TWI382149B - For path imbalance measurement of the two arms fiber optic interferomter - Google Patents

For path imbalance measurement of the two arms fiber optic interferomter Download PDF

Info

Publication number
TWI382149B
TWI382149B TW97148700A TW97148700A TWI382149B TW I382149 B TWI382149 B TW I382149B TW 97148700 A TW97148700 A TW 97148700A TW 97148700 A TW97148700 A TW 97148700A TW I382149 B TWI382149 B TW I382149B
Authority
TW
Taiwan
Prior art keywords
signal
interferometer
interference
arm
phase
Prior art date
Application number
TW97148700A
Other languages
Chinese (zh)
Other versions
TW201022629A (en
Inventor
Shih Chu Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW97148700A priority Critical patent/TWI382149B/en
Publication of TW201022629A publication Critical patent/TW201022629A/en
Application granted granted Critical
Publication of TWI382149B publication Critical patent/TWI382149B/en

Links

Description

雙臂光纖干涉儀之干涉臂長度差的測量 Measurement of interference arm length difference between two-arm fiber optic interferometer

本發明係關於雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,尤指一種經由使用無偏振感受性的光纖光學邁克遜干涉儀(polarization-insensitive fiber optic Michelson interferometer/PIFOMI)量測PI值的方法,主要乃是於應用一個電流載波訊號來調變干涉儀的半導體雷射光源,藉由雙臂干涉儀的干涉臂長度不平衡(path imbalance/PI),使其輸出干涉訊號(interference signal)產生一個載波相位訊號,並且經由使用貝色函數(Bessel function)將干涉訊號展開為載波相位訊號頻率的諧波分量,然後我們使用特定的關係在干涉訊號的第二和第四諧波成分(second and fourth harmonic components)之間發展兩干涉臂長度不平衡(path imbalance/PI)測量的理論,這個方法能夠測量幾個分米(0.1米)的路徑不平衡(path imbalance/PI),使其準確度能夠到達毫米。 The invention relates to the measurement of the interference arm length difference of the dual-arm fiber interferometer (TAFOI), in particular to measuring the PI value by using a polarization-insensitive fiber optic Michelson interferometer (PIFOMI). The method is mainly to apply a current carrier signal to modulate the semiconductor laser source of the interferometer, and the interference signal length interference (PI) of the two-arm interferometer is used to output an interference signal (interference signal). Generating a carrier phase signal and expanding the interference signal to a harmonic component of the carrier phase signal frequency using a Bessel function, and then we use a specific relationship between the second and fourth harmonic components of the interfering signal ( The theory of two interference arm length imbalance (PI) measurements between the second and fourth harmonic components, which measures the path imbalance (PI) of several decimeters (0.1 m), making it Accuracy can reach millimeters.

雙臂光纖干涉式感應器(two arms fiber optic interferometric sensor/TAFOIS)的感應相位訊號需要線性解調(經由使用一些解調技術)。常用的雙臂干涉式光纖感應器的訊號解調線路,包括主動式相位追蹤解調(active homodyne with DC phase tracking,簡稱PTDC解調)及被動式相位載波解調(passive homodyne demodulation using phase generated carrier,簡稱PGC解調)。使用PGC解調有很多的優點,例如動態範圍大(wide dynamic range)、線性度佳、靈敏感度高、和感應器多工功能(sensor multiplexing)。 The induced phase signal of the two arms fiber optic interferometric sensor (TAFOIS) requires linear demodulation (via the use of some demodulation techniques). Signal demodulation lines of commonly used dual-arm interferometric fiber optic sensors, including active homodyne with DC phase tracking (PTDC demodulation) and passive homodyne demodulation using phase generated carrier (passive homodyne demodulation using phase generated carrier, Referred to as PGC demodulation). There are many advantages to using PGC demodulation, such as wide dynamic range, good linearity, high sensitivity, and sensor multiplexing.

因此,PGC解調已廣泛的使用在雙臂光纖干涉式感應器(TAFOIS)的訊號解調。然而,首先PGC解調必需先產生一個固定振幅的高頻率載波相位訊號。有一個常用方法是應用一個電流載波訊號來調變干涉儀的半導體雷射(semiconductor laser)光源,藉由雙臂干涉儀的干涉臂長度不平衡(path imbalance/PI),使其 輸出干涉訊號(interference signal)產生一個固定振幅(2.37 rads)的載波相位訊號(carrier phase signal),並且載波相位訊號的振幅和不平衡干涉儀的PI是成比例的。在多工感測系統中,有多個感應器共用一個半導體雷射,必須各個感應器PI都相同或極為接近,才能產生振幅相同的載波相位訊號,各個感應器的PGC解調輸出之感應相位訊號才都能維持在最佳化條件。因此各個感應器路徑不平衡(PI)值的準確度(典型地PI長度可能高達200mm)必需達到mm的範圍。然而當干涉臂之感應光纖使用鬆被覆光纖(loose tube fiber)來製作,或感應光纖長度達到幾百公尺時,初始切割光纖長度的錯誤可能趨近幾分米(0.1m),所以我們需要一個對PI量測的範圍能夠達到幾分米,以及準確度在幾毫米範圍內的方法。 Therefore, PGC demodulation has been widely used for signal demodulation in dual-arm fiber interferometric sensors (TAFOIS). However, first of all, PGC demodulation must first generate a high frequency carrier phase signal of a fixed amplitude. A common method is to apply a current carrier signal to modulate the interferometer's semiconductor laser source, which is caused by the interference arm length imbalance (PI) of the two-arm interferometer. The output interference signal produces a fixed amplitude (2.37 rads) carrier phase signal, and the amplitude of the carrier phase signal is proportional to the PI of the unbalanced interferometer. In a multiplexed sensing system, multiple sensors share a semiconductor laser, and each sensor PI must be the same or very close to generate a carrier phase signal with the same amplitude, and the sensing phase of the PGC demodulation output of each sensor The signal can be maintained in an optimal condition. Therefore the accuracy of individual sensor path imbalance (PI) values (typically PI lengths up to 200 mm) must be in the range of mm. However, when the sensing fiber of the interference arm is made of loose tube fiber, or the length of the sensing fiber reaches several hundred meters, the error of the initial cutting fiber length may approach a few decimeters (0.1 m), so we need A method for measuring the range of PI can reach several decimeters, and the accuracy is in the range of a few millimeters.

目前測量較大光路徑差異(OPD)的方法包括使用低同調性光波反射儀(optical low coherence reflectometry/OLCR)和毫米光波時域反射儀(millimeter optical time domain reflectometry mm-OTDR)。這兩種方法都是基於對反射之光波訊號作高空間解析度的量測,所以儀器的價格非常高。 Current methods for measuring large optical path differences (OPD) include the use of an optical low-coherence reflectometry (OLCR) and a millimeter optical time domain reflectometry (MM-OTDR). Both methods are based on the measurement of the high spatial resolution of the reflected lightwave signal, so the price of the instrument is very high.

雖然低同調性光波反射儀(OLCR)具有高解析度,對OPD的光測量範圍卻限制在幾公分內。 Although the low coherence light wave reflectometer (OLCR) has a high resolution, the optical measurement range of the OPD is limited to a few centimeters.

另一方面,毫米光波時域反射儀(mm-OTDR)的解析度被限制在大約5mm。所以上述兩種方法不能夠配合前面的需求。 On the other hand, the resolution of the millimeter lightwave time domain reflectometer (mm-OTDR) is limited to about 5 mm. Therefore, the above two methods cannot meet the previous requirements.

本發明,我們提出一個測量路徑不平衡(PI)值的方法(經由使用無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)的輸出干涉訊號)。我們使用一個一個電流載波訊號來調變干涉儀的半導體雷射光源,藉由雙臂干涉儀的干涉臂長度不平衡(path imbalance/PI),使其輸出干涉訊號(interference signal)產生一個載波相位訊號,並且經由使用貝色函數(Bessel function)將干涉訊號展開為載波相位訊號頻率的諧波分量,然後我們使用干涉訊號的第二和第四諧波成分(second and fourth harmonic components)之間特定的關係推導出兩干涉臂長度不平衡(path imbalance/PI)測量的理論,這個方法能夠測量幾個分米(0.1m)的路徑不平衡(path imbalance/PI),使其準確度能夠到達毫米。 In the present invention, we propose a method of measuring path imbalance (PI) values (via an output interference signal using a fiber optic Michaelson interferometer (PIFOMI) without polarization susceptibility). We use a current carrier signal to modulate the semiconductor laser source of the interferometer. The interference arm length imbalance (PI) of the two-arm interferometer causes the output interference signal to generate a carrier phase. Signal, and by using the Bessel function to spread the interference signal to the harmonic component of the carrier phase signal frequency, then we use the specific between the second and fourth harmonic components of the interfering signal. Relationship derivation of two interference arm length imbalances (path The theory of imbalance/PI), which measures a few millimeters (0.1 m) of path imbalance (PI) to achieve an accuracy of millimeters.

是以,本發明者特就光纖長度之檢測,以光纖干涉儀配合不平衡之雙臂,並調變干涉儀的半導體雷射光源,使其輸出干涉訊號產生一個載波相位訊號,然後使用測量干涉訊號的諧波分量之方法,得以準確量測光纖長度。 Therefore, the inventor specifically detects the length of the optical fiber, uses an optical fiber interferometer with unbalanced arms, and modulates the semiconductor laser light source of the interferometer to output an interference signal to generate a carrier phase signal, and then uses the measurement interference. The method of harmonic components of the signal enables accurate measurement of the length of the fiber.

本發明之目的,乃是提供一種光纖長度之量測,尤其是利用一種無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)的兩干涉臂長度不平衡,用以精密量測PI值的方法。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for measuring the length of an optical fiber, in particular, using a fiber optic optical Michelson interferometer (PIFOMI) without polarization sensitivity to compensate for the length of the two interference arms for precise measurement of the PI value.

本發明之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,主要係利用無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)所具有之A臂與B臂所形成之不平衡雙臂,用以量測兩干涉臂長度不平衡PI值的方法,主要乃是於應用一個電流載波訊號來調變干涉儀的半導體雷射光源,藉由雙臂干涉儀的干涉臂長度不平衡(path imbalance/PI),使其輸出干涉訊號(interference signal)產生一個載波相位訊號,並且經由使用貝色函數(Bessel function)將干涉訊號展開為載波相位訊號頻率的諧波分量,然後我們使用干涉訊號的第二和第四諧波成分(second and fourth harmonic components)之間特定的關係推導出兩干涉臂長度不平衡(path imbalance/PI)測量的理論,這個方法能夠測量幾個分米(0.1m)的路徑不平衡(path imbalance/PI),使其準確度能夠到達毫米。 The measurement of the interference arm length difference of the dual-arm fiber interferometer (TAFOI) of the present invention mainly utilizes the unbalanced arms formed by the A-arm and the B-arm of the fiber-optic optical Michelson interferometer (PIFOMI) without polarization sensitivity. The method for measuring the unbalanced PI value of the length of the two interference arms is mainly to apply a current carrier signal to modulate the semiconductor laser source of the interferometer, and the length of the interference arm of the two-arm interferometer is unbalanced (path Imbalance/PI), which causes the output interference signal to generate a carrier phase signal, and uses the Bessel function to expand the interference signal into the harmonic component of the carrier phase signal frequency, and then we use the interference signal. The specific relationship between the second and fourth harmonic components deduces the theory of two interference arm length imbalance (PI) measurements, which can measure several decimeters (0.1 m). The path imbalance (PI) makes it accurate to reach millimeters.

本發明之雙臂光纖干涉儀之干涉臂長度差的測量,主要係於A臂與B臂分別設有待檢測光纖與參考光纖,並藉由於B臂所設之壓電陶瓷相位調制器改變相位,並於一定期間擷取數組第二和第四諧波分量達到最大值的干涉訊號,分別計算可得到數組兩臂之PI量測值,並加以平均可得到平均之PI量測值,用以量測光纖長度,並使其量測誤差值在平均後有效的降低。 The difference of the interference arm length difference of the dual-arm fiber optic interferometer of the present invention is mainly that the A-arm and the B-arm respectively have a fiber to be detected and a reference fiber, and the phase is changed by the piezoelectric ceramic phase modulator provided by the B-arm. And in a certain period of time, the second and fourth harmonic components of the array are obtained to obtain the maximum interference signal, and the measured values of the PIs of the two arms of the array are respectively calculated, and averaged to obtain an average PI measurement value. The length of the fiber is measured and its measurement error value is effectively reduced after averaging.

如此,為使 貴審查員可充份了解本發明之雙臂光纖干涉儀 (TAFOI)之干涉臂長度差的測量,茲解說如下: Thus, in order for your examiner to fully understand the dual-arm fiber optic interferometer of the present invention (TAFOI) The measurement of the interference arm length difference is explained as follows:

一.有關雙臂光纖光波干涉儀的路徑不平衡(PI)測量理論 One. Path Unbalance (PI) Measurement Theory for Dual-arm Fiber Optic Wave Interferometer

如果光纖光學邁克遜干涉儀是由一般單模態光纖(regular single-mode fiber)所製作,輸出的干涉訊號會有偏振引起的褪變問題(polarization-induced signal fading),使得訊號振幅有時強,有時弱。為了避免時強時弱的影響,無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)在本發明中被運用於測量路徑不平衡(PI)。無偏振感受性的光纖光學邁克遜干涉儀結構是在兩干涉臂的端點,分別接上法拉第旋轉鏡(Faraday rotator mirrors /FRM),以消除偏振引起之訊號褪變。我們假設無偏振感受性的光纖光學邁克遜干涉儀的路徑不平衡(PI)值為△L。因此,如圖3所示,應用一個電流調制訊號△i sin ω c t來調變干涉儀的半導體雷射光源,即可使其輸出干涉訊號產生一個載波相位訊號(此技術為一習知技術,在此不多做贅述)。其中是指時間為t的載波相位訊號函數,可以表示為式(1): 其中為載波相位訊號的振幅,n在上述的方程式中為光纖軸心(core)的折射率,c為光速,△i為電流調制訊號振幅,而是光波步頻率v對電流i的偏微分(即半導體雷射的電流i對光波頻率v的轉換因子),ω c 為角頻率。 If the fiber optic micson interferometer is made of a regular single-mode fiber, the output interference signal has polarization-induced signal fading, which makes the signal amplitude sometimes strong. Sometimes weak. In order to avoid the effects of strong time and weak, a fiber optic optical Michelson interferometer (PIFOMI) without polarization sensitivity is used in the present invention to measure path imbalance (PI). The polarization-free fiber-optic Michelson interferometer structure is connected to the Faraday rotator mirrors (FRM) at the end of the two interference arms to eliminate signal-induced fading caused by polarization. We assume that the path-unbalance (PI) value of the fiber-optic Maison interferometer without polarization sensitivity is Δ L . Therefore, as shown in FIG. 3, a current modulation signal Δ i sin ω c t is used to modulate the semiconductor laser light source of the interferometer, so that the output interference signal can generate a carrier phase signal. (This technique is a conventional technique and will not be repeated here). among them Refers to the carrier phase signal function with time t , Can be expressed as equation (1): among them , For the amplitude of the carrier phase signal, n is the refractive index of the core of the fiber in the above equation, c is the speed of light, and Δ i is the amplitude of the current modulated signal. It is the partial differential of the optical wave step frequency v to the current i (ie, the conversion factor of the current i of the semiconductor laser to the optical frequency v ), and ω c is the angular frequency.

再者,電流調制訊號△i sin ω c t對半導體雷射將會同時產生一個光強度調制(intensity modulation)。在PGC解調中此光強度調制並不會影響訊號解調,但是此光強度調制的影響(用來測量路徑不平衡(PI)時)必須被考慮到。 Furthermore, the current modulation signal Δ i sin ω c t will simultaneously produce a light intensity modulation for the semiconductor laser. This light intensity modulation does not affect signal demodulation in PGC demodulation, but the effects of this light intensity modulation (used to measure path imbalance (PI)) must be considered.

假設半導體雷射的輸出功率(power)強度從I 0被調制為I 0(1+a sin ω c t),a為歸一化光強度調變係數(normalized intensity modulation coefficient),a和△i成比例,則具有不平衡臂之 PIFOMI的輸出干涉訊號I(t)由式(2)得之(此技術為一習知技術,在此不多做贅述): It is assumed that the output power of the semiconductor laser is modulated from I 0 to I 0 (1+ a sin ω c t ), a is the normalized intensity modulation coefficient, a and Δ i In proportion, the output interference signal I ( t ) of the PIFOMI with the unbalanced arm is obtained by the formula (2) (this technique is a conventional technique and will not be described here):

上述方程式中b為光強度係數(或稱光功率調和係數coefficient proportional to the optical power),k為PIFOMI干涉訊號輸出的條紋可見度(fringe visibility of the PIFOMIS interference signal output),係數bI 0成比例,並且相位偏壓(biased)會隨著環境的改變而變動。根據PGC-DCM解調理論(PGC-DCM demodulation theroy),將式(2)以傅立葉級數(Fourier series)展開後可得到式(3)(此技術為一習知技術,在此不多做贅述): In the above equation, b is the light intensity coefficient (or optical proportional to the optical power), k is the fringe visibility of the PIFOMIS interference signal output, and the coefficients b are proportional to I 0 . And phase biased (biased) It will change as the environment changes. According to the PGC-DCM demodulation theroy, the equation (2) can be obtained by Fourier series (Fourier series) to obtain the equation (3). This technique is a conventional technique and does not do much here. Brief description):

其中函數為第一類貝色函數(Bessel function of the first kind),從式(3)能夠得到角頻率分別為ω c ,2ω c ,3ω c ,4ω c 的4個諧波成分的振幅,分別以A(ω c ),A(2ω c ),A(3ω c ),A(4ω c )表示,各別得到如下: among them with The function is a Bessel function of the first kind, and the amplitudes of the four harmonic components with angular frequencies ω c , 2 ω c , 3 ω c , 4 ω c can be obtained from equation (3). , respectively, represented by A ( ω c ), A (2 ω c ), A (3 ω c ), A (4 ω c ), respectively, as follows:

就上述四式而論,當時,我們可以獲得下述的結果: As far as the above four formulas are concerned, when When we get the following results:

明顯的在A(ω c ),A(2ω c )及A(4ω c )中有雷射強度調制係數a,並且A(3ω c )和a無關。A(2ω c ),A(4ω c )和a是成比例的,因此當a<<1時與A(ω c ) 和A(3ω c )相比較,A(2ω c )和A(4ω c )是次要的分量(minor components)。這意思是指A(2ω c ),A(4ω c )容易被雜訊所影響。A(ω c )/A(3ω c )的比例可以被計算成式(12): There are significant at a laser intensity modulation factor A (ω c), A ( 2 ω c) and A (4 ω c), and A (3 ω c) and a irrelevant. A (2 ω c ), A (4 ω c ) and a are proportional, so when a <<1 compared with A ( ω c ) and A (3 ω c ), A (2 ω c ) and A (4 ω c ) is a minor component. This means that A (2 ω c ) and A (4 ω c ) are easily affected by noise. The ratio of A ( ω c ) / A (3 ω c ) can be calculated as equation (12):

A(ω c )/A(3ω c )依a(會受環境影響而改變)而定,因此A(ω c )/A(3ω c )的比率不適合去計算,就式(4)~(7),當時可得下式: A ( ω c ) / A (3 ω c ) depends on a and ( It is subject to environmental changes, so the ratio of A ( ω c ) / A (3 ω c ) is not suitable for calculation , on the formula (4) ~ (7), when When you get the following formula:

從式(13)~(16)顯示出,當A(ω c )和A(3ω c )和a有關;此外A(2ω c )和A(4ω c )和a無關,並且A(2ω c )和A(4ω c )各別達到它們的最大值(因)。 From equations (13) to (16), when , A c) and A (3 ω c) and a related; in addition A (2 ω c) and A (4 ω c) and a independent, and A (2 ω c) and A (4 ω c) each Don't reach their maximum value (due to Time ).

從式(14)和(16),我們發現A(2ω c )的A(4ω c )的比率只依調制相位訊號的振幅而定。若限定在一個適當的範圍內,是一對一函數。的情況可以藉加在TAFOI的光纖臂上壓電陶瓷相位調幅器的DC偏壓來完成,並且可用頻譜分析儀(frequency spectrum analyzer/FSA)來分析PIFOMI輸出干涉訊號I(t)的頻譜,從2ω c 及4ω c 的諧波分量來得到的值,並進而計算出對應的值。通常頻譜分析儀所測的頻譜分量大小以分貝來表示。因此在下面的理論分析中我們比較偏好於使用來取代From equations (14) and (16), we find , the ratio of A (4 ω c ) of A (2 ω c ) depends only on the amplitude of the modulated phase signal And set. If Limited to an appropriate range, with Is a one-to-one function. The condition can be calculated by adding the DC bias of the piezoelectric ceramic phase modulator on the fiber arm of TAFOI, and the spectrum of the PIFOMI output interference signal I ( t ) can be analyzed by a frequency spectrum analyzer (FSA). 2 ω c and 4 ω c harmonic components to get Value, and then calculate the corresponding value. Usually the spectrum component measured by the spectrum analyzer is expressed in decibels. Therefore, in the following theoretical analysis, we prefer to use To replace .

在這裡我們使用LabView軟體來算第一類貝色函數n(n=1~4)的函數值(相位在0~6 rads(弧度)之間)。 Here we use the LabView software to calculate the function value (phase) of the first class of the shell function n( n =1~4). Between 0 and 6 rads (radian).

如圖1,四條線從左到右分別為。理論上在()的函數值中,是一對一函數,圖2為()的函數曲線。因為A(2ω c ),A(4ω c )和各自成比例,假如A(2ω c )和A(4ω c ) 的值很小,在測量中它會嚴重的受到雜訊的干擾,因此有可能降低準確度。 As shown in Figure 1, the four lines are from left to right. , , , . In theory ( Among the function values, with Is a one-to-one function, Figure 2 is Correct ( The function curve. Because A (2 ω c ), A (4 ω c ) and , Each is proportional. If the values of A (2 ω c ) and A (4 ω c ) are small, it will be severely disturbed by noise during the measurement, so it is possible to reduce the accuracy.

舉例來說,如果考慮的情況,我們可以得到。為了減少背景雜訊的影響,並且改善準確度和穩定度,我們將設定一理想的實驗程序安排在測量過程中,以確定是在(使得A(2ω c )和A(4ω c )的值接近,不會因為有其中一個值偏小而易受到雜訊影響)範圍內,換言之:即為我們所需之的理想範圍。 For example, if you consider , Situation, we can get . In order to reduce the impact of background noise and improve accuracy and stability, we will set an ideal experimental procedure to be arranged during the measurement process to determine Is at ( Let the values of A (2 ω c ) and A (4 ω c ) be close, not because of one of the values being too small and susceptible to noise), in other words: That is what we need The ideal range.

根據式(1),和干涉儀的路徑不平衡(PI)值△L是成比例的。我們首先選擇適當的干涉訊號的調制相位訊號振幅參考值(一般都選擇,因此)做為之後測量△L的參考值。由於該參考值並無法直接量測,所以取得該參考值的方法是經由製造一個標準的無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI),利用它的可測量之雙臂光纖長度不平衡(PI)值△L R (必需用精密量尺(ruler)作準確的測量)作為測量的參考值。然後,我們將適當地調整加在半導體雷射上的DC電流和調制電流振幅,使得PIFOMI輸出干涉訊號達到接近的要求。根據LabView軟體所計算之第一類貝色函數的函數值,利用所量測的△L R 值,即可以獲得的參考值。 According to formula (1), The path imbalance (PI) value Δ L of the interferometer is proportional. We first select the modulation phase signal amplitude reference value of the appropriate interfering signal. (Generally choose ,therefore ) as a reference value for measuring Δ L afterwards. Due to the reference value It is not possible to measure directly, so the reference value is obtained. The method is to fabricate a standard polarization-free fiber optic optical Michelson interferometer (PIFOMI), utilizing its measurable dual-arm fiber length imbalance (PI) value Δ L R (requires precision scale (ruler) Make accurate measurements) as a measurement Reference value. Then, we will properly adjust the DC current and modulation current amplitude applied to the semiconductor laser so that the PIFOMI output interference signal is close. Requirements. According to the function value of the first type of bezel function calculated by the LabView software, the measured Δ L R value can be obtained. Reference value.

如此,當測量未知PIFOMI的路徑不平衡(PI)值(以△L D 表示)時,在半導體雷射上我們保持DC電流。根據△L D 的比率,有兩個如下論點: Thus, when measuring the path imbalance (PI) value (indicated by Δ L D ) of an unknown PIFOMI, we maintain a DC current on the semiconductor laser. According to △ L D and The ratio has two arguments as follows:

(a)如果,電流調制訊號△i 0 sin ω c t保持不變,未知干涉訊號的調制相位訊號振幅以表示,則仍符合之範圍要求。 (a) if The current modulation signal Δ i 0 sin ω c t remains unchanged, and the amplitude of the modulation phase signal of the unknown interference signal is Said that it still meets The scope of the requirements.

時(即A(2ω c )和A(4ω c )的值變成最大值),從式(1)來看,在干涉儀的輸出干涉訊號中調制相位訊號的振幅和干涉儀的路徑不平衡(PI)值△L D 成正比。因此△L D 可以被表示為式(17): when When the values of A (2 ω c ) and A (4 ω c ) become maximum values, the amplitude of the phase signal is modulated in the output interference signal of the interferometer as seen from equation (1). It is proportional to the path imbalance (PI) value Δ L D of the interferometer. Therefore Δ L D can be expressed as equation (17):

(b)如果,此時電流調制訊號將乘上一個係數h變成hi 0 sin ω c t,未知干涉訊號的調制相位訊號振幅以表示,則仍然符合之要求。因此可以明確得到的範圍為(即利用係數h來調整的範圍在所需之範圍內)。當,從式(1)中我們得到在干涉儀的輸出干涉訊號中調制相位訊號的振幅和干涉儀的路徑不平衡(PI)值△L D 成正比。因此△L D 可以被表示為式(18): (b) if or At this time, the current modulation signal will be multiplied by a coefficient h to become h Δ i 0 sin ω c t , and the amplitude of the modulation phase signal of the unknown interference signal is Said that it still meets Requirements. So it can be clearly The scope is (ie using the coefficient h to adjust The scope is within the required range). when From equation (1), we obtain the amplitude of the phase signal modulated in the output interference signal of the interferometer. It is proportional to the path imbalance (PI) value Δ L D of the interferometer. Therefore Δ L D can be expressed as equation (18):

假如干涉儀的雙臂光纖長度各別為L和(L+△L),因為我們的技術是直接地測量△L,它是干涉訊號中調制相位頻率第二和第四的2個諧波成分的振幅比值,用於決定△L。顯然是和L值大小無關,因此當L很大時將不會影響準確度,此為一大優點。 If the length of the arms of the interferometer is L and L ( L + Δ L ), because our technique is to directly measure Δ L , it is the second harmonic component of the second and fourth modulation phase frequencies in the interfering signal. Amplitude ratio Used to determine Δ L . Obviously It is independent of the size of the L value, so when L is large, it will not affect the accuracy, which is a big advantage.

二.在PI測量上環境雜訊的影響分析two. Analysis of the impact of environmental noise on PI measurement

如前述,若干涉儀的輸出訊號之第二和第四頻率(即A(2ω c ),A(4ω c ))很小,量測準確度可能會容易的被雜訊所影響。就事實而論,即使在理想範圍,,當環境雜訊夠大,它可能仍然影響第二和第四分量(components),進而影響準確度。如果來自周圍成環境的單頻相位雜訊是,式(2)的PIFOMI干涉訊號輸出I(t)可表示為式(19): As mentioned above, if the second and fourth frequencies of the output signal of the interferometer (ie, A (2 ω c ), A (4 ω c )) are small, the measurement accuracy may be easily affected by noise. As far as the facts are concerned, even In the ideal range, When the ambient noise is large enough, it may still affect the second and fourth components, which in turn affects accuracy. If the single-frequency phase noise from the surrounding environment is The PIFOMI interferometric signal output I ( t ) of equation (2) can be expressed as equation (19):

將式(19)以傅立葉級數(Fourier series)展開後可得到含有貝色函數的展開式為: After expanding the equation (19) in the Fourier series, the expansion formula containing the bezel function is obtained as:

式(20)能夠進一步得到頻率接近2ω c 和4ω c 諧波振幅分別為,可由下式得知: Equation (20) can further obtain frequencies close to 2 ω c and 4 ω c harmonic amplitudes respectively with , can be known by:

一般來說雜訊是由許多種頻率所組成,因此,我們定一個合理的假說即。就ω en ω c 而論,有兩個論點討論如下: Generally speaking, noise is composed of many kinds of frequencies. Therefore, we have a reasonable hypothesis. . As far as ω en and ω c are concerned, two arguments are discussed below:

(a)如果ω en <<ω c ,則雜訊對的影響便可以被忽略。當時,A(2ω c )和A(4ω c )在式(21)和式(22)中可以被縮減為: (a) if ω en << ω c , then the noise pair with The impact can be ignored. when When A (2 ω c ) and A (4 ω c ) can be reduced to in equations (21) and (22):

因此,從式(23)和式(24),可以發現相位雜訊的影響只是乘上變異項,比較式(14)和式(16)為小於1。因此A(2ω c )/A(4ω c )的比例仍然為Therefore, from equations (23) and (24), phase noise can be found. The effect is simply multiplied by the variation , the comparison formula (14) and formula (16) are less than 1. Therefore the ratio of A (2 ω c )/ A (4 ω c ) is still .

(b)如果ω en <<ω c 並不成立,並且雜訊是寬頻帶的,我們能夠特別地認為這些特殊頻率ω en = c (m是小於或等於4的整數)和ω en =ω c /n(n是大於或等於2的整數)的雜訊分量,會改變A(2ω c )和A(4ω c )振幅分量,進而影響量測準確度。 (b) If ω en << ω c does not hold and the noise is wide-band, we can especially consider these special frequencies ω en = c ( m is an integer less than or equal to 4) and ω en = ω c The noise component of / n ( n is an integer greater than or equal to 2) changes the A (2 ω c ) and A (4 ω c ) amplitude components, which in turn affects the measurement accuracy.

明顯的頻率雜訊ω en =ω c 時,對測量結果的影響最大。當ω en =ω c 時,假設雜訊為,如果,我們得到(式19),並且式(19)2ω c 和4ω c 諧波的振幅各別為A(2ω c )和A(4ω c ),修改如下: The obvious frequency noise ω en = ω c has the greatest influence on the measurement results. When ω en = ω c , the noise is assumed to be ,in case ,we got (Equation 19), and the amplitudes of the ω c and 4 ω c harmonics of equation (19) 2 are A (2 ω c ) and A (4 ω c ), respectively, as modified:

在式(25)和式(26)相除可得。因此A(2ω c )/A(4ω c )的比率將會隨著相位雜訊振幅而改變,亦即精確量測所要求的關係不再存在了。 Deviation between equation (25) and equation (26) . Therefore the ratio of A (2 ω c ) / A (4 ω c ) will vary with phase noise amplitude And change, that is, the exact measurement required The relationship no longer exists.

結合(a)和(b)的結論,因一般主要環境雜訊的頻率小於5KHz,如果適當提高載波相位訊號頻率以符合,環境雜 訊的影響可以明顯的減少。在另一方面,在干涉儀上如果我們能夠有效率地減少由環境雜訊所產生的感應相位雜訊(例如將干涉儀置放在隔振光學平台上,並且適當控制室溫),即可提升量測準確度。 Combining the conclusions of (a) and (b), because the frequency of the main main environmental noise is less than 5KHz, if the carrier phase signal frequency is properly increased to meet The impact of environmental noise can be significantly reduced. On the other hand, if we can effectively reduce the induced phase noise generated by environmental noise on the interferometer (for example, placing the interferometer on the vibration isolation optical platform and properly controlling the room temperature), Improve measurement accuracy.

三.實驗和應用three. Experiments and applications

如圖3,實驗中我們使用無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI),並且使用DFB雷射二極體1(DFB laser diode)作為干涉儀光源,其操作電流為80mA。由前述DFB雷射二極體1所產生之雷射光,則是連接到三阜光學循環器2之第一個連接阜20以減少光反饋。再將光源經三阜光學循環器2之第二個連接阜21輸出到的2x2光纖耦合器(2x2 Fiber coupler)3,並分別分光到PIFOMI的A、B雙臂,於B臂設壓電陶瓷相位調制器5(PZT Phase modulator),形成路徑不平衡的雙臂,並於A臂(A port)連接待檢測光纖50(Sensing fiber),B臂(B port)連接經標準量測的參考光纖51(Reference fiber)(或稱法碼)。再於待檢測光纖50(Sensing fiber)另一端連接法拉第旋轉鏡60(Faraday rotator mirrors/FRM),參考光纖51(Reference fiber)另一端連接另一法拉第旋轉鏡61(FRM) As shown in Fig. 3, in the experiment, we used a fiber-optic optical Michelson interferometer (PIFOMI) without polarization sensitivity, and used a DFB laser diode as an interferometer light source with an operating current of 80 mA. The laser light generated by the aforementioned DFB laser diode 1 is connected to the first port 20 of the three-turn optical circulator 2 to reduce optical feedback. Then, the light source is output to the 2x2 fiber coupler 3 of the third port 阜21 of the three-way optical circulator 2, and is separately split to the arms of A and B of PIFOMI, and the piezoelectric ceramic is set on the B arm. The phase modulator 5 (PZT Phase modulator) forms a double-arm with unbalanced paths, and connects the fiber to be detected 50 (Sensing fiber) to the A port (B port), and connects the reference fiber of the standard measurement to the B port. 51 (Reference fiber) (or method code). The other end of the fiber to be detected 50 is connected to the Faraday rotator mirrors (FRM), and the other end of the reference fiber 51 is connected to another Faraday rotator 61 (FRM).

是以,當前述DFB雷射二極體1(DFB laser diode)所產生的雷射光分別經由前述A臂、B臂後,再分別經待檢測光纖50、參考光纖51後,再經各自之法拉第旋轉鏡60、61(FRM)反射,又分別經待檢測光纖50、參考光纖51,及A臂、B臂後,經2x2光纖耦合器(2x2 Fiber coupler)3耦合後輸入三阜光學循環器2之第二連接阜21,然後經由三阜光學循環器2之第三連接阜22將干涉訊號輸出,再被光學接收器(Optical receiver)70轉換成電子訊號,然後我們使用FSA來分析這個訊號。 Therefore, when the laser light generated by the DFB laser diode (DFB laser diode) passes through the A-arm and the B-arm, respectively, and then passes through the optical fiber 50 to be detected, the reference fiber 51, and then the respective Faraday. The rotating mirrors 60, 61 (FRM) are respectively reflected by the optical fiber 50 to be detected, the reference optical fiber 51, and the A-arm and the B-arm, and then coupled through a 2x2 fiber coupler 3 to input a three-turn optical circulator 2 The second port 21 is then outputted via the third port 22 of the three-way optical circulator 2, and then converted into an electronic signal by an optical receiver 70. Then we use FSA to analyze the signal.

我們使用ILX3724B作為雷射二極體控制器10,用以控制前述DFB雷射二極體1之輸出光源,並以函數產生器11(Function generator)產生電壓調制訊號對ILX3724B作調制,利用ILX3724B 內建的電壓轉換電流功能(電流/電壓轉換比值為20mA/V),產生電流調制訊號△i sin ω c t調變DFB雷射二極體1,使其輸出干涉訊號產生一個載波相位訊號。為了減少環境雜訊的影響,我們使用高頻率(10kHz)電流調制訊號,並且將干涉儀置放在隔振光學平台上。干涉訊號輸入NI6250 DAQ卡轉換成數位訊號,再輸入個人電腦PC中使用LabView軟體中FSA功能作頻譜分析,進而計算載波相位訊號及干涉儀的路徑不平衡(PI)值△L。此優點是可以使用PC直接作進一步分析及計算量測結果,並且這個方法所需設備比較便宜。 We use ILX3724B as the laser diode controller 10 to control the output light source of the aforementioned DFB laser diode 1, and generate a voltage modulation signal by the function generator 11 to modulate the ILX3724B, using the ILX3724B. The voltage conversion current function (current/voltage conversion ratio is 20 mA/V) is generated, and a current modulation signal Δ i sin ω c t is generated to modulate the DFB laser diode 1 to output an interference signal to generate a carrier phase signal. . To reduce the effects of ambient noise, we use high frequency (10 kHz) current modulation signals and place the interferometer on the isolation optics platform. The interference signal input NI6250 DAQ card is converted into a digital signal, and then input into the personal computer PC to use the FSA function in the LabView software for spectrum analysis, thereby calculating the carrier phase signal. And the path imbalance (PI) value of the interferometer Δ L . This advantage is that the PC can be directly used for further analysis and calculation of the measurement results, and the equipment required for this method is relatively inexpensive.

為了測量無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)的路徑不平衡(PI)值,必需滿足的條件,使A(2ω c )和A(4ω c )於時的值為最大值,然後才能得到的正確值。然而相位將會隨著環境條件(例如溫度、震動、和聲壓)而產生相位變化,因此,我們必需使用三角波訊號產生器(Triangle wave generator)驅動壓電陶瓷相位調制器(PZT Phase modulator)來產生一個相位訊號(的振幅須遠大於π rads),使得全部的相位偏壓(phase biased)變為,以確保在一個三角波訊號週期內,必定有幾次會達到之條件;同時FSA應該連續分析輸出干涉訊號的頻譜,以確保得到幾乎精確的值(對應當之條件,此時A(2ω c )和A(4ω c )的值變為最大值)。PZT相位調制器的低頻頻率(一般DC到1 kHz)響應值是固定的,可使用FSA量測PIFOMI的輸出干涉訊號獲得PZT相位調制器的響應值。 In order to measure the path imbalance (PI) value of the fiber optic Michelson interferometer (PIFOMI) without polarization sensitivity, it must be satisfied Conditions such that A (2 ω c ) and A (4 ω c ) The value of the time is the maximum value before you can get The correct value. Phase Phase changes will occur with environmental conditions (such as temperature, vibration, and sound pressure). Therefore, we must use a Triangle wave generator to drive a PZT Phase modulator to generate a phase. Phase signal ( The amplitude must be much larger than π rads ), so that all phase biased becomes To ensure that within a triangle wave signal period, there must be several times The condition; at the same time, the FSA should continuously analyze the spectrum of the output interference signal to ensure almost accurate Value The condition is that the values of A (2 ω c ) and A (4 ω c ) become maximum values. The low frequency of the PZT phase modulator (typically DC to 1 kHz) has a fixed response value. The output interference signal of the PIFOMI can be measured using the FSA to obtain the response of the PZT phase modulator.

這裡我們使用函數產生器(Function generator)產生一個1 kHz的正弦波(sine wave)到PZT相位調制器(PZT相位調制器的共振頻率遠大於1 kHz),我們並使用SR770 FSA來分析這個訊號。慢慢地增加振幅時,我們發現在4.415V時1 kHz和3 kHz的頻率分量是相同的(如圖4所示)。從圖1,可得到4.415V時相位振幅為3.054rads。因此PZT相位調制器的低頻響應值為0.69rad/V。若相位調制器的輸入訊號為一個用5V振幅的三角波(使用三角波 是為了產生線性相位改變),並且頻率為10mHz(週期為100秒),如圖5所示。 Here we use a function generator to generate a 1 kHz sine wave to the PZT phase modulator (the resonant frequency of the PZT phase modulator is much larger than 1 kHz), and we use the SR770 FSA to analyze this signal. As we slowly increase the amplitude, we find that the frequency components of 1 kHz and 3 kHz are the same at 4.415V (as shown in Figure 4). From Figure 1, the phase amplitude at 3.415 V is 3.054 rads. Therefore, the low frequency response of the PZT phase modulator is 0.69 rad/V. If the input signal of the phase modulator is a triangular wave with 5V amplitude (using a triangular wave) Is to produce a linear phase change), and the frequency is 10mHz (cycle is 100 seconds), as shown in Figure 5.

在50秒(或半週期)中,PZT相位調制器的相位改變為6.92rads,所以有兩個機會達到(m為一個整數)對應的情況。 In 50 seconds (or half cycle), the phase of the PZT phase modulator changes to 6.92 rads, so there are two chances to reach ( m is an integer) corresponding Case.

再者,當時,300秒已經足夠長到可以讓FSA有很多機會(至少12)去分析及計算干涉訊號頻譜,並且計算的對應相位值Again, when At 300 seconds, it is long enough for the FSA to have many opportunities (at least 12) to analyze and calculate the interference spectrum and calculate Corresponding phase value .

這個程式將會自動在300秒之間,選擇複數個第二諧波頻譜分量為最大值的輸出干涉訊號來計算,並以選擇五個最大值計算,以得到五個相位值。平均五個相位值,我們得到平均相位(k是指第k次實驗(kth time experiment),每次需300秒)作為這個測量結果。由這個方法我們能夠有效減少環境雜訊的影響和確保量測準確度(確保量測時對應之最佳條件)。 This program will automatically calculate the output interference signal with multiple second harmonic spectral components as the maximum value between 300 seconds, and calculate by selecting five maximum values to get five phase values. Average five phase values, we get the average phase (k means the k-th experiment (k th time experiment), each required 300 seconds) as the result of this measurement. By this method, we can effectively reduce the impact of environmental noise and ensure measurement accuracy (ensure the corresponding measurement The best condition).

在下述的實驗(A)和(B)中,我們分別對於每個無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)的路徑不平衡(PI)值做五次獨立測量,並且結果各別為(k=0~5),則平均值可以表示為下式: In the experiments (A) and (B) below, we performed five independent measurements for the path imbalance (PI) values of each of the polarization-free fiber-optic Maison interferometers (PIFOMI), and the results were (k=0~5), the average Can be expressed as:

並且五個測量的對應標準差S為: And the corresponding standard deviation S of the five measurements is:

為了得到較高的可信賴度和穩定度,我們將使用來計算PI的值,並且和由精密量尺(ruler)所量出的光纖長度差作比較。 In order to achieve high reliability and stability, we will use The value of PI is calculated and compared to the difference in fiber length measured by a precision ruler.

除此之外,較小的標準差S表示測量值將是較可信賴的。在另一方面,較大的標準差S表示測量值較不可信賴,例如測量可能受到環境雜訊較大的影響。因此我們可以指定一個標準差S的參考值(例如本實驗中可訂為0.5mm),作為衡量測量結果是否可信賴的標準。 In addition to this, the smaller standard deviation S represents the measured value It will be more reliable. On the other hand, a larger standard deviation S indicates that the measured value is less reliable, for example, the measurement may be affected by a larger environmental noise. Therefore, we can specify a reference value of the standard deviation S (for example, 0.5mm in this experiment) as a measure of the reliability of the measurement results.

第一個步驟是用標準PI來校正無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)。具有標準PI的PIFOMI之雙臂只有幾公尺長,所以很方便可以用尺測量光纖的PI精確長度值(在這裡我們不需要得到雙臂完整的長度,我們只在乎PI)。 The first step is to use a standard PI to correct the polarization-free fiber optic Michaelson interferometer (PIFOMI). The PIFOMI with standard PI is only a few meters long, so it is convenient to measure the PI exact length of the fiber with a ruler (we don't need to get the full length of the arms here, we only care about PI).

我們在標準PIFOMI的雙臂上使用光學連結器(Optical connectors),以方便測試。我們必須先使用標準PIFOMI來測試完整光學回路(whole optical circuit)的響應(response),亦即量測出相位訊號及干涉儀的路徑不平衡(PI)值△L之間在目前設定條件下的對應關係,並且使用他作為參考來測量其他待檢測光纖50和參考光纖51之間的PI。 We use an optical connector on the standard PIFOMI's arms for easy testing. We must first test the response of the complete optical circuit using the standard PIFOMI, that is, measure the phase signal. And the correspondence between the path imbalance (PI) value ΔL of the interferometer under the current setting conditions, and using him as a reference to measure the PI between the other to-be-detected optical fiber 50 and the reference optical fiber 51.

當測量時,為了得到PI,參考光纖51和待檢測光纖50係由光學連結器連結在PIFOMI的雙臂。在我們的實驗區分為三部分,描述如下: When measuring, in order to obtain PI, the reference fiber 51 and the fiber to be detected 50 are attached to the arms of the PIFOMI by an optical connector. The three parts of our experiment are described as follows:

(A)PIFOMI的標準PI測量(A) PIFOMI's standard PI measurement

如圖3所示,做一個標準的PIFOMI,它的雙臂(指A臂長度L A ,B臂長度L B )有一個已經準量測的不平衡(PI)值△L R =L A -L B =98.6mm(必需由尺準確的測量)做為測量的參考值。然後我們將適當地調整加在半導體雷射上的DC電流和調制電流振幅,使得PIFOMI輸出干涉訊號達到接近的要求。(即達到4.2rads)。我們發現使用極低失真的函數產生器(Function generator)DS360產生一個10kHz且振幅為200mV的調制訊號輸入ILX3724B雷射二極體控制器,配合ILX3724B將DC電流設定在60.5mA時,輸出干涉訊號的A(2ω c )和A(4ω c )振幅分量相等,亦即達到。輸出干涉訊號的波形如圖6所示。 As shown in Figure 3, a standard PIFOMI is used. Its arms (referred to as A arm length L A and B arm length L B ) have an unbalanced (PI) value that has been accurately measured Δ L R = L A - L B = 98.6 mm (required to be accurately measured by the ruler) as a reference for the measurement. Then we will properly adjust the DC current and modulation current amplitude applied to the semiconductor laser so that the PIFOMI output interference signal is close. Requirements. (which is Reached 4.2 rads). We found that a very low distortion function generator DS360 generates a 10 kHz modulation signal input with an amplitude of 200 mV into the ILX3724B laser diode controller. When the DCX current is set to 60.5 mA with the ILX3724B, the interference signal is output. The amplitude components of A (2 ω c ) and A (4 ω c ) are equal, that is, . The waveform of the output interference signal is shown in Fig. 6.

使用周期10mHz及5V振幅的三角波去驅動PZT相位調制器,使得PIFOMI的輸出干涉訊號在300秒內有12個機會達到第二諧波頻譜分量為最大值(即對應)。 The triangular wave with a period of 10mHz and 5V amplitude is used to drive the PZT phase modulator, so that the output interference signal of PIFOMI has 12 chances to reach the maximum value of the second harmonic spectrum component in 300 seconds (ie, corresponding ).

時,如圖7所示,輸出干涉訊號的第二和第四諧波頻譜分量為最大值,這裡我們使用SR770 FSA來分析這個訊號。 when When, as shown in Fig. 7, the second and fourth harmonic spectral components of the output interference signal are at a maximum value, here we use the SR770 FSA to analyze this signal.

相對應地,當時,如圖8所示,輸出干涉訊號的第一 和第三諧波頻譜分量為最大值。 Correspondingly, when At the time, as shown in FIG. 8, the first and third harmonic spectral components of the output interference signal are at a maximum value.

如前述,程式自動地在300秒內選擇五個相對應的干涉訊號,其中它們的第二諧波頻譜分量達到五個最大值,並且計算五個相位值的平均相位為。另外從五次各別測量(每一個測量時間需要300秒)的各自平均相位分別為4.1328rads、4.1231 rads、4.1246 rads、4.1253 rads、和4.1268 rads,如表1-1所示,將這五個相位值再作平均,得到最後平均值。我們設定標準PIFOMI的量測相位訊號在,相對應PI長度為△L R =98.6mmAs mentioned above, the program automatically selects five corresponding interfering signals within 300 seconds, wherein their second harmonic spectral components reach five maximum values, and the average phase of the five phase values is calculated as . In addition, the average phase of each of the five separate measurements (300 seconds for each measurement time) is 4.1328 rads, 4.1231 rads, 4.1246 rads, 4.1253 rads, and 4.1268 rads, as shown in Table 1-1. The phase values are averaged again to get the final average . We set the standard PIFOMI measurement phase signal at The corresponding PI length is △ L R = 98.6 mm .

可以想像當調制訊號的振幅為200mV時,標準PIFOMIS的響應(response)為23.89mm/rads。根據這個響應,我們可以反向計算得到標準PIFOMIS的五個測量相位的對應長度分別為98.55mm、98.45mm、98.57mm、98.59mm、和98.63mm。標準差S=0.031mm,遠小於所設定的標準差S的參考值S=0.5mm。 It can be imagined that when the amplitude of the modulated signal is 200 mV, the response of the standard PIFOMIS is 23.89 mm/rads. Based on this response, we can inversely calculate that the corresponding lengths of the five measurement phases of the standard PIFOMIS are 98.55 mm, 98.45 mm, 98.57 mm, 98.59 mm, and 98.63 mm, respectively. The standard deviation S = 0.031 mm, which is much smaller than the reference value S = 0.5 mm of the set standard deviation S.

(B)PIFOMI一些PI的準確度測量(B) PIFOMI accuracy measurement of some PIs

在這個實驗裡我們製作了五條兩端有光學連結器的光纖線(pigtailed fibers),它們的長度由尺準確的測量各別為L 1=299.8mmL 2=219.5mmL 3=400.3mmL 4=538.2mm、和L 5=6785mm。我們將這些光纖線連結標準PIFOMI的兩臂(路徑不平衡△L R =L A -L B =98.6mm)以得到七種不同PI的PIFOMIs,並且PI值各別為L PI,1=L 1+L B -L A =201.2mmL PI,2=L 2+L A -L B =318.1mmL PI,3=L 1+L A -L B =398.4mmL PI,4=L 3+L A -L B =498.9mmL PI,5=L 4+L A -L B =636.8mmL PI,6=L 5+L A -L B =777.1mmL PI,7=L 2+L 5+L A -L B =996.6mmIn this experiment we made five pigtailed fibers with optical connectors at both ends, the length of which is accurately measured by the ruler as L 1 =299.8 mm , L 2 =219.5 mm , L 3 =400.3 mm , L 4 =538.2 mm , and L 5 =6785 mm . We connect these fiber optic lines to the two arms of the standard PIFOMI (path unbalance Δ L R = L A - L B = 98.6 mm ) to obtain seven different PI PIFOMIs, and the PI values are each L PI , 1 = L 1 + L B - L A = 201.2 mm , L PI , 2 = L 2 + L A - L B = 318.1 mm , L PI , 3 = L 1 + L A - L B = 398.4 mm , L PI , 4 = L 3 + L A - L B = 498.9 mm , L PI , 5 = L 4 + L A - L B = 636.8 mm , L PI , 6 = L 5 + L A - L B = 777.1 mm and L PI , 7 = L 2 + L 5 + L A - L B = 996.6 mm .

因此,當我們仍將10kHz的訊號調制振幅定為200mV時,七種不同PI PIFOMIs的調制相位訊號振幅遠大於4.12rads。舉例來說,對於L PI,1=201.2mm,我們可以計算值達到8.4rads,因此輸出干涉訊號波形在一個週期內有十個極端值,如圖9所示。為了使都能符合最佳的測量情況,我們將用一個係數h來減少調制訊號振幅變成200(h)mV,並且我們能夠得到有效的值接近於4.2rads(為了符合這個條件,我們可以得 到輸出干涉訊號的波形像圖6,有六個極端值)然後我們可以根據式(18)計算測量值L PI,m,measure (m=1~7)。測試值和PIFOMI的標準PI測量值相似,並且測量值在表1-1和表1-2列出,所有測量值的差值L differ,m =|L PI,m -L PI,m,measure |和標準差S m 也列在表1。 Therefore, when we still set the signal modulation amplitude of 10 kHz to 200 mV, the modulation phase signal amplitude of seven different PI PIFOMIs Far greater than 4.12rads. For example, for L PI , 1 = 201.2 mm , we can calculate The value reaches 8.4 rads, so the output interference signal waveform has ten extreme values in one cycle, as shown in Figure 9. because Can meet the best measurement situation , we will use a coefficient h to reduce the amplitude of the modulation signal to 200 (h) mV, and we can get effective The value is close to 4.2 rads (in order to meet this condition, we can get the waveform of the output interference signal as shown in Figure 6, with six extreme values) and then we can calculate the measured value L PI , m , measure ( m =1 according to equation (18) ~7). The test values are similar to the standard PI measurements of PIFOMI, and the measured values are listed in Table 1-1 and Table 1-2. The difference between all measured values is L differ , m =| L PI , m - L PI , m , measure | and the standard deviation S m are also listed in Table 1.

表1中所有的測量值裡,最大值L differ,7為3.9mm,最大值S 5為0.49mm。我們可以明顯的得知當PI值很大(比如L PI,6=777.1mmL PI,7=996.6mm),其L differ,m 值也可能較大(對於L PI,6L differ,6=2.7mm,對於L PI,7 L differ,7=3.9mm)。主要原因可能是由電流調制過程中輕微非線性所造成。此外,當PI大約小於600mm時,我們可以得到()和。此外,一般雙臂光纖光學干涉式感應器(使用DFB雷射二極體做光源)的PIs大多幾乎小於200mm。在我們的實驗中,當PI值大約200mm時,根據本測試系統我們得到Among all the measured values in Table 1, the maximum value L differ , 7 is 3.9 mm, and the maximum value S 5 is 0.49 mm. We can clearly see that when the PI value is large (such as L PI , 6 = 777.1 mm , L PI , 7 = 996.6 mm ), the L difference , m value may also be larger (for L PI , 6 , L differ , 6 = 2.7 mm , for L PI , 7 L differ , 7 = 3.9 mm ). The main reason may be caused by slight nonlinearity in the current modulation process. In addition, when the PI is less than 600mm, we can get ( )with . In addition, the PIs of a general dual-arm fiber optic interferometric sensor (using a DFB laser diode as a light source) are mostly less than 200 mm. In our experiments, when the PI value is about 200mm, we get according to this test system. with .

(C)PIFOMI的PI測量在實際感測系統上的應用(C) PIFOMI's PI measurement in practical sensing systems

對於實際感測系統上的應用在建造雙臂光纖干涉儀時,兩條長度較長的感應光纖臂間的長度平衡(或是有固定的PI)是需要的,因此我們必需發展適當的方法來測量長度較長的待檢測光纖和標準參考光纖間的PI值。 For the application of the actual sensing system, when constructing the dual-arm fiber optic interferometer, the length balance between the two long-length sensing fiber arms (or fixed PI) is needed, so we must develop appropriate methods. The PI value between the fiber to be detected and the standard reference fiber with a long length is measured.

在這個實驗中,我們做了一個參考光纖51為直徑6mm,外層具有PE被覆,兩端有光學連結器的光纖線,長度大約185m。我們可以重覆做一個和參考光纖有相同結構的待檢測光纖50,其長度接近或等於參考光纖51。 In this experiment, we made a reference fiber 51 with a diameter of 6 mm, a PE coating on the outer layer, and an optical connector at both ends, with a length of about 185 m. We can repeat a fiber 50 to be inspected having the same structure as the reference fiber, the length of which is close to or equal to the reference fiber 51.

首先根據標記,讓待檢測光纖50剪下的長度比參考光纖51剪下的長度長約20公分,經由使用PI測量系統(待檢測光纖50和參考光纖51各別連接在前述A臂和B臂),我們在待檢測光纖和參考光纖之間測量PI的長度△L PI 。過長的待檢測光纖50長度等於(△L PI -98.6mm)。然後根據測試值剪斷待檢測光纖50多餘光纖長度,並且在待檢測光纖50尾端製作光學連結器。 First, according to the mark, the length of the fiber to be detected 50 is cut by about 20 cm longer than the length cut by the reference fiber 51, and the P-measurement system is used (the fiber to be detected 50 and the reference fiber 51 are respectively connected to the aforementioned A-arm and B-arm). ), we measure the length of the PI Δ L PI between the fiber to be tested and the reference fiber. The length of the fiber 50 to be detected that is too long is equal to (Δ L PI -98.6 mm ). Then, the excess fiber length of the fiber to be inspected 50 is cut according to the test value, and an optical connector is fabricated at the end of the fiber to be inspected 50.

要注意待檢測光纖50的製造過程必需準確的控制,使得待檢測光纖50的長度等於參考光纖51。最後經由使用PI測量系統(待檢測光纖和參考光纖各別連接在A臂和B臂),我們測量在待檢測 光纖和參考光纖之間的PI值。測式程序和PIFOMIS的標準PI測量法相似,但PI的△L PI 值從一次測量中(在300秒期間)直接得到,作為實際感測系統上的應用必須有效率的減少測量時間。 It is to be noted that the manufacturing process of the optical fiber 50 to be inspected must be accurately controlled such that the length of the optical fiber 50 to be detected is equal to the reference optical fiber 51. Finally, by using a PI measurement system (the fiber to be detected and the reference fiber are each connected to the A arm and the B arm), we measure the PI value between the fiber to be detected and the reference fiber. Similar test standard programming and PIFOMIS PI measurement, but the value of △ L PI PI from the primary measurements (during 300 seconds) directly, as an application on actual sensing system must be efficient to reduce the measurement time.

為了證實PI測量系統的可信賴度和穩定度,我們連續在三天中分別做三次測試,我們得到三個(△L PI -98.6mm)值各別為4.82mm,4.34mm,and 4.71mm。在這些測量值的最大值和最小值之間的差異接近0.48mm,並且標準差s為0.27mm。在待檢測光纖和標準參考光纖之間的PI值(平均值為4.62mm),主要亦因為在製作光學連結器時的切割光纖及製造連結器過程引起之誤差所造成,未來,我們可以修改此過程以減少PI的長度誤差。這些實驗證實了當PIFOMI光纖臂的長度很大時(達幾百公尺),PI測量系統的準確度只輕微的受到影響。這是本PI測量系統的一大優點。 In order to verify the reliability and stability of the PI measurement system, we performed three tests in three consecutive days. We obtained three (△ L PI -98.6 mm ) values of 4.82 mm , 4.34 mm , and 4.71 mm , respectively. The difference between the maximum and minimum values of these measured values is close to 0.48 mm, and the standard deviation s is 0.27 mm. The PI value between the fiber to be tested and the standard reference fiber (average value is 4.62 mm) is mainly caused by the error caused by the process of cutting the fiber and manufacturing the connector when manufacturing the optical connector. In the future, we can modify this. The process is to reduce the length error of the PI. These experiments confirmed that the accuracy of the PI measurement system was only slightly affected when the length of the PIFOMI fiber arm was large (up to several hundred meters). This is a big advantage of this PI measurement system.

四.結論four. in conclusion

綜上,雙臂光纖干涉儀(TAFOI)的PI值為一重要參數有兩個主要原因。首先,雙臂光纖干涉儀(TAFOI)輸出干涉訊號的相位雜訊(noise)與PI是成比例的,在某些應用上接近零的PI值對於減少相位雜訊是必須的。 In summary, there are two main reasons why the PI value of the dual-arm fiber interferometer (TAFOI) is an important parameter. First, the phase noise of the interferometric signal output by the dual-arm fiber interferometer (TAFOI) is proportional to PI. In some applications, a near-zero PI value is necessary to reduce phase noise.

其次,雙臂光纖干涉儀(TAFOI)的感應相位訊號需要線性解調(如藉由使用具有許多優點的PGC解調器),而固定的PI值對於產生固定載波相位訊號的振幅是必要的。兩個應用的PI值的準確度(對於PGC調制器而言PI的長度可能達到200mm)必須達到毫米等級。當待檢測光纖由鬆套管光纖來製作或是待檢測光纖長度超過幾百公尺時,最初切割光纖長度的錯誤可能達到幾分米,所以我們需要一個PI檢測範圍可以達到幾分米且其準確度可能為毫米級的測量方法。測量較大OPD的方法包含使用OLCR和mmOTDR。雖然OLCR有高解析度,其OPD的測量範圍大概為幾公分。另一方面,mmOTDR的解析度被限制在大約5mm。所以,這兩個方法皆不能符合前述需求。在本發明案裡,我們提出了一個方法去測量PI(經由使用PIFOMI的輸出干涉訊號)。在理論分析裡,我們使用貝色函數將干涉訊號展開為載波相位訊號頻率的諧波分量,使用特定的 關係在干涉訊號的第二和第四諧波成分來發展一個理論去測量PIFOMI的PI。這個方法能夠測量幾公分的PI,並且它的準確度能夠到達毫米級。 Second, the inductive phase signal of the dual-arm fiber interferometer (TAFOI) requires linear demodulation (eg, by using a PGC demodulator with many advantages), and a fixed PI value is necessary to generate the amplitude of the fixed carrier phase signal. The accuracy of the PI values for both applications (the length of the PI may reach 200 mm for PGC modulators) must be in the millimeter class. When the fiber to be tested is made of loose tube fiber or the length of the fiber to be tested exceeds several hundred meters, the length of the original fiber length may be several decimeters, so we need a PI detection range of several decimeters and its Accuracy may be measured in millimeters. Methods for measuring larger OPDs include the use of OLCR and mmOTDR. Although OLCR has a high resolution, its OPD measurement range is about a few centimeters. On the other hand, the resolution of mmOTDR is limited to approximately 5 mm. Therefore, neither of these methods can meet the aforementioned requirements. In the present invention, we propose a method to measure PI (via the output interference signal using PIFOMI). In the theoretical analysis, we use the Bayesian function to expand the interference signal into the harmonic component of the carrier phase signal frequency, using a specific The relationship between the second and fourth harmonic components of the interfering signal develops a theory to measure PI of PIFOMI. This method is capable of measuring a few centimeters of PI and its accuracy can reach millimeters.

在我們的實驗裡,當PI小於600mm時,根據PI測量系統我們得到。一般雙臂光纖光學干涉式感應器(使用DFB雷射二極體做光源)的PIs大多小於200mm。因此本專利所提出之PI測量系統在PI測試範圍和PI量測要求的準確度兩方面均能符合需求。此外,在實際感測系統上的應用,實驗也證實即使光纖臂長度高達幾百公尺時,PI測量系統的準確度只受到輕微的影響,這也是本專利所提出之PI測量系統的重要優點。 In our experiments, when the PI is less than 600mm, we get according to the PI measurement system. with . Generally, the PIs of a dual-arm fiber optic interferometric sensor (using a DFB laser diode as a light source) are mostly less than 200 mm. Therefore, the PI measurement system proposed in this patent can meet the requirements in both the PI test range and the accuracy of the PI measurement requirements. In addition, in the application of the actual sensing system, the experiment also confirmed that even if the length of the fiber arm is up to several hundred meters, the accuracy of the PI measuring system is only slightly affected, which is also an important advantage of the PI measuring system proposed by this patent. .

1‧‧‧DFB雷射二極體 1‧‧‧DFB laser diode

2‧‧‧三阜光學循環器 2‧‧‧Three-inch optical circulator

20‧‧‧第一個連接阜 20‧‧‧The first port阜

21‧‧‧第二個連接阜 21‧‧‧Second connection阜

22‧‧‧第三連接阜 22‧‧‧ Third connection阜

3‧‧‧2x2光纖耦合器(2x2 Fiber coupler) 3‧‧‧2x2 fiber coupler (2x2 Fiber coupler)

A‧‧‧臂 A‧‧‧ arm

B‧‧‧臂 B‧‧‧ Arm

5(PZT phase modulator)‧‧‧壓電陶瓷相位調制器 5 (PZT phase modulator) ‧‧‧Piezoelectric ceramic phase modulator

51(Reference fiber)‧‧‧參考光纖 51 (Reference fiber) ‧‧‧ reference fiber

50(Sensing fiber)‧‧‧待檢測光纖 50 (Sensing fiber) ‧‧‧ fiber to be tested

60、61‧‧‧法拉第旋轉鏡(Faraday rotator mirrors/FRM) 60, 61‧‧ Faraday rotator mirrors (FRM)

70‧‧‧光學接收器(Optical receiver) 70‧‧‧Optical receiver

圖1是第一類貝色函數(n=1~4)曲線,依據相位訊號的振幅(0~6 rads)。 Figure 1 is the first type of Bayesian function (n = 1 ~ 4) curve, based on the amplitude of the phase signal (0~6 rads).

圖2是曲線,依據調節相位訊號的振幅(0~5.135rads)。 Figure 2 is Curve, based on adjusting the amplitude of the phase signal (0~5.135rads).

圖3是以無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)的路徑不平衡(PI)值量測系統。 Figure 3 is a path imbalance (PI) value measurement system for a fiber optic Michaelson interferometer (PIFOMI) without polarization sensitivity.

圖4是PIFOMI的光纖臂上的壓電陶瓷相位調制器使用1 kHz的正弦波作調變,PIFOMI輸出的干涉訊號頻譜,在正弦波振幅為4.415V時1 kHz和3 kHz的頻率分量是相同的,可得到4.415V時相位振幅為3.054rads。 Figure 4 shows that the piezoelectric ceramic phase modulator on the fiber arm of PIFOMI uses a 1 kHz sine wave for modulation. The interference signal spectrum of the PIFOMI output is the same for the 1 kHz and 3 kHz frequency components when the sine wave amplitude is 4.415V. The phase amplitude is 3.054 rads at 4.415 V.

圖5是輸入壓電陶瓷相位調制器之三角波信號,振幅為5V,週期為100秒。 Fig. 5 is a triangular wave signal input to a piezoelectric ceramic phase modulator having an amplitude of 5 V and a period of 100 seconds.

圖6是PIFOMI在相位訊號為的輸出干涉訊號波形,在100微秒周期中,干涉訊號波形有6個極值(包括最大和最小)。 Figure 6 shows PIFOMI in phase signal The output interferes with the signal waveform. In the 100 microsecond period, the interference signal waveform has six extreme values (including maximum and minimum).

圖7是在條件時PIFOMI輸出的干涉訊號頻譜,第2及第4諧波頻譜分量最大值。 Figure 7 is at The interference signal spectrum of the PIFOMI output, the maximum of the 2nd and 4th harmonic spectral components.

圖8是在條件時PIFOMI輸出的干涉訊號頻譜,第1及第3諧波頻譜分量最大值。 Figure 8 is at The interference signal spectrum of the PIFOMI output under conditions, the maximum of the first and third harmonic spectral components.

圖9是PIFOMI在相位訊號為的輸出干涉訊號波形,在100微秒周期中,干涉訊號波形有10個極值(包括最大和最小)。 Figure 9 shows the PIFOMI signal at the phase The output interferes with the signal waveform. In the 100 microsecond period, the interferometric signal has 10 extreme values (including maximum and minimum).

圖10是量測結果,包含表1-1及表1-2。 Figure 10 is a measurement result, which includes Table 1-1 and Table 1-2.

1‧‧‧DFB雷射二極體 1‧‧‧DFB laser diode

2‧‧‧三阜光學循環器 2‧‧‧Three-inch optical circulator

20‧‧‧第一個連接阜 20‧‧‧The first port阜

21‧‧‧第二個連接阜 21‧‧‧Second connection阜

22‧‧‧第三連接阜 22‧‧‧ Third connection阜

3‧‧‧2x2光纖耦合器(2x2 Fiber coupler) 3‧‧‧2x2 fiber coupler (2x2 Fiber coupler)

A‧‧‧臂 A‧‧‧ arm

B‧‧‧臂 B‧‧‧ Arm

5(PZT Triangle wave generator)‧‧‧壓電陶瓷相位調制器 5 (PZT Triangle wave generator) ‧‧‧Piezoelectric ceramic phase modulator

51(Reference fiber)‧‧‧參考光纖 51 (Reference fiber) ‧‧‧ reference fiber

50(Sensing fiber)‧‧‧待檢測光纖 50 (Sensing fiber) ‧‧‧ fiber to be tested

60、61‧‧‧法拉第旋轉鏡(Faraday rotator mirrors/FRM) 60, 61‧‧ Faraday rotator mirrors (FRM)

70‧‧‧光學接收器(Optical receiver) 70‧‧‧Optical receiver

Claims (12)

一種雙臂光纖干涉儀(two arms fiber optic interferometer/TAFOI)之干涉臂長度差的測量,至少包含:一雙臂光纖干涉儀、兩光纖及應用一個電流載波訊號來調變干涉儀的半導體雷射光源,藉由設置於雙臂干涉儀的兩光纖干涉臂長度不平衡(path imbalance/PI),以形成兩干涉臂長度不平衡值△L(即PI值),並使干涉儀輸出的干涉訊號(interference signal)產生一個載波相位訊號,將前述干涉儀輸出的干涉訊號展開後以得到包含第一類貝色函數(Bessel function of the first kind)的載波相位訊號頻率的諧波分量,並經由該干涉訊號以得到載波相位訊號的四個諧波成分的振幅,再利用該干涉訊號中調制相位角頻率的第二和第四諧波成分(second and fourth harmonic components)的振幅比值以計算出兩干涉臂長度不平衡值△L,這個方法能夠測量幾個分米(0.1m)程度的光纖路徑不平衡,使其準確度能夠到達毫米。 The measurement of the interference arm length difference of a two arms fiber optic interferometer (TAFOI) includes at least a two-arm fiber optic interferometer, two optical fibers, and a semiconductor carrier using a current carrier signal to modulate the interferometer The light source is formed by the two fiber interference arm length imbalance (PI) of the two-arm interferometer to form two interference arm length imbalance values Δ L (ie, PI value), and the interference signal output by the interferometer (interference signal) generating a carrier phase signal, and expanding the interference signal outputted by the interferometer to obtain a harmonic component of a carrier phase signal frequency including a first class of bessel function (Bessel function of the first kind), and Interfering with the signal to obtain the amplitude of the four harmonic components of the carrier phase signal, and then using the amplitude ratio of the second and fourth harmonic components of the phase angle frequency in the interference signal to calculate the two interferences arm length imbalance value △ L, this method can measure several decimeters (0.1M) the degree of imbalance fiber paths, it is possible to accuracy Mm. 依申請專利範圍第1項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中可應用一個電流調制訊號為△i sin ω c t來調變干涉儀的半導體雷射光源,則其輸出干涉訊號會產生一個載波相位訊號(其中是指時間為t的載波相位訊號函數,為載波相位訊號的振幅,n為光纖軸心的折射率,c為光速,△i為電流調制訊號振幅,而是光波步頻率v對電流i的偏微分,ω c 為角頻率);同時半導體雷射的輸出功率強度會從I 0變為I 0(1+a sin ω c t)(a為歸一化光強度調變係數),a和△i成比例,則具有不平衡臂之PIFOMI的輸出干涉訊號I(t),(其中b為光強度係數,k為PIFOMI干涉訊號輸出的條紋可見度),根據PGC-DCM解調理論(PGC-DCMdemodulation theroy),將I(t)以傅立葉級數(Fourier series)展開後能夠得到ω c ,2ω c ,3ω c ,4ω c 的4個諧波成分的振幅分別為: 其中函數為第一類貝色函數(Bessel function of the first kind),當控制時,可得到: 的比率只依調制相位訊號的振幅而定(和a無關)。當限定在(其中)的適當範圍內,是一對一函數;而控制的方法,可藉由加在TAFOI的光纖臂上壓電陶瓷相位調幅器的DC偏壓完成,並且以頻譜分析儀(frequency spectrum analyzer/FSA)分析PIFOMI輸出干涉訊號I(t)的頻譜,從2ω c 及4ω c 的諧波分量來得到的值,並進而計算出對應的值。 The measurement of the interference arm length difference of the dual-arm fiber optic interferometer (TAFOI) according to the scope of claim 1 of the patent application, wherein a current modulation signal of Δ i sin ω c t can be used to modulate the semiconductor laser source of the interferometer , the output interference signal will generate a carrier phase signal (among them Refers to the carrier phase signal function with time t , For the amplitude of the carrier phase signal, n is the refractive index of the fiber axis, c is the speed of light, and Δ i is the current modulated signal amplitude, and Is the partial differential of the optical wave step frequency v to the current i , ω c is the angular frequency); at the same time, the output power intensity of the semiconductor laser changes from I 0 to I 0 (1+ a sin ω c t ) ( a is normalized) Light intensity modulation coefficient), a proportional to Δ i , has the output interference signal I ( t ) of the PIFOMI of the unbalanced arm, (where b is the light intensity coefficient and k is the fringe visibility of the PIFOMI interferometric signal output). According to the PGC-DCM demodulation theroy, I ( t ) can be obtained by Fourier series (Fourier series). The amplitudes of the four harmonic components of ω c , 2 ω c , 3 ω c , and 4 ω c are : among them with The function is the first class of the Bayesian function (Bessel function of the first kind), when the control When you get: then Ratio is only dependent on the amplitude of the modulated phase signal It may be (and a do not care). when Limited to (among them Within the appropriate range, with Is a one-to-one function; and control The method can be completed by adding the DC bias of the piezoelectric ceramic phase modulator on the fiber arm of TAFOI, and analyzing the spectrum of the PIFOMI output interference signal I ( t ) by a frequency spectrum analyzer (FSA). 2 ω c and 4 ω c harmonic components to get Value, and then calculate the corresponding value. 依申請專利範圍第2項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中從2ω c 及4ω c 的諧波分量得到之的值,得以取代,以利於計算。 Measurement of the interference arm length difference of the dual-arm fiber optic interferometer (TAFOI) according to item 2 of the patent application scope, wherein the harmonic components of 2 ω c and 4 ω c are obtained Value Replaced to facilitate calculations. 依申請專利範圍第2項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中為了減少背景雜訊的影響,並且改善準確度和穩定度,將在測量的實驗程序中確定是在的範圍內(即A(2ω c )和A(4ω c )具有接近的值,不會因為有其中一個偏小而超出範圍受到雜訊影響),換言之:即為理想範圍。 Measurement of the interference arm length difference according to the two-arm fiber optic interferometer (TAFOI) described in the second paragraph of the patent application, in order to reduce the influence of background noise and improve accuracy and stability, it will be in the experimental procedure of measurement determine Is at Within the range (ie, A (2 ω c ) and A (4 ω c ) have close values, and will not be affected by noise due to one of them being too small), in other words: It is the ideal range. 依申請專利範圍第4項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中為了測量無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)的路徑不平衡(PI)值,必需滿足的條件,使A(2ω c )和A(4ω c )於時的值為最大值,然後才能得到 的正確值;然而相位將會隨著環境條件(例如溫度、震動、和聲壓)而產生相位變化,因此,必需以周期性電壓訊號驅動壓電陶瓷相位調制器(PZT Phase modulator)來產生一個相位訊號為(其中的振幅須大於π rads),使得全部的相位偏壓(phase biased)變為,以確保在電壓訊號週期T內,必定有幾次會達到之條件,理想的電壓訊號例如可使用三角波訊號(Triangle wave);同時FSA應該連續分析輸出干涉訊號的頻譜,以確保得到幾乎精確的值,對應當之條件,此時A(2ω c )和A(4ω c )的值為最大值。 Measurement of the interference arm length difference of the dual-arm fiber optic interferometer (TAFOI) according to item 4 of the patent application scope, wherein the path imbalance (PI) value of the fiber optic Michaelson interferometer (PIFOMI) for measuring the polarization-free sensitivity Must meet Conditions such that A (2 ω c ) and A (4 ω c ) The value of the time is the maximum value before you can get Correct value; however, phase The phase change will occur with environmental conditions (such as temperature, vibration, and sound pressure). Therefore, it is necessary to drive the piezoelectric ceramic phase modulator (PZT Phase modulator) with a periodic voltage signal to generate a phase signal. (among them The amplitude must be greater than π rads ) so that all phase biased becomes To ensure that within the voltage signal period T , it must be reached several times For the ideal voltage signal, for example, a triangle wave can be used; at the same time, the FSA should continuously analyze the spectrum of the output interference signal to ensure almost accurate Value The condition is that the values of A (2 ω c ) and A (4 ω c ) are the maximum values. 依申請專利範圍第5項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中可於幾個電壓訊號週期T內,選擇複數個當時之第二諧波頻譜分量為最大值的輸出干涉訊號,來計算該複數個輸出干涉訊號,以得到複數個相位值,並作平均以得到平均相位,藉由使用平均相位來取代以計算干涉臂長度不平衡值△L能夠有效減少環境雜訊的影響和確保量測準確度。 The measurement of the interference arm length difference of the dual-arm fiber optic interferometer (TAFOI) according to item 5 of the patent application scope, wherein a plurality of voltage signal periods T can be selected The second harmonic spectral component is the maximum output interference signal to calculate the plurality of output interference signals to obtain a plurality of phase values, and averaged to obtain an average phase By using the average phase To replace Calculating the interference arm length imbalance value Δ L can effectively reduce the influence of environmental noise and ensure measurement accuracy. 依申請專利範圍第6項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中干涉訊號係以選擇複數個當時之第二諧波頻譜分量為最大值的輸出干涉訊號來計算平均相位,當選擇5個之第二諧波頻譜分量為最大值的輸出干涉訊號來計算平均相位時,即可得到相當準確之量測結果。 Measurement of the interference arm length difference of the dual-arm fiber optic interferometer (TAFOI) according to item 6 of the patent application scope, wherein the interference signal is selected to be plural The second harmonic component of the time is the maximum output interference signal to calculate the average phase When choosing 5 The second harmonic spectral component is the maximum output interference signal to calculate the average phase When you get a fairly accurate measurement. 依申請專利範圍第1項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量方法,其中係利用壓電陶瓷相位調制器產生一個相位訊號,以調制相位訊號達到之條件,當A(2ω c )和A(4ω c )的值為最大值。 A method for measuring a difference in interference arm length of a dual-arm fiber optic interferometer (TAFOI) according to claim 1 of the patent application, wherein a piezoelectric ceramic phase modulator is used to generate a phase signal to modulate the phase signal Condition, when The values of A (2 ω c ) and A (4 ω c ) are the maximum values. 一種雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,至少包含:無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)用以量測PI值,及前述無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)並包含兩個能夠消除偏振褪變的法拉第旋轉鏡(Faraday rotator mirrors FRM);並於前述無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)之雙臂中之其中一臂設壓電陶瓷相位調製器(PZT Phase modulator),該干涉儀的干涉臂長度不平衡值△L,藉由應用一個電流載波訊號來調變干涉儀的半導體雷射光源,並使干涉儀輸出的干涉訊號產生一個載波相位訊號,將前述干涉儀輸出的干涉訊號展開後以得到包含第一類貝色函數(Bessel function of the first kind)的載波相位訊號頻率的諧波分量,並經由該干涉訊號以得到載波相位訊號的四個諧波成分的振幅,再藉由壓電陶瓷調整相位差,並擷取複數組當該干涉訊號中調制相位角頻率的第二和第四諧波分量為最大值時的振幅比值來計算得到複數組干涉臂長度差之量測值(即PI值),並加以平均,以作為干涉臂長度差的測量值,使用該干涉臂長度差之平均測量值能有效減少環境雜訊的影響和確保所量測的PI值準確度。 A dual-arm fiber optic interferometer (TAFOI) measuring the difference in the length of the interfering arm, comprising at least: a fiber optic micson interferometer (PIFOMI) without polarization susceptibility to measure the PI value, and the aforementioned optical fiber optics of the non-polarization susceptibility The interferometer (PIFOMI) consists of two Faraday rotator mirrors (FRM) that eliminate polarization fading; one of the arms of the aforementioned polarization-free fiber-optic Maison interferometer (PIFOMI) Piezoelectric ceramic phase modulator (PZT Phase modulator), the interference arm length imbalance value Δ L of the interferometer, by applying a current carrier signal to modulate the semiconductor laser source of the interferometer and interfering with the interferometer output The signal generates a carrier phase signal, and the interference signal outputted by the interferometer is expanded to obtain a harmonic component of a carrier phase signal frequency including a first type of Bessel function of the first kind, and the interference signal is used to Obtaining the amplitude of the four harmonic components of the carrier phase signal, adjusting the phase difference by the piezoelectric ceramic, and extracting the complex array in the interference signal The amplitude ratio of the second and fourth harmonic components of the modulation phase angular frequency is the maximum value to calculate the measured value of the length difference of the complex array interference arm (ie, the PI value), and averaged to serve as the interference arm length difference. The measured value, using the average measured value of the interference arm length difference, can effectively reduce the influence of environmental noise and ensure the accuracy of the measured PI value. 依申請專利範圍第9項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中PIFOMI之一臂所設之壓電陶瓷相位調製器(PZT Phase modulator)係用來調制該臂之相位訊號。 The measurement of the interference arm length difference of the dual-arm fiber optic interferometer (TAFOI) according to claim 9 of the patent application scope, wherein a piezoelectric ceramic phase modulator (PZT Phase modulator) provided by one of the PIFOMI arms is used to modulate the difference The phase signal of the arm. 依申請專利範圍第9項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,其中標準的無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)所設路徑非平衡之雙臂的光纖長度差係以準確技術(使用精密量尺)量測其干涉臂長度不平衡之參考值△L R Measurement of the interference arm length difference according to the dual-arm fiber optic interferometer (TAFOI) described in claim 9 of the patent application, wherein the standard non-polarization-sensitive fiber optic optical interferometer (PIFOMI) has an unbalanced path The difference in fiber length is measured by an accurate technique (using a precision scale) with a reference value Δ L R of the interference arm length imbalance. 依申請專利範圍第9項所述之雙臂光纖干涉儀(TAFOI)之干涉臂長度差的測量,利用標準的無偏振感受性的光纖光學邁克遜干涉儀(PIFOMI)量測兩待測光纖干涉臂長度不平衡值△L D ,在測量的實驗程序中確定是在的範圍內,使得理想範圍內,其中為前述第一類貝色函數,為載波相位訊號的振幅。在測量中之實驗程序安排如下所述:(a)當,電流調制訊號△i 0 sin ω c t保持不變,調制相位訊號振幅仍符合範圍的條件下;△L D 可以由之關係式求出,其中△L R 為干涉臂長度不平衡之參考值,△i 0為電流調制訊號振幅,ω c 為角頻率,t為時間,為標準干涉儀經由電流調變產生的相位訊號振幅,為待測光纖干涉儀經由電流調變產生的相位訊號振幅;(b)當,電流調制訊號將乘上一個係數h變成hi 0 sin ω c t,使得調制相位訊號振幅仍符合範圍;此時△L D 可以由之關係式求出。 Measure the interference arm length difference of the dual-arm fiber interferometer (TAFOI) according to the scope of claim 9 and measure the two fiber-optic interference arms using a standard polarization-free fiber optic optical Michelson interferometer (PIFOMI) Length imbalance value Δ L D , determined in the experimental procedure of the measurement Is at Within the scope of in Ideal range, where with For the aforementioned first class of shell color functions, Is the amplitude of the carrier phase signal. The experimental procedure in the measurement is arranged as follows: (a) when The current modulation signal Δ i 0 sin ω c t remains unchanged, modulating the phase signal amplitude Still consistent Under the condition of the range; △ L D can be The relationship is obtained, where Δ L R is the reference value of the interference arm length imbalance, Δ i 0 is the current modulation signal amplitude, ω c is the angular frequency, and t is the time. The amplitude of the phase signal generated by the current interferometer through current modulation, The phase signal amplitude generated by the current modulation of the fiber interferometer to be tested; (b) or The current modulation signal is multiplied by a coefficient h to become h Δ i 0 sin ω c t , so that the amplitude of the modulation phase signal is Still consistent Range; at this time △ L D can be The relationship is obtained.
TW97148700A 2008-12-15 2008-12-15 For path imbalance measurement of the two arms fiber optic interferomter TWI382149B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97148700A TWI382149B (en) 2008-12-15 2008-12-15 For path imbalance measurement of the two arms fiber optic interferomter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97148700A TWI382149B (en) 2008-12-15 2008-12-15 For path imbalance measurement of the two arms fiber optic interferomter

Publications (2)

Publication Number Publication Date
TW201022629A TW201022629A (en) 2010-06-16
TWI382149B true TWI382149B (en) 2013-01-11

Family

ID=44833053

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97148700A TWI382149B (en) 2008-12-15 2008-12-15 For path imbalance measurement of the two arms fiber optic interferomter

Country Status (1)

Country Link
TW (1) TWI382149B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509339B (en) * 2012-06-21 2015-11-21 Univ Nat Kaohsiung Normal Sensitivity normalization method of pgc (phase generated carrier) demodulation using laser modulation to generate carrier signals
CN108007307B (en) * 2017-11-20 2024-03-29 湖南长城海盾光纤科技有限公司 Optical fiber measuring method and measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW574510B (en) * 2002-05-31 2004-02-01 Dian-Rung Chen Fiber interferometer and the interference method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW574510B (en) * 2002-05-31 2004-02-01 Dian-Rung Chen Fiber interferometer and the interference method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
年6月公開之周遊碩士論文,"光纖布拉格光柵水下聽音器之構型設計" *

Also Published As

Publication number Publication date
TW201022629A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US6778279B2 (en) Inline sagnac fiber optic sensor with modulation adjustment
US20100171960A1 (en) For path imbalance measurement of the two arms fiber optic interferometer
JP2005512047A (en) Sensor and method for detecting defects in optical fibers
CN100498249C (en) Electrooptical phase modulation coefficient measing method for electrooptical phase modulator
Shi et al. Single-wavelength passive phase-shifted demodulation technique with the dual-cavity and EFA for the interrogation of EFPI diaphragm-based fiber sensor
Wang et al. Distributed acoustic sensor using broadband weak FBG array for large temperature tolerance
Yu et al. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm
Huang et al. Orthogonal phase demodulation of optical fiber Fabry-Perot interferometer based on birefringent crystals and polarization technology
CN104677596B (en) A kind of Sagnac annulars light path is embedded in the optics autocorrelation function analyzer of non-equilibrium Mach Zehnder types light path scanner
TWI382149B (en) For path imbalance measurement of the two arms fiber optic interferomter
Dib et al. A broadband amplitude-modulated fibre optic vibrometer with nanometric accuracy
CN110186500B (en) Unbalanced optical fiber interferometer arm length difference measuring device and method adopting absolute method
Yuan et al. Long-gauge length embedded fiber optic ultrasonic sensor for large-scale concrete structures
Guo et al. Simultaneous measurement of vibration and temperature based on FBG and DBR fiber laser beat frequency digital sensing system
Liao et al. Precision vibration measurement using differential phase-modulated homodyne interferometry
Martínez-Manuel et al. Nonlinearity Reduction in a Fiber Fabry-Perot Interferometer Interrogated by a Wavelength Scanning Optical Source
Zhen et al. Low-coherence fiber differential interferometer with adjustable measurement range
Hou et al. Improved path imbalance measurement of a fiber-optic interferometer based on frequency scanning interferometry
CN114018391A (en) Method and device for inhibiting interference light intensity fading
Wang et al. Environment-robust polarization-based phase-shift dynamic demodulation method for optical fiber acoustic sensor
Liao et al. Demodulation of diaphragm based fiber-optic acoustic sensor using with symmetric 3× 3 coupler
Carneiro et al. High accuracy homodyne interferometric method for wide dynamic range applications
JP2013536411A (en) Interferometric device with external optical fiber for measuring physical parameters
Kazachkova et al. Development of a direct phase demodulation method for a Fabry-Pérot interferometer for temperature measurements using frequency scanning
Murphy et al. Elliptical-core, dual-mode, optical fiber strain and vibration sensors for composite material laminates

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees