TWI384337B - Method for generating video hologram in real time for a holographic display device - Google Patents

Method for generating video hologram in real time for a holographic display device Download PDF

Info

Publication number
TWI384337B
TWI384337B TW96132784A TW96132784A TWI384337B TW I384337 B TWI384337 B TW I384337B TW 96132784 A TW96132784 A TW 96132784A TW 96132784 A TW96132784 A TW 96132784A TW I384337 B TWI384337 B TW I384337B
Authority
TW
Taiwan
Prior art keywords
data set
hologram
scene
visible region
visible
Prior art date
Application number
TW96132784A
Other languages
Chinese (zh)
Other versions
TW200836030A (en
Inventor
Kurt Gitter
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200836030A publication Critical patent/TW200836030A/en
Application granted granted Critical
Publication of TWI384337B publication Critical patent/TWI384337B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • G03H2001/0833Look up table
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/40Synthetic representation, i.e. digital or optical object decomposition
    • G03H2210/45Representation of the decomposed object
    • G03H2210/452Representation of the decomposed object into points

Abstract

The method involves dividing a scene into object points in a light modulator unit. The scene can be seen as a reconstruction from a visibility region. The region is located within a periodicity interval of the reconstruction of the video hologram. The region defines subholograms together with each object point of the scene to be reconstructed. The entire hologram is generated from superimposition of contributions of subholograms. The contributions at the entire reconstruction of the scene for each object point can be determined from a look-up table.

Description

全像顯示器即時產生視訊全像圖的方法Method for instantly generating video full image image by holographic display

本發明有關於從具有深度資訊的影像資料即時產生視訊視訊全像圖,尤其是電腦生成的視訊全像圖(CGVH)。在三維物件或三維景象的全像影像重建期間中,光波的波前即藉由同調光波的干涉和疊加所建立。The invention relates to instantaneously generating a full-view videovisual image from image data with deep information, in particular a computer-generated video full image (CGVH). During the holographic reconstruction of a three-dimensional object or a three-dimensional scene, the wavefront of the light wave is established by the interference and superposition of the homologous light waves.

相對於以影像或以另一種合適的干涉圖案的形式儲存的傳統全像圖,視訊全像圖可依據三維景象序列的全像圖資料運算得到,並以電子裝置儲存。The video hologram can be computed from the hologram of the three-dimensional scene sequence and stored in an electronic device, relative to a conventional hologram stored in the form of an image or in another suitable interference pattern.

可產生干涉的經過調變的光,以可控制光波振幅和相位值的波前形式在觀察者眼前空間中傳播,該光波的波前可藉此重建三維景象。控制具有視訊全像圖的全像圖數值的光調變器裝置,即可造成以像素調變的發射波場,藉由建立光波的干涉,在空間中重建所需的三維景象。The modulated modulated light that can produce interference propagates in the front space of the observer in a wavefront form that controls the amplitude and phase values of the light waves from which the wavefront of the light wave can reconstruct a three dimensional scene. The optical modulator device that controls the hologram value of the video hologram can cause a modulated wave field modulated by pixels, and reconstruct a desired three-dimensional scene in space by establishing interference of light waves.

全像顯示器通常包括可控制像素的配置,該配置可藉由電子方式影響照明光的振幅和/或相位而重建物件點。目前已知有許多光調變器裝置的種類。比如,此類配置可以是空間光調變器(SLM)裝置。顯示器可以是連續型而非矩陣型。例如,可使用連續型的光調變器,包括一個具有矩陣控制的連續型SLM或一個聲光調變器(AOM)。液晶顯示器LCD可作為此類合適的顯示器的例子,可 藉由光圖型的空間振幅調變,來進行視訊全像圖的影像重建。但本發明也適用於其他的可控制裝置,其係使用同調光來調變光波前。A holographic display typically includes a controllable pixel configuration that reconstructs an object point by electronically affecting the amplitude and/or phase of the illumination light. A variety of optical modulator devices are currently known. For example, such a configuration can be a spatial light modulator (SLM) device. The display can be continuous rather than matrix. For example, a continuous type of optical modulator can be used, including a continuous SLM with matrix control or an acousto-optic modulator (AOM). A liquid crystal display LCD can be used as an example of such a suitable display. The image reconstruction of the video hologram is performed by the spatial amplitude modulation of the light pattern. However, the invention is also applicable to other controllable devices that use the same dimming to modulate the optical wavefront.

在本文中,所謂的「像素」為在光調變器裝置上的可控制的全像圖像素,像素可個別定址並可由全像圖點的離散值所控制。各像素代表視訊全像圖的全像圖點,在LCD裝置中,所謂的「像素」用於顯示螢幕的各別定址的影像點。在數位光處理顯示器(DLP)中,所謂的「像素」用於個別的微鏡子或小群的微鏡子組上。在連續型SLM中,「像素」為光調變器裝置上的轉換區域,其係代表複數的全像圖點。所謂的「像素」通常即表示代表或可顯示複數全像圖點的最小單元。In this context, a so-called "pixel" is a controllable hologram pixel on a light modulator device, the pixels being individually addressable and controllable by discrete values of hologram points. Each pixel represents an hologram of the video hologram. In the LCD device, a so-called "pixel" is used to display image points of respective addresses of the screen. In digital light processing displays (DLP), so-called "pixels" are used on individual micromirrors or small groups of micromirrors. In a continuous SLM, a "pixel" is a transition region on a light modulator device that represents a complex hologram point. The so-called "pixel" usually means the smallest unit that represents or can display a complex hologram point.

本發明所使用之較佳全像顯示器基本上依據下列原理:可分解成物件點的景象,在至少一個光調變器裝置上,編碼成為完整的全像圖。該景象可自位於視訊全像圖的重建影像間隔週期內的可見區域見到重建影像。就將用於重建的景象的各物件點定義子全像圖,完整全像圖可藉由子全像圖的疊加來形成。一般而言,其原理主要用於重建可由一個物件發射到一個或多個可見區域中的波前。The preferred holographic display used in the present invention is basically based on the principle that a scene that can be decomposed into object points is encoded as a complete hologram on at least one of the optical modulator devices. The scene can be seen from the visible region of the reconstructed image interval period of the video hologram. A sub-image is defined for each object point of the scene to be reconstructed, and the complete hologram can be formed by superposition of sub-images. In general, the principle is primarily used to reconstruct a wavefront that can be emitted by one object into one or more visible regions.

就詳細說明而言,此類裝置所依據的原理,即為各別物件點的重建只需子全像圖,作為在光調變器裝置進行編碼的完整全像圖的子集合。For the sake of detailed description, such a device is based on the principle that the reconstruction of individual object points requires only a sub-image as a subset of the complete hologram that is encoded in the optical modulator device.

全像顯示器包括至少一個螢幕裝置,該螢幕裝置可為光調變器本身,其中可進行景象全像圖的編碼,或是一個光學元件,如透鏡組或鏡子,在該裝置上,編碼在光調變器上的景象的全像圖或波前可被投射。The hologram display includes at least one screen device, which may be a light modulator itself, in which a full image of the scene can be encoded, or an optical component, such as a lens group or mirror, on which the light is encoded. The hologram or wavefront of the scene on the modulator can be projected.

螢幕裝置的定義和可見區域中景象重建的對應原理,在申請人所申請的其他專利申請文件中有所說明。在文件WO 2004/044659和WO 2006/027228中,螢幕裝置為光調變器本身。在文件WO 2006/119760「全像重建的投射裝置」中,螢幕裝置即為光學元件,其可使編碼於光調變器上的全像圖被投射。在文件DE 10 2006 004 300「全像重建的投射裝置」中,螢幕裝置即為光學元件,其可使編碼於光調變器上的波前被投射。The definition of the screen device and the corresponding principles of scene reconstruction in the visible region are described in other patent application documents filed by the applicant. In the documents WO 2004/044659 and WO 2006/027228, the screen device is the light modulator itself. In the document WO 2006/119760 "Projection device for holographic reconstruction", the screen device is an optical element which allows the hologram image encoded on the light modulator to be projected. In the document DE 10 2006 004 300 "Projection device for holographic reconstruction", the screen device is an optical element which allows the wavefront encoded on the light modulator to be projected.

「可見區域」即為有限的範圍,透過該範圍,觀察者可看到整個重建景象。在可見區域內,波場造成干涉而形成一個波前,可讓重建的景象被觀察者看到。可見區域即位於觀察者眼睛或眼睛附近,可見區域可在X、Y及Z方向移動,藉由已知的位置偵測和追蹤系統的協助,進行實際觀察者位置的追蹤。各觀察者可能使用兩個可見區域,每個眼使用一個可見區域。一般而言,可見區域的其他實施例也是有可能性的。也可能進行視訊全像圖的編碼,就觀察者而言,可讓各別的物件或整個景象位於光調變器的後方。The "visible area" is a limited range through which the observer can see the entire reconstructed scene. In the visible region, the wave field creates interference and forms a wavefront that allows the reconstructed scene to be seen by the observer. The visible area is located near the observer's eyes or eyes, and the visible area can be moved in the X, Y, and Z directions, and the actual observer position is tracked with the assistance of a known position detection and tracking system. Each observer may use two visible areas, one for each eye. In general, other embodiments of the visible area are also possible. It is also possible to encode the video hologram, which allows the individual objects or the entire scene to be located behind the light modulator.

虛擬、截頭錐體形的重建空間在全像顯示器的光調變器裝置 和可見區域間延伸,其中光調變器呈現虛擬截頭錐體的底部,而可見區域呈現其頂部的部位。假如可見區域非常小,虛擬截頭錐體即近似三角錐形體。觀察者可透過可見區域進入全像顯示器上,而在可見區域中接收代表景象的波前。Virtual, frustoconical reconstruction space in a holographic display optical modulator device Extending from the visible region, wherein the light modulator presents the bottom of the virtual frustum and the visible region presents the top portion of it. If the visible area is very small, the virtual frustum is approximately triangular. The observer can enter the omnidirectional display through the visible area and receive the wavefront representing the scene in the visible area.

申請人所申請的專利文件WO/2006/066906說明計算視訊全像圖的方法。一般包括將景象切割成平行光調變器平面的剖面,將所有的這些剖面轉換進入可見區域中,並在可見區域中將其相加。然後相加的結果被反轉換到全像圖平面上,該平面也配置光調變器,藉此決定視訊視訊全像圖的複數全像圖數值。The method of calculating a video hologram is described in the patent document WO/2006/066906 filed by the applicant. Typically, the profile is cut into planes of parallel light modulator planes, all of which are converted into visible areas and added in the visible area. The result of the addition is then inversely converted to the hologram plane, which also configures the optical modulator to determine the complex hologram value of the video hologram.

本方法基本上可藉由電腦的協助針對三維景象執行下列步驟:就某個觀察者的所在平面而言,繞射影像可以波場的分離的二維分佈的形式,從各斷層景象剖面的各物件資料組計算,觀察者的所在平面位於有限距離且平行於剖面上,其中所有剖面的波場可就至少一個的共同可見區域進行資料的運算;將所有剖面層的經過運算的分佈加總,在相對於觀察者平面的參考資料組中,對可見區域定義累進波場;為產生一般電腦生成的景象全像圖的全像圖資料組,參考資料組內容可轉換成全像圖平面,該平面係位於有限的距離、且平行於參考平面,其中的光調變器裝置位於全像圖平面上。The method basically performs the following steps for a three-dimensional scene with the assistance of a computer: in terms of the plane of an observer, the diffracted image can be in the form of a separate two-dimensional distribution of the wave field, from each of the tomographic profiles The object data set calculates that the plane of the observer is located at a finite distance and parallel to the section, wherein the wave field of all the sections can perform data calculation on at least one common visible area; the calculated distribution of all the section layers is added, In the reference group relative to the observer plane, a progressive wave field is defined for the visible region; for generating a hologram group of the general computer generated scene hologram, the reference group content can be converted into a hologram plane, the plane The system is located at a finite distance and parallel to the reference plane, wherein the optical modulator device is located on the hologram plane.

因為需要大量的資料轉換,本方法的實施會造成大量的運算負擔。可見即時編碼或產生全像圖數值,需要成本高性能優越的 計算機單元組。此類昂貴的計算機單元組即會限制或降低人們對數位視訊全像裝置的接受性。The implementation of this method causes a large amount of computational burden because of the large amount of data conversion required. It can be seen that instant coding or generation of hologram values requires cost and high performance. Computer unit group. Such expensive computer unit groups can limit or reduce the acceptability of digital video holographic devices.

因此,本發明的目的為提供由具有深度資訊的三維影像資料即時產生視訊全像圖的方法。可使用簡單和便宜的計算單元組建立這些全像圖。Accordingly, it is an object of the present invention to provide a method for instantly generating a video hologram from a three-dimensional image data having depth information. These holograms can be created using simple and inexpensive sets of computational units.

此目的可以某種方法解決,就所有的物件點而言,光波傳播進入可見區域的分布,可在至少一個檢視表格中擷取。這些屬各物件點的分佈資料,可藉由光波傳播的資料組DPVR 描述,而該資料組即參考可見區域所建立。This can be solved in a way that, for all object points, the distribution of light waves into the visible area can be captured in at least one view. These distribution data of each object point can be described by the light wave propagation data set DP VR , which is established by reference to the visible area.

依據本發明的方法,其適用於如申請專利範圍第1項的內容所定義之全像顯示器。此類裝有合適的光調變器裝置的全像顯示器,其依據之原理為在至少一個可見區域中疊加以景象的物件點資訊所調變的波場。According to the method of the present invention, it is applicable to a hologram display as defined in the content of claim 1 of the patent application. Such a holographic display incorporating a suitable light modulator device is based on the principle of superimposing the wavefield modulated by the object point information of the scene in at least one of the visible regions.

本發明方法的較佳的實施例,即說明如下:在製備的處理步驟中,決定以具有深度資訊的影像資料表示的景象的可見物件點。所準備的資料,較佳的由影像介面或影像卡中所提取。依據本發明使用的方法,對於景象的各可見物件點,包括下列的處理步驟:A preferred embodiment of the method of the present invention is illustrated as follows: In the processing steps of the preparation, the visible object points of the scene represented by the image data having the depth information are determined. The prepared data is preferably extracted from the image interface or image card. The method used in accordance with the present invention includes the following processing steps for each visible object point of the scene:

步驟(1):藉由轉換進入可見區域進行物件點的光波傳播,以取得光波傳播資料組DPVR ,該資料組參考於可見區域。Step (1): The light wave propagation data set DP VR is obtained by converting the light wave propagation into the visible region to obtain the light wave propagation data set DP VR , the data group referring to the visible region.

步驟(2):重複轉換直到整個景象所有物件點皆被轉換,且加 上各別轉換DPVR 的結果,以描述在參考可見區域的資料組DΣVR 中的可見區域的整個景象的累進波場,DΣVR =Σ DPVR i Step (2): the conversion is repeated until all the object points of the entire scene are converted, and the results of the respective conversion DP VR are added to describe the progressive wave field of the entire scene of the visible region in the data set D Σ VR of the reference visible region. , DΣ VR =Σ DP VR i

被參考的資料組DΣVR 因此可代表或描述被轉換進入可見區域中的整個景象。The referenced data set D Σ VR can thus represent or describe the entire scene that is converted into the visible area.

步驟(3):反轉換,其中見於步驟2和參考可見區域的累進資料組DΣVR ,自可見區域轉換進入裝有光調變器裝置的全像圖平面上,以產生視訊全像圖的複數全像圖數值。Step (3): inverse conversion, wherein the progressive data set D Σ VR , which is found in step 2 and the reference visible region, is converted from the visible region into the hologram plane of the optical modulator device to generate a plurality of video holograms. Full image value.

本發明所依據的觀念,即為針對各物件點,參考光波傳播進入可見區域所建立的資料組DPVR ,可自至少一個的查表中擷取。The concept according to the present invention is that for each object point, the reference data set DP VR established by the reference light wave propagating into the visible area can be extracted from at least one look-up table.

查表包括這些參考的資料組DPVR ,建立查表即可允許快速存取資料。查表可以於任何一種可提供上述資料組的資料載體、記憶體和介面實施。本文範例即屬本發明專用的記憶體、資料載體、資料庫或其他的儲存媒體和介面。較佳的介面有網際網路、WLAN、乙太網路和其他的區域和全球網路。The look-up table includes these referenced data sets DP VR , which can be quickly accessed by creating a look-up table. The look-up table can be implemented in any of the data carriers, memory and interfaces that provide the above data sets. The examples herein are memory, data carriers, databases or other storage media and interfaces dedicated to the present invention. The preferred interfaces are Internet, WLAN, Ethernet, and other regional and global networks.

依據本發明的進一步內容,例如,為了進行光調變器裝置的位置或外觀所造成的容忍度補償,或用於改善重建影像的品質,可使用外加的修正功能。例如,修正值被調變為參考進入可見區域的光波傳播的資料組DPVR ,和/或調變為參考進入可見區域的累進資料組DΣVR ,和/或調變為複數全像圖數值,以修正這些資料的複數值的相位和/或振幅。In accordance with further aspects of the present invention, for example, to compensate for tolerances caused by the position or appearance of the light modulator device, or to improve the quality of the reconstructed image, an additional correction function can be used. For example, the correction value is tuned to the data set DP VR that references the light wave propagation into the visible region, and/or to the progressive data set D Σ VR that is referenced into the visible region, and/or converted to a complex hologram value, To correct the phase and/or amplitude of the complex values of these data.

使用查表的原理能較佳的加以擴充,例如,可使用來自各別查表中的色彩和/或亮度資訊的參數資料。此外,資料組DPVR 或DΣVR ,可使用也是提取自查表中的亮度和/或色彩值進行調變。就彩色顯示而言,色彩相關的資料組DPVR 也可自主要色彩的各別查表中提取。The principle of using the look-up table can be better expanded, for example, parameter data from color and/or brightness information in the respective look-up tables can be used. In addition, the data set DP VR or D Σ VR can be modulated using the brightness and/or color values also extracted from the self-checking table. For color display, the color-related data set DP VR can also be extracted from the individual look-up tables of the main colors.

查表即藉由,例如,決定一個被定義的空間中的每個可能的物件點所相應的輸入資料組DPVR ,其藉由傳播一個透過轉換進入可見區域的物件點光波而參考可見區域,。輸入數值儲存於合適的資料載體和/或儲存模組的某個結構中,或由儲存介面來提供輸入數值。另一個解決方案就是藉由光追蹤法的協助,決定參考可見區域所建立資料組DPVR 的對應。也可能藉由最佳化和/或近似法來決定這些資料組。例如,此空間包括觀察者和其眼睛的行動範圍,其內可看到全像圖。The look-up table is, for example, by determining the input data set DP VR corresponding to each possible object point in a defined space, by referring to a visible light wave by propagating an object point light wave that enters the visible region through the conversion, . The input values are stored in a suitable structure of the data carrier and/or storage module, or the storage interface provides input values. Another solution is to determine the correspondence of the data set DP VR established by reference to the visible area by the aid of the optical tracking method. It is also possible to determine these data sets by optimization and/or approximation. For example, this space includes the range of motion of the observer and its eyes, within which a hologram can be seen.

依據本發明的方法,可就所有的被重建的物件點,進行這些資料的存取。例如,物件點的深度資訊,可用於查詢、讀取和處理對應的資料組DΣVR 。該相同方法根據色彩和亮度相關的查表應用更詳細參數值。所讀取的資料可更進一步處理,而沒有任何延遲與需要執行的複雜運算。及時的全像圖數值的產生可因此由本發明的方法來取代。In accordance with the method of the present invention, access to such data can be performed for all reconstructed object points. For example, the depth information of the object point can be used to query, read and process the corresponding data set D Σ VR . This same method applies more detailed parameter values based on color and brightness related lookup tables. The data read can be processed further without any delays and complex operations that need to be performed. The generation of timely hologram values can thus be replaced by the method of the invention.

可見區域即由一個影像網格所構成,在資料組DPVR 的協助下,用於描述物件點的光波到可見區域的傳播。例如,該範圍即 由類似矩陣的橫列和縱列所構成,其中各矩陣元素即可用於表示一個複數值。所有的數值可構成資料組DPVR 。當有m條橫列和n條縱列時,資料組DPVR 包括m乘上n的複數值。該資料組的架構,可適用於快速存取資料數值,類比原理使用於整個景象的資料組DPVRThe visible area is composed of an image grid, which is used to describe the propagation of light waves from the object point to the visible area with the aid of the data set DP VR . For example, the range consists of a matrix and a column of similar matrix, where each matrix element can be used to represent a complex value. All values can form the data set DP VR . When there are m rows and n columns, the data set DP VR includes a complex value of m times n. The data set architecture is suitable for fast access to data values, and the analogy principle is used for the entire scene data set DP VR .

本發明的另一個一般觀念,則有關於預防斑點出現的副作用。斑點即為觀察者在全像圖中所看到的單一光點,斑點通常是由隨機分佈的強度極值所產生,依據本發明,參考可見區域的累進資料組DΣVR 數值,可被平滑化。舉例來說,這表示可降低振幅極值。再者,可修正振幅曲線和/或相位曲線上的任何不連續處。也可藉由最佳化和自我學習演算法的協助,修正資料組DΣVR 中的輸入數值,降低產生斑點的機率。較佳的,視訊序列的先前影像資料可列入這些情況的考慮中,可藉由均化或修正降低斑點的數量和強度,更可讓這些原理也套用於資料組DPVR 中。Another general concept of the present invention relates to the prevention of side effects of spots. The spot is the single spot seen by the observer in the hologram. The spot is usually generated by randomly distributed intensity extremes. According to the present invention, the progressive data set D Σ VR value of the visible region can be smoothed. . This means, for example, that the amplitude extremes can be reduced. Furthermore, any discontinuities in the amplitude and/or phase curves can be corrected. The input values in the data set DΣ VR can also be corrected by the optimization and self-learning algorithms to reduce the chance of speckles. Preferably, the previous image data of the video sequence can be included in the consideration of these situations, and the number and intensity of the spots can be reduced by homogenization or correction, and these principles can also be applied to the data set DP VR .

整體而言,假設商業化的光調變器裝置的解析度,已可提供高畫值的全像圖,即可實質降低過去用來產生全像資訊的計算單元所需的昂貴費用。使用查表時,運算負荷可依據振幅排序來降低。因此,本發明的方法可用一般的電腦系統來處理。就全像應用而言,本方法可確保全像圖以互動和即時的方法產生。最後,由於產生可靠的即時全像圖,即可確保能降低追蹤觀察者瞳孔時所不需要的延遲。為單一觀察者所產生的即時全像圖,也可確保 只需簡單的運算單元組。本發明的方法,也可提供時間或空間分離的即時全像圖,以供給多個觀察者所用。Overall, assuming that the resolution of a commercial light modulator device provides a high-valued hologram, the cost of the computing unit used to generate holographic information in the past can be substantially reduced. When using a look-up table, the computational load can be reduced by the order of the amplitudes. Thus, the method of the present invention can be handled by a general computer system. For holographic applications, this approach ensures that the hologram is generated in an interactive and instant manner. Finally, by producing a reliable instant hologram, it is ensured that the delays required to track the observer's pupils are reduced. Instant holograms generated for a single observer are also guaranteed Simply a simple unit of arithmetic. The method of the present invention can also provide a temporal or spatially separated instant hologram for use by a plurality of observers.

舉例來說,因為全像圖的建立只需少量的運算負荷,無需由電腦的中央處理單元CPU執行運算。依據可替代的解決方案,可使用影像卡元件建立全像圖,其中該裝置較佳為影像中央處理單元(GPU)和/或特別組態設定的運算單元組。這也允許增加的資料傳播率可被較佳的使用。For example, because the creation of a hologram requires only a small amount of computational load, there is no need to perform computations by the central processing unit CPU of the computer. According to an alternative solution, an image card component can be used to create an hologram, wherein the device is preferably a video central processing unit (GPU) and/or a specially configured operational unit group. This also allows for an increased rate of data transmission to be used.

本發明可實質提供廣泛的應用性並為全像顯示器所接受,以及具有更高的經濟效益。The present invention can substantially provide a wide range of applicability and is acceptable for holographic displays, and has higher economic efficiency.

圖1圖示說明作為用於一個觀察者的全像顯示器(HAE)的基礎的一般原理。此原理依據多個觀察者而使用,觀察者的位置可由其眼睛或瞳孔(VP)來標示。該裝置包括一個光調變器裝置(SLM),其與本實施例中的螢幕裝置(B)相同,以便簡化說明內容,並在至少一個可見區域(VR)中,以景象(3D-S)物件點資訊所調變的波場進行疊加。眼睛可追蹤到可見區域,景象(3D-S)的單一物件點(OP)的重建影像只需一個子全像圖(SH)作為編碼在光調變器裝置(SLM)上的完整全像圖(HΣSLM )的子集合。如同本圖所看到的內容,子全像圖(SH)的範圍只包含少許的光調變器裝置(SLM)的子區域。Figure 1 illustrates the general principles of the basis of a hologram display (HAE) for an observer. This principle is used in accordance with multiple observers whose position can be indicated by their eyes or pupils (VP). The apparatus includes a light modulator device (SLM) which is identical to the screen device (B) of the present embodiment in order to simplify the description and to view the scene (3D-S) in at least one visible area (VR). The wave field modulated by the object point information is superimposed. The eye can be traced to the visible area, and the reconstructed image of a single object point (OP) of the scene (3D-S) requires only a sub-image (SH) as a complete hologram encoded on the light modulator device (SLM). A subset of (HΣ SLM ). As seen in this figure, the sub-image (SH) range contains only a few sub-regions of the light modulator device (SLM).

圖2即為更詳細說明全像顯示器原理的三維圖示,參考內容悉如圖1。Figure 2 is a three-dimensional illustration of the principle of the holographic display in more detail. The reference is shown in Figure 1.

圖3即為依據實施例所顯示的本發明方法之流程圖,本實施例乃依據含有眾多物件點(OP)的三維景象(3D-S),可提供物件點(OP)影像色彩和深度圖譜,在本實施例中,該影像的深度圖譜含有影像深度資訊,而色彩圖譜則含有由影像系統所提供的像素化色彩資訊。3 is a flow chart of the method of the present invention shown in accordance with an embodiment. The present embodiment provides an object point (OP) image color and depth map based on a three-dimensional scene (3D-S) containing a plurality of object points (OP). In this embodiment, the depth map of the image contains image depth information, and the color map contains pixelated color information provided by the image system.

可就各個可見物件點執行下列步驟:The following steps can be performed for each visible object point:

步驟(1):藉由轉換進入可見區域(VR)的物件點(OP)的光波傳播,以取得光波傳播的資料組(DPVR ),該資料組參考於可見區域(VR)。依據本發明的觀念,即為可自至少一個的查表中提取資料組DPVR 。使用物件點的影像深度資訊來查詢、讀取和處理資料,這裡在一最簡單的實施例中,乃使用物件點到可見區域中心的正常距離。物件點(OP)的光波可簡單地轉換進入可見區域(VR)中,但產生的數值,例如參考資料組(DPVR ),可由至少一個查表中查詢和讀取的。Step (1): To obtain a light wave propagation data set (DP VR ) by converting light wave propagation of an object point (OP) entering a visible area ( VR ), the data set is referenced to a visible area (VR). According to the concept of the invention, the data set DP VR can be extracted from at least one look-up table. The image depth information of the object points is used to query, read, and process the data. In the simplest embodiment, the normal distance of the object to the center of the visible area is used. The light waves of the object point (OP) can be simply converted into the visible area (VR), but the resulting values, such as the reference data set (DP VR ), can be queried and read by at least one lookup table.

步驟(2):重複轉換直到整個景象(3D-S)傳播完所有的物件點,就各個資料點(OP)而言,參考於可見區域(VR)的資料組(DΣVR ),可根據步驟1自至少一個查表中讀取。舉例來說,這些資料即提取自影像系統的記憶體,或由介面、資料載體和儲存模組來擷取。Step (2): Repeat the conversion until the entire scene (3D-S) has propagated all the object points. For each data point (OP), refer to the data area of the visible area (VR) (DΣ VR ), according to the steps. 1 Read from at least one lookup table. For example, the data is extracted from the memory of the imaging system or captured by the interface, the data carrier, and the storage module.

此外,資料組DPVR ,可使用取自查表中的亮度和/或色彩數值進行調變,以進行資料組的複數值的相位和/或振幅的修正。例如, 這些複數值可乘上一個強化因子。可選擇性地自至少一個的查表提取亮度和/或色彩數值。也可自查表提取相關資料組中的色彩資料,或進行主要色彩的對應資料表的疊加。In addition, the data set DP VR can be modulated using the brightness and/or color values taken from the look-up table to correct the phase and/or amplitude of the complex values of the data set. For example, these complex values can be multiplied by a boost factor. Brightness and/or color values may optionally be extracted from at least one lookup table. It is also possible to extract the color data in the relevant data group from the self-checking table, or to superimpose the corresponding data table of the main color.

再者,這些資料可加到參考於可見區域(VR)的資料組(DΣVR )中。也可藉由下列的公式輔助說明:DΣVR =Σ DPVRi Furthermore, these data can be added to a data set (DΣ VR ) that is referenced to the visible region (VR). It can also be explained by the following formula: DΣ VR =Σ DP VRi

指數i代表物件點的資料組DPVR Index i represents the data set DP VR of the object point

在本實施例中,可見區域即構成類似具有m條橫列和n條縱列的矩陣。即表示資料組(DPVR )的m值可乘上對應複數的n值,如讀取自查表中的矩陣元素。在本實施例中,資料組(DΣVR )也有相同的維度。In the present embodiment, the visible region constitutes a matrix similar to m columns and n columns. That is, the m value of the data set (DP VR ) can be multiplied by the corresponding n value of the complex number, such as reading the matrix element in the self-check table. In this embodiment, the data set (DΣ VR ) also has the same dimension.

再者,可藉由平滑化和修正資料組(DΣVR )數值,降低斑點的副作用。振幅極值被降低,即所有的振幅數值為有限值。再者,可進行振幅曲線和/或相位曲線上的任何不連續處的修正。依據最簡單的實施例,矩陣元素的數值可跟水平和垂直的鄰近元素數值比較,找到其不連續處。這些數值可再藉由自我學習的演算法進一步地修改,以降低斑點發生的機率,而該演算以神經網路的形式執行。也考慮到視訊序列的先前影像的資料組,斑點發生機率或實際頻率即為合適的價值函數。Furthermore, the side effects of the spots can be reduced by smoothing and correcting the data set (DΣ VR ) values. The amplitude extremes are reduced, ie all amplitude values are finite. Furthermore, corrections for any discontinuities in the amplitude and/or phase curves can be made. According to the simplest embodiment, the values of the matrix elements can be compared to the values of the adjacent elements of the horizontal and vertical, finding the discontinuities. These values can be further modified by a self-learning algorithm to reduce the chance of spotting, which is performed in the form of a neural network. Also taking into account the data set of the previous image of the video sequence, the probability of spot occurrence or the actual frequency is a suitable value function.

步驟(3):反轉換,其中自步驟2所提取而參考於可見區域的累進資料組(DΣVR ),景象由可見區域(VR)轉換進入光調變器裝置 (SLM)所在的全像圖平面(HP)上,以為完整的全像圖(HΣSLM ),如視訊全像圖,產生複數全像圖數值。Step (3): inverse conversion, wherein the progressive data set (DΣ VR ) extracted from the visible region is extracted from the visible region, and the scene is converted into the hologram of the optical modulator device (SLM) by the visible region (VR). On the plane (HP), a complete hologram (HΣ SLM ), such as a video hologram, is generated to generate a complex hologram value.

可藉由下列的公式輔助說明:HΣSLM =T 1 VR 其中的 T 1 即為反轉換操作子。It can be explained by the following formula: HΣ SLM = T 1 D Σ VR where T 1 is the inverse conversion operator.

視訊全像圖可顯示所有物件點的全像圖,視訊全像圖因此可顯示及重建整個影像。The video hologram shows the hologram of all object points, and the video hologram can display and reconstruct the entire image.

在最後一個步驟(4)中,全像圖數值資料可以Burckhardt分量、雙相位分量或任何其他合適的代碼進行編碼,將完整的全像圖轉換成全像顯示器的像素值,較佳的,使用依據文件WO 2004/044659,WO 2006/027228,WO 2006119760 and DE 10 2006 004 300所揭露的裝置。In the last step (4), the hologram data may be encoded by a Burckhardt component, a bi-phase component, or any other suitable code to convert the complete hologram to the pixel value of the hologram display, preferably, based on the basis. The device disclosed in the documents WO 2004/044659, WO 2006/027228, WO 2006119760 and DE 10 2006 004 300.

本案所揭露之技術,得由熟習本技術人士據以實施,而其前所未有之作法亦具備專利性,爰依法提出專利之申請。惟上述之實施例尚不足以涵蓋本案所欲保護之專利範圍,因此,提出申請專利範圍如附。The technology disclosed in this case can be implemented by a person familiar with the technology, and its unprecedented practice is also patentable, and the application for patent is filed according to law. However, the above embodiments are not sufficient to cover the scope of patents to be protected in this case. Therefore, the scope of the patent application is attached.

SH‧‧‧子全像SH‧‧‧ child avatar

VR‧‧‧可見區域VR‧‧ visible area

VP‧‧‧觀察者VP‧‧‧ Observer

OP‧‧‧物件點OP‧‧‧object points

3D-S‧‧‧景象3D-S‧‧‧ sight

SLM‧‧‧空間光調變器SLM‧‧‧Space Light Modulator

HP‧‧‧全像圖平面HP‧‧‧Full image plane

HAE‧‧‧全像顯示器HAE‧‧‧ holographic display

本發明在實施例與參考所附圖示的協助下,於以下提供更詳細的說明,其中圖1簡略圖示為全像顯示器的原理;圖2為三維示意圖,圖示說明全像顯示器的原理;及圖3顯示依據實施例的本發明方法的流程圖。The present invention provides a more detailed description below with the aid of the embodiments and with reference to the accompanying drawings, wherein FIG. 1 is schematically illustrated as the principle of a holographic display; FIG. 2 is a three-dimensional schematic illustrating the principle of a holographic display. And Figure 3 shows a flow chart of the method of the invention in accordance with an embodiment.

Claims (13)

一種用於一全像顯示器(HAE)以即時產生複數個視訊全像圖的方法,其中該全像顯示器(HAE)具有至少一光調變器裝置(SLM),被分割為複數個物件點(OP)的一景象(3D-S)在該光調變器裝置(SLM)上被編碼為一完整全像圖(HΣSLM ),且該景象可從該視訊全像圖的重建影像之一週期間隔內的一可見區域(VR)看到重建結果,其中,一單一物件點(OP)的重建只需在該光調變器裝置上所編碼的該完整全像圖(HΣSLM )之一子集合,其特徵在於:就各物件點(OP)而言,進入可見區域(VR)之光波之傳輸的貢獻係從至少一個查表(Look-up Table)來擷取。A method for a full-image display (HAE) to instantly generate a plurality of video holograms, wherein the hologram display (HAE) has at least one light modulator device (SLM) that is divided into a plurality of object points ( A scene of the OP) (3D-S) is encoded as a complete hologram (HΣ SLM ) on the optical modulator device ( SLM ), and the scene can be cycled from the reconstructed image of the video hologram A visible region (VR) within the interval sees the reconstruction result, wherein reconstruction of a single object point (OP) requires only one of the complete holograms (HΣ SLM ) encoded on the optical modulator device A collection, characterized in that, for each object point (OP), the contribution of the transmission of light waves entering the visible region (VR) is extracted from at least one look-up table. 如申請專利範圍第1項所述之方法,其中一觀察者(VP)的位置和檢視方向係定義該景象(3D-S)的一視野,而其中分派靠近眼睛的至少一個可見區域(VR)給該觀察者,而對該景象(3D-S)的各可見物件點(OP),包含下列步驟:該物件點(OP)的該光波的傳輸,其係藉由到該可見區域(VR)內的轉換,以取得該傳輸的一資料組(DPVR ),該資料組係涉及該可見區域(VR);該轉換的重複,直到該整個景象(3D-S)的所有物件點被轉換,加總各別轉換(DPVR )的結果,藉以描述一資料組(DΣVR )中該可見區域(VR)之該完整景象(3D-S)的一累進波場(Aggregated Wave Field),該累進波場係涉及該可見區域(VR);逆轉換(Back-transformation),其中涉及該可見區域(VR)的剛決定的累進資料組(DΣVR )從該可見區域(VR)轉換到該光調變 器裝置(SLM)所在之全像平面(HP),藉以產生該影像全像之複數(complex)全像數值,其特徵在於:對各個物件點(OP)而言,涉及進入該可見區域(VR)的該光波的該傳輸的該資料組(DPVR )係從至少一個查表來擷取。The method of claim 1, wherein the position and viewing direction of an observer (VP) defines a field of view of the scene (3D-S), wherein at least one visible area (VR) assigned to the eye is assigned. To the observer, each visible object point (OP) of the scene (3D-S) includes the following steps: the transmission of the light wave of the object point (OP) by the visible area (VR) Internal conversion to obtain a data set (DP VR ) of the transmission, the data set relates to the visible area (VR); the repetition of the conversion until all object points of the entire scene (3D-S) are converted, The result of summing the individual conversions (DP VR ) to describe an Aggregated Wave Field of the complete scene (3D-S) of the visible region (VR) in a data set (DΣ VR ), the progressive The wave field system relates to the visible region (VR); a back-transformation in which a newly determined progressive data set (DΣ VR ) involving the visible region (VR) is converted from the visible region (VR) to the light tone The holographic image (HP) in which the transducer device (SLM) is located, thereby generating a complex holographic value of the holographic image of the image, characterized by : The transfer of each object point (OP), to enter the visible region (VR) of the light wave of the data set (DP VR) system from at least one look-up table to retrieve. 如申請專利範圍第1項或第2項所述之方法,其中對複數個物件點(OP)而言,涉及進入該可見區域(VR)的該光波的該傳輸的該資料組(DPVR )係以亮度和/或色彩值、或擷取自至少一個查表的亮度和/或色彩值來調變。The method of claim 1 or 2, wherein for a plurality of object points (OP), the data set (DP VR ) of the transmission of the light wave entering the visible area (VR) is involved. Modulated by the brightness and/or color values, or by the brightness and/or color values of at least one look-up table. 如申請專利範圍第1項或第2項所述之方法,其中修正值係調變為涉及進入該可見區域(VR)的該光波的該傳輸的該資料組(DPVR )、和/或涉及該可見區域的該累進資料組DΣVR 、和/或該複數全像數值。The method of claim 1 or 2, wherein the correction value is modulated into the data set (DP VR ) of the transmission involving the light wave entering the visible area ( VR ), and/or The progressive data set D Σ VR of the visible region, and/or the complex holographic value. 如申請專利範圍第1項或第2項所述之方法,其中涉及該可見區域(VR)的該累進資料組(DΣVR )的數值係被平滑化、或其中涉及該可見區域(VR)的該累進資料組(DΣVR )的數值係被平滑化且振幅的極限值係為有限的。The method of claim 1 or 2, wherein the value of the progressive data set (DΣ VR ) related to the visible region (VR) is smoothed, or wherein the visible region (VR) is involved The value of the progressive data set (DΣ VR ) is smoothed and the limit of the amplitude is limited. 如申請專利範圍第5項所述之方法,其中振幅和/或相位曲線之不連續部份係被均等化(Homogenized)。 The method of claim 5, wherein the discontinuous portions of the amplitude and/or phase curves are homogenized. 如申請專利範圍第1項或第2項所述之方法,其中在該資料組(DΣVR )中的鍵入資料在最佳化和/或自我學習運算法的協助下進行修正,以降低該影像全像中不期望斑點的發生機率。The method of claim 1 or 2, wherein the keying data in the data set (DΣ VR ) is corrected with the aid of an optimization and/or self-learning algorithm to reduce the image. The probability of occurrence of spots is not expected in the hologram. 如申請專利範圍第1項或第2項所述之方法,其中該複數全像數值被轉換成該光調變器裝置(SLM)的像素值、或其中該複數 全像數值被轉換成Burckhardt分量或雙相位分量或任何其他的適用碼。 The method of claim 1 or 2, wherein the complex hologram value is converted into a pixel value of the optical modulator device (SLM), or wherein the complex number The hologram value is converted to a Burckhardt component or a bi-phase component or any other suitable code. 如申請專利範圍第1項或第2項所述之方法,其中該查表係藉由轉換到該可見區域(VR)來傳輸該物件點(OP)的該光波,而藉以針對已定義空間中各個可能的物件點決定對應資料組(DPVR )之鍵入資料而產生,該資料組(DPVR )係涉及該可見區域。The method of claim 1 or 2, wherein the look-up table transmits the light wave of the object point (OP) by converting to the visible area (VR), thereby targeting the defined space each possible object type information corresponding to data sets (DP VR) of the decision point is generated, the data set (DP VR) system relates to the visible region. 如申請專利範圍第1項或第2項所述之方法,其中該查表係在光線追蹤方法的協助下藉由針對已定義空間中各個可能的物件點決定對應資料組(DPVR )之鍵入資料而產生,該資料組(DPVR )係涉及該可見區域。The method of claim 1 or 2, wherein the lookup table determines the type of the corresponding data set (DP VR ) by using the ray tracing method for each possible object point in the defined space. Generated from the data, the data set (DP VR ) is related to the visible area. 如申請專利範圍第1項或第2項所述之方法,其中該查表係在最佳化和近似值運算法的協助下,藉由針對已定義空間中各個可能的物件點決定對應資料組(DPVR )之鍵入資料而產生,該資料組(DPVR )係涉及該可見區域。The method of claim 1 or 2, wherein the lookup table determines the corresponding data set for each possible object point in the defined space with the aid of the optimization and approximation algorithms ( DP VR ) is generated by typing data, and the data set (DP VR ) is related to the visible area. 如申請專利範圍第1項或第2項所述之方法,其中螢幕裝置為於其上編碼該景象的全像的該光調變器裝置本身,或一光學元件,其中該景象在光調節裝置上編碼的一全像或波前投射至該光學元件。 The method of claim 1 or 2, wherein the screen device is the light modulator device itself on which the full image of the scene is encoded, or an optical component, wherein the scene is in the light adjusting device A hologram or wavefront of the upper code is projected onto the optical element. 如申請專利範圍第12項所述之方法,其中該顯示裝置的該光學元件為透鏡或鏡子。 The method of claim 12, wherein the optical component of the display device is a lens or a mirror.
TW96132784A 2006-09-01 2007-09-01 Method for generating video hologram in real time for a holographic display device TWI384337B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610042323 DE102006042323B4 (en) 2006-09-01 2006-09-01 Method for generating computer-generated video holograms in real time by means of propagation

Publications (2)

Publication Number Publication Date
TW200836030A TW200836030A (en) 2008-09-01
TWI384337B true TWI384337B (en) 2013-02-01

Family

ID=38796211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96132784A TWI384337B (en) 2006-09-01 2007-09-01 Method for generating video hologram in real time for a holographic display device

Country Status (2)

Country Link
DE (1) DE102006042323B4 (en)
TW (1) TWI384337B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139710A1 (en) * 2004-12-23 2006-06-29 Seereal Technologies Gmbh Method and device for computing computer-generated video holograms

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2428149A1 (en) * 2000-11-07 2002-05-16 Christopher William Slinger Improved 3d display
GB0301317D0 (en) * 2003-01-21 2003-02-19 Holographic Imaging Llc Image projection device and method
WO2005099386A2 (en) * 2004-04-13 2005-10-27 Board Of Regents, The University Of Texas System Holographic projector
US20060262876A1 (en) * 2004-08-26 2006-11-23 Ladue Christoph K Wave matrix mechanics method & apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139710A1 (en) * 2004-12-23 2006-06-29 Seereal Technologies Gmbh Method and device for computing computer-generated video holograms
US20060139711A1 (en) * 2004-12-23 2006-06-29 Seereal Technologies Gmbh Method of computing a hologram
TW200625205A (en) * 2004-12-23 2006-07-16 Seereal Technologies Gmbh A method of computing a hologram

Also Published As

Publication number Publication date
DE102006042323A1 (en) 2008-03-13
DE102006042323B4 (en) 2014-09-04
TW200836030A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
US20220357702A1 (en) Method of computing a hologram
JP5266223B2 (en) Method for generating computer video holograms in real time using propagation
CN101689036B (en) Method for rendering and generating color video holograms in real time
US20180259905A1 (en) Method for generating a head up display for an aircraft using video holograms in real time with the help of sub- holograms
JP5468537B2 (en) Method for generating video holograms in real time to improve 3D rendering graphics pipeline
CN101681143B (en) Analytical method for computing video holograms in real time
KR20040076854A (en) Projection of three-dimensional images
TWI388948B (en) Method for generating video holograms in real time for a holographic display device(hae)
TWI384337B (en) Method for generating video hologram in real time for a holographic display device
Yang et al. Deep neural network-enabled resolution enhancement for the digital light field display based on holographic functional screen
WO2019062306A1 (en) Holographic display method and device