TWI380969B - The composition and application of mica/born nitride ceramic composite powder - Google Patents

The composition and application of mica/born nitride ceramic composite powder Download PDF

Info

Publication number
TWI380969B
TWI380969B TW100138180A TW100138180A TWI380969B TW I380969 B TWI380969 B TW I380969B TW 100138180 A TW100138180 A TW 100138180A TW 100138180 A TW100138180 A TW 100138180A TW I380969 B TWI380969 B TW I380969B
Authority
TW
Taiwan
Prior art keywords
powder
ceramic powder
composite
coupling agent
boron nitride
Prior art date
Application number
TW100138180A
Other languages
Chinese (zh)
Other versions
TW201209010A (en
Inventor
I Chun Lin
Laifair Chiang
Meng Chang Hung
I Ting Lin
Original Assignee
Sunshine Mineral Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunshine Mineral Company filed Critical Sunshine Mineral Company
Priority to TW100138180A priority Critical patent/TWI380969B/en
Publication of TW201209010A publication Critical patent/TW201209010A/en
Application granted granted Critical
Publication of TWI380969B publication Critical patent/TWI380969B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

雲母/氮化硼複合式陶瓷粉體之組成與應用 Composition and application of mica/boron nitride composite ceramic powder

本發明關係一種複合材料之組成及應用;該複合材料為雲母及氮化硼粉體組成之無機複合粉體;該無機複合粉體應用於複合工程塑膠領域。 The invention relates to the composition and application of a composite material; the composite material is an inorganic composite powder composed of mica and boron nitride powder; the inorganic composite powder is used in the field of composite engineering plastics.

複合材料之定義為兩種或兩種以上物理或化學性質不同的物質組合而成的一種多相固體材料。而在複合材料中通常有一項為連續相,其為基質材料;另一為分散相,其為增強材料。先前技術中,有相當多實例分別敘述以雲母粉體或氮化硼粉體作為複合材料之分散相材料,增加複合材料之功能與用途。 A composite material is defined as a heterogeneous solid material composed of two or more substances having different physical or chemical properties. In the composite material, one is usually a continuous phase, which is a matrix material; the other is a dispersed phase, which is a reinforcing material. In the prior art, there are quite a few examples of disperse phase materials using mica powder or boron nitride powder as composite materials, which increases the function and use of the composite material.

以雲母粉體之應用為例:中華民國專利TW 127429以雲母粉體作為其一添加物,製作耐火、耐熱、及防水性佳之防火複合板材;中華民國專利TW 208697發表以雲母粉體作為紫外光遮斷劑,應用於化妝品領域;中華民國公開專利TW 200619293,以雲母作為添加材料,應用於高拉力強度、高彈性/或小厚度之複合材料製作;中華民國專利TW 557315發表以雲母粉體作為汽車防撞桿的填充材料,其可降低成本、且維持衝擊強度及抗張強度。綜合先前文獻資料之論述,雲母粉體於工程塑料之應用領域中,造成之效益為增強塑料之耐火性、耐熱性、抗拉強度、耐衝擊強度、抗紫外線能力、增加熱變形溫度、及電氣絕緣等功能。然而,雲母粉體添加之工程塑料之 缺點在於其塑料顏色暗沈且無光澤,並且熱傳導能力普普(~0.6W/mK)。 Taking the application of mica powder as an example: the Republic of China patent TW 127429 uses mica powder as an additive to produce fire-resistant composite sheets with good fire resistance, heat resistance and water resistance; the Republic of China patent TW 208697 publishes mica powder as ultraviolet light. Interrupting agent, used in the field of cosmetics; Republic of China public patent TW 200619293, with mica as additive material, applied to composite materials with high tensile strength, high elasticity and/or small thickness; Republic of China patent TW 557315 published with mica powder as A filler material for a car bumper that reduces cost and maintains impact strength and tensile strength. Based on the previous literature, mica powder in the application of engineering plastics, the benefits are to enhance the fire resistance, heat resistance, tensile strength, impact strength, UV resistance, heat distortion temperature, and electrical Insulation and other functions. However, the engineering plastics added to the mica powder The disadvantage is that the plastic color is dull and dull, and the thermal conductivity is PPP (~0.6W/mK).

以氮化硼粉體之應用為例:美國專利US 6831031以氮化硼作為塑膠之添加材料,用於高熱傳導工程塑膠領域;中華民國專利TW I326298發表將氮化硼粉體添加至塗料中,具有散熱及反光之效果。綜合先前文獻資料之論述,氮化硼粉體於工程塑料之應用領域中,造成之效益為增強塑料之熱傳導能力、反光效果、及高白度等功能。然而,氮化硼粉體應用於工程複合塑料製作時,其缺點在於氮化硼粉體於塑料中之分散性差及其價格昂貴,此二主要原因使得氮化硼複合塑料尚且無法大規模用於消費性電子產品之應用領域。 Taking the application of boron nitride powder as an example: U.S. Patent No. 6,831,031 uses boron nitride as a plastic additive material for the field of high heat transfer engineering plastics; the Republic of China patent TW I326298 publishes the addition of boron nitride powder to the paint. It has the effect of heat dissipation and reflection. Based on the previous literature, boron nitride powder in the application of engineering plastics, the benefits of enhancing the thermal conductivity of plastics, reflective effects, and high whiteness. However, when boron nitride powder is used in the production of engineering composite plastics, the disadvantage is that the dispersion of boron nitride powder in plastics is poor and expensive, and the two main reasons are that boron nitride composite plastics cannot be used on a large scale. The field of application of consumer electronics.

本發明之目的在提供一種複合陶瓷粉體,其為雲母及氮化硼粉體相互燒結之複合粉末,應用於複合工程塑膠之填充粉末;其同時具備雲母及氮化硼之特性與功能,並解決雲母及氮化硼作為填充粉末之缺點,且提供良好的分散性及加工性。 The object of the present invention is to provide a composite ceramic powder which is a composite powder of mica and boron nitride powder sintered to each other, and is applied to a filling powder of a composite engineering plastic; and has the characteristics and functions of mica and boron nitride at the same time, and Solve the disadvantages of mica and boron nitride as filler powders, and provide good dispersibility and processability.

另外,本發明亦提出添加氮化硼/雲母複合粉體之陶瓷粉體複合塑膠材料,可解決單一填充材料之缺點:其解決氮化硼填充料分散問題及成本高昂問題;亦解決雲母填充複合塑料無光澤及顏色暗沈等問題。另外,陶瓷粉體複合塑膠材料同時具備雲母複合塑料及氮化硼複合塑料之功能與優點:具有優異之耐火性、耐熱性、抗拉強度、耐衝擊強度、抗紫外線能力、電氣 絕緣能力、熱變形溫度、熱傳導性質、熱擴散性質、低比熱、光澤度、白度、以及低成本等功能與特色。 In addition, the present invention also proposes a ceramic powder composite plastic material with boron nitride/mica composite powder, which can solve the disadvantages of a single filler material: it solves the problem of dispersion of boron nitride filler and high cost; and also solves the problem of mica filling composite Plastic dull and dull colors. In addition, the ceramic powder composite plastic material has the functions and advantages of mica composite plastic and boron nitride composite plastic: excellent fire resistance, heat resistance, tensile strength, impact strength, UV resistance, electrical Functions and features such as insulation capacity, heat distortion temperature, heat transfer properties, thermal diffusion properties, low specific heat, gloss, whiteness, and low cost.

本發明之氮化硼/雲母複合式陶瓷粉體13之組成,包含90%~10%重量百分比之氮化硼粉體11及10%~90%重量百分比之雲母粉體12,該二固體粉體均勻分佈,其中前述之雲母粉體為平均粒徑1微米~25微米之鱗片狀粉體,粉體種類包含黑雲母(Biotite)、金雲母(Phlogopite)、白雲母(Muscovite)、絹雲母(Sericite)、鋰雲母(Lepidolite)、鐵鋰雲母(Zinnwaldite)、或以上各種類之混合種類;而氮化硼粉體為平均粒徑1微米~50微米之鱗片狀、鱗片狀聚集或球狀粉體,種類包含六方氮化硼、立方氮化硼、密排氮化硼、或以上各型態之混合型態。 The composition of the boron nitride/mica composite ceramic powder 13 of the present invention comprises 90% to 10% by weight of boron nitride powder 11 and 10% to 90% by weight of mica powder 12, and the two solid powders The body is uniformly distributed, wherein the aforementioned mica powder is a scaly powder having an average particle diameter of 1 μm to 25 μm, and the powder type includes biotite, Phlogopite, Muscovite, sericite ( Sericite), Lipirolite, Zilnwaldite, or a mixture of the above; and boron nitride powder is a scaly, scaly or spherical powder having an average particle size of 1 to 50 μm. The body type includes hexagonal boron nitride, cubic boron nitride, dense boron nitride, or a mixed form of the above various types.

生產製程則是將前述之氮化硼粉體11及雲母粉體12混合,並經高溫燒結處理,產生氮化硼/雲母複合式陶瓷粉體13。其中燒結溫度為300℃~1250℃,燒結時間為1~12小時。 In the production process, the boron nitride powder 11 and the mica powder 12 described above are mixed and sintered at a high temperature to produce a boron nitride/mica composite ceramic powder 13. The sintering temperature is 300 ° C ~ 1250 ° C, and the sintering time is 1 ~ 12 hours.

另外,將前述之複合式陶瓷粉體以偶合劑作表面處理,增強複合式陶瓷粉體與有機材料之分散及橋接效果,偶合劑之添加量為複合式陶瓷粉體重量之0.2%~3%;其中偶合劑種類包含硅烷類(Sliane)偶合劑、鈦酸酯類(Titanate)偶合劑、鋯酸酯類(Zirconate)偶合劑、有機鉻絡合物類(Chromium Complex)偶合劑、或以上各種偶合劑之混合劑。 In addition, the composite ceramic powder is treated with a coupling agent as a surface treatment to enhance the dispersion and bridging effect of the composite ceramic powder and the organic material, and the coupling agent is added in an amount of 0.2% to 3% by weight of the composite ceramic powder. The coupling agent type includes a silane (Sliane) coupling agent, a titanate coupling agent, a zirconate coupling agent, an organic chromium complex (Chromium Complex) coupling agent, or the like. A mixture of coupling agents.

本發明更包含一種氮化硼/雲母複合塑膠材料,其成分包含氮化硼/雲母複合式陶瓷粉體、有機樹脂、及偶合劑。其中有機樹脂種類包含熱塑型樹脂、熱固型樹脂或光交聯型樹脂;而偶合劑之功能在於作為無機粉體及有機樹脂之架橋劑,有助於無機粉體之分散,其形式包含硅烷類偶合劑、鈦酸酯類偶合劑、鋯酸酯類偶合劑、有機鉻絡合物類偶合劑、或以上各種偶合劑之混合劑。 The invention further comprises a boron nitride/mica composite plastic material, the composition comprising a boron nitride/mica composite ceramic powder, an organic resin, and a coupling agent. The organic resin type includes a thermoplastic resin, a thermosetting resin or a photocrosslinkable resin; and the coupling agent functions as a bridging agent for the inorganic powder and the organic resin, and contributes to dispersion of the inorganic powder, and the form thereof comprises A silane coupling agent, a titanate coupling agent, a zirconate coupling agent, an organic chromium complex coupling agent, or a mixture of the above various coupling agents.

前述之氮化硼/雲母複合式陶瓷粉體於氮化硼/雲母複合塑膠材料中所佔之重量比例為20%~70%;偶合劑於氮化硼/雲母複合塑膠材料中所佔之重量比例為0.2%~1%。產生之氮化硼/雲母複合塑膠材料為一種具有光澤之白色、乳白色、灰色或深褐色複合工程塑膠;亦為一種電氣絕緣之複合工程塑膠;其較塑膠基材有更好之熱性質,其中包含較高熱傳導係數、較高熱擴散係數、較低比熱、及較高熱輻射率等。其中氮化硼/雲母複合式陶瓷粉體所佔之重量百分比例越高時,應用之氮化硼/雲母複合塑膠材料之熱性質越好。 The weight ratio of the boron nitride/mica composite ceramic powder to the boron nitride/mica composite plastic material is 20% to 70%; the weight of the coupling agent in the boron nitride/mica composite plastic material The ratio is 0.2% to 1%. The boron nitride/mica composite plastic material produced is a lustrous white, milky white, gray or dark brown composite engineering plastic; and is also an electrical insulating composite engineering plastic; it has better thermal properties than the plastic substrate, wherein Contains higher heat transfer coefficient, higher thermal diffusivity, lower specific heat, and higher heat emissivity. The higher the weight percentage of the boron nitride/mica composite ceramic powder, the better the thermal properties of the boron nitride/mica composite plastic material applied.

前述之氮化硼/雲母複合塑膠材料中雲母與氮化硼之添加比例為10%~90%重量百分比之雲母粉體及90%~10%重量百分比之氮化硼粉體。其中雲母粉體所佔之重量比例越高時,複合粉體於有機樹脂中之分散性越好、且價格越便宜;而氮化硼所佔之重量比例越高時,應用之氮化硼/雲母複合塑膠材料之熱性質越好、且色澤白度越高。 In the foregoing boron nitride/mica composite plastic material, the proportion of mica and boron nitride added is 10% to 90% by weight of mica powder and 90% to 10% by weight of boron nitride powder. When the proportion of the weight of the mica powder is higher, the dispersibility of the composite powder in the organic resin is better and the price is cheaper; and the higher the proportion of the weight of the boron nitride, the boron nitride applied/ The better the thermal properties of the mica composite plastic material, the higher the whiteness of the color.

實施例Example

準備六方晶氮化硼粉體11及雲母粉體12,以比例1:1均勻混合;並將此混合粉體以為800℃~1000℃之溫度燒結2~5小時,產生氮化硼/雲母複合式陶瓷粉體13;以1%重量百分比之硅烷偶合劑處理氮化硼/雲母複合粉體之表面。 Preparing hexagonal boron nitride powder 11 and mica powder 12, uniformly mixing in a ratio of 1:1; and sintering the mixed powder at a temperature of 800 ° C to 1000 ° C for 2 to 5 hours to produce a boron nitride / mica composite Ceramic powder 13; treated with a 1% by weight silane coupling agent for the surface of the boron nitride/mica composite powder.

接著以塑膠射出成型技術製作氮化硼/雲母複合塑膠材料,利用雙螺桿押出機分別輸送尼龍66樹脂及氮化硼/雲母複合式陶瓷粉體;當輸送尼龍66樹脂之押出機穩定運作後,方可將氮化硼/雲母複合式陶瓷粉體由下游側邊進料口下料;均勻混合氮化硼/雲母複合式陶瓷粉體與尼龍66樹脂,並進行塑料射出成型動作。其中氮化硼/雲母複合式陶瓷粉體佔複合塑膠材料之重量百分比例為40%。另以射出成型技術製作尼龍66塑膠片材,作為型態及功能比對之對照組。 Then, the boron nitride/mica composite plastic material is produced by plastic injection molding technology, and the nylon 66 resin and the boron nitride/mica composite ceramic powder are separately transported by the twin-screw extruder; when the extruder for conveying the nylon 66 resin is stably operated, The boron nitride/mica composite ceramic powder can be discharged from the downstream side feed port; the boron nitride/mica composite ceramic powder and the nylon 66 resin are uniformly mixed, and the plastic injection molding operation is performed. The boron nitride/mica composite ceramic powder accounts for 40% by weight of the composite plastic material. In addition, nylon 66 plastic sheet was produced by injection molding technology as a control group for pattern and function comparison.

第1圖及第2圖分別為尼龍66塑膠片材20及氮化硼/雲母複合塑膠片材30之照片及SEM影像。第2圖(a)可見氮化硼/雲母複合塑膠材料30為一具有光澤之白色塑膠。而第1圖(b)為尼龍66塑膠微結構201之SEM影像,其顯示尼龍66塑膠之纖維狀微結構;而第2圖(b)則顯示氮化硼/雲母複合塑膠材料之微結構301,其中可見兩種型態之物質混合其中,其為尼龍66塑膠14以及氮化硼/雲母複合式陶瓷粉體13。 Fig. 1 and Fig. 2 are photographs and SEM images of nylon 66 plastic sheet 20 and boron nitride/mica composite plastic sheet 30, respectively. Fig. 2(a) shows that the boron nitride/mica composite plastic material 30 is a glossy white plastic. Figure 1 (b) shows the SEM image of nylon 66 plastic microstructure 201, which shows the fibrous microstructure of nylon 66 plastic; and Figure 2 (b) shows the microstructure of boron nitride/mica composite plastic material 301 It can be seen that two types of substances are mixed therein, which are nylon 66 plastic 14 and boron nitride/mica composite ceramic powder 13.

以ISO-22007(Hot Disk)方式測試尼龍66塑膠片材及氮化硼/雲母複合塑膠片材之熱性質,其熱性質包含熱傳導係數(Thermal Conductivity)、熱擴散係數(Thermal Diffusivity)、及 比熱(Heat Capacity)。第3圖則顯示氮化硼/雲母複合粉體所佔比例與熱性質之關係,其中當氮化硼/雲母複合粉體所佔之比例為0%時,即為單純尼龍66塑膠材料;由第3圖(a)、(b)、及(c)分別可見當氮化硼/雲母複合粉體所佔之重量百分比例越高時,熱傳導係數提高、熱擴散係數提高、而比熱降低(即較無熱累積現象);當氮化硼/雲母複合粉體之添加重量百分比為40%時,其熱傳導係數為單純尼龍66塑膠材料之~3倍、熱擴散係數為單純尼龍66塑膠材料之~5倍,而比熱為單純尼龍66塑膠材料之~0.5倍。由此測試結果可見氮化硼/雲母複合粉體可大幅提升複合塑膠之熱性質。 The thermal properties of nylon 66 plastic sheet and boron nitride/mica composite plastic sheet are tested by ISO-22007 (Hot Disk) method, and the thermal properties include thermal conductivity, thermal diffusion coefficient, and thermal diffusion coefficient (Thermal Diffusivity). Heat Capacity. Figure 3 shows the relationship between the proportion of boron nitride/mica composite powder and thermal properties. When the proportion of boron nitride/mica composite powder is 0%, it is pure nylon 66 plastic material; Figure 3 (a), (b), and (c) show that when the boron nitride/mica composite powder accounts for a higher percentage of weight, the heat transfer coefficient increases, the thermal diffusivity increases, and the specific heat decreases (ie, Compared with no heat accumulation phenomenon; when the added weight percentage of boron nitride/mica composite powder is 40%, the heat transfer coefficient is ~3 times that of nylon 66 plastic material, and the thermal diffusivity is pure nylon 66 plastic material~ 5 times, and the specific heat is ~0.5 times that of pure nylon 66 plastic material. The test results show that the boron nitride/mica composite powder can greatly improve the thermal properties of the composite plastic.

11‧‧‧氮化硼粉末 11‧‧‧ boron nitride powder

12‧‧‧雲母粉末 12‧‧‧mica powder

13‧‧‧氮化硼/雲母複合式陶瓷粉體 13‧‧‧Boron nitride/mica composite ceramic powder

14‧‧‧尼龍66塑膠 14‧‧‧Nylon 66 plastic

20‧‧‧尼龍66塑膠片 20‧‧‧Nylon 66 plastic sheet

201‧‧‧尼龍66塑膠顯微結構 201‧‧‧Nylon 66 plastic microstructure

30‧‧‧氮化硼/雲母複合塑膠片 30‧‧‧Boron nitride/mica composite plastic sheet

301‧‧‧氮化硼/雲母複合塑膠顯微結構 301‧‧‧Non-boron nitride/mica composite plastic microstructure

第1圖係為尼龍66塑膠片材之(a)照片及(b)SEM影像 Figure 1 is a (a) photo and (b) SEM image of a nylon 66 plastic sheet.

第2圖係為氮化硼/雲母複合塑膠片材之(a)照片及(b)SEM影像 Figure 2 is a (a) photo and (b) SEM image of a boron nitride/mica composite plastic sheet.

第3圖係為塑膠材料熱性質測試結果(a)熱傳導係數、(b)熱擴散係數、及(c)比熱 Figure 3 is the thermal property test results of plastic materials (a) heat transfer coefficient, (b) thermal diffusivity, and (c) specific heat

13‧‧‧氮化硼/雲母複合式陶瓷粉體 13‧‧‧Boron nitride/mica composite ceramic powder

14‧‧‧尼龍66塑膠 14‧‧‧Nylon 66 plastic

30‧‧‧氮化硼/雲母複合塑膠片 30‧‧‧Boron nitride/mica composite plastic sheet

301‧‧‧氮化硼/雲母複合塑膠顯微結構 301‧‧‧Non-boron nitride/mica composite plastic microstructure

Claims (23)

一種複合式陶瓷粉體,包含雲母粉體,其為鱗片狀粉體;氮化硼粉體,其為鱗片狀、鱗片狀聚集或球狀粉體;該複合式陶瓷粉體經混合及燒結製程製得,作為有機樹脂之填充材料。 A composite ceramic powder comprising mica powder, which is a scaly powder; a boron nitride powder, which is a scaly, scaly or spherical powder; the composite ceramic powder is mixed and sintered Made as a filler for organic resins. 如申請專利範圍第1項所述之複合式陶瓷粉體,其中雲母粉體之平均粒徑為1微米~25微米;氮化硼粉體之平均粒徑為1微米~50微米。 The composite ceramic powder according to claim 1, wherein the mica powder has an average particle diameter of 1 μm to 25 μm; and the boron nitride powder has an average particle diameter of 1 μm to 50 μm. 如申請專利範圍第1項所述之複合式陶瓷粉體,其中雲母粉體於複合式陶瓷粉體中所佔之重量比例為10%~90%。 The composite ceramic powder according to claim 1, wherein the weight ratio of the mica powder to the composite ceramic powder is 10% to 90%. 如申請專利範圍第1項所述之複合式陶瓷粉體,其中雲母粉體種類包含黑雲母、金雲母、白雲母、絹雲母、鋰雲母、鐵鋰雲母、或以上各種類之混合種類。 The composite ceramic powder according to claim 1, wherein the mica powder type comprises biotite, phlogopite, muscovite, sericite, lithium mica, iron lithium mica, or a mixture of the above. 如申請專利範圍第1項所述之複合式陶瓷粉體,其中氮化硼粉體之包含六方氮化硼、立方氮化硼、密排氮化硼、或以上各種類之混合種類。 The composite ceramic powder according to claim 1, wherein the boron nitride powder comprises hexagonal boron nitride, cubic boron nitride, dense boron nitride, or a mixture of the above various types. 如申請專利範圍第1項所述之複合式陶瓷粉體,其中燒結製程之燒結溫度為300℃~1250℃,燒結時間為1~12小時。 The composite ceramic powder according to claim 1, wherein the sintering temperature of the sintering process is 300 ° C to 1250 ° C, and the sintering time is 1 to 12 hours. 如申請專利範圍第1項所述之複合式陶瓷粉體,其中複合式陶瓷粉體以偶合劑作表面處理,用以增強複合式陶瓷粉體與有機材料之分散及橋接效果;其中偶合劑種類包含硅烷類偶合劑、鈦酸酯類偶合劑、鋯酸酯類偶合劑、有機鉻絡合物類偶合劑、或以上各種偶合劑之混合劑。 The composite ceramic powder according to claim 1, wherein the composite ceramic powder is treated with a coupling agent for enhancing the dispersion and bridging effect of the composite ceramic powder and the organic material; wherein the coupling agent type A silane coupling agent, a titanate coupling agent, a zirconate coupling agent, an organic chromium complex coupling agent, or a mixture of the above various coupling agents is contained. 如申請專利範圍第1項所述之複合式陶瓷粉體,複合式陶瓷粉體作為有機樹脂之填充材料,其中有機樹脂包含熱塑型樹脂、熱固型樹脂、光交聯型樹脂、或以上各種樹脂之混合。 The composite ceramic powder according to claim 1, wherein the composite ceramic powder is used as a filler for an organic resin, wherein the organic resin comprises a thermoplastic resin, a thermosetting resin, a photocrosslinking resin, or the like. A mixture of various resins. 一種複合式陶瓷粉體,包含雲母粉體,其為鱗片狀粉體;氮化硼粉體,其為鱗片狀、鱗片狀聚集或球狀粉體;偶合劑,其鍵結於粉體表面;該複合式陶瓷粉體經混合、燒結及表面偶合劑處理製程製得。 A composite ceramic powder comprising mica powder, which is a scaly powder; a boron nitride powder, which is a scaly, scaly or spherical powder; a coupling agent, which is bonded to the surface of the powder; The composite ceramic powder is obtained by a mixing, sintering and surface coupling agent treatment process. 如申請專利範圍第9項所述之複合式陶瓷粉體,其中雲母粉體之平均粒徑為1微米~25微米;氮化硼粉體之平均粒徑為1微米~50微米。 The composite ceramic powder according to claim 9, wherein the mica powder has an average particle diameter of 1 μm to 25 μm; and the boron nitride powder has an average particle diameter of 1 μm to 50 μm. 如申請專利範圍第9項所述之複合式陶瓷粉體,其中雲母粉體於複合式陶瓷粉體中所佔之重量比例為10%~90%。 The composite ceramic powder according to claim 9 , wherein the weight ratio of the mica powder to the composite ceramic powder is 10% to 90%. 如申請專利範圍第9項所述之複合式陶瓷粉體,其中雲母粉體種類包含黑雲母、金雲母、白雲母、絹雲母、鋰雲母、鐵鋰雲母、或以上各種類之混合種類。 The composite ceramic powder according to claim 9, wherein the mica powder type comprises biomica, phlogopite, muscovite, sericite, lithium mica, iron lithium mica, or a mixture of the above. 如申請專利範圍第9項所述之複合式陶瓷粉體,其中氮化硼粉體之包含六方氮化硼、立方氮化硼、密排氮化硼、或以上各種類之混合種類。 The composite ceramic powder according to claim 9, wherein the boron nitride powder comprises hexagonal boron nitride, cubic boron nitride, dense boron nitride, or a mixed species of the above various types. 如申請專利範圍第9項所述之複合式陶瓷粉體,其中燒結製程之燒結溫度為300℃~1250℃,燒結時間為1~12小時。 The composite ceramic powder according to claim 9, wherein the sintering temperature of the sintering process is 300 ° C to 1250 ° C, and the sintering time is 1 to 12 hours. 如申請專利範圍第9項所述之複合式陶瓷粉體,其中偶合劑用以增強複合式陶瓷粉體與有機材料之分散及橋接效果;其中偶合劑種類包含硅烷類偶合劑、鈦酸酯類偶合劑、鋯酸酯類偶合劑、有機鉻絡合物類偶合劑、或以上各種偶合劑之混合劑。 The composite ceramic powder according to claim 9, wherein the coupling agent is used for enhancing the dispersion and bridging effect of the composite ceramic powder and the organic material; wherein the coupling agent type comprises a silane coupling agent and a titanate. A coupling agent, a zirconate coupling agent, an organic chromium complex coupling agent, or a mixture of the above various coupling agents. 一種陶瓷粉體複合材料,包含複合式陶瓷粉體,其為雲母粉體及氮化硼粉體共同燒結之複合粉體; 有機樹脂,其作為複合材料之基質;偶合劑,其作為無機粉體及有機樹脂之架橋劑,助於無機粉體與有機基質之分散與橋接。 A ceramic powder composite material comprising a composite ceramic powder, which is a composite powder of mica powder and boron nitride powder co-sintered; An organic resin, which serves as a matrix of a composite material; a coupling agent, which acts as a bridging agent for inorganic powders and organic resins, and facilitates dispersion and bridging of inorganic powders and organic substrates. 如申請專利範圍第16項所述之複合式陶瓷粉體,其燒結製程溫度為300℃~1250℃,燒結時間為1~12小時。 For example, the composite ceramic powder described in claim 16 has a sintering process temperature of 300 ° C to 1250 ° C and a sintering time of 1 to 12 hours. 如申請專利範圍第16項所述之陶瓷粉體複合材料,其中複合式陶瓷粉體於陶瓷粉體複合材料中所佔之重量比例為20%~70%。 The ceramic powder composite material according to claim 16, wherein the composite ceramic powder accounts for 20% to 70% by weight of the ceramic powder composite material. 如申請專利範圍第16項所述之陶瓷粉體複合材料,其中有機樹脂包含熱塑型樹脂、熱固型樹脂、光交聯型樹脂、或以上各種樹脂之混合。 The ceramic powder composite material according to claim 16, wherein the organic resin comprises a thermoplastic resin, a thermosetting resin, a photocrosslinking resin, or a mixture of the above various resins. 如申請專利範圍第16項所述之陶瓷粉體複合材料,其中偶合劑種類包含硅烷類偶合劑、鈦酸酯類偶合劑、鋯酸酯類偶合劑、有機鉻絡合物類偶合劑、或以上各種偶合劑之混合劑。 The ceramic powder composite material according to claim 16, wherein the coupling agent type comprises a silane coupling agent, a titanate coupling agent, a zirconate coupling agent, an organic chromium complex coupling agent, or A mixture of the above various coupling agents. 如申請專利範圍第16項所述之陶瓷粉體複合材料,為一具有光澤之白色、乳白色、灰色、或深褐色複合工程塑膠。 The ceramic powder composite material according to claim 16 is a glossy white, milky white, gray, or dark brown composite engineering plastic. 如申請專利範圍第16項所述之陶瓷粉體複合材料,為一電氣絕緣複合工程塑膠。 The ceramic powder composite material as claimed in claim 16 is an electrical insulation composite engineering plastic. 如申請專利範圍第16項所述之陶瓷粉體複合材料,為一導熱複合工程塑膠;其中添加之複合式陶瓷粉體促使陶瓷粉體複合材料之熱性質提高,其中熱性質包含提高熱傳導係數、提高熱擴散係數、降低比熱、及提高熱輻射率之功能。 The ceramic powder composite material as claimed in claim 16 is a thermally conductive composite engineering plastic; the composite ceramic powder added therein promotes the thermal properties of the ceramic powder composite material, wherein the thermal properties include an increase in heat transfer coefficient, Improve the thermal diffusivity, reduce the specific heat, and improve the heat radiation rate.
TW100138180A 2011-10-19 2011-10-19 The composition and application of mica/born nitride ceramic composite powder TWI380969B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100138180A TWI380969B (en) 2011-10-19 2011-10-19 The composition and application of mica/born nitride ceramic composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100138180A TWI380969B (en) 2011-10-19 2011-10-19 The composition and application of mica/born nitride ceramic composite powder

Publications (2)

Publication Number Publication Date
TW201209010A TW201209010A (en) 2012-03-01
TWI380969B true TWI380969B (en) 2013-01-01

Family

ID=46763429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138180A TWI380969B (en) 2011-10-19 2011-10-19 The composition and application of mica/born nitride ceramic composite powder

Country Status (1)

Country Link
TW (1) TWI380969B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154225A (en) * 2020-01-07 2020-05-15 德力西电气有限公司 Phenolic moulding plastic for supporting contactor contact
CN114853481B (en) * 2022-04-27 2023-11-07 维达力科技股份有限公司 Hardness-improved oxidation-resistant material, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130058A (en) * 1996-10-23 1998-05-19 Showa Denko Kk Jig for production of semiconductor and electronic parts and its production
TW200911923A (en) * 2007-05-15 2009-03-16 Idemitsu Kosan Co Polyarylene sulfide resin composition and molded product comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130058A (en) * 1996-10-23 1998-05-19 Showa Denko Kk Jig for production of semiconductor and electronic parts and its production
TW200911923A (en) * 2007-05-15 2009-03-16 Idemitsu Kosan Co Polyarylene sulfide resin composition and molded product comprising the same

Also Published As

Publication number Publication date
TW201209010A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
Mao et al. Spherical core-shell Al@ Al2O3 filled epoxy resin composites as high-performance thermal interface materials
Chen et al. Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites
CN103980705B (en) The high-performance polyimide Moulding powder material that a kind of applicable 3D prints and 3D printing shaping method thereof
JP2015534596A5 (en)
Lei et al. Influence of nanoclay on urea‐formaldehyde resins for wood adhesives and its model
Han et al. Enhanced thermal conductivity of commercial polystyrene filled with core-shell structured BN@ PS
CN103952077B (en) A kind of LED heat-conductive coating
CN104559145A (en) High-toughness and high-thermal-conductivity polymer material and preparation method thereof
JP2016522298A (en) Components produced from polymer / boron nitride compounds, polymer / boron nitride compounds to produce such components, and uses thereof
CN103275597A (en) High temperature-resistant ultralow temperature-cured epoxy polyester powdery coating
Li et al. Thermal conductivity enhancement of poly (3-hydroxylbutyrate) composites by constructing segregated structure with the aid of poly (ethylene oxide)
CN108164945B (en) Preparation method of modified polylactic acid material with metal effect for 3D printing
Vu et al. 3D printing of copper particles and poly (methyl methacrylate) beads containing poly (lactic acid) composites for enhancing thermomechanical properties
Wang et al. A high-performance thermally conductive and electrically insulating silver@ siloxane/graphene/epoxy composites at low filler content: Fabrication, mechanism study of insulation and thermal conductivity enhancement
CN102076749A (en) Composite comprising nanosize powder and use of the composite
TWI380969B (en) The composition and application of mica/born nitride ceramic composite powder
Park et al. Selectively distributed graphene in 1, 6-hexanediol diacrylate/epoxy composites via digital light processing 3D printing for enhanced thermal conductivity
Tang et al. Synergetic enhancement of thermal conductivity in the silica-coated boron nitride (SiO 2@ BN)/polymethyl methacrylate (PMMA) composites
CN103665875A (en) Preparation method of electroconductive silicone rubber
Zou et al. Enhancement of thermal conductivity and tensile strength of liquid silicone rubber by three-dimensional alumina network
Wang et al. Study on thermal conductive PA6 composites with 3‐dimensional structured boron nitride hybrids
Yang et al. Synergistic effect of hybrid fillers/polydimethylsiloxane composites on enhancing thermal conductivity
Huang et al. Effects of a coupling agent on the mechanical and thermal properties of ultrahigh molecular weight polyethylene/nano silicon carbide composites
CN103524995A (en) Insulating plastic with high thermal conductivity
Meng et al. Thermal conductive nylon 6 composites with hybrid fillers prepared through reaction during extrusion