TWI382331B - Calibration method of projection effect - Google Patents

Calibration method of projection effect Download PDF

Info

Publication number
TWI382331B
TWI382331B TW097138709A TW97138709A TWI382331B TW I382331 B TWI382331 B TW I382331B TW 097138709 A TW097138709 A TW 097138709A TW 97138709 A TW97138709 A TW 97138709A TW I382331 B TWI382331 B TW I382331B
Authority
TW
Taiwan
Prior art keywords
projection
trajectory
projection effect
calibration method
displacement
Prior art date
Application number
TW097138709A
Other languages
Chinese (zh)
Other versions
TW201015388A (en
Inventor
Chih Ming Liao
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW097138709A priority Critical patent/TWI382331B/en
Publication of TW201015388A publication Critical patent/TW201015388A/en
Application granted granted Critical
Publication of TWI382331B publication Critical patent/TWI382331B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Description

投影效應校準方法Projection effect calibration method

本發明係關於一種投影效應校準方法,特別是關於可偵測並修正因物平面與光學導覽系統之像平面不平行所造成之投影效應的投影效應校準方法。The present invention relates to a projection effect calibration method, and more particularly to a projection effect calibration method that can detect and correct a projection effect caused by a non-parallel image plane of an object plane and an optical navigation system.

請參閱圖一。圖一係繪示光學滑鼠1之光學機構的示意圖。如圖一所示,光學滑鼠1之光學機構包含發光模組10以及感測器12。感測器12可以是一種影像感測器(image sensor)。感測器12上具有像平面(image plane)120。光學滑鼠1係於一物體2之物平面(object plane)20上操作。物平面20上具有物平面20法線。發光模組10所發射之光線以入射角θ i(亦即,入射之光線與物平面20法線之間的夾角)照射在物平面20上。感測器12在反射角θ r(亦即,經反射之光線與物平面20法線之間的夾角)方向上接收從物平面20反射而來之反射光或散射光。其中,反射角θ r與入射角θ i可以相等(亦即,鏡射)以讓感測器12接收經反射之光線的能量。或者,反射角θ r與入射角θ i也可以不相等以讓感測器12接收經散射之光線的能量。若像平面120與經反射之光線的方向垂直但是不平行於物平面20(意即,經反射之光線與物平面20之間具有夾角θ s),則如此之配置可以讓感測器12獲得較佳的光訊號強度,進而能控制發光模組10之輸出來減少功率之消耗。藉此,可以使得光學滑鼠1達到省電之效果。Please refer to Figure 1. Figure 1 is a schematic view showing the optical mechanism of the optical mouse 1. As shown in FIG. 1 , the optical mechanism of the optical mouse 1 includes a light emitting module 10 and a sensor 12 . The sensor 12 can be an image sensor. The sensor 12 has an image plane 120 thereon. The optical mouse 1 is operated on an object plane 20 of an object 2. The object plane 20 has a normal to the object plane 20 . The light emitted by the light-emitting module 10 is incident on the object plane 20 at an incident angle θ i (that is, an angle between the incident light and the normal to the object plane 20). The sensor 12 receives the reflected or scattered light reflected from the object plane 20 in the direction of the reflection angle θ r (that is, the angle between the reflected ray and the normal to the object plane 20). Wherein, the reflection angle θ r and the incident angle θ i may be equal (ie, mirrored) to allow the sensor 12 to receive the energy of the reflected light. Alternatively, the angle of reflection θ r and the angle of incidence θ i may also be unequal to allow the sensor 12 to receive the energy of the scattered light. If the image plane 120 is perpendicular to the direction of the reflected ray but not parallel to the object plane 20 (ie, the angle between the reflected ray and the object plane 20 is θ s), then the configuration can be obtained by the sensor 12 The preferred optical signal strength, in turn, controls the output of the lighting module 10 to reduce power consumption. Thereby, the optical mouse 1 can be made to achieve the effect of power saving.

在感測器12擷取到影像之後,會將影像訊號傳送到一般的影像處理器(image processor)進行處理。影像處理器可以 是集成電路、專用積體電路(Application-Specific Integrated Circuit,ASIC)、數位訊號處理器(Digital Signal Processor,DSP)或是一般的中央處理器(Central Processing Unit,CPU)。在收到影像訊號之後,影像處理器便即時地做關聯比對處理,並計算出位移資訊(例如,x方向上的位移△x以及y方向上的位移△y)。藉由這些位移資訊,個人電腦即可控制滑鼠鼠標並移動到相對之位置。After the sensor 12 captures the image, the image signal is transmitted to a general image processor for processing. Image processor can It is an integrated circuit, an application-specific integrated circuit (ASIC), a digital signal processor (DSP), or a general central processing unit (CPU). After receiving the image signal, the image processor immediately performs correlation comparison processing and calculates displacement information (for example, displacement Δx in the x direction and displacement Δy in the y direction). With these displacement information, the PC can control the mouse and move it to the opposite position.

然而,當上述光學機構之感測器12上的像平面120與物體2之物平面20不平行,並且物平面20與光學機構有相對運動時,在物平面20上之位移量會在像平面120上發生投影現象。請參閱圖二。圖二係繪示圖一中之物平面20與像平面120之間之投影效應的示意圖。如圖二所示,第一方向A1係位於物平面20上並與經反射之光線垂直。第二方向A2係在物平面20上並與第一方向A1垂直。當物平面20與光學機構在第一方向A1上產生位移量為d時,由於像平面120與第一方向A1平行,因此經反射之光線在像平面120上對應至物平面20之第一方向A1上的位移量也會為d。但是,當物平面20與光學機構在第二方向A2上產生位移量為d時,由於像平面120與物平面20之間具有夾角θ s,因此經反射之光線在像平面120上對應至物平面20之第二方向A2上的位移量會產生投影效果(projection effect),進而使得經反射之光線在像平面120上對應至物平面20上之第二方向A2的位移量會變成dsin θ s,而非d。換句話說,在物平面20上第一方向A1上與第二方向A2上之位移量比例為1:1,但在向平面上對應至物平面20上之第一方向A1上與第二方向A2上之位移量卻為1:sin θ s。像平面120與物平面20不平行所造成之投影效應,會使得光學滑鼠1的定位軌跡失真。例如,當光學滑鼠1在物平面20上做圓形軌跡運動時,在像平面120上可能會定位成橢圓形軌跡;當光學滑鼠1在物平 面20上做正方形軌跡運動時,在像平面120上可能會定位成長方形軌跡。However, when the image plane 120 on the sensor 12 of the optical mechanism is not parallel to the object plane 20 of the object 2, and the object plane 20 has a relative motion with the optical mechanism, the amount of displacement on the object plane 20 will be in the image plane. Projection occurs on 120. Please refer to Figure 2. FIG. 2 is a schematic diagram showing the projection effect between the object plane 20 and the image plane 120 in FIG. As shown in Figure 2, the first direction A1 is located on the object plane 20 and is perpendicular to the reflected light. The second direction A2 is on the object plane 20 and is perpendicular to the first direction A1. When the object plane 20 and the optical mechanism generate a displacement amount d in the first direction A1, since the image plane 120 is parallel to the first direction A1, the reflected light rays correspond to the first direction of the object plane 20 on the image plane 120. The amount of displacement on A1 will also be d. However, when the object plane 20 and the optical mechanism generate a displacement amount d in the second direction A2, since the image plane 120 and the object plane 20 have an angle θ s , the reflected light corresponds to the object on the image plane 120 . The amount of displacement in the second direction A2 of the plane 20 produces a projection effect, such that the amount of displacement of the reflected ray on the image plane 120 corresponding to the second direction A2 on the object plane 20 becomes dsin θ s Instead of d. In other words, the ratio of the displacement amount in the first direction A1 and the second direction A2 on the object plane 20 is 1:1, but corresponds to the first direction A1 and the second direction on the object plane 20 in the plane of the plane. The displacement on A2 is 1: sin θ s. The projection effect caused by the non-parallel of the image plane 120 and the object plane 20 may distort the positioning trajectory of the optical mouse 1. For example, when the optical mouse 1 makes a circular trajectory motion on the object plane 20, it may be positioned as an elliptical trajectory on the image plane 120; when the optical mouse 1 is at an object level When the square track is moved on the surface 20, it may be positioned as a rectangular track on the image plane 120.

因此,本發明之主要範疇在於提供一種投影效應校準方法,其係可偵測並修正因物平面與光學導覽系統之像平面不平行所造成之投影效應。並且,本發明之投影效應校準方法可應用於如光學滑鼠、光學筆或光學定位系統等光學導覽系統之調教或修正上。藉此,即可解決投影效應所造成之定位失真的問題,進而能提昇光學導覽系統之定位精準度並增加應用之價值。Therefore, the main scope of the present invention is to provide a projection effect calibration method which can detect and correct the projection effect caused by the object plane and the image plane of the optical navigation system being non-parallel. Moreover, the projection effect calibration method of the present invention can be applied to tuning or correction of an optical navigation system such as an optical mouse, an optical pen, or an optical positioning system. Thereby, the problem of positioning distortion caused by the projection effect can be solved, thereby improving the positioning accuracy of the optical navigation system and increasing the value of the application.

本發明之一範疇在於提供一種投影效應校準方法。投影效應校準方法可應用於光學導覽系統中。光學導覽系統具有發光模組以及感測器。發光模組所產生之光線係經由物平面反射至感測器。投影效應校準方法包含下列步驟。首先,根據本發明之投影效應校準方法,使光學導覽系統相對物平面沿預定軌跡移動。接著,根據本發明之投影效應校準方法,藉由感測器感測軌跡,進而獲得投影軌跡。隨後,根據本發明之投影效應校準方法,根據經反射之光線與物平面之間之夾角計算投影效應值。最後,根據本發明之投影效應校準方法,以投影效應值校正投影軌跡,進而獲得與軌跡等比例之校正軌跡。One aspect of the present invention is to provide a projection effect calibration method. The projection effect calibration method can be applied to an optical navigation system. The optical navigation system has a light emitting module and a sensor. The light generated by the illumination module is reflected to the sensor via the object plane. The projection effect calibration method includes the following steps. First, according to the projection effect calibration method of the present invention, the optical navigation system is moved relative to the object plane along a predetermined trajectory. Then, according to the projection effect calibration method of the present invention, the trajectory is sensed by the sensor, thereby obtaining a projection trajectory. Subsequently, according to the projection effect calibration method of the present invention, the projection effect value is calculated from the angle between the reflected ray and the object plane. Finally, according to the projection effect calibration method of the present invention, the projection trajectory is corrected by the projection effect value, thereby obtaining a correction trajectory proportional to the trajectory.

本發明之另一範疇在於提供另一種投影效應校準方法。投影效應校準方法同樣可應用於光學導覽系統中。光學導覽系統具有發光模組以及感測器。發光模組所產生之光線係經由物平面反射至感測器。投影效應校準方法包含下列步驟。首先,根據本發明之投影效應校準方法,使光學導覽系統相對物平面沿預定軌跡移動。接著,根據本發明之投影效應校 準方法,藉由感測器感測軌跡,進而獲得投影軌跡。隨後,根據本發明之投影效應校準方法,根據投影軌跡計算投影效應值。最後,根據本發明之投影效應校準方法,根據軌跡與投影效應值校正投影軌跡,進而獲得與軌跡等比例之校正軌跡。Another aspect of the invention is to provide another projection effect calibration method. The projection effect calibration method is also applicable to optical navigation systems. The optical navigation system has a light emitting module and a sensor. The light generated by the illumination module is reflected to the sensor via the object plane. The projection effect calibration method includes the following steps. First, according to the projection effect calibration method of the present invention, the optical navigation system is moved relative to the object plane along a predetermined trajectory. Next, the projection effect correction according to the present invention The quasi-method, which senses the trajectory by the sensor, thereby obtaining a projection trajectory. Subsequently, according to the projection effect calibration method of the present invention, the projection effect value is calculated from the projection trajectory. Finally, according to the projection effect calibration method of the present invention, the projection trajectory is corrected according to the trajectory and the projection effect value, thereby obtaining a correction trajectory proportional to the trajectory.

因此,根據本發明之投影效應校準方法,其主要係可偵測並修正因物平面與光學導覽系統之像平面不平行所造成之投影效應。藉此,即可解決投影效應所造成之定位失真的問題,進而能提昇光學導覽系統之定位精準度並增加應用之價值。Therefore, according to the projection effect calibration method of the present invention, the projection effect caused by the non-parallel of the image plane of the object plane and the optical navigation system can be detected and corrected. Thereby, the problem of positioning distortion caused by the projection effect can be solved, thereby improving the positioning accuracy of the optical navigation system and increasing the value of the application.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

本發明之範疇旨在提供一投影效應校準方法。其主要係可偵測並修正因物平面與光學導覽系統之像平面不平行所造成之投影效應。以下將詳述本發明之較佳具體實施例,藉以充分解說本發明之特徵、精神、優點以及實施上的簡便性。The scope of the present invention is directed to providing a projection effect calibration method. It mainly detects and corrects the projection effect caused by the non-parallel of the image plane of the object plane and the optical navigation system. The preferred embodiments of the present invention will be described in detail below, so that the features, spirit, advantages and ease of implementation of the present invention are fully described.

請參閱圖三並配合參閱圖一與圖二。圖三係繪示根據本發明之第一較佳具體實施例之投影效應校準方法的步驟流程圖。根據本發明之投影效應校準方法可以應用於光學導覽系統中,例如圖一中之光學滑鼠1,但並不以此為限。換言之,光學導覽系統還可以是光學筆、光學定位系統、手指導覽器...等。以下將以圖一中之光學滑鼠1為例做進一步說明。如圖一所示,光學滑鼠1具有發光模組10以及感測器12。發光模組10所產生之光線可以經由物體2上之物平面20反射至感測器12。要特別注意的是,光學滑鼠1之發光模 組10所採用之光源可以是紅外線光源、雷射光源、發光二極體光源...等類似光源。根據本發明之第一較佳具體實施例之投影效應校準方法包含有下列步驟。Please refer to Figure 3 and refer to Figure 1 and Figure 2. 3 is a flow chart showing the steps of a projection effect calibration method according to a first preferred embodiment of the present invention. The projection effect calibration method according to the present invention can be applied to an optical navigation system, such as the optical mouse 1 in FIG. 1, but is not limited thereto. In other words, the optical navigation system can also be an optical pen, an optical positioning system, a hand guide, etc. The optical mouse 1 in Fig. 1 will be further described below as an example. As shown in FIG. 1 , the optical mouse 1 has a light emitting module 10 and a sensor 12 . Light generated by the illumination module 10 can be reflected to the sensor 12 via the object plane 20 on the object 2. Special attention should be paid to the optical mode of the optical mouse 1 The light source used in the group 10 may be an infrared light source, a laser light source, a light emitting diode light source, or the like. The projection effect calibration method according to the first preferred embodiment of the present invention comprises the following steps.

如圖三所示,根據本發明之第一較佳具體實施例之投影效應校準方法首先執行步驟S100:使光學滑鼠1相對物平面20沿預定軌跡移動(未示於圖中)。接著,根據本發明之第一較佳具體實施例之投影效應校準方法執行步驟S102:藉由感測器12感測預定軌跡,進而獲得投影軌跡。As shown in FIG. 3, the projection effect calibration method according to the first preferred embodiment of the present invention first performs step S100 of moving the optical mouse 1 relative to the object plane 20 along a predetermined trajectory (not shown). Next, the projection effect calibration method according to the first preferred embodiment of the present invention performs step S102: sensing the predetermined trajectory by the sensor 12, thereby obtaining a projection trajectory.

在此要特別說明的是,在本發明之第一較佳具體實施例中,光學滑鼠1在設計階段就已經知道如圖一所示之入射角θ i、反射角θ r,以及經反射之光線與物平面20之間之夾角θ s。因此,根據本發明之第一較佳具體實施例之投影效應校準方法可以接著執行步驟S104:根據經反射之光線與物平面20之間之夾角θ s計算投影效應值PF。It should be particularly noted herein that in the first preferred embodiment of the present invention, the optical mouse 1 already knows the incident angle θ i , the reflection angle θ r , and the reflected image as shown in FIG. 1 at the design stage. The angle θ s between the light and the object plane 20. Therefore, the projection effect calibration method according to the first preferred embodiment of the present invention may then perform step S104: calculating the projection effect value PF from the angle θ s between the reflected ray and the object plane 20.

如圖二所示,物體2之物平面20上定義有與經反射之光線垂直之第一方向A1,並定義有與第一方向A1垂直之第二方向A2。舉例而言,預定軌跡於第一方向A1上具有第一實際位移,並且預定軌跡於該第二方向A2上具有一第二實際位移。相對地,經反射之光線在感測器12之像平面120上所獲得之投影軌跡亦會具有對應第一實際位移之第一投影位移以及對應第二實際位移之第二投影位移。As shown in FIG. 2, the object plane 20 of the object 2 defines a first direction A1 perpendicular to the reflected light and defines a second direction A2 perpendicular to the first direction A1. For example, the predetermined trajectory has a first actual displacement in the first direction A1, and the predetermined trajectory has a second actual displacement in the second direction A2. In contrast, the projected trajectory obtained by the reflected light on the image plane 120 of the sensor 12 also has a first projection displacement corresponding to the first actual displacement and a second projection displacement corresponding to the second actual displacement.

舉例而言,若物體2之物平面20上之第一實際位移與第二實際位移之間的比值為1:1,則在感測器12之像平面120上之第一投影位移與第二投影位移之間的比值即為1:sin θ s。藉此,因物體2之物平面20與光學滑鼠1上之感測器12之像平面120不平行所造成之投影效應值PF即可經由下列方程式計算: 換言之,經反射之光線與物平面20之間之夾角θ s亦可由下列方程式計算:θ s =sin-1 (PF )。For example, if the ratio between the first actual displacement on the object plane 20 of the object 2 and the second actual displacement is 1:1, then the first projection displacement on the image plane 120 of the sensor 12 is second. The ratio between the projected displacements is 1: sin θ s. Thereby, the projection effect value PF caused by the object plane 20 of the object 2 and the image plane 120 of the sensor 12 on the optical mouse 1 is calculated by the following equation: In other words, the angle θ s between the reflected ray and the object plane 20 can also be calculated by the following equation: θ s = sin -1 ( PF ).

最後,根據本發明之第一較佳具體實施例之投影效應校準方法可以執行步驟S106:以投影效應值校正第二投影位移,進而獲得與預定軌跡等比例之校正軌跡。在此要說明的是,經校正之第二投影位移可以由下列方程式計算: 其中,△y 為經感測第二投影位移量,△y' 為經校正之第二投影位移量。因此,當光學滑鼠1與物體2之物平面20相對移動時,感測器12可以將感測到之影像傳送至一影像處理器(未示於圖中)進行即時的關聯比對處理,並藉由計算出之投影效應值PF進一步獲得經校正之位移資訊。在此要補充的是,上述之影像處理器可以是集成電路、ASIC、DSP或者是CPU,但並不限於此。Finally, the projection effect calibration method according to the first preferred embodiment of the present invention may perform step S106: correcting the second projection displacement by the projection effect value, thereby obtaining a correction trajectory proportional to the predetermined trajectory. It should be noted that the corrected second projection displacement can be calculated by the following equation: Where Δ y is the sensed second projection displacement amount, and Δ y′ is the corrected second projection displacement amount. Therefore, when the optical mouse 1 moves relative to the object plane 20 of the object 2, the sensor 12 can transmit the sensed image to an image processor (not shown) for immediate correlation comparison processing. The corrected displacement information is further obtained by calculating the projection effect value PF. It should be added here that the above image processor may be an integrated circuit, an ASIC, a DSP or a CPU, but is not limited thereto.

藉此,根據本發明之第一較佳具體實施例之投影效應校準方法即可有效地消除因投影效應所造成之定位失真的問題。Thereby, the projection effect calibration method according to the first preferred embodiment of the present invention can effectively eliminate the problem of positioning distortion caused by the projection effect.

請參閱圖四並配合參閱圖一與圖二。圖四係繪示根據本發明之第二較佳具體實施例之投影效應校準方法的步驟流程圖。同樣地,以下將以圖一中之光學滑鼠1為例做進一步說明。如圖一所示,光學滑鼠1具有發光模組10以及感測器12。發光模組10所產生之光線可以經由物體2上之物平面20反射至感測器12。根據本發明之第二較佳具體實施例之投 影效應校準方法包含有下列步驟。Please refer to Figure 4 and refer to Figure 1 and Figure 2. 4 is a flow chart showing the steps of a projection effect calibration method according to a second preferred embodiment of the present invention. Similarly, the optical mouse 1 in FIG. 1 will be further described below as an example. As shown in FIG. 1 , the optical mouse 1 has a light emitting module 10 and a sensor 12 . Light generated by the illumination module 10 can be reflected to the sensor 12 via the object plane 20 on the object 2. According to a second preferred embodiment of the present invention The shadow effect calibration method includes the following steps.

如圖四所示,根據本發明之第二較佳具體實施例之投影效應校準方法首先執行步驟S200:使光學滑鼠1相對物平面20沿預定執跡移動(未示於圖中)。於此步驟中,可以藉由平移測試平台或機械手臂執行,但並不以此為限。As shown in FIG. 4, the projection effect calibration method according to the second preferred embodiment of the present invention first performs step S200 of moving the optical mouse 1 relative to the object plane 20 along a predetermined track (not shown). In this step, it can be performed by a translation test platform or a robot arm, but not limited thereto.

如圖二所示,物體2之物平面20上定義有與經反射之光線垂直之第一方向A1,並定義有與第一方向A1垂直之第二方向A2。舉例而言,預定軌跡於第一方向A1上具有第一實際位移,並且預定軌跡於該第二方向A2上具有一第二實際位移。相對地,經反射之光線在感測器12之像平面120上所獲得之投影軌跡亦會具有對應第一實際位移之第一投影位移以及對應第二實際位移之第二投影位移。As shown in FIG. 2, the object plane 20 of the object 2 defines a first direction A1 perpendicular to the reflected light and defines a second direction A2 perpendicular to the first direction A1. For example, the predetermined trajectory has a first actual displacement in the first direction A1, and the predetermined trajectory has a second actual displacement in the second direction A2. In contrast, the projected trajectory obtained by the reflected light on the image plane 120 of the sensor 12 also has a first projection displacement corresponding to the first actual displacement and a second projection displacement corresponding to the second actual displacement.

因此,根據本發明之第二較佳具體實施例之投影效應校準方法可以接著執行步驟S202:根據第一實際位移與第二實際位移計算實際比例。於一具體實施例中,第一實際位移與第二實際位移之間之實際比例可以是1。換言之,於此實施例中,上述之預定軌跡可以是L形軌跡、圓形軌跡或者是正方形軌跡,但並不限於此。換句話說,預定軌跡並不限定必須是對稱軌跡。相反地,只要在第一方向A1與第二方向A2具有相同總位移,皆屬於實際比例為1之軌跡。如圖五A至圖五C所示。圖五A係繪示於物平面20上移動之預定軌跡為L形軌跡的示意圖。圖五B係繪示於物平面20上移動之預定軌跡為圓形軌跡的示意圖。圖五C係繪示於物平面20上移動之預定軌跡為正方形軌跡的示意圖。Therefore, the projection effect calibration method according to the second preferred embodiment of the present invention may then perform step S202: calculating an actual ratio based on the first actual displacement and the second actual displacement. In a specific embodiment, the actual ratio between the first actual displacement and the second actual displacement may be one. In other words, in this embodiment, the predetermined trajectory may be an L-shaped trajectory, a circular trajectory or a square trajectory, but is not limited thereto. In other words, the predetermined trajectory does not necessarily have to be a symmetric trajectory Conversely, as long as the first direction A1 and the second direction A2 have the same total displacement, they all belong to the trajectory of the actual ratio of 1. As shown in Figure 5A to Figure 5C. FIG. 5A is a schematic diagram showing a predetermined trajectory moving on the object plane 20 as an L-shaped trajectory. FIG. 5B is a schematic diagram showing a predetermined trajectory moving on the object plane 20 as a circular trajectory. Figure 5C is a schematic diagram showing a predetermined trajectory moving on the object plane 20 as a square trajectory.

隨後,根據本發明之第二較佳具體實施例之投影效應校準方法可以執行步驟S204:藉由感測器12感測預定軌跡,進而獲得投影軌跡。Subsequently, the projection effect calibration method according to the second preferred embodiment of the present invention may perform step S204: sensing the predetermined trajectory by the sensor 12, thereby obtaining a projection trajectory.

在此要再次說明的是,經反射之光線在感測器12之像平面120上所獲得之投影軌跡亦會具有對應第一實際位移之第一投影位移以及對應第二實際位移之第二投影位移。因此,根據本發明之第二較佳具體實施例之投影效應校準方法可以執行步驟S206:根據第一投影位移與第二投影位移計算投影效應值。因物體2之物平面20與光學滑鼠1上之感測器12之像平面120不平行所造成之投影效應值PF即可經由下列方程式計算: 其中,X 1d 為第一投影位移量,Y 1d 為第二投影位移量。It should be noted again that the projected trajectory obtained by the reflected light on the image plane 120 of the sensor 12 will also have a first projection displacement corresponding to the first actual displacement and a second projection corresponding to the second actual displacement. Displacement. Therefore, the projection effect calibration method according to the second preferred embodiment of the present invention may perform step S206: calculating a projection effect value according to the first projection displacement and the second projection displacement. The projection effect value PF caused by the object plane 20 of the object 2 and the image plane 120 of the sensor 12 on the optical mouse 1 is calculated by the following equation: Where X 1 d is the first projection displacement amount, and Y 1 d is the second projection displacement amount.

同樣示於圖四中,根據本發明之第二較佳具體實施例之投影效應校準方法隨即可以執行步驟S208:判斷投影效應值是否與實際比例相等。換言之,於此具體實施例中,必須判斷投影效應值PF是否等於1。若投影效應值PF不等於1,即代表光學滑鼠1之光學機構具有投影效應,並應予以消除。如圖六A至圖六C所示。圖六A係繪示對應至圖五A中之L形軌跡之投影軌跡的示意圖。圖六B係繪示對應至圖五B中之圓形軌跡之投影軌跡的示意圖。圖六C係繪示對應至圖五C中之正方形軌跡之投影軌跡的示意圖。其中像平面120上之第一投影方向A1’係對應至物平面20上之第一方向A1,並且像平面120上之第二投影方向A2’係對應至物平面20上之第二方向A2。另外要說明的是,上述之投影軌跡係以L形軌跡、圓形軌跡以及正方形軌跡為範例作說明,但實際應用時並不以此為限。Also shown in FIG. 4, the projection effect calibration method according to the second preferred embodiment of the present invention may then perform step S208: determining whether the projection effect value is equal to the actual ratio. In other words, in this particular embodiment, it must be determined whether the projection effect value PF is equal to one. If the projection effect value PF is not equal to 1, the optical mechanism representing the optical mouse 1 has a projection effect and should be eliminated. As shown in Figure 6A to Figure 6C. Figure 6A is a schematic diagram showing the projection trajectory corresponding to the L-shaped trajectory in Figure 5A. Figure 6B is a schematic diagram showing a projection trajectory corresponding to the circular trajectory in Figure 5B. Figure 6C is a schematic diagram showing the projection trajectory corresponding to the square trajectory in Figure 5C. The first projection direction A1' on the image plane 120 corresponds to the first direction A1 on the object plane 20, and the second projection direction A2' on the image plane 120 corresponds to the second direction A2 on the object plane 20. It should be noted that the above-mentioned projection trajectory is exemplified by an L-shaped trajectory, a circular trajectory, and a square trajectory, but the actual application is not limited thereto.

因此,若投影效應值與實際比例不相等,根據本發明之第二較佳具體實施例之投影效應校準方法最後可以執行步驟 S210:根據實際比例與投影效應值校正第二投影位移,進而獲得與預定軌跡等比例之校正軌跡。在此要說明的是,經校正之第二投影位移可以由下列方程式計算: 其中,△y 為經感測第二投影位移量,△y' 為經校正之第二投影位移量。因此,當光學滑鼠1與物體2之物平面20相對移動時,感測器12可以將感測到之影像傳送至一影像處理器(未示於圖中)進行即時的關聯比對處理,並藉由計算出之投影效應值PF進一步獲得經校正之位移資訊。藉此,根據本發明之第一較佳具體實施例之投影效應校準方法即可有效地消除因投影效應所造成之定位失真的問題。Therefore, if the projection effect value is not equal to the actual ratio, the projection effect calibration method according to the second preferred embodiment of the present invention may finally perform step S210: correcting the second projection displacement according to the actual scale and the projection effect value, thereby obtaining and A calibration trajectory of a predetermined trajectory. It should be noted that the corrected second projection displacement can be calculated by the following equation: Where Δ y is the sensed second projection displacement amount, and Δ y′ is the corrected second projection displacement amount. Therefore, when the optical mouse 1 moves relative to the object plane 20 of the object 2, the sensor 12 can transmit the sensed image to an image processor (not shown) for immediate correlation comparison processing. The corrected displacement information is further obtained by calculating the projection effect value PF. Thereby, the projection effect calibration method according to the first preferred embodiment of the present invention can effectively eliminate the problem of positioning distortion caused by the projection effect.

於另一具體實施例中,上述之第一實際位移與第二實際位移之間之實際比例可以不為1。舉例而言,第一實際位移與第二實際位移之間之實際比例如下所示: 其中,R 為實際比例,Xod 為第一實際位移量,Yod 為第二實際位移量。In another embodiment, the actual ratio between the first actual displacement and the second actual displacement may not be 1. For example, the actual ratio between the first actual displacement and the second actual displacement is as follows: Where R is the actual ratio, Xod is the first actual displacement, and Yod is the second actual displacement.

因此,同樣可以根據本發明之第二較佳具體實施例之投影效應校準方法執行步驟S204:藉由感測器12感測預定軌跡,進而獲得投影軌跡。接著,根據本發明之第二較佳具體實施例之投影效應校準方法可以執行步驟S206:根據第一投影位移與第二投影位移計算投影效應值。Therefore, step S204 can also be performed according to the projection effect calibration method of the second preferred embodiment of the present invention: the predetermined trajectory is sensed by the sensor 12, thereby obtaining a projection trajectory. Next, the projection effect calibration method according to the second preferred embodiment of the present invention may perform step S206: calculating a projection effect value according to the first projection displacement and the second projection displacement.

因此,因物體2之物平面20與光學滑鼠1上之感測器12之像平面120不平行所造成之投影效應值PF即可經由下列方程式計算: 其中,X 2d 為第一投影位移量,Y 2d 為第二投影位移量。Therefore, the projection effect value PF caused by the object plane 20 of the object 2 and the image plane 120 of the sensor 12 on the optical mouse 1 is calculated by the following equation: Wherein, X 2 d is the first projection displacement amount, and Y 2 d is the second projection displacement amount.

同樣示於圖四中,根據本發明之第二較佳具體實施例之投影效應校準方法隨即可以執行步驟S208:判斷投影效應值是否與實際比例相等。換言之,於此具體實施例中,必須判斷投影效應值PF是否等於R。若投影效應值PF不等於R,即代表光學滑鼠1之光學機構具有投影效應,並應予以消除。Also shown in FIG. 4, the projection effect calibration method according to the second preferred embodiment of the present invention may then perform step S208: determining whether the projection effect value is equal to the actual ratio. In other words, in this particular embodiment, it must be determined whether the projection effect value PF is equal to R. If the projection effect value PF is not equal to R, the optical mechanism representing the optical mouse 1 has a projection effect and should be eliminated.

因此,若投影效應值與實際比例不相等,根據本發明之第二較佳具體實施例之投影效應校準方法最後可以執行步驟S210:根據實際比例與投影效應值校正第二投影位移,進而獲得與預定軌跡等比例之校正軌跡。在此要說明的是,經校正之第二投影位移可以由下列方程式計算: 其中,△y 為經感測第二投影位移量,△y' 為經校正之第二投影位移量。因此,當光學滑鼠1與物體2之物平面20相對移動時,感測器12可以將感測到之影像傳送至一影像處理器(未示於圖中)進行即時的關聯比對處理,並藉由計算出之投影效應值PF進一步獲得經校正之位移資訊。藉此,根據本發明之第一較佳具體實施例之投影效應校準方法即可有效地消除因投影效應所造成之定位失真的問題。Therefore, if the projection effect value is not equal to the actual ratio, the projection effect calibration method according to the second preferred embodiment of the present invention may finally perform step S210: correcting the second projection displacement according to the actual scale and the projection effect value, thereby obtaining and A calibration trajectory of a predetermined trajectory. It should be noted that the corrected second projection displacement can be calculated by the following equation: Where Δ y is the sensed second projection displacement amount, and Δ y′ is the corrected second projection displacement amount. Therefore, when the optical mouse 1 moves relative to the object plane 20 of the object 2, the sensor 12 can transmit the sensed image to an image processor (not shown) for immediate correlation comparison processing. The corrected displacement information is further obtained by calculating the projection effect value PF. Thereby, the projection effect calibration method according to the first preferred embodiment of the present invention can effectively eliminate the problem of positioning distortion caused by the projection effect.

由以上對於本發明之較佳具體實施例之詳述,可以明顯地看出,根據本發明之投影效應校準方法,其係可偵測並修正因物平面與光學導覽系統之像平面不平行所造成之投影效應。並且,本發明之投影效應校準方法可應用於如光學滑 鼠、光學筆或光學定位系統等光學導覽系統之調教或修正上。藉此,即可解決投影效應所造成之定位失真的問題,進而能提昇光學導覽系統之定位精準度並增加應用之價值。From the above detailed description of the preferred embodiments of the present invention, it can be clearly seen that the projection effect calibration method according to the present invention can detect and correct that the object plane is not parallel to the image plane of the optical navigation system. The resulting projection effect. Moreover, the projection effect calibration method of the present invention can be applied to, for example, optical sliding Tuning or correction of optical navigation systems such as mice, optical pens or optical positioning systems. Thereby, the problem of positioning distortion caused by the projection effect can be solved, thereby improving the positioning accuracy of the optical navigation system and increasing the value of the application.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

1‧‧‧光學滑鼠1‧‧‧ optical mouse

10‧‧‧發光模組10‧‧‧Lighting module

12‧‧‧感測器12‧‧‧ Sensors

120‧‧‧像平面120‧‧‧Image plane

2‧‧‧物體2‧‧‧ objects

20‧‧‧物平面20‧‧‧ object plane

N‧‧‧物平面法線N‧‧‧ object plane normal

A1‧‧‧第一方向A1‧‧‧ first direction

A1’‧‧‧第一投影方向A1’‧‧‧first projection direction

A2‧‧‧第二方向A2‧‧‧ second direction

A2’‧‧‧第二投影方向A2’‧‧‧second projection direction

θ i‧‧‧入射角θ i‧‧‧ incident angle

θ r‧‧‧反射角θ r‧‧·reflection angle

θ s‧‧‧夾角θ s‧‧‧ angle

d‧‧‧位移量D‧‧‧displacement

圖一係繪示光學滑鼠之光學機構的示意圖。Figure 1 is a schematic view showing the optical mechanism of an optical mouse.

圖二係繪示圖一中之物平面與像平面之間之投影效應的示意圖。Figure 2 is a schematic diagram showing the projection effect between the object plane and the image plane in Figure 1.

圖三係繪示根據本發明之第一較佳具體實施例之投影效應校準方法的步驟流程圖。3 is a flow chart showing the steps of a projection effect calibration method according to a first preferred embodiment of the present invention.

圖四係繪示根據本發明之第二較佳具體實施例之投影效應校準方法的步驟流程圖。4 is a flow chart showing the steps of a projection effect calibration method according to a second preferred embodiment of the present invention.

圖五A係繪示於物平面上移動之預定軌跡為L形軌跡的示意圖。Figure 5A is a schematic diagram showing a predetermined trajectory moving on the object plane as an L-shaped trajectory.

圖五B係繪示於物平面上移動之預定軌跡為圓形軌跡的示意圖。Figure 5B is a schematic diagram showing a predetermined trajectory moving on the object plane as a circular trajectory.

圖五C係繪示於物平面上移動之預定軌跡為正方形軌跡的示意圖。Figure 5C is a schematic diagram showing a predetermined trajectory moving on the object plane as a square trajectory.

圖六A係繪示對應至圖五A中之L形軌跡之投影軌跡的示意圖。Figure 6A is a schematic diagram showing the projection trajectory corresponding to the L-shaped trajectory in Figure 5A.

圖六B係繪示對應至圖五B中之圓形軌跡之投影軌跡的示意圖。Figure 6B is a schematic diagram showing a projection trajectory corresponding to the circular trajectory in Figure 5B.

圖六C係繪示對應至圖五C中之正方形軌跡之投影軌跡的示意圖。Figure 6C is a schematic diagram showing the projection trajectory corresponding to the square trajectory in Figure 5C.

1‧‧‧光學滑鼠1‧‧‧ optical mouse

10‧‧‧發光模組10‧‧‧Lighting module

12‧‧‧感測器12‧‧‧ Sensors

120‧‧‧像平面120‧‧‧Image plane

2‧‧‧物體2‧‧‧ objects

20‧‧‧物平面20‧‧‧ object plane

N‧‧‧物平面法線N‧‧‧ object plane normal

θ i‧‧‧入射角θ i‧‧‧ incident angle

θ r‧‧‧反射角θ r‧‧·reflection angle

θ s‧‧‧夾角θ s‧‧‧ angle

Claims (15)

一種投影效應校準方法,應用於一光學導覽系統上的一物平面與該光學導覽系統上的一感測器之像平面之間,該光學導覽系統具有一發光模組以及該感測器,該發光模組所產生之光線係經由該物平面反射至該像平面,包含經反射之光線與該物平面之間非零值角度之一夾角θ i,該物平面上定義與該經反射之光線垂直之一第一方向A1,以及與該第一方向A1垂直之一第二方向A2;該投影效應校準方法包含下列步驟:(a)以該第一方向A1與該第二方向A2上分別具有一第一實際位移Xod 與一第二實際位移Yod ,使該光學導覽系統相對該物平面沿一預定軌跡移動,其中YodXod 的比例為R ;(b)藉由該感測器感測該預定軌跡,進而獲得一投影軌跡;(c)根據θ s:如果R =1,PF=sinθ s計算一投影效應值PF;以及(d)以該投影效應值PF校正該投影軌跡,進而獲得與該預定軌跡等比例之一校正軌跡。A projection effect calibration method is applied between an object plane on an optical navigation system and an image plane of a sensor on the optical navigation system, the optical navigation system having a light emitting module and the sensing The light generated by the illumination module is reflected to the image plane via the object plane, and includes an angle θ i between the reflected light and the object plane at a non-zero angle, the object plane defining and the The reflected light is perpendicular to a first direction A1 and a second direction A2 perpendicular to the first direction A1; the projection effect calibration method comprises the following steps: (a) the first direction A1 and the second direction A2 The upper one has a first actual displacement Xod and a second actual displacement Yod , respectively, so that the optical navigation system moves along a predetermined trajectory with respect to the object plane, wherein the ratio of Yod : Xod is R ; (b) by the sensing Sensing the predetermined trajectory to obtain a projection trajectory; (c) calculating a projection effect value PF according to θ s: if R =1, PF=sin θ s; and (d) correcting the projection trajectory by the projection effect value PF And obtaining a ratio equal to the predetermined trajectory Trajectory. 如申請專利範圍第1項所述之投影效應校準方法,其中該投影軌跡具有對應該第二實際位移之一第二投影位移,步驟(d)進一步包含下列步驟:(d1)以該投影效應值校正該第二投影位移,進而獲得與該預定軌跡等比例之該校正軌跡。 The projection effect calibration method according to claim 1, wherein the projection trajectory has a second projection displacement corresponding to one of the second actual displacements, and the step (d) further comprises the following steps: (d1) the projection effect value The second projection displacement is corrected to obtain the corrected trajectory in proportion to the predetermined trajectory. 如申請專利範圍第1項所述之投影效應校準方法,其中該光學導覽系統為一光學滑鼠或一手指導覽器。 The projection effect calibration method according to claim 1, wherein the optical navigation system is an optical mouse or a one-hand guide. 如申請專利範圍第1項所述之投影效應校準方法,其中步驟(b)至步驟(d)係藉由一影像處理器執行。 The projection effect calibration method according to claim 1, wherein the steps (b) to (d) are performed by an image processor. 如申請專利範圍第4項所述之投影效應校準方法,其中該影像處理器係選自由一集成電路、一ASIC、一DSP以及一CPU所組成之一群體中之其一。 The projection effect calibration method of claim 4, wherein the image processor is selected from the group consisting of an integrated circuit, an ASIC, a DSP, and a CPU. 一種投影效應校準方法,應用於一光學導覽系統上的一物平面與該光學導覽系統上的一感測器之像平面之間,該光學導覽系統具有一發光模組以及該感測器,該發光模組所產生之光線係經由該物平面反射至該像平面,包含經反射之光線與該物平面之間非零值角度之一夾角θ i,該物平面上定義與該經反射之光線垂直之一第一方向A1,以及與該第一方向A1垂直之一第二方向A2;該投影效應校準方法包含下列步驟:(a)以該第一方向A1與第二方向A2上分別具有一第一實際位移Xod 與一第二實際位移Yod ,使該光學導覽系統相對該物平面沿一預定軌跡移動;(b)藉由該感測器感測該預定軌跡,進而獲得一投影軌跡;(c)根據該投影軌跡計算一投影效應值;以及(d)根據該預定軌跡與該投影效應值校正該投影軌跡,進而獲得與該預定軌跡等比例之一校正軌跡。A projection effect calibration method is applied between an object plane on an optical navigation system and an image plane of a sensor on the optical navigation system, the optical navigation system having a light emitting module and the sensing The light generated by the illumination module is reflected to the image plane via the object plane, and includes an angle θ i between the reflected light and the object plane at a non-zero angle, the object plane defining and the The reflected light is perpendicular to a first direction A1 and a second direction A2 perpendicular to the first direction A1; the projection effect calibration method comprises the following steps: (a) in the first direction A1 and the second direction A2 Having a first actual displacement Xod and a second actual displacement Yod , respectively, moving the optical navigation system along a predetermined trajectory relative to the object plane; (b) sensing the predetermined trajectory by the sensor, thereby obtaining a Projecting a trajectory; (c) calculating a projection effect value according to the projection trajectory; and (d) correcting the projection trajectory according to the predetermined trajectory and the projection effect value, thereby obtaining a corrected trajectory proportional to the predetermined trajectory. 如申請專利範圍第6項所述之投影效應校準方法,其中該步驟(a)進一步包含下列步驟:(a1)以該第二實際位移與該第一實際位移的比例計算一實際比例。 The projection effect calibration method according to claim 6, wherein the step (a) further comprises the step of: (a1) calculating an actual ratio by a ratio of the second actual displacement to the first actual displacement. 如申請專利範圍第7項所述之投影效應校準方法,其中該實 際比例為1。 a projection effect calibration method as described in claim 7 of the patent application, wherein the real The ratio is 1. 如申請專利範圍第8項所述之投影效應校準方法,其中該預定軌跡係選自由一L形軌跡、一圓形軌跡以及一正方形軌跡所組成之一群體中之其一。 The projection effect calibration method of claim 8, wherein the predetermined trajectory is selected from one of a group consisting of an L-shaped trajectory, a circular trajectory, and a square trajectory. 如申請專利範圍第7項所述之投影效應校準方法,其中該投影軌跡具有對應該第一實際位移之一第一投影位移以及對應該第二實際位移之一第二投影位移,步驟(c)進一步包含下列步驟:(c1)根據該第一投影位移與該第二投影位移計算該投影效應值。 The projection effect calibration method according to claim 7, wherein the projection trajectory has a first projection displacement corresponding to one of the first actual displacements and a second projection displacement corresponding to one of the second actual displacements, step (c) Further comprising the steps of: (c1) calculating the projection effect value according to the first projection displacement and the second projection displacement. 如申請專利範圍第10項所述之投影效應校準方法,其中步驟(d)進一步包含下列步驟:(d1)判斷該投影效應值是否與該實際比例相等,若否,則執行步驟(d2);(d2)根據該實際比例與該投影效應值校正該第二投影位移,進而獲得與該預定軌跡等比例之一校正軌跡。 The projection effect calibration method according to claim 10, wherein the step (d) further comprises the following steps: (d1) determining whether the projection effect value is equal to the actual ratio, and if not, performing step (d2); (d2) correcting the second projection displacement according to the actual ratio and the projection effect value, thereby obtaining a corrected trajectory proportional to the predetermined trajectory. 如申請專利範圍第6項所述之投影效應校準方法,其中該光學導覽系統為一光學滑鼠或一手指導覽器。 The projection effect calibration method according to claim 6, wherein the optical navigation system is an optical mouse or a one-hand guide. 如申請專利範圍第6項所述之投影效應校準方法,其中步驟(a)係藉由一平移測試平台或一機械手臂執行。 The projection effect calibration method according to claim 6, wherein the step (a) is performed by a translation test platform or a robot arm. 如申請專利範圍第6項所述之投影效應校準方法,其中步驟(b)至步驟(d)係藉由一影像處理器執行。 The projection effect calibration method according to claim 6, wherein the steps (b) to (d) are performed by an image processor. 如申請專利範圍第14項所述之投影效應校準方法,其中該影 像處理器係選自由一集成電路、一ASIC、一DSP以及一CPU所組成之一群體中之其一。 The projection effect calibration method according to claim 14, wherein the shadow The image processor is selected from the group consisting of an integrated circuit, an ASIC, a DSP, and a CPU.
TW097138709A 2008-10-08 2008-10-08 Calibration method of projection effect TWI382331B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097138709A TWI382331B (en) 2008-10-08 2008-10-08 Calibration method of projection effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097138709A TWI382331B (en) 2008-10-08 2008-10-08 Calibration method of projection effect

Publications (2)

Publication Number Publication Date
TW201015388A TW201015388A (en) 2010-04-16
TWI382331B true TWI382331B (en) 2013-01-11

Family

ID=44830013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097138709A TWI382331B (en) 2008-10-08 2008-10-08 Calibration method of projection effect

Country Status (1)

Country Link
TW (1) TWI382331B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW363142B (en) * 1998-08-01 1999-07-01 Glory Praise Photronics Corp Method and apparatus of image correction for LCD projector
US20050156915A1 (en) * 2004-01-16 2005-07-21 Fisher Edward N. Handwritten character recording and recognition device
TWM284881U (en) * 2005-08-22 2006-01-01 Behavior Tech Computer Corp Test machine for testing a mouse
TW200634722A (en) * 2005-03-18 2006-10-01 Agilent Technologies Inc Optical navigation system
US20070146325A1 (en) * 2005-12-27 2007-06-28 Timothy Poston Computer input device enabling three degrees of freedom and related input and feedback methods
TWI291658B (en) * 2004-07-29 2007-12-21 Peripheral Imaging Corp Optical tracking sensor method
US20080231600A1 (en) * 2007-03-23 2008-09-25 Smith George E Near-Normal Incidence Optical Mouse Illumination System with Prism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW363142B (en) * 1998-08-01 1999-07-01 Glory Praise Photronics Corp Method and apparatus of image correction for LCD projector
US20050156915A1 (en) * 2004-01-16 2005-07-21 Fisher Edward N. Handwritten character recording and recognition device
TWI291658B (en) * 2004-07-29 2007-12-21 Peripheral Imaging Corp Optical tracking sensor method
TW200634722A (en) * 2005-03-18 2006-10-01 Agilent Technologies Inc Optical navigation system
TWM284881U (en) * 2005-08-22 2006-01-01 Behavior Tech Computer Corp Test machine for testing a mouse
US20070146325A1 (en) * 2005-12-27 2007-06-28 Timothy Poston Computer input device enabling three degrees of freedom and related input and feedback methods
US20080231600A1 (en) * 2007-03-23 2008-09-25 Smith George E Near-Normal Incidence Optical Mouse Illumination System with Prism

Also Published As

Publication number Publication date
TW201015388A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
KR102134688B1 (en) Optical distance measuring method and optical distance measuring device
US7689381B2 (en) Sensing system
US8305363B2 (en) Sensing system and locating method thereof
TWI421753B (en) Calibration method, detection device and optical touch panel for optical touch panel
TWI536226B (en) Optical touch device and imaging processing method for optical touch device
US20090051921A1 (en) Optical sensor
TWI325556B (en)
TWI533010B (en) Optical sensing apparatus and method for detecting object near optical sensing apparatus
TWI461990B (en) Optical imaging device and image processing method for optical imaging device
US8131502B2 (en) Sensing system and method for obtaining location of pointer thereof
TW201220147A (en) Touch device and touch method
TW202032154A (en) Verification method of time-of-flight camera module and verification system thereof
US20140160075A1 (en) Optical touch system, method of touch detection, method of calibration, and computer program product
TWI418914B (en) Defocus calibration module for light-sensing system and method thereof
US7327474B2 (en) Method and apparatus for measuring displacement of an object
TWI382331B (en) Calibration method of projection effect
CN113034564B (en) Structured light projector and method of projecting structured light
TWI433007B (en) Optical touch device and locating method thereof
TWI421752B (en) Optical touch system
WO2011152088A1 (en) Position detecting device and image processing system
KR20130110309A (en) System for recognizing touch-point using mirror
TWI525507B (en) Optical touch system, method of touch detection, and computer program product
JP2008157955A (en) Displacement measuring method, displacement measuring device, and target for displacement measuring
TWI472988B (en) Optical touch-sensing system and method
US8232511B2 (en) Sensing system adapted to sense a pointer and calculate a location of the pointer