioxide (TiO 2 ) of the semiconductor receives electrons and transfers it to the cathode 603. These holes (h+) are stored in the coloring matter to oxidize the iodide ion (I-), and form a triiodide ion (I3-). This I3- is reduced by the cation plate 605. Electricity is generated by repeating the above cycle.

作為陰極603與陽極板605,在本實施例中可以使用銦錫氧化物(ITO:5%錫氧化物,95%銦氧化物)。然而,本發明並不受限於此實施例。以替代方式,可以使用FTO薄膜,其中將氟摻雜至錫氧化物。As the cathode 603 and the anode plate 605, indium tin oxide (ITO: 5% tin oxide, 95% indium oxide) can be used in the present embodiment. However, the invention is not limited to this embodiment. Alternatively, an FTO film can be used in which fluorine is doped to tin oxide.

微結構602可以製成於聚碳酸鹽基板等上、而非於石英之玻璃基板601上。然而,在光電轉換器中,當形成ITO時溫度增加至大約500℃,且通常使用具有良好熱阻抗之玻璃基板701。在此實施例中之微結構602包含ZnO。The microstructure 602 can be formed on a polycarbonate substrate or the like instead of the quartz glass substrate 601. However, in the photoelectric converter, the temperature is increased to about 500 ° C when ITO is formed, and a glass substrate 701 having a good thermal resistance is generally used. The microstructure 602 in this embodiment comprises ZnO.

微結構602亦可應用至染料敏感式太陽電池以外之太陽電池,例如:矽薄膜太陽電池、CIGS太陽電池(Cu(Inl-x、Gax)Se2 )、以及使用銅-銦-鎵-硒材料之太陽電池。The microstructure 602 can also be applied to solar cells other than dye-sensitive solar cells, such as germanium thin film solar cells, CIGS solar cells (Cu (Inl-x, Gax) Se 2 ), and copper-indium-gallium-selenium materials. Solar battery.

實施例21Example 21

第44A圖與第44B圖中顯示所製成之非球形光學透鏡。第44A圖為非球形光學透鏡之透視圖,以及第44B圖為非球形光學透鏡之橫截面圖。其最大直徑為大約2微米,其高度為大約2.5微米,此非球形光學透鏡700為接近超半球形組態,且其最大直徑稍微大於與石英基板701接觸表面之透鏡之直徑。The resulting aspherical optical lens is shown in Figures 44A and 44B. Figure 44A is a perspective view of a non-spherical optical lens, and Figure 44B is a cross-sectional view of a non-spherical optical lens. The largest diameter is about 2 microns and its height is about 2.5 microns. This aspherical optical lens 700 is of a nearly hyper-hemispherical configuration and has a maximum diameter that is slightly larger than the diameter of the lens that is in contact with the quartz substrate 701.

此對於具有660nm波長之光線之透射為大約90%,且此非球形透鏡700在可見光範式中具有足夠可供使用之透射。This is about 90% transmission for light having a wavelength of 660 nm, and this aspheric lens 700 has sufficient transmission in the visible light paradigm.

此非球形表面光學透鏡700可以與在實施例18中相同方式製成,所不 同者為其使用平坦石英基板701而非聚碳酸酯基板401,且使用波長為780nm之雷射光線,而非波長為405nm之藍色雷射光線506。This aspherical surface optical lens 700 can be made in the same manner as in Embodiment 18, The same uses a flat quartz substrate 701 instead of the polycarbonate substrate 401, and uses a laser light having a wavelength of 780 nm instead of a blue laser light 506 having a wavelength of 405 nm.

從此粉末X-光繞射之結果可以發現,此非球形光學透鏡700具有非常弱的Zn尖峰與強的ZnO尖峰。此顯示Zn被大部份氧化且形成ZnO。因此,此非球形光學透鏡700在可見光範圍中之透射增加。From the results of the powder X-ray diffraction, it was found that the aspherical optical lens 700 has a very weak Zn peak and a strong ZnO peak. This shows that Zn is mostly oxidized and forms ZnO. Therefore, the transmission of this aspherical optical lens 700 in the visible range increases.

由此薄膜回火實驗結果可以估計,此非球形表面光學透鏡700之折射率為大約2.2。此非球形光學透鏡700具有較石英為大之折射率,且包含無機材料,且其可靠度為高。此非球形表面光學透鏡700可以製成於石英基板701上且可以容易地分割成此等片。From the results of the film tempering experiment, it can be estimated that the refractive index of the aspherical surface optical lens 700 is about 2.2. This non-spherical optical lens 700 has a refractive index larger than that of quartz and contains an inorganic material, and its reliability is high. This aspherical surface optical lens 700 can be fabricated on a quartz substrate 701 and can be easily divided into such sheets.

此非球形光學透鏡700之組態並不受限制。且藉由改變雷射光線506之脈衝光線強度或混合材料層504之厚度,而可以將此非球形光學透鏡700配置於半球形組態中。The configuration of this aspherical optical lens 700 is not limited. The non-spherical optical lens 700 can be configured in a hemispherical configuration by varying the pulsed light intensity of the laser beam 506 or the thickness of the mixed material layer 504.

其次,參考所附圖式以說明本發明寫一次資訊記錄媒體之實施例。Next, an embodiment of the present invention for writing an information recording medium will be described with reference to the accompanying drawings.

第45A圖與第45B圖中顯示實施例1(本發明寫一次資訊記錄媒體之例)之寫一次資訊記錄媒體之橫截面結構。第45A圖顯示此寫一次光學記錄媒體在由雷射光線照射而記錄前之狀態,且第45B圖顯示此寫一次光學記錄媒體在由雷射光線照射而記錄後之狀態。第45A圖與第45B圖之說明為概要圖說明,且並不對應於實際厚度或尺寸。The cross-sectional structure of the write-once information recording medium of Embodiment 1 (an example in which the present invention writes an information recording medium) is shown in Figs. 45A and 45B. Fig. 45A shows the state before the recording of the optical recording medium before being irradiated by the laser light, and Fig. 45B shows the state after the recording of the optical recording medium by the laser light. The description of Figures 45A and 45B is for illustrative purposes and does not correspond to actual thickness or size.

在實施例1中之寫一次光學記錄媒體中,此軌間距為0.32微米,且載體至雜訊比(CNR)為45dB,而所具有之記錄記號周期為300nm。此基板1為聚碳酸酯基板,其具有突起與溝槽之重複不平坦,而具有0.32微米之軌間距。在基板1上,以下列順序依序沉積:具有厚度40nm之Ag之反射層2;具有厚度50nm之ZnS-SiO2 (摩耳比:80:20)之下介電層3;具有厚度15nm之ZnS、SiO2 、ZnTe(摩耳比:70:20:10)之記錄層4;具有厚度40nm之ZnS-SiO2 (摩耳比:80:20)之上介電層5;以及具有厚度100微米之光線透射式亞克力樹脂之保護層6。In the write-once optical recording medium of Embodiment 1, the track pitch was 0.32 μm, and the carrier-to-noise ratio (CNR) was 45 dB, and the recording mark period was 300 nm. This substrate 1 is a polycarbonate substrate having a repeating unevenness of protrusions and grooves and having a track pitch of 0.32 μm. On the substrate 1, sequentially deposited in the following order: a reflective layer 2 having Ag having a thickness of 40 nm; a dielectric layer 3 having a thickness of 50 nm of ZnS-SiO 2 (moire ratio: 80:20); having a thickness of 15 nm a recording layer 4 of ZnS, SiO 2 , ZnTe (molar ratio: 70:20:10); a dielectric layer 5 having a thickness of 40 nm of ZnS-SiO 2 (moire ratio: 80:20); and having a thickness of 100 Micron light transmissive protective layer of acrylic resin 6.

如果實施例1之寫一次光學記錄媒體之記錄層4使用光學擷取記錄記號7而由雷射光線照射、此記號由空腔形成、而可以形成於記錄層4中如同於第45B圖中所示,以致於資訊記錄於記錄層4中。If the recording layer 4 of the optical recording medium of the first embodiment is written by the laser light using the optical pickup recording mark 7, the mark is formed by the cavity, and can be formed in the recording layer 4 as in the 45B chart. So that the information is recorded in the recording layer 4.

實施例1之寫一次光學記錄媒體以下列方式製成。這即是,此聚碳酸之基板1其具有突起與溝槽0.32微米軌間距之重複不平坦、是使用壓模經由射出成形製成。其次,反射層2(Ag,厚度:40nm),下介電層3(ZnS-SiO2 ,摩耳比:80:20,厚度:50nm),記錄層4(ZnS、SiO2 、ZnTe,摩耳比:70:20:10,厚度:15nm),以及上介電層5(ZnS-SiO2 ,摩耳比:80:20,厚度:40nm),以此順序,使用(來自Shibaura Mechatronics Co.)濺擊裝置CFS-8EP-55經由濺擊而依序沉積在基板1上。The write once optical recording medium of Example 1 was produced in the following manner. That is, the polycarbonate substrate 1 has a repeating unevenness in the pitch of the projections from the groove of 0.32 μm, and is formed by injection molding using a stamper. Next, the reflective layer 2 (Ag, thickness: 40 nm), the lower dielectric layer 3 (ZnS-SiO 2 , molar ratio: 80:20, thickness: 50 nm), the recording layer 4 (ZnS, SiO 2 , ZnTe, Mohr) Ratio: 70:20:10, thickness: 15 nm), and upper dielectric layer 5 (ZnS-SiO 2 , molar ratio: 80:20, thickness: 40 nm), in this order, used (from Shibaura Mechatronics Co.) The splash device CFS-8EP-55 is sequentially deposited on the substrate 1 by splashing.

然後,在介電層5上實施亞克力樹脂之旋塗,實施藉由紫外線照射之硬化,以及形成保護層6(光線透射式,厚度:100微米)。Then, spin coating of an acrylic resin was carried out on the dielectric layer 5, hardening by ultraviolet irradiation was performed, and a protective layer 6 (light transmissive type, thickness: 100 μm) was formed.

實施例1之寫一次資訊記錄媒體之記錄與再製以下列方式實施。即,此藍色雷射光線(波長:405nm)藉由:此具有如同在第48B圖中所示具有光學擷取之雷射光線照射裝置之物鏡12(透鏡NA:0.85),而聚焦於記錄層4之表面上。此聚焦是從保護層6側實施,此雷射光線根據預定記錄策略(在記錄時雷射光線之發射波形控制)而被多重脈衝調變,且隨機資料記錄在記錄層4中。Recording and reproduction of the information recording medium of the first embodiment is carried out in the following manner. That is, the blue laser light (wavelength: 405 nm) is: by having the objective lens 12 (lens NA: 0.85) having the optical light irradiation device as shown in Fig. 48B, focusing on the recording On the surface of layer 4. This focusing is performed from the side of the protective layer 6, which is modulated by multiple pulses in accordance with a predetermined recording strategy (controlled by the emission waveform of the laser light at the time of recording), and random data is recorded in the recording layer 4.

類似地,此資訊藉由持續照射雷射光線(波長:405nm)、使用光學擷取、而從記錄媒體再製,且觀察此所再製信號。以此方式,此資訊根據在實施例1之寫一次光學記錄媒體之記錄層4中所記錄之隨機資料而再製,以及檢查此實施例1之寫一次光學記錄媒體之功能與性能表現。Similarly, this information is reproduced from the recording medium by continuously irradiating the laser light (wavelength: 405 nm) using optical pickup, and the reproduced signal is observed. In this manner, this information is reproduced based on the random data recorded in the recording layer 4 of the optical recording medium of the first embodiment, and the function and performance of the write-once optical recording medium of this embodiment 1 are examined.

在記錄後,在當使用原子力顯微鏡(AFM)檢查表面組態時,在此寫一次光學記錄媒體之記錄層4中形成記錄記號之區域中可以觀察到空腔與擴張。After the recording, when the surface configuration was examined using an atomic force microscope (AFM), the cavity and the expansion were observed in the region where the recording marks were formed in the recording layer 4 of the optical recording medium.

此擴張包括微空腔於其中。各空腔與擴張是在由雷射光線照射記錄層4以實施記錄之後產生,且由於空腔與擴張之存在,在記錄之前與之後此記錄層4之反射因素改變。且其被証實,此根據上述隨機資料之資訊是記錄在記錄層4中,且此資訊為可再製。This expansion includes a microcavity therein. Each cavity and expansion is generated after the recording layer 4 is irradiated with laser light to perform recording, and the reflection factor of the recording layer 4 changes before and after recording due to the existence of the cavity and the expansion. And it is confirmed that the information based on the above random data is recorded in the recording layer 4, and the information is reproducible.

進行以下實驗以觀察:在實施例1之寫一次光學記錄媒體之記錄層4中形成記錄記號中所存在之空腔與擴張。The following experiment was conducted to observe that the cavity and the expansion existing in the recording mark were formed in the recording layer 4 of the optical recording medium in which the writing of the first embodiment was performed.

即,所觀察之樣本以下列方式形成。ZnS、SiO2 、ZnTe(摩耳比:70:20:10,厚度:40nm)之記錄層4,使用(來自Shibaura Mechatronics Co.)濺 擊裝置CFS-8EP-55經由濺擊而形成於聚碳酸之基板1上。且對此樣本之記錄層實施脈衝雷射照射(波長:405nm,物鏡NA: 0.85)。以400nm之間隔實施脈衝雷射照射,且線性速度為4.5m/sec。That is, the observed sample is formed in the following manner. Recording layer 4 of ZnS, SiO 2 , ZnTe (molar ratio: 70:20:10, thickness: 40 nm) was formed by sputtering (from Shibaura Mechatronics Co.) splash device CFS-8EP-55 by sputtering On the substrate 1. The recording layer of this sample was subjected to pulsed laser irradiation (wavelength: 405 nm, objective lens NA: 0.85). Pulsed laser irradiation was performed at intervals of 400 nm, and the linear velocity was 4.5 m/sec.

第46A圖與第46B圖中顯示在此時樣本之表面(此記錄層4)中所形成記錄記號之掃描電子顯微鏡(SEM)照片。在寫一次光學記錄媒體之狀態中,保護層6是堆疊在記錄層4上,且觀察記錄層4表面狀態為困難。在此等實驗中,備製上述樣本,且觀察在記錄層4中所形成之記錄記號。Scanning electron microscope (SEM) photographs of the recording marks formed at the surface of the sample (this recording layer 4) at this time are shown in Figs. 46A and 46B. In the state in which the optical recording medium is written once, the protective layer 6 is stacked on the recording layer 4, and it is difficult to observe the surface state of the recording layer 4. In these experiments, the above samples were prepared, and the recording marks formed in the recording layer 4 were observed.

第46A圖顯示當雷射光線照射強度為6mW時之SEM照片,以及第46B圖顯示當雷射光線照射強度為7mW時之SEM照片。Fig. 46A shows an SEM photograph when the laser light irradiation intensity is 6 mW, and Fig. 46B shows an SEM photograph when the laser light irradiation intensity is 7 mW.

在第46B圖之情形中,具有直徑大約80nm之洞9形成於幾乎所有雷射光線照射部份上。在第46A圖之情形中,雷射光線照射部份是在擴張狀態中,且此等空腔是形成於雷射照射部份8中,此等狀態由AFM測量或傳輸電子顯微鏡(TEM)類似地觀察。In the case of Fig. 46B, a hole 9 having a diameter of about 80 nm is formed on almost all of the portion irradiated with the laser light. In the case of Fig. 46A, the portion irradiated with the laser light is in an expanded state, and the cavities are formed in the laser irradiating portion 8, which are similar to those measured by AFM or transmission electron microscope (TEM). Earth observation.

據估計,此擴張(狀態)與空腔造成在本發明之寫一次資訊記錄媒體中反射因素改變。雖然,此雷射光線之點直徑為大約400nm,本發明之寫一次資訊記錄媒體之優點為,可以形成此等具有80nm直徑的孔,其足夠地小於點直徑。It is estimated that this expansion (state) and cavity cause a change in the reflection factor in the information recording medium in which the present invention is written. Although the spot diameter of the laser light is about 400 nm, the advantage of writing an information recording medium of the present invention is that such holes having a diameter of 80 nm can be formed which are sufficiently smaller than the dot diameter.

此構成實施例1之寫一次資訊記錄媒體中記錄層4之混合無機材料包含:鋅硫化物(ZnS)作為材料A之硫複合物;二氧化矽(SiO2 )作為材料B之矽氧化物;以及鋅化碲(ZnTe)作為材料C。此具有厚度15nm之ZnS-SiO2 (摩耳比:50:50-90:10)光線透射、其厚度與在實施例1之寫一次資訊記錄媒體中記錄層4之厚度相同,為大約100%。這即是,ZnS-SiO2 等同於混合無機材料以構成記錄層4,從此將為材料C之ZnTe排除。此顯示藉由添加此為材料C之ZnTe,此ZnS-SiO2 之可見光範圍中之光線透射降低。The mixed inorganic material constituting the recording layer 4 in the information recording medium of the first embodiment comprises: zinc sulfide (ZnS) as the sulfur composite of the material A; cerium oxide (SiO 2 ) as the cerium oxide of the material B; And zinc lanthanum (ZnTe) is used as the material C. This ZnS-SiO 2 (moire ratio: 50:50-90:10) having a thickness of 15 nm is transmitted through light having a thickness equal to that of the recording layer 4 in the information recording medium of the first embodiment, which is about 100%. . That is, ZnS-SiO 2 is equivalent to the mixed inorganic material to constitute the recording layer 4, and thus the ZnTe of the material C is excluded. This shows that by adding this as ZnTe of material C, the transmission of light in the visible range of this ZnS-SiO 2 is reduced.

特定而言,當在可見光範圍中之光線透射在此由ZnS-SiO2 (材料A與材料B)所形成之層、與由ZnS、SiO2 、以及ZnTe(混合無機材料:材料A、:材料B、以及材料C)所形成之層之間相對於相同厚度比較時,其結果為當ZnTe之含量比增加時,此整個透射下降(其從100%下降至60%),但光學吸收能力增加(吸光係數k從10-1 之數量級增加至10-3 之數量級)。光學吸收 能力使用光譜橢圓器而測量。In particular, when light in the visible range is transmitted through a layer formed of ZnS-SiO 2 (material A and material B), and by ZnS, SiO 2 , and ZnTe (mixed inorganic material: material A, material: B, and when the layers formed by the material C) are compared with respect to the same thickness, the result is that as the content ratio of ZnTe increases, the overall transmission decreases (from 100% to 60%), but the optical absorption capacity increases. (The absorption coefficient k increases from the order of 10 -1 to the order of 10 -3 ). The optical absorption capacity is measured using a spectroscopic elliptical.

ZnS-SiO2 (摩耳比:80:20)之吸光係數k在405nm波長上為大約1x10-3 。在另一方面,此以混合無機材料所形成記錄層4之吸光係數k在405nm波長上為大約1x10-1 。因此,在實施例1中,由於將材料C添加至記錄層,其結果為使得吸光係數k為大約1x10-1 ,且可以使得藍色半導體雷射光線容易吸收。此吸光係數k使用光譜橢圓器(來自J.A,Woollam,日本VASE)而測量。The absorption coefficient k of ZnS-SiO 2 (molar ratio: 80:20) is about 1 x 10 -3 at a wavelength of 405 nm. On the other hand, the absorption coefficient k of the recording layer 4 formed by mixing the inorganic material is about 1 x 10 -1 at a wavelength of 405 nm. Therefore, in Embodiment 1, since the material C is added to the recording layer, the result is that the absorption coefficient k is about 1×10 -1 , and the blue semiconductor laser light can be easily absorbed. This absorption coefficient k was measured using a spectroscopic elliptical device (from JA, Woollam, Japan VASE).

在第45A圖與第45B圖中所顯示實施例1之寫一次資訊記錄媒體中,記錄層4是插於下介電層3與上介電層5之間。反之,在第47A圖與第47B圖中所顯示實施例2之寫一次資訊記錄媒體中,下介電層3與上介電層5並不存在,但記錄層4形成於基板1上,且保護層6直接形成於記錄層4上。在實施例1中記錄層4之厚度為15nm,但在實施例2中記錄層4之厚度改變至40nm。In the write-once information recording medium of the embodiment 1 shown in Figs. 45A and 45B, the recording layer 4 is interposed between the lower dielectric layer 3 and the upper dielectric layer 5. On the other hand, in the write-once information recording medium of the embodiment 2 shown in FIGS. 47A and 47B, the lower dielectric layer 3 and the upper dielectric layer 5 are not present, but the recording layer 4 is formed on the substrate 1, and The protective layer 6 is formed directly on the recording layer 4. The thickness of the recording layer 4 in Example 1 was 15 nm, but the thickness of the recording layer 4 was changed to 40 nm in Example 2.

第47A圖為實施例2之寫一次資訊記錄媒體之平面圖,以及第47B圖為實施例2之寫一次資訊記錄媒體之橫截面圖。Fig. 47A is a plan view showing the information recording medium once written in the embodiment 2, and Fig. 47B is a cross-sectional view showing the information recording medium in the second embodiment.

實施例1之寫一次資訊記錄媒體所具有之組成成份為:其中,此記錄層4是設置在下介電層3與上介電層5之間,且相較於實施例2之寫一次資訊記錄媒體,其可靠度優異。類似於實施例1之寫一次資訊記錄媒體,檢查此實施例2之寫一次資訊記錄媒體是否可以根據在記錄層4中之隨機資料以實施資訊之記錄與再製。由於此檢查,其結果為:可以類似於實施例1之寫一次資訊記錄媒體而實施記錄與再製。The composition of the information recording medium of the first embodiment has the composition that the recording layer 4 is disposed between the lower dielectric layer 3 and the upper dielectric layer 5, and writes an information record as compared with the embodiment 2. The media has excellent reliability. Similarly to the writing of the information recording medium of the embodiment 1, it is checked whether or not the information recording medium of the second embodiment can be recorded and reproduced based on the random data in the recording layer 4. As a result of this check, the result is that recording and reproduction can be performed similarly to the writing of the information recording medium of Embodiment 1.

在實施例3中,製成此用於光學資訊記錄媒體(磁碟)之主機板。第48A圖中顯示在實施例3中所製主機板之平面圖。如同於第48A圖中所示,記錄坑洞11形成於薄膜10上。軌間距為0.32微米,且最短坑洞尺寸為150nm。此所使用基板為石英基板。In Embodiment 3, this motherboard for an optical information recording medium (disk) is produced. A plan view of the motherboard manufactured in Embodiment 3 is shown in Fig. 48A. As shown in Fig. 48A, the recording pit 11 is formed on the film 10. The rail spacing is 0.32 microns and the shortest pit size is 150 nm. The substrate used here is a quartz substrate.

如果使用在實施例3中所獲得之石英主基板,可以製成用於光碟射出成形與光學資訊記錄媒體之壓模。If the quartz main substrate obtained in the embodiment 3 is used, a stamper for optical disk injection molding and an optical information recording medium can be produced.

其次,參考第48B圖以說明第48A圖主基板之製造方法。Next, referring to Fig. 48B, a method of manufacturing the main substrate of Fig. 48A will be described.

第48B圖為顯示主基板之橫截面圖。當此為在石英基板14上所形成圖 案形成層之薄膜10由此使用物鏡12所聚焦雷射光線13照射時,形成此等記錄坑洞11(凹入圖案(洞或凹入))。Figure 48B is a cross-sectional view showing the main substrate. When this is a picture formed on the quartz substrate 14 When the film 10 of the film formation layer is irradiated with the laser beam 13 focused by the objective lens 12, the recording holes 11 (concave patterns (holes or recesses)) are formed.

現在說明主基板之製造方法。首先,備製具有高表面準確度之石英基板。然後,使用濺擊裝置CFS-8EP-55(來自Shibaura Mechatronics Co.)以實施RF濺擊,以形成基板之ZnS、SiO2 、以及Zn(混合無機材料,摩耳比:54:13:33)之圖案形成層。此圖案形成層之厚度大約為40nm。此在形成精細圖案之前為圖案形成層。The method of manufacturing the main substrate will now be described. First, a quartz substrate having high surface accuracy is prepared. Then, a splash device CFS-8EP-55 (from Shibaura Mechatronics Co.) was used to perform RF splashing to form ZnS, SiO 2 , and Zn of the substrate (mixed inorganic material, molar ratio: 54:13:33) The pattern forms a layer. The thickness of this pattern forming layer is approximately 40 nm. This forms a layer as a pattern before forming a fine pattern.

其次,如同於第48B圖中所示,使用雷射光線照射裝置LA330(來自Shibasoku Co.)之物鏡12(透鏡NA:0.85),將此藍色雷射光線13(波長:405nm)聚焦於圖案形成層上。此雷射光線被多重脈衝調變,且實施雷射光線照射,以致於將隨機資料記錄於此記錄層中。Next, as shown in Fig. 48B, the blue laser light 13 (wavelength: 405 nm) is focused on the pattern using the objective lens 12 (lens NA: 0.85) of the laser light irradiation device LA330 (from Shibasoku Co.). Formed on the layer. This laser light is modulated by multiple pulses and subjected to laser light irradiation so that random data is recorded in this recording layer.

此等孔似坑洞(凹入圖案)根據此過程而形成於圖案形成層之雷射照射部份。藉由原子力顯微鏡(AFM)與掃描電子顯微鏡(SEM),而可以証實坑洞之形成。此等坑洞之深度大約40nm。此對應於由混合無機材料所形成之圖案形成層之厚度。在使用橢圓器VASE(來自J.A,Woollam,日本)之測量中,此由混合無機材料所形成圖案形成層之吸光係數k為大約1x10-1These holes like pits (recessed patterns) are formed in the laser irradiated portion of the pattern forming layer in accordance with this process. The formation of potholes can be confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The depth of these holes is approximately 40 nm. This corresponds to the thickness of the pattern forming layer formed by the mixed inorganic material. In the measurement using the elliptical VASE (from JA, Woollam, Japan), the patterning layer formed of the mixed inorganic material has an absorption coefficient k of about 1 x 10 -1 .

此石英基板、其中坑洞形成於圖案形成層中,可以被使用作為用於光碟射出成形之壓模之主基板。This quartz substrate, in which a pothole is formed in the pattern forming layer, can be used as a main substrate for a stamper for optical disk injection molding.

其次,根據實施例3之主基板,而實施Ni電鑄(electroforming),且實際製成Ni壓模。然後,使用Ni壓模藉由射出成形或2P移轉(光子-聚合物化)而製成BD-ROM基板。Next, Ni electroforming was carried out in accordance with the main substrate of Example 3, and a Ni stamper was actually produced. Then, a BD-ROM substrate was produced by injection molding or 2P transfer (photon-polymerization) using a Ni stamper.

在以上情形中實施Ni電鑄,且其安裝於反應性離子蝕刻(RIE)設備中,且實施藉由CF4氣體之蝕刻,且在石英基板上進行形狀反射後可以實施Ni電鑄。第49圖中顯示石英基板14之區段,其中此等記錄坑洞15形成於石英表面中。In the above case, Ni electroforming is performed, and it is mounted in a reactive ion etching (RIE) apparatus, and Ni electroforming can be performed by performing etching by CF4 gas and performing shape reflection on the quartz substrate. A section of the quartz substrate 14 is shown in Fig. 49, wherein the recording pits 15 are formed in the quartz surface.

此等記錄坑洞15形成於圖案形成層中,此層由ZnS、SiO2 、以及Zn(此混合無機材料、材料A、材料B、以及材料C)所形成。當RIE蝕刻與氫氟酸去除此圖案形成層(以氫氟酸蝕刻SiO2 )、且使用氬氣體進一步去除剩餘時,可以製成第49圖之石英基板14。These recording pits 15 are formed in a pattern forming layer which is formed of ZnS, SiO 2 , and Zn (this mixed inorganic material, material A, material B, and material C). When the RIE etching and hydrofluoric acid remove the pattern forming layer (etching SiO 2 with hydrofluoric acid) and further removing the remaining using argon gas, the quartz substrate 14 of Fig. 49 can be formed.

製成用於光學資訊記錄媒體之主基板。第48A圖中顯示主基板之表面概要圖。如同於第48A圖中所顯示,記錄坑洞11形成於薄膜10上。此軌間距為0.32微米,且最短坑洞尺寸為150nm。此基板材料為石英。此由石英來源所製之主基板、此用於光碟射出成形之壓模、進一步可以製成光學資訊記錄媒體。A main substrate for an optical information recording medium is produced. A schematic view of the surface of the main substrate is shown in Fig. 48A. As shown in Fig. 48A, the recording pit 11 is formed on the film 10. The track pitch is 0.32 microns and the shortest hole size is 150 nm. This substrate material is quartz. The main substrate made of quartz source, the stamper used for the injection molding of the optical disk, can further be made into an optical information recording medium.

現在參考第48B圖說明第48A圖之主基板之製造方法。第48B圖為橫截面圖。A method of manufacturing the main substrate of Fig. 48A will now be described with reference to Fig. 48B. Figure 48B is a cross-sectional view.

此等記錄坑洞11是藉由:此以物鏡12所聚焦雷射光線13照射在、石英基板14上之薄膜10(圖案形成層)而形成。These recording holes 11 are formed by irradiating the thin film 10 (pattern forming layer) on the quartz substrate 14 with the laser beam 13 focused by the objective lens 12.

首先,備製具有高表面準確度之石英基板。然後,對於使用濺擊裝置CFS-8EP-55(來自Shibaura Mechatronics Co.)藉由ZnS、SiO2 、以及AgInSbTe(混合無機材料,摩耳比:54:13:33)所形成之圖案形成層實施RF濺擊。First, a quartz substrate having high surface accuracy is prepared. Then, a pattern forming layer formed by using a splatter CFS-8EP-55 (from Shibaura Mechatronics Co.) by ZnS, SiO 2 , and AgInSbTe (mixed inorganic material, molar ratio: 54:13:33) was used. RF splashing.

在石英基板上形成40nm之厚度之層。此層使用作為圖案形成層。AgInSbTe之組成比例為6:0.7:25.1:68.2(Ag6 In0.7 Sb25.1 Te68.2 )。在以下為了方便起見,將其稱為AgInSbTe。A layer having a thickness of 40 nm was formed on the quartz substrate. This layer is used as a pattern forming layer. The composition ratio of AgInSbTe is 6:0.7:25.1:68.2 (Ag 6 In 0.7 Sb 25.1 Te 68.2 ). For the sake of convenience, it will be referred to as AgInSbTe.

其次,如同於第48B圖中所示,將藍色雷射光線13(波長:405nm)以雷射光線照射設備之物鏡12(透鏡NA:0.85)聚焦,且施加至圖案形成層,且此雷射光線被多重脈衝調變,以致於記錄隨機資料。Next, as shown in Fig. 48B, the blue laser light 13 (wavelength: 405 nm) is focused by the objective lens 12 (lens NA: 0.85) of the laser beam irradiation apparatus, and applied to the pattern forming layer, and this The ray is modulated by multiple pulses so that random data is recorded.

此等孔似坑洞(凹入圖案)形成於此過程之圖案形成層之雷射照射部份中。以原子力顯微鏡(AFM)與掃描電子顯微鏡(SEM)以檢查坑洞之形成。此等坑洞之深度大約40nm。且等同於圖案形成層之厚度。此由混合無機材料所形成圖案形成層之吸光係數k為大約1x10-1These holes like pits (recessed patterns) are formed in the laser irradiated portion of the pattern forming layer of this process. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to examine the formation of potholes. The depth of these holes is approximately 40 nm. And equivalent to the thickness of the pattern forming layer. The patterning layer formed of the mixed inorganic material has an absorption coefficient k of about 1 x 10 -1 .

因此,其中形成坑洞之石英基板,可以被使用作為壓模之主基板,而用於光碟射出成形。鎳(Ni)電鑄(electroforming)實際上根據本發明之主基板而實施,且製成鎳壓模。然後,使用鎳壓模,藉由射出成形或2P移轉(光子-聚合物化)而製成唯讀媒體(ROM)。Therefore, the quartz substrate in which the pothole is formed can be used as the main substrate of the stamper and used for the optical disc injection molding. Nickel (Ni) electroforming is actually carried out in accordance with the main substrate of the present invention, and is formed into a nickel stamper. Then, using a nickel stamper, a read-only medium (ROM) is produced by injection molding or 2P transfer (photon-polymerization).

在此實施例中,AgInSbTe使用作為材料C,而為添加至材料A之(ZnS)與材料B之(SiO2 )之複合物。此AgInSbTe為4元素為主之無機材料複合物。 此孔(坑洞)可以形成於圖案形成層中,且可以藉由此材料C以製成主基板。因此,如果使用此可以增加光學吸收能力之材料(金屬之無機材料、半金屬、或半導體)被使用作為材料C,且適當地選擇此對應於在混合無機材料中光學吸收能力之雷射光線照射條件,則可以製成主基板。In this embodiment, AgInSbTe is used as the material C, and is a composite of (ZnS) added to the material A and (SiO 2 ) of the material B. This AgInSbTe is a four-element-based inorganic material composite. This hole (pothole) may be formed in the pattern forming layer, and the material C may be used to form the main substrate. Therefore, if a material which can increase optical absorption capability (inorganic material of a metal, a semimetal, or a semiconductor) is used as the material C, and this laser light irradiation corresponding to the optical absorption ability in the mixed inorganic material is appropriately selected. Conditions can be made into the main substrate.

製造用於光學非反射薄膜(抗反射薄膜)之主基板。第50A圖與第50B圖中顯示用於光學非反射薄膜之主基板之概要圖。第50A圖為主基板之頂視圖,其中概要顯示此包含圓形坑洞17之周期結構之圖案。第50B圖為主基板之橫截面圖。A main substrate for an optical non-reflective film (anti-reflection film) is produced. A schematic view of a main substrate for an optical non-reflective film is shown in Figs. 50A and 50B. Fig. 50A is a top view of the main substrate, in which the outline of the periodic structure including the circular pits 17 is schematically shown. Figure 50B is a cross-sectional view of the main substrate.

此周期為大約300nm,空腔直徑大約80nm,以及薄膜厚度大約20nm。此基板為石英基板,且形成混合無機材料之圖案形成層16。This period is about 300 nm, the cavity diameter is about 80 nm, and the film thickness is about 20 nm. This substrate is a quartz substrate, and a pattern forming layer 16 of a mixed inorganic material is formed.

此形成於石英基板18上圖案形成層16中周期結構之此等材料(混合無機材料)為:ZnS、SiO2 、以及Zn(68:17:15)。The materials (mixed inorganic materials) formed in the periodic structure of the pattern forming layer 16 on the quartz substrate 18 are: ZnS, SiO 2 , and Zn (68:17:15).

當與其中並未形成周期結構相同厚度之石英基板比較時,此對於具有在400-600nm範圍中波長光線之透射增加,以及可以製成主基板,在其上所形成之光學非反射薄膜可以達成幾乎100%之非反射。這是因為藉由微結構之周期結構轉換成蛾眼結構,其控制反射且使入射光線透過。When compared with a quartz substrate in which the same thickness of the periodic structure is not formed, this is an increase in transmission of light having a wavelength in the range of 400-600 nm, and can be made into a main substrate on which an optical non-reflective film formed can be achieved. Almost 100% non-reflective. This is because the periodic structure of the microstructure is converted into a moth-eye structure that controls reflection and transmits incident light.

雖然可以使用主基板本身作為光學非反射薄膜,此許多光學非反射薄膜經由Ni電鑄而再製、藉由使用其作為主模型而適用於大量生產。此光學非反射薄膜使用於:偏極化板、例如後投影螢幕與投影器顯示器,太陽電池等。Although the main substrate itself can be used as an optical non-reflective film, many of the optical non-reflective films are remanufactured by Ni electroforming, and are suitable for mass production by using them as a main model. The optical non-reflective film is used in: polarized plates, such as rear projection screens and projector displays, solar cells, and the like.

現在說明製造方法。首先,在石英基板18上形成ZnS、SiO2 、以及Zn(摩耳比:68:17:15)之薄膜16(圖案形成層)。在形成此薄膜後,將其置於XY平台上,且將此薄膜16(圖案形成層)藉由使用物鏡(NA:0.85)聚焦之藍色雷射光線(波長:405nm)照射。The manufacturing method will now be described. First, a film 16 (pattern forming layer) of ZnS, SiO 2 , and Zn (moire ratio: 68:17:15) is formed on the quartz substrate 18. After the film was formed, it was placed on an XY stage, and this film 16 (pattern forming layer) was irradiated with a blue laser light (wavelength: 405 nm) focused using an objective lens (NA: 0.85).

此等周期性坑洞藉由在給定期間以脈衝光線(周期:300nm,雷射功率:11mW)照射而形成。在將晶圓以主基板製成之後,將其藉由切割而分成數個平方毫米之此等片,並將其清洗以從其去除雜質。These periodic potholes are formed by irradiating with pulsed light (period: 300 nm, laser power: 11 mW) for a given period. After the wafer is formed in the main substrate, it is divided into several square millimeters by cutting and cleaned to remove impurities therefrom.

第51圖為石英基板18之橫截面圖,對此使用具有圖案形成層之石英基板而實施蝕刻,其中形成形成周期坑洞。Fig. 51 is a cross-sectional view of the quartz substrate 18 to which etching is performed using a quartz substrate having a pattern forming layer in which a periodic pit is formed.

圖案19形成於石英基板18上。此形成於此圖案中之混合無機材料之薄膜可以使用作為光學非反射薄膜。然而,當基板之材料與此薄膜之材料彼此不同時,此作為光學非反射薄膜之效應會衰退,且在下一次切割過程時會產生剝離。為避免此問題,將此混合無機材料之薄膜對石英基板18蝕刻,且藉由將坑洞(圖案)移轉至石英基板而實施圖案之複製。The pattern 19 is formed on the quartz substrate 18. The film of the mixed inorganic material formed in this pattern can be used as an optical non-reflective film. However, when the material of the substrate and the material of the film are different from each other, the effect as an optical non-reflective film is degraded, and peeling occurs at the next cutting process. To avoid this problem, the film of the mixed inorganic material is etched to the quartz substrate 18, and the pattern is reproduced by shifting the pits (pattern) to the quartz substrate.

此形成於石英基板18表面上圖案19(坑洞)之組態非常接近:使用作為遮罩(阻抗)之ZnS、SiO2 、以及Zn(摩耳比:68:17:15)之結構之組態。The configuration of the pattern 19 (pothole) formed on the surface of the quartz substrate 18 is very close: a group using a structure of ZnS, SiO 2 , and Zn (moire ratio: 68:17:15) as a mask (impedance) state.

在此情形中,ZnS、SiO2 、以及Zn(摩耳比:68:17:15)之結構對於CF4之蝕刻率足夠小,且可以製成具有大高寬比(垂直長度大於水平長度)之組態。In this case, the structures of ZnS, SiO 2 , and Zn (moire ratio: 68:17:15) are sufficiently small for the etching rate of CF4, and can be made to have a large aspect ratio (vertical length greater than horizontal length). configuration.

第52A圖與第52B圖顯示在本發明實施例中光學資訊記錄媒體之樣本之掃描電子顯微鏡照片,其中由混合無機材料所形成之記錄層由雷射光線照射。使用ZnS、SiO2 、以及Ag(摩耳比:72:18:10)之混合靶以實施濺擊,以致於在聚碳酸鹽基板上形成具有40nm厚度之薄膜20,且各樣本以雷射光線(波長:405nm,NA:0.85)照射。52A and 52B show scanning electron micrographs of samples of an optical information recording medium in an embodiment of the present invention, in which a recording layer formed of a mixed inorganic material is irradiated with laser light. A mixed target of ZnS, SiO 2 , and Ag (Mohr ratio: 72:18:10) was used to perform sputtering so that a film 20 having a thickness of 40 nm was formed on the polycarbonate substrate, and each sample was irradiated with laser light. (wavelength: 405 nm, NA: 0.85) irradiation.

在第52A圖之情形中,雷射功率為8mW。在薄膜20中產生擴張部份21。在第52B圖之情形中,雷射功率為9mW。產生具有直徑大約為80nm之孔22。如果使用可以形成混合靶之材料,則可以使用金屬、半金屬、以及半導體之任何者以製成混合靶。In the case of Fig. 52A, the laser power is 8 mW. An expanded portion 21 is produced in the film 20. In the case of Fig. 52B, the laser power is 9 mW. A hole 22 having a diameter of approximately 80 nm is produced. If a material that can form a mixed target is used, any of a metal, a semimetal, and a semiconductor can be used to make a mixed target.

ZnO具有較其他元素為大之對於藍色雷射光線之透射,而可以使用作為材料C以取代Ag。特定而言,當使用ZnTe-ZnO作為材料C,以及製成ZnS、SiO2 、ZnTe以及ZnO(摩耳比:64:18:10:8)之混合材料、且以相同方式以雷射照射時,可以形成具有尖銳終端之孔。ZnO has a larger transmission to blue laser light than other elements, and can be used as material C instead of Ag. In particular, when ZnTe-ZnO is used as the material C, and a mixed material of ZnS, SiO 2 , ZnTe, and ZnO (Mohr ratio: 64:18:10:8) is prepared and irradiated in the same manner as a laser It is possible to form a hole having a sharp terminal.

經証實當使用InSb、AgInSbTe、以及GeSbTe之任何者作為材料C以取代Ag、且實施雷射光線照射時,亦可以形成此等坑洞。It has been confirmed that when any one of InSb, AgInSbTe, and GeSbTe is used as the material C instead of Ag and laser light irradiation is performed, such pits can be formed.

本發明之此寫一次資訊記錄媒體可以應用至寫一次記錄媒體,包括:CD-R、DVD-R、高畫質數位多功能碟(HD DVD)、以及藍光可錄製碟(Blu-ray Disc-Recordable)。本發明之資訊記錄媒體亦可以應用至多層碟,其中在單一光學記錄媒體上形成兩個或更多個記錄層,以便增加儲存容量。本發明 之此寫一次資訊記錄媒體可以應用至單層碟,其中,具有窄軌間距之軌形成於記錄層中,以便增加儲存容量。The information recording medium of the present invention can be applied to write once recording media, including: CD-R, DVD-R, high-definition digital multi-function disc (HD DVD), and Blu-ray disc (Blu-ray Disc-) Recordable). The information recording medium of the present invention can also be applied to a multi-layered disc in which two or more recording layers are formed on a single optical recording medium in order to increase the storage capacity. this invention The information recording medium can be applied to a single layer disc in which a track having a narrow track pitch is formed in the recording layer to increase the storage capacity.

本發明之主基板適合使用作為主基板,而用於唯讀媒體(ROM:唯讀記憶體),或用於以低成本製造資訊記錄媒體中之超微印刷。The main substrate of the present invention is suitably used as a main substrate for a read-only medium (ROM: read only memory) or for manufacturing ultra-fine printing in an information recording medium at low cost.

本發明並不受限於以上說明之實施例,且可以對其作變化與修正,而不會偏離本發明之範圍。The invention is not limited to the embodiments described above, and variations and modifications may be made without departing from the scope of the invention.

本發明是根據且對以下專利申請案作優先權效益之主張:2007年3月19日所提出申請之日本專利申請案號2007-071485、2007年3月26日所提出申請之日本專利申請案號2007-079482、2007年4月27日所提出申請之日本專利申請案號2007-120218、以及2007年10月24日所提出申請之日本專利申請案號2007-276730,以上專利申請案之內容整個併入作為參考。The present invention is based on and claims the benefit of the following patent application: Japanese Patent Application No. 2007-071485, filed on March 19, 2007, and Japanese Patent Application, filed on March 26, 2007 Japanese Patent Application No. 2007-120218, filed on Apr. 27, 2007, and Japanese Patent Application No. 2007-276730, filed on Oct. 24, 2007, the content of the above patent application The entire incorporation is incorporated by reference.

1‧‧‧基板1‧‧‧Substrate

2‧‧‧反射層2‧‧‧reflective layer

3‧‧‧下介電層3‧‧‧ Lower dielectric layer

4‧‧‧記錄層4‧‧‧recording layer

5‧‧‧上介電層5‧‧‧Upper dielectric layer

6‧‧‧保護層6‧‧‧Protective layer

7‧‧‧記錄記號7‧‧‧ record marks

8‧‧‧雷射照射部份8‧‧‧Laser illumination

9‧‧‧洞9‧‧‧ hole

10‧‧‧薄膜10‧‧‧film

11‧‧‧記錄坑洞11‧‧‧ Recording potholes

12‧‧‧物鏡12‧‧‧ Objective lens

13‧‧‧雷射光線13‧‧‧Laser light

14‧‧‧石英基板14‧‧‧Quartz substrate

15‧‧‧記錄坑洞15‧‧‧ Recording potholes

16‧‧‧圖案形成層16‧‧‧pattern layer

17‧‧‧圓形坑洞17‧‧‧round pothole

18‧‧‧石英基板18‧‧‧Quartz substrate

19‧‧‧圖案19‧‧‧ pattern

20‧‧‧薄膜20‧‧‧ film

21‧‧‧擴張部份21‧‧‧Expansion

22‧‧‧孔22‧‧‧ holes

100A‧‧‧資訊記錄媒體100A‧‧‧Information Recording Media

100B‧‧‧資訊記錄媒體100B‧‧‧Information Recording Media

100C‧‧‧光學非反射薄膜100C‧‧‧Optical non-reflective film

100D‧‧‧光學波導100D‧‧‧Optical waveguide

100E‧‧‧光學濾波器100E‧‧‧ optical filter

101‧‧‧矽基板101‧‧‧矽 substrate

102‧‧‧介電層102‧‧‧ dielectric layer

103‧‧‧光線吸收層103‧‧‧Light absorbing layer

104‧‧‧微結構104‧‧‧Microstructure

104a‧‧‧圓柱形結構104a‧‧‧Cylindrical structure

104b‧‧‧半球形結構104b‧‧‧hemispherical structure

105‧‧‧區域105‧‧‧Area

106‧‧‧混合材料層106‧‧‧Mixed material layer

107‧‧‧雷射光線107‧‧‧Laser light

108‧‧‧物鏡108‧‧‧ Objective lens

109‧‧‧氫氟酸109‧‧‧ Hydrofluoric acid

110‧‧‧聚碳酸酯基板110‧‧‧ polycarbonate substrate

111‧‧‧ZnS層111‧‧‧ZnS layer

112‧‧‧石英基板112‧‧‧Quartz substrate

200A‧‧‧主基板200A‧‧‧Main substrate

200B‧‧‧光學非反射薄膜200B‧‧‧Optical non-reflective film

200C‧‧‧光學非反射薄膜200C‧‧‧Optical non-reflective film

200D‧‧‧資訊記錄媒體200D‧‧‧Information Recording Media

200E‧‧‧光學波導200E‧‧‧Optical waveguide

200F‧‧‧光學濾波器200F‧‧‧ optical filter

200G‧‧‧光學濾波器200G‧‧‧ optical filter

201‧‧‧石英基板201‧‧‧Quartz substrate

201a‧‧‧圖案201a‧‧‧ pattern

201b‧‧‧圓柱形圖案201b‧‧‧ cylindrical pattern

201c‧‧‧圖案201c‧‧‧ pattern

202‧‧‧混合材料層202‧‧‧Mixed material layer

203‧‧‧物鏡203‧‧‧ objective lens

204‧‧‧藍色雷射光線204‧‧‧Blue laser light

205‧‧‧氫氟酸205‧‧‧ Hydrofluoric acid

206、207、208、209‧‧‧微結構206, 207, 208, 209‧‧‧ microstructure

210‧‧‧聚碳酸酯基板210‧‧‧ polycarbonate substrate

211‧‧‧微結構211‧‧‧Microstructure

212‧‧‧矽基板212‧‧‧矽 substrate

213、214‧‧‧微結構213, 214‧‧‧ microstructure

300‧‧‧偏極化分離器元件300‧‧‧Polarized polarizer components

301‧‧‧聚碳酸酯基板301‧‧‧ polycarbonate substrate

302‧‧‧ZnS層302‧‧‧ZnS layer

303‧‧‧線性微結構303‧‧‧Linear microstructure

304‧‧‧混合材料層304‧‧‧Mixed material layer

305‧‧‧物鏡305‧‧‧ Objective lens

306‧‧‧雷射光線306‧‧‧Laser light

307‧‧‧氫氟酸307‧‧‧ Hydrofluoric acid

308‧‧‧碳308‧‧‧Carbon

310‧‧‧光線310‧‧‧Light

311‧‧‧P偏極化光線311‧‧‧P polarized light

312‧‧‧S偏極化光線312‧‧‧S polarized light

313‧‧‧發射器313‧‧‧transmitter

321、322、323‧‧‧接收器321, 322, 323‧‧‧ Receiver

331‧‧‧光學組成電路331‧‧‧Optical component circuit

332‧‧‧光學分解器電路332‧‧‧Optical Decomposer Circuit

400‧‧‧光學濾波器400‧‧‧ optical filter

401‧‧‧聚碳酸酯基板401‧‧‧ polycarbonate substrate

402‧‧‧ZnS層402‧‧‧ZnS layer

403‧‧‧微點似結構403‧‧‧micro-like structure

404‧‧‧混合材料層404‧‧‧Mixed material layer

405‧‧‧物鏡405‧‧‧ Objective lens

406‧‧‧藍色雷射光線406‧‧‧Blue laser light

407‧‧‧氫氟酸407‧‧‧ Hydrofluoric acid

410‧‧‧特定波長光線410‧‧‧Special wavelength light

411‧‧‧P偏極化光線411‧‧‧P polarized light

412‧‧‧S偏極化光線412‧‧‧S polarized light

500A‧‧‧無機電致發光(EL)元件500A‧‧Inorganic electroluminescence (EL) components

500B‧‧‧無機電致發光(EL)元件500B‧‧‧Inorganic electroluminescent (EL) components

501‧‧‧陰極501‧‧‧ cathode

502‧‧‧發光層502‧‧‧Lighting layer

503‧‧‧陽極板503‧‧‧Anode plate

600‧‧‧染料-敏感太陽電池600‧‧‧Dye-sensitive solar cells

601‧‧‧玻璃基板601‧‧‧ glass substrate

602‧‧‧微結構602‧‧‧Microstructure

603‧‧‧陰極603‧‧‧ cathode

604‧‧‧玻璃基板604‧‧‧ glass substrate

605‧‧‧陽極板605‧‧‧Anode plate

606‧‧‧光電轉換器606‧‧‧Photoelectric converter

700‧‧‧非球形光學透鏡700‧‧‧Non-spherical optical lens

701‧‧‧石英基板701‧‧‧Quartz substrate

第1A與1B圖顯示實施例1之資訊記錄媒體之組成成份;第2A、2B、2C、以及2D圖為橫截面,其用於解釋實施例1之資訊記錄媒體之製造方法;第3A與3B圖顯示實施例2之資訊記錄媒體之組成成份;第4A與4B圖顯示微結構之掃描電子顯微鏡照片(4.5mW脈衝光線輸出);第5A與5B圖顯示微結構之掃描電子顯微鏡照片(5.0mW脈衝光線輸出);第6A與6B圖顯示微結構之掃描電子顯微鏡照片(5.5mW脈衝光線輸出);第7A與7B圖顯示微結構之掃描電子顯微鏡照片(6.0mW脈衝光線輸出);第8A與8B圖顯示微結構之掃描電子顯微鏡照片(6.4mW脈衝光線輸出);第9A與9B圖顯示微結構之掃描電子顯微鏡照片(7.0mW脈衝光線輸出);第10圖用於解釋微結構之脈衝光線輸出與最大直徑間之關係;第11A、11B、11C、以及11D圖為在各階段I、階段II、階段III、以及階段IV之微結構之橫截面圖;第12A與12B圖顯示實施例4之光學非反射薄膜之組成成份;第13A與13B圖顯示實施例5之光學波導之組成成份; 第14A與14B圖顯示實施例6之光學濾波器之組成成份;第15圖顯示實施例7之主機板之組成成份;第16A、16B、16C、16D、16E、以及16F圖為橫截面圖、用於解釋第15圖之主機板之製造方法;第17圖為橫截面圖、其顯示實施例7之微結構之另一例;第18A與18B圖顯示實施例8之光學非反射薄膜之組成成份;第19A與19B圖顯示實施例9之光學非反射薄膜之組成成份;第20圖顯示實施例9之光學非反射薄膜之另一例之橫截面圖;第21圖顯示實施例10之資訊記錄媒體之組成成份;第22A與22B圖顯示實施例11之光學波導之組成成份;第23圖顯示實施例12之光學濾波器之組成成份之橫截面圖;第24圖顯示實施例12之光學濾波器之另一例之橫截面圖;第25A、25B、25C、以及25D圖顯示實施例13之微結構之掃描電子顯微鏡照片;第26圖用於解釋微結構之脈衝光線輸出與外直徑或內直徑間之關係;第27A與27B圖顯示實施例13之微結構之另一例之掃描電子顯微鏡照片;第28圖顯示實施例13之微結構之另一例之掃描電子顯微鏡照片;第29A、29B、29C、以及29D圖顯示實施例15之微結構之掃描電子顯微鏡照片;第30A與30B圖顯示實施例15之微結構之另一例之掃描電子顯微鏡照片;第31圖用於解釋波長分割多工通信;第32圖為透視圖,其顯示實施例17之偏極化分離元件之組成成份;第33A、33B、33C、以及33D圖為橫截面圖、用於解釋實施例17之偏極化分離元件之製造方法;第34A與34B圖顯示實施例17之偏極化分離元件之掃描電子顯微鏡照片(3.5mW脈衝光線輸出);第35圖顯示實施例17之偏極化分離元件之透射波長對於S偏極化光線之依賴性;第36A與36B圖顯示實施例17之偏極化分離元件之掃描電子顯微鏡照片 (2.5mW脈衝光線輸出);第37圖顯示實施例17之偏極化分離元件之透射波長對於S偏極化光線之依賴性;第38圖為透視圖,其顯示實施例18之光學濾波器之組成成份;第39A、39B、39C、以及39D圖為橫截面圖、用於解釋實施例18之光學濾波器之製造方法;第40A與40B圖顯示實施例18之光學濾波器之掃描電子顯微鏡照片;第41圖顯示實施例18之光學濾波器之透射波長對於S偏極化光線之依賴性;第42A與42B圖為橫截面圖、其顯示實施例19之無機EL元件之組成成份;第43圖為橫截面圖、其顯示實施例20之染料敏感太陽電池之組成成份;第44A與44B圖顯示實施例21之非球形光學透鏡之組成成份;第45A與45B圖顯示本發明實施例之光學資訊記錄媒體之組成成份;第46A與46B圖顯示、其中此記錄層由雷射光線照射之光學資訊記錄媒體之樣本之掃描電子顯微鏡照片;第47A與47B圖顯示本發明實施例中光學資訊記錄媒體之組成成份;第48A與48B圖顯示本發明實施例中主基板之組成成份;第49圖顯示在其上形成記錄坑洞之石英基板之組成;第50A與50B圖顯示本發明實施例中光學非反射薄膜之主基板之組成成份;第51圖顯示在其上形成圖案之石英基板之組成;以及第52A與52B圖顯示在本發明實施例中光學資訊記錄媒體之樣本之掃描電子顯微鏡照片、其中此由混合無機材料所形成之記錄層由雷射光線照射。1A and 1B are diagrams showing the components of the information recording medium of Embodiment 1; FIGS. 2A, 2B, 2C, and 2D are cross sections for explaining the method of manufacturing the information recording medium of Embodiment 1; FIGS. 3A and 3B The figure shows the composition of the information recording medium of Example 2; the 4A and 4B shows the scanning electron micrograph of the microstructure (4.5 mW pulse light output); the 5A and 5B shows the scanning electron micrograph of the microstructure (5.0 mW) Pulsed light output); Figures 6A and 6B show scanning electron micrographs of microstructures (5.5mW pulsed light output); Figures 7A and 7B show scanning electron micrographs of microstructures (6.0mW pulsed light output); 8A and Figure 8B shows a scanning electron micrograph of the microstructure (6.4 mW pulsed light output); Figures 9A and 9B show a scanning electron micrograph of the microstructure (7.0 mW pulsed light output); Figure 10 is used to explain the pulsed light of the microstructure The relationship between the output and the maximum diameter; the 11A, 11B, 11C, and 11D are cross-sectional views of the microstructures at each of Phases I, II, III, and IV; and FIGS. 12A and 12B show Example 4. Optics Constituent of the reflective film; of FIG. 13A and 13B show the constituent of an optical waveguide of the embodiment 5; 14A and 14B show the components of the optical filter of Embodiment 6; FIG. 15 shows the components of the motherboard of Embodiment 7; and FIGS. 16A, 16B, 16C, 16D, 16E, and 16F are cross-sectional views, A manufacturing method for explaining a motherboard of Fig. 15; Fig. 17 is a cross-sectional view showing another example of the microstructure of the embodiment 7; and Figs. 18A and 18B are diagrams showing the composition of the optical non-reflecting film of the embodiment 8. 19A and 19B show the composition of the optical non-reflective film of Example 9, 20 shows a cross-sectional view of another example of the optical non-reflective film of Example 9, and 21 shows the information recording medium of Example 10. Compositions; 22A and 22B show the composition of the optical waveguide of Embodiment 11; FIG. 23 shows a cross-sectional view of the composition of the optical filter of Embodiment 12; and FIG. 24 shows the optical filter of Embodiment 12. A cross-sectional view of another example; 25A, 25B, 25C, and 25D shows a scanning electron micrograph of the microstructure of Example 13; and Figure 26 illustrates the relationship between the pulsed light output of the microstructure and the outer or inner diameter Relationship; 27A 27B shows a scanning electron micrograph of another example of the microstructure of Example 13, and FIG. 28 shows a scanning electron micrograph of another example of the microstructure of Example 13; FIGS. 29A, 29B, 29C, and 29D show examples. Scanning electron micrograph of microstructure of 15; FIGS. 30A and 30B show scanning electron micrographs of another example of the microstructure of Example 15; FIG. 31 is for explaining wavelength division multiplexing communication; and FIG. 32 is a perspective view, It shows the composition of the polarization separation element of Embodiment 17; FIGS. 33A, 33B, 33C, and 33D are cross-sectional views, a manufacturing method for explaining the polarization separation element of Embodiment 17, and 34A and 34B. The figure shows a scanning electron micrograph (3.5 mW pulsed light output) of the polarization separation element of Example 17, and FIG. 35 shows the dependence of the transmission wavelength of the polarization separation element of Example 17 on S-polarized light; Figures 36A and 36B show scanning electron micrographs of the polarized separation element of Example 17. (2.5 mW pulsed light output); Fig. 37 shows the dependence of the transmission wavelength of the polarization separation element of Example 17 on S-polarized light; and Fig. 38 is a perspective view showing the optical filter of Example 18. The components; the 39A, 39B, 39C, and 39D are cross-sectional views for explaining the manufacturing method of the optical filter of the embodiment 18; and the 40A and 40B are drawings showing the scanning electron microscope of the optical filter of the embodiment 18. Photograph; FIG. 41 shows the dependence of the transmission wavelength of the optical filter of Example 18 on S-polarized light; and FIGS. 42A and 42B are cross-sectional views showing the composition of the inorganic EL element of Example 19; 43 is a cross-sectional view showing the composition of the dye-sensitive solar cell of Example 20; FIGS. 44A and 44B are diagrams showing the composition of the non-spherical optical lens of Example 21; and FIGS. 45A and 45B are views showing the embodiment of the present invention. The components of the optical information recording medium; FIGS. 46A and 46B show scanning electron micrographs of samples of the optical information recording medium in which the recording layer is illuminated by laser light; FIGS. 47A and 47B show the present invention. The components of the optical information recording medium in the example; the 48A and 48B drawings show the composition of the main substrate in the embodiment of the present invention; the 49th shows the composition of the quartz substrate on which the recording pit is formed; the 50A and 50B shows The composition of the main substrate of the optical non-reflective film in the embodiment of the present invention; FIG. 51 shows the composition of the quartz substrate on which the pattern is formed; and FIGS. 52A and 52B show the sample of the optical information recording medium in the embodiment of the present invention. A scanning electron microscope photograph in which the recording layer formed of the mixed inorganic material is irradiated with laser light.

100A‧‧‧資訊記錄媒體100A‧‧‧Information Recording Media

101‧‧‧矽基板101‧‧‧矽 substrate

102‧‧‧介電層102‧‧‧ dielectric layer

103‧‧‧光線吸收層103‧‧‧Light absorbing layer

104‧‧‧微結構104‧‧‧Microstructure

105‧‧‧區域105‧‧‧Area

Claims (14)

一種微結構,包括:硫複合物與矽氧化物,其中,該硫複合物係選自由ZnS、FeS、GeS2 、CaS、BaS、CdS、K2 S、Ag2 S、GeS、CoS、Bi2 S3 、PbS、Na2 S、Cu2 S、CuS、Al2 S3 、Sb2 S3 、SmS、PbS、Na2 S、LiS、SiS、以及SiS2 所成組群,而該矽氧化物包括SiO及SiO2 ,且該微結構中之該矽氧化物含量之百分比係在10摩耳(mol)%至30摩耳(mol)%之間。A microstructure comprising: a sulfur composite and a niobium oxide, wherein the sulfur composite is selected from the group consisting of ZnS, FeS, GeS 2 , CaS, BaS, CdS, K 2 S, Ag 2 S, GeS, CoS, Bi 2 a group of S 3 , PbS, Na 2 S, Cu 2 S, CuS, Al 2 S 3 , Sb 2 S 3 , SmS, PbS, Na 2 S, LiS, SiS, and SiS 2 SiO and SiO 2 are included , and the percentage of the niobium oxide content in the microstructure is between 10 and 30 mole %. 如申請專利範圍第1項所述之微結構,其中該微結構為以下組態之任何一個:一凸形組態,其具有曲線表面;一組態,其中,一具有曲線表面之凸形結構形成於圓柱形結構上;以及一圓柱形組態。 The microstructure according to claim 1, wherein the microstructure is any one of the following configurations: a convex configuration having a curved surface; and a configuration wherein a convex structure having a curved surface Formed on a cylindrical structure; and a cylindrical configuration. 如申請專利範圍第1項所述之微結構,其中該微結構為以下組態之任何一個:一凸形組態,其具有曲線表面;一組態,其中,一具有曲線表面之凸形結構形成於圓柱形結構上;以及一組態,其中,連續地形成圓柱形橫截面。 The microstructure according to claim 1, wherein the microstructure is any one of the following configurations: a convex configuration having a curved surface; and a configuration wherein a convex structure having a curved surface Formed on the cylindrical structure; and a configuration in which a cylindrical cross section is continuously formed. 如申請專利範圍第1項所述之微結構,更包括:用於提高具有預定波長之光線的光學吸收能力之一材料,該材料包含以下至少之一:鋁(Al)、銀(Ag)、金(Au)、銅(Cu)、鋅(Zn)、鉑(Pt)、銻(Sb)、碲(Te)、鍺(Ge)、矽(Si)、鉍(Bi)、錳(Mn)、鎢(W)、鈮(Nb)、鈷(Co)、鍶(Sr)、鐵(Fe)、銦(In)、錫(Sn)、鎳(Ni)、鉬(Mo)、鎂(Mg)、以及鈣(Ca)。 The microstructure according to claim 1, further comprising: a material for improving optical absorption capability of light having a predetermined wavelength, the material comprising at least one of the following: aluminum (Al), silver (Ag), Gold (Au), copper (Cu), zinc (Zn), platinum (Pt), antimony (Sb), tellurium (Te), germanium (Ge), germanium (Si), germanium (Bi), manganese (Mn), Tungsten (W), niobium (Nb), cobalt (Co), strontium (Sr), iron (Fe), indium (In), tin (Sn), nickel (Ni), molybdenum (Mo), magnesium (Mg), And calcium (Ca). 如申請專利範圍第4項所述之微結構,更包括:一種氧化物材料,用於提高具有預定波長之光線的光學吸收能力。 The microstructure according to claim 4, further comprising: an oxide material for improving the optical absorption capability of light having a predetermined wavelength. 如申請專利範圍第1項所述之微結構,更包括: 用於提高具有預定波長之光線的光學吸收能力之一材料,該材料包含:碲化鋅(ZnTe)、硒化鋅(ZnSe)、以及硫化錳(MnS)之至少之一。 For example, the microstructure described in claim 1 of the patent scope includes: A material for improving optical absorption capability of light having a predetermined wavelength, the material comprising: at least one of zinc telluride (ZnTe), zinc selenide (ZnSe), and manganese sulfide (MnS). 如申請專利範圍第1項所述之微結構,更包括:用於提高具有預定波長之光線的光學吸收能力之一材料,該材料包含:螢光材料。 The microstructure according to claim 1, further comprising: a material for improving optical absorption capability of light having a predetermined wavelength, the material comprising: a fluorescent material. 如申請專利範圍第7項所述之微結構,其中該螢光材料為硒化鎘(CdSe)或碲化鎘(CdTe)。 The microstructure according to claim 7, wherein the fluorescent material is cadmium selenide (CdSe) or cadmium telluride (CdTe). 一種製造微結構之方法,其包括以下步驟:在基板上形成包含硫化物與矽氧化物之層;以雷射光線照射該包含硫複合物與矽氧化物之層;藉由雷射光線照射以蝕刻該層,以形成微結構,其中,該硫複合物包含第一硫複合物,用於提高具有預定波長之光線的光學吸收能力,或該包含硫複合物與矽氧化物之層更包含:一種用於提高光學吸收能力之材料。 A method of fabricating a microstructure, comprising the steps of: forming a layer comprising a sulfide and a cerium oxide on a substrate; irradiating the layer comprising the sulfur complex and the cerium oxide with laser light; and irradiating with the laser light The layer is etched to form a microstructure, wherein the sulfur composite comprises a first sulfur composite for increasing the optical absorption capacity of light having a predetermined wavelength, or the layer comprising the sulfur composite and the tantalum oxide further comprises: A material for improving optical absorption capacity. 一種寫一次資訊記錄媒體,包括:一基板;以及一記錄層,其由一種混合無機材料形成且沉積在該基板上,其中,該混合無機材料包含硫複合物與矽氧化物。 A writing information recording medium comprising: a substrate; and a recording layer formed of a mixed inorganic material and deposited on the substrate, wherein the mixed inorganic material comprises a sulfur composite and a cerium oxide. 如申請專利範圍第10項所述之寫一次資訊記錄媒體,其中該混合無機材料更包含一種與硫複合物與矽氧化物所不同之無機材料,且由金屬、半金屬、以及半導體選出,以及其中,該記錄層所具有對於預定波長之光線的光學吸收能力是大於:未包含該無機材料之相同厚度記錄層之光學吸收能力。 The information recording medium is written as described in claim 10, wherein the mixed inorganic material further comprises an inorganic material different from the sulfur composite and the niobium oxide, and is selected from the group consisting of metal, semimetal, and semiconductor, and Wherein, the recording layer has an optical absorption capability for light of a predetermined wavelength is greater than: an optical absorption capability of the recording layer of the same thickness not containing the inorganic material. 如申請專利範圍第10項所述之寫一次資訊記錄媒體,更包括:沉積在該基板上之介電層與反射層。 The information recording medium is written as described in claim 10, and further includes: a dielectric layer and a reflective layer deposited on the substrate. 如申請專利範圍第11項所述之寫一次資訊記錄媒體,其中該無機材料包含一種構成該硫複合物與矽氧化物之元素。 The information recording medium is written as described in claim 11, wherein the inorganic material comprises an element constituting the sulfur composite and the cerium oxide. 如申請專利範圍第10項所述之寫一次資訊記錄媒體,其中該無機材料包含由以下所選出之至少一元素:鋁(Al)、銀(Ag)、金(Au)、銅(Cu)、鋅(Zn)、鉑(Pt)、銻(Sb)、碲(Te)、鍺(Ge)、矽(Si)、鉍(Bi)、錳(Mn)、鎢(W)、鈮(Nb)、鈷(Co)、鍶(Sr)、鐵(Fe)、銦(In)、錫(Sn)、鎳(Ni)、鉬(Mo)、鎂(Mg)、鈣(Ca)、鉛(Pb)、以及鋇(Ba)。 The information recording medium is written as described in claim 10, wherein the inorganic material comprises at least one element selected from the group consisting of aluminum (Al), silver (Ag), gold (Au), copper (Cu), Zinc (Zn), platinum (Pt), antimony (Sb), antimony (Te), germanium (Ge), antimony (Si), antimony (Bi), manganese (Mn), tungsten (W), antimony (Nb), Cobalt (Co), strontium (Sr), iron (Fe), indium (In), tin (Sn), nickel (Ni), molybdenum (Mo), magnesium (Mg), calcium (Ca), lead (Pb), And 钡 (Ba).
TW97109679A 2007-03-19 2008-03-19 Minute structure and information recording medium TWI384478B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007071485A JP4607139B2 (en) 2007-03-19 2007-03-19 Write-once information recording medium and master substrate
JP2007079482 2007-03-26
JP2007120218 2007-04-27
JP2007276730A JP5526474B2 (en) 2007-03-26 2007-10-24 Method for forming microstructure

Publications (2)

Publication Number Publication Date
TW200844996A TW200844996A (en) 2008-11-16
TWI384478B true TWI384478B (en) 2013-02-01

Family

ID=44822785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97109679A TWI384478B (en) 2007-03-19 2008-03-19 Minute structure and information recording medium

Country Status (1)

Country Link
TW (1) TWI384478B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425643B (en) * 2009-03-31 2014-02-01 Sony Corp Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718996A (en) * 1989-03-16 1998-02-17 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US20020005888A1 (en) * 1988-05-17 2002-01-17 Dai Nippon Printing Method for recording and reproducing information, apparatus therefor and recording medium
US20030066638A1 (en) * 2001-08-13 2003-04-10 Yuzhi Qu Devices using a medium having a high heat transfer rate
TW200423078A (en) * 2002-12-19 2004-11-01 Koninkl Philips Electronics Nv Use of bi-layer photolithographic resists as new material for optical storage
TW200508048A (en) * 2003-07-21 2005-03-01 Kurz Leonhard Fa Process for producing a high-resolution surface pattern, multi-layer body having a substrate layer and a pattern layer and apparatus for producing a high-resolution surface pattern on a substrate
WO2005063484A1 (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co., Ltd. Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
TW200523919A (en) * 2003-11-14 2005-07-16 Koninkl Philips Electronics Nv Method of producing a fluorescent optical information carrier and the apparatus and carrier thereof
US20060028970A1 (en) * 2002-06-04 2006-02-09 Victor Company Of Japan, Limited Information recording medium, and apparatuses for reproducing, recording, and recording and reproducing thereof, and methods for reproducing, recording, and recording and reproducing thereof
TW200635796A (en) * 2005-02-24 2006-10-16 Hewlett Packard Development Co Media for laser imaging

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005888A1 (en) * 1988-05-17 2002-01-17 Dai Nippon Printing Method for recording and reproducing information, apparatus therefor and recording medium
US5718996A (en) * 1989-03-16 1998-02-17 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US20030066638A1 (en) * 2001-08-13 2003-04-10 Yuzhi Qu Devices using a medium having a high heat transfer rate
US20060028970A1 (en) * 2002-06-04 2006-02-09 Victor Company Of Japan, Limited Information recording medium, and apparatuses for reproducing, recording, and recording and reproducing thereof, and methods for reproducing, recording, and recording and reproducing thereof
TW200423078A (en) * 2002-12-19 2004-11-01 Koninkl Philips Electronics Nv Use of bi-layer photolithographic resists as new material for optical storage
TW200508048A (en) * 2003-07-21 2005-03-01 Kurz Leonhard Fa Process for producing a high-resolution surface pattern, multi-layer body having a substrate layer and a pattern layer and apparatus for producing a high-resolution surface pattern on a substrate
TW200523919A (en) * 2003-11-14 2005-07-16 Koninkl Philips Electronics Nv Method of producing a fluorescent optical information carrier and the apparatus and carrier thereof
WO2005063484A1 (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co., Ltd. Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
TW200635796A (en) * 2005-02-24 2006-10-16 Hewlett Packard Development Co Media for laser imaging

Also Published As

Publication number Publication date
TW200844996A (en) 2008-11-16

Similar Documents

Publication Publication Date Title
US9165590B2 (en) Minute structure and information recording medium
CN101271274B (en) Minute structure and information recording medium
CN1288500C (en) Resist material and microfabrication method
US20120135353A1 (en) Functionally gradient inorganic resist, substrate with functionally gradient inorganic resist, cylindrical base material with functionally gradient inorganic resist, method for forming functionally gradient inorganic resist and method for forming fine pattern, and inorganic resist and method for forming the same
CN1942957A (en) Optical master substrate with mask layer and method to manufacture high-density relief structure
US7465530B1 (en) Inorganic resist material and nano-fabrication method by utilizing the same
JP5526474B2 (en) Method for forming microstructure
CN1942956A (en) Optical master substrate and method to manufacture high-density relief structure
JP4990835B2 (en) Convex structure manufacturing method
TWI384478B (en) Minute structure and information recording medium
US20080152936A1 (en) Methods For Mastering And Mastering Substrate
Kuwahara et al. Thermal lithography for 100-nm dimensions using a nano-heat spot of a visible laser beam
JP2005332452A (en) Manufacturing method and manufacturing apparatus of multivalued rom disk master plate and multivalued rom disk
JP2008135090A (en) Resist, manufacturing method of stamper for optical disk using the same and stamper for optical disk
EP1695780B1 (en) Structure body and method of producing the structure body, medium for forming structure body, and optical recording medium and method of reproducing the optical recording medium
JP2005158191A (en) Manufacturing method of optical recording medium, and optical recording medium
CN101044557A (en) Method of writing data on a master substrate for optical recording
CN100582936C (en) Resist material and nanofabrication method
JP2005174425A (en) Optical recording medium, reproducing method of optical recording medium and manufacturing method of optical recording medium
Lee et al. High-resolution mastering using AlNiGd metallic glass thin film as thermal absorption layer
US20070072098A1 (en) Optical recording medium
US20090201793A1 (en) Master substrate and method of manufacturing a high-density relief structure
Mori New approach to fabrication of minute columnar and ring patterns with ZnS, SiO2, and Zn
JP2012531006A (en) Master disk with PTM layer and nickel undercoat
Yongyou et al. Mastering Technology for High-Density Optical Disc

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees