TWI380460B - Photovoltaic device with broadband multi-layer anti-reflection composite structure and method of fabricating the same - Google Patents

Photovoltaic device with broadband multi-layer anti-reflection composite structure and method of fabricating the same Download PDF

Info

Publication number
TWI380460B
TWI380460B TW098127785A TW98127785A TWI380460B TW I380460 B TWI380460 B TW I380460B TW 098127785 A TW098127785 A TW 098127785A TW 98127785 A TW98127785 A TW 98127785A TW I380460 B TWI380460 B TW I380460B
Authority
TW
Taiwan
Prior art keywords
layer
composite structure
top surface
semiconductor structure
multilayer anti
Prior art date
Application number
TW098127785A
Other languages
Chinese (zh)
Other versions
TW201108424A (en
Inventor
Wen Pin Chen
Original Assignee
Wen Pin Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wen Pin Chen filed Critical Wen Pin Chen
Priority to TW098127785A priority Critical patent/TWI380460B/en
Publication of TW201108424A publication Critical patent/TW201108424A/en
Application granted granted Critical
Publication of TWI380460B publication Critical patent/TWI380460B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

1380460 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光伏元件(photovoltaic device)及其製造 方法,並且特別地,本發明乃關於一種具有寬頻多層抗反射 複合結構層(broadband multi-layer anti-reflection composite structure)之光伏元件及其製造方法。 【先前技術】 光伏元件因為其將發自一光源(例如,太陽光)中容易取 4于的此量轉換成電力,以操控例如,計算機、電腦、加執 器…,等電子裝置,所以光伏元件已被廣泛地使用。 ”’、 請參考圖-,-傳統的光伏元件—石夕太陽能電池㈣⑽ solar cell)!其層狀的堆疊結構之一截面視圖係描繪於圖一 該矽太陽能電池1典型地包含 . 丄.… -一一。亡 P-11 "σ (Ρ-η d Ρ_η接合13係夾在一 Ρ型態基材12與一 η型 “昭靠:一照射面(前表面)11處。在此所 =露傳絲伏元騎概喊運作時, 圖一中所示之矽太陽能電池i1 構包含-中度摻雜的(濃度約為妒em.3 fσ ^本^ 及一位於該基材12上且鄰近該昭—/二、暴材⑻12以 為1020 cm、型態區(n+)14。傳“ ‘摻==度約 具體實_,料献且包含其商業化的 所構成且覆蓋在該η型態區14之大例如’二氧化石夕) (或經粗_5、—覆蓋在該表她 31380460 VI. Description of the Invention: [Technical Field] The present invention relates to a photovoltaic device and a method of fabricating the same, and in particular, to a broadband multi-layer anti-reflective composite structure layer (broadband multi- Photovoltaic element of layer anti-reflection composite structure and method of manufacturing the same. [Prior Art] A photovoltaic element is converted into electric power by a quantity that is easily taken from a light source (for example, sunlight) to control, for example, a computer, a computer, an add-on device, etc., so that photovoltaics Components have been widely used. ", please refer to the figure -, - the traditional photovoltaic element - Shi Xi solar cell (4) (10) solar cell)! A cross-sectional view of its layered stacked structure is depicted in Figure 1. The solar cell 1 typically contains. 丄.... -1. The death of P-11 "σ (Ρ-η d Ρ_η joint 13 is sandwiched between a type of substrate 12 and an n-type "showing: an illuminated surface (front surface) 11 at this place. = The solar cell i1 structure shown in Figure 1 contains - moderately doped (concentration is about 妒em.3 fσ ^ this ^ and one is located on the substrate 12) And adjacent to the Zhao-/two, the explosive material (8)12 thought 1020 cm, the type area (n+)14. The transmission of ''=== degree is concretely _, and it contains its commercialization and covers the η The size of the type zone 14 is for example 'Oxite Day' (or by thick _5, - covered in the table she 3

6UCHIP/200901TW 1380460 π、作為電極用之n型態金屬接觸層17、一覆蓋該p型態基 材12之一表面的p+型態區18,以及一覆蓋該P+型態區18之 一表面的p型態金屬接觸層19。6UCHIP/200901TW 1380460 π, an n-type metal contact layer 17 as an electrode, a p+ type region 18 covering a surface of the p-type substrate 12, and a surface covering one surface of the P+ type region 18 P-type metal contact layer 19.

淺層的p-n接合13係為了助於電子與電洞的收集而設 言十’電子與電洞係產生於該p_n接合13的兩側。光的每一個 光子進入石夕基材12奠且由該石夕基材12吸收,以轉移光子的 能量給原為鍵結狀態(共價鍵)的電子,並且藉此釋放原為鍵 結狀態的電子成游離的電子。此種可移動的電子,以及其所 遺留下原在共價鍵處的電洞(此種電洞也是可移動的),&含 了從該太陽能電池流出的電流之一潛在要素。為了貢獻該電 流,上述的電子以及電洞不可以重新結合,反而是由與該7_n 接合13相關的電場所分離。若是電子與電洞發生了分離,該 電子將會移動至該η型態金屬接觸層17,並且該電洞會移g 至該P型態金屬接觸層19。 隨著矽太陽能電池等光伏元件的發展,其產生光電效應 的結構也制被研究1,例如,乡重接合(multi_junetiGn)的技 術、能吸收較寬頻譜光線之p_n接合。關於光伏元件内各類 型的光電效應結構在此不多做贅述。明顯地,光伏元件之抗 反層其運作頻率也應該隨之加寬。 因此’本發明之-範轉即為提供一種具有寬頻多層抗反 複合射結構層之光伏元件及其製造方法。 【發明内容】 根據本發明之-較佳具體實施例之光伏元件,其包含一 半導體結構組合以及層抗反射複合結構層導體結 構組合包含至少-ρ·η接合,並且具有—頂表^該多層抗 反複合射結構層係形成於該半導體結構組合之該頂表面上。The shallow p-n junction 13 is designed to facilitate the collection of electrons and holes. The 'electrons and holes are generated on both sides of the p_n junction 13. Each photon of the light enters the stone substrate 12 and is absorbed by the stone substrate 12 to transfer the energy of the photon to the electron that is originally in the bonding state (covalent bond), and thereby release the original bonding state. The electrons become free electrons. Such movable electrons, as well as the holes left in the covalent bond (the holes are also movable), contain one of the potential elements of the current flowing from the solar cell. In order to contribute to this current, the above-mentioned electrons and holes cannot be recombined, but instead are separated by the electric field associated with the 7_n junction 13. If the electrons are separated from the hole, the electrons will move to the n-type metal contact layer 17, and the hole will move to the p-type metal contact layer 19. With the development of photovoltaic elements such as solar cells, the structure that produces photoelectric effects has also been studied, for example, the technology of multi-junetiGn, which can absorb the p_n junction of a wider spectrum of light. The various types of photoelectric effect structures in photovoltaic elements are not described here. Obviously, the anti-reflection layer of photovoltaic elements should also be widened. Therefore, the present invention provides a photovoltaic element having a broadband multi-layer anti-reverse composite structure layer and a method of fabricating the same. SUMMARY OF THE INVENTION A photovoltaic element according to a preferred embodiment of the present invention comprises a semiconductor structure combination and a layer anti-reflective composite structure layer conductor structure combination comprising at least a -ρ·η junction, and having a top surface An anti-reverse composite structure layer is formed on the top surface of the semiconductor structure combination.

6UCHIP/200901TW 4 該多層抗反複合射結構層中之第奇數層層係由Si02、A1203 或MgF2所形成。該多層抗反複合射結構層中之第偶數層係 由Ti3〇5所形成。特別地,該多層抗反射複合結構層係能在約 從400nm至700nm廣泛可見光波長範圍區間運作〇 製造根據本發明之一較佳具體實施例之光伏元件的製造 方法’首先’係形成一半導體結構組合。該半導體結構組合 包含至少一 p-n接合’並且具有一頂表面。最後’該製造方 法係形成一多層抗反複合射結構層於該半導體結構組合之該 頂表面上。該多層抗反複合射結構層中之第奇數層係由 Si〇2、Al2〇3或MgF2所形成。該多層抗反複合射結構層中之 第偶數層係由Ti3〇5所形成^特別地,該多層抗反射複合結構 層係能在約從400nm至700nm廣泛可見光波長範圍區間運 作。 於一具體實施例中,該多層抗反射複合結構層係藉由一 電子束蒸鑛製程(electron-beam evaporation process)所形成。並 且特別地’該多層抗反射複合結構層係可以使用一硬光罩 (hard mask)直接藉由該電子束蒸鍍製程所形成。 關於本發明之優點與精神可以藉由以下的發明詳述及 所附圖式得到進一步的瞭解。 【實施方式】 本發明係在提供一種光伏元件及其製造方法,並且特別 地,根據本發明之光伏元件具有寬頻的多層抗反複合射結構 層。根據本發明之較佳具體實施例係揭露如下。 °月參閱圖一,圖一為根據本發明之一較佳且體實施你丨的 光伏元件2之-截面視圖。該光伏秘2包含::半6UCHIP/200901TW 4 The odd-numbered layer in the multilayer anti-reverse composite structure layer is formed by SiO 2 , A 120 3 or MgF 2 . The even number of layers in the multilayer anti-composite structure layer are formed of Ti3〇5. In particular, the multilayer anti-reflective composite structure layer can operate in a wide range of visible light wavelength ranges from about 400 nm to 700 nm. The manufacturing method of the photovoltaic element according to a preferred embodiment of the present invention is first formed to form a semiconductor structure. combination. The semiconductor structure assembly includes at least one p-n junction and has a top surface. Finally, the fabrication method forms a multilayer anti-reverse composite structure layer on the top surface of the semiconductor structure combination. The odd-numbered layer in the multilayer anti-composite structure layer is formed of Si〇2, Al2〇3 or MgF2. The even number of layers in the multilayer anti-composite structure layer are formed by Ti3〇5. In particular, the multilayer anti-reflective composite layer can operate over a wide range of visible wavelengths from about 400 nm to about 700 nm. In one embodiment, the multilayer anti-reflective composite structural layer is formed by an electron-beam evaporation process. And in particular, the multilayer anti-reflective composite structure layer can be formed directly by the electron beam evaporation process using a hard mask. The advantages and spirit of the present invention will be further understood from the following detailed description of the invention. [Embodiment] The present invention provides a photovoltaic element and a method of manufacturing the same, and in particular, a photovoltaic element according to the present invention has a multilayer anti-reverse composite structure layer of a wide frequency. Preferred embodiments in accordance with the present invention are disclosed below. Referring to Figure 1, Figure 1 is a cross-sectional view of a photovoltaic element 2 in accordance with one of the preferred embodiments of the present invention. The PV Secret 2 contains:: half

6UCHIP/200901TW 5 1380460 抗反射複合結構層24。該多層抗反複合 射、.,。構層24 了以疋3、5、7、9、11或11層以上的社構。該 半導體結構組合22包含至少—ρ_η接合222 ^ 地繪示出-個ρ·η接合222。 如圖二所示,該半導體結構組合22並且具6UCHIP/200901TW 5 1380460 Anti-reflective composite structural layer 24. The multilayer anti-reverse composite, .,. The structure 24 has a structure of 疋3, 5, 7, 9, 11 or 11 or more layers. The semiconductor structure combination 22 includes at least a -p_n junction 222^ which is shown as a p-n junction 222. As shown in FIG. 2, the semiconductor structure combination 22 has

反複讀結構層24制彡餘辭導體結_ 0 22之該頂表面224上。該多層抗反複合射結構層%可以 是2、5、7、9、11或U層以上的結構。需強調的是,該多 層抗反射複合結構層24係能在約從4〇〇nm至700nm卢泛3 見光波長範圍區間運作。 m 根據本發明之較佳具體實施例之光伏元件的製造方法, 首先,係形成一半導體結構組合。該半導體結構袓 少一 P-η接合,並且具有一頂表面。 、匕3至The structural layer 24 is repeatedly read over the top surface 224 of the conductor layer _ 0 22 . The multilayer anti-reverse composite structure layer % may be a structure of 2, 5, 7, 9, 11 or more layers. It is emphasized that the multi-layer anti-reflective composite structure layer 24 can operate over a range of wavelengths ranging from about 4 nm to about 700 nm. m In accordance with a method of fabricating a photovoltaic device in accordance with a preferred embodiment of the present invention, first, a semiconductor structure combination is formed. The semiconductor structure has a P-η junction and has a top surface.匕3 to

最後丄根據本發明之製造方法係在該半導體結構組合之 頂表面上父替形成兩種化合物組成的鍍膜,進而形成多層抗 反射複合結構層於該半導體結構組合之該頂表面上,即完成 如圖二所示之光伏元件2。再次強調,該多層抗反射複合結 構層係能在約從400nm至700nm廣泛可見光波長範圍區間運 作。 請再參閱圖二,該多層抗反複合射結構層24中之第奇數 層242係由Si〇2、Al2〇3或MgF2所形成。並且,該多層抗反 複合射結構層24中之第偶數層244係由Ti305所形成。 於一具體實施例中,該半導體結構組合22之該頂表面 224並且經過一表面粗縫化處理(surface texturing),藉以將太 陽入射光的反射率降低至1〇〇/0。 於實際應用中,因應光伏元件内各類型的光電效應結Finally, the manufacturing method according to the present invention is to form a coating film composed of two compounds on the top surface of the semiconductor structure combination, thereby forming a multilayer anti-reflective composite structural layer on the top surface of the semiconductor structure combination, that is, Photovoltaic element 2 shown in Figure 2. Again, the multilayer anti-reflective composite structure layer can operate over a wide range of visible wavelengths from about 400 nm to about 700 nm. Referring to FIG. 2 again, the odd-numbered layer 242 of the multilayer anti-reverse composite structure layer 24 is formed of Si〇2, Al2〇3 or MgF2. Further, the even-numbered layer 244 of the multilayer anti-reflective structure layer 24 is formed of Ti305. In one embodiment, the top surface 224 of the semiconductor structure assembly 22 is subjected to surface texturing to reduce the reflectivity of the incident light to 1 〇〇/0. In practical applications, in response to various types of photoelectric effect junctions in photovoltaic elements

6 6UCHIP/200901TW 1380460 構,提供該半導體結構組合22之該頂表面224之材料可以a 矽(silicon)、GaAs、InGaP、CuInSe、CuInGaSe 或 CdTe ,= 是形成在上述材料上並做為保護層之氧化物。 s 於一具體實施例令,該多多層抗反射複合結構層24係 由-電子束蒸鍍製程所形成。為讓鮮層抗反射複合結構^ 24中每-祕朗品f更佳,上舰子束蒸韻程可^採^ 一離子輔助電子束蒸鍍製程(i〇n_assisted eleetiOn_beam evaporation process)。如同典型的光伏元件,根據本發明之較 佳具體實施例的光伏元件2在其半導體結構組合22之頂表面 • 224上也需形成電極(未繪示於圖二中特別地,該多層抗反 射複合結 24係可錢用-硬光罩直麟域電子^蒸錢 製程所形成。藉此,形成該光伏元件2之多層抗反複合 構層24以及電極的製程可以簡化。 β 、β 在此需強調的是,根據本發明之多層抗反射複合結構層 其特徵在於能在約從400nm至700nm廣泛可見光浊县筘图F 間運作。根據本㈣之多層抗域複合結 尽度除了需根據多層膜等效導納(effective admittance)的理論 外,還需考量多層抗反射複合結構層所被覆之材料的折射 • 率,更需考量到鍍膜材料本身的折射率會隨著入射光的波長 不同而改變。因此在實務操作上,需先行藉由電腦模擬在特 定半導體材料上形成不同層數、不同鍍膜材料之多層抗反複 合射結構層之整體光譜圖。 ,請參閱圖三、圖四及圖五,圖三為模擬在InGaP基材上 形成Si〇2與Ti;j〇5交互堆疊成5層多層抗反複合射結構層對 不同波長之光線的反射頻譜,於圖三中並列出各層鑛膜的厚 度。圖四為模擬在InGaP基材上形成a12〇3與Ti305交互堆疊 成5層多層抗反複合射結構層對不同波長之光線的反射頻6 6UCHIP/200901TW 1380460, the material of the top surface 224 of the semiconductor structure combination 22 may be a silicon, GaAs, InGaP, CuInSe, CuInGaSe or CdTe, which is formed on the above material and used as a protective layer. Oxide. s In one embodiment, the multi-layer anti-reflective composite structural layer 24 is formed by an electron beam evaporation process. In order to make the fresh-layer anti-reflective composite structure ^ 24, each of the secret products f is better, the upper ship's steaming process can be used to collect an ion-assisted electron beam evaporation process (i〇n_assisted eleetiOn_beam evaporation process). Like a typical photovoltaic element, a photovoltaic element 2 in accordance with a preferred embodiment of the present invention also requires electrodes to be formed on the top surface 224 of its semiconductor structure combination 22 (not shown in particular in Figure 2, the multilayer anti-reflection The composite junction 24 can be formed by a hard-masked straight-line electron-steaming process. Thereby, the process of forming the multilayer anti-reverse composite layer 24 of the photovoltaic element 2 and the electrode can be simplified. β, β are here. It should be emphasized that the multilayer anti-reflection composite structure layer according to the present invention is characterized in that it can operate between a wide range of visible light ray diagrams from about 400 nm to 700 nm. The multi-layer anti-domain composite junction degree according to the present invention (4) is not limited to multiple layers. In addition to the theory of effective admittance, it is also necessary to consider the refractive index of the material covered by the multilayer anti-reflective composite structure layer, and it is necessary to consider that the refractive index of the coating material itself varies with the wavelength of the incident light. Change. Therefore, in practical operation, it is necessary to first simulate the overall light of a multilayer anti-reverse composite structure layer with different layers and different coating materials on a specific semiconductor material by computer simulation. Please refer to Figure 3, Figure 4 and Figure 5. Figure 3 shows the formation of Si〇2 and Ti on the InGaP substrate. The stacking of 5 layers of anti-reverse composite structure layers is performed on different wavelengths. The reflection spectrum of light is shown in Figure 3 and the thickness of each layer of mineral film is shown. Figure 4 is a simulation of the formation of a12〇3 and Ti305 on the InGaP substrate and stacking them into 5 layers of anti-reverse composite structure layer for different wavelengths of light. Anti-radio

6UCHIP/200901TW 7 1380460 譜,於圖四中並列出各層鍵膜的厚度。圖五為模擬在InGaP 基材上形成MgF2與Ti3〇5交互堆疊成5層多層抗反複合射結 構層對不同波長之光線的反射頻譜,於圖五中並列出各層鑛 膜的厚度。從圖三、圖四及圖五的結果,清楚地顯示上述不 同材料之5層多層抗反複合射結構層對波長範圍從400nm至 700nm之間光線的反射率皆可以降到10%以下。 請參閱圖六,圖六為模擬在InGaP基材上形成si〇2與 Ti3〇5交互堆疊成7層、9層及11層多層抗反複合射結構層對 不同波長之光線的反射頻譜。從圖六的結果,清楚地顯示上 述不同層數的多層抗反複合射結構層對波長範圍從4〇〇nm至 700nm之間光線的反射率,圖中顯示9層及^層時,反射率 可以降到0.5%以下。就技術觀點而言,咸信在本專利說明書 中所提及的多種半導體材料上形成多種化合物組成的多層抗 反射複合結構層能在約從400nm至700nm廣泛可見光波長範 圍區間運作。 ' 藉由以上較佳具體實施例之詳述,係希望能更加清楚 也述本發明之特徵與精神,而並非以上述所揭露的較佳具 體實施例來對本發明之㈣加以限制。相反地,其目的是 希^涵蓋各誠變及具相等_安排於本發明所欲申請 利㈣2㈣内,b,本發騎申請之專利範圍的 S=說明作最寬廣的解釋,以致使其涵蓋 所有可此的改變以及具相等性的安排。6UCHIP/200901TW 7 1380460 spectrum, shown in Figure 4 and lists the thickness of each layer of the bond film. Figure 5 is a simulation of the reflection spectrum of the formation of MgF2 and Ti3〇5 on an InGaP substrate by stacking five layers of anti-reverse composite structures to different wavelengths of light. Figure 5 shows the thickness of each layer of mineral film. From the results of Fig. 3, Fig. 4 and Fig. 5, it is clearly shown that the five-layer anti-reverse composite structure layer of the above different materials can reduce the reflectance of light having a wavelength ranging from 400 nm to 700 nm to less than 10%. Please refer to Figure 6. Figure 6 shows the reflection spectrum of different wavelengths of light formed by simulating the stacking of si〇2 and Ti3〇5 on the InGaP substrate into 7 layers, 9 layers and 11 layers of anti-reverse composite structure layers. From the results of Fig. 6, it is clearly shown that the multi-layer anti-reverse composite structure layer of the above different layers has a reflectance for light having a wavelength ranging from 4 〇〇 nm to 700 nm, and the reflectance is shown in the figure of 9 layers and layers. Can be reduced to below 0.5%. From a technical point of view, the multilayer antireflective composite structural layer formed of a plurality of compounds formed on various semiconductor materials mentioned in this patent specification can operate over a wide range of visible light wavelengths from about 400 nm to 700 nm. The features and spirits of the present invention are intended to be more apparent from the detailed description of the preferred embodiments. On the contrary, the purpose is to cover the various changes and equals _ arranged in the application of the invention (4) 2 (4), b, the S= description of the patent scope of the application for the ride is the broadest interpretation, so that it covers All changes and equivalent arrangements are available.

6UCHIP/200901TW 8 1380460 【圖式簡單說明】 圖一為一傳統的矽太陽電池1之一截面視圖。 圖二係一截面視圖,以示意地繪示根據本發明之一較佳 具體實施例之光伏元件2。 圖三為模擬在InGaP基材上形成Si02與Ti305交互堆疊 成5層多層抗反複合射結構層對不同波長之光線的反射頻 譜。 圖四為模擬在InGaP基材上形成A1203與Ti305交互堆疊 成5層多層抗反複合射結構層對不同波長之光線的反 譜。 圖五為模擬在InGaP基材上形成MgF2與Ti305交互堆疊 層多層抗反複合射結構層對不同波長之光線的反射頻 圖六為模擬在InGaP基材上形成別〇2與丁丨3〇5交互堆疊6UCHIP/200901TW 8 1380460 [Simplified Schematic] Figure 1 is a cross-sectional view of a conventional tantalum solar cell 1. Figure 2 is a cross-sectional view schematically showing a photovoltaic element 2 in accordance with a preferred embodiment of the present invention. Figure 3 is a simulation of the formation of SiO2 and Ti305 on the InGaP substrate. The five-layer anti-reverse composite structure layer is used to reflect the reflection spectrum of different wavelengths of light. Figure 4 is a simulation of the inverse of the formation of a layer of anti-reverse composite structure layer of A1203 and Ti305 on the InGaP substrate. Figure 5 is a simulation of the formation of a multi-layer anti-reverse composite structure layer of MgF2 and Ti305 on the InGaP substrate. The reflection frequency of the light of different wavelengths is shown in Fig. 6. The simulation is performed on the InGaP substrate to form the 〇2 and 丨3丨5 Interactive stacking

成5 譜。 成7層、9層及丨丨層多層抗反複合射結構層對不同波 ^ 線的反射頻譜。 【主要元件符號說明】 1 :矽太陽能電池 12 :p型態基材 14 : η型態區 16 :抗反射層 11 :照射面 13、222 ·>η 接合 15 :表面鈍化層 17 : η型態金屬接觸層Into 5 spectrum. The reflection spectrum of different layers of the 7-layer, 9-layer and bismuth layer anti-reverse composite structure layers. [Description of main component symbols] 1 : 矽 solar cell 12 : p-type substrate 14 : η-type region 16 : anti-reflection layer 11 : irradiation surface 13 , 222 · gt η bonding 15 : surface passivation layer 17 : n type Metal contact layer

6UCHIP/200901TW 9 1380460 18 : p+型態區 2:光伏元件 224 :頂表面 242 :第奇數層 19 : p型態金屬接觸層 22 :半導體結構組合 24 :多層抗反複合射結構層 244 :第偶數層6UCHIP/200901TW 9 1380460 18 : p+ type region 2: photovoltaic element 224: top surface 242: odd-numbered layer 19: p-type metal contact layer 22: semiconductor structure combination 24: multilayer anti-reverse composite structure layer 244: even number Floor

10 6UCHIP/200901TW10 6UCHIP/200901TW

Claims (1)

1380460 七、申請專利範圍·· 1、 一種光伏元件(photovoltaic device),包含: 一半導體結構組合(semiconductor structure combination), 該半導體結構組合包含至少一p-n接合(p-n junction)並且 具有一頂表面;以及 一多層抗反射複合結構層(multi-layer anti-reflection composite structure),該多層抗反射複合結構層係形成 於該半導體結構組合之該頂表面上,該多層抗反射複 合結構層之第奇數層係由選自由Si02、A1203以及MgF2 • 所組成之一群組中之其一材料所形成,該多層抗反射 複合結構層之係由Ti305所形成之第偶數層交替所形 成,其中該多層抗反射複合結構層係能在約從400nm至 700nm廣泛波長範圍區間運作。 2、 如申請專利範圍第1項所述之光伏元件,其中該半導體結構 組合之該頂表面係由選自由氧化物、矽(silic〇n)、GaAs、 InGaP、CuInSe、CuInGaSe以及CdTe所組成之一群組中之其 一所提供。 • 3、 一種製造一光伏元件(photovoltaic device)之方法,該方法包 含下列步驟: 形成一半導體結構組合(semiconduetar structure combination),該半導體結構組合包含至少一p_n接合 njunction)並且具有一頂表面;以及 形成多層抗反射複合結構層(multi-layer anti-reflection composite structure)於該頂表面上,該多層抗反射複合 結構層之第奇數層係由選自由Si〇2、Al2〇3以及MgF2所 組成之一群組中之其一材料所形成,該多層抗反射複 合結構層之第偶數層係由Ti3〇5材料所形成,其中該多 6UCHIP/200901TW 11 1380460 層抗反射複合結構層係能在約從4〇〇nm至700nm廣泛波 長範圍區間運作。 ' 4、 如申請專利範圍第3項所述之方法,其中該多層抗反射複合 結構係错由一電子束?备鑛製程(elec^on七eam evaporate process)所形成。 5、 如申請專利範圍第4項所述之方法,其中該多層抗反射複合 結構係使用一硬光罩(hard mask)藉由該電子束蒗鍍製程所形 成。 6、 如申請專利範圍第4項所述之方法,其中該電子束蒸鍍製程鲁 係離子輔助電子束蒸錄製程(i〇n_assisted eiectr〇n_beam evaporation process)。 7、 如申請專利範圍第3項所述之方法,其中該半導體結構組合 之該頂表面係由選自由氧化物、石夕(silic〇n)、GaAs、InGaP、 (TuInSe ' CuInGaSe W & CdTe所組成之一群組中之其一所提 供01380460 VII. Patent Application Range 1. A photovoltaic device comprising: a semiconductor structure combination, the semiconductor structure combination comprising at least one pn junction and having a top surface; a multi-layer anti-reflection composite structure layer formed on the top surface of the semiconductor structure combination, the odd-numbered layer of the multilayer anti-reflective composite structure layer Formed by a material selected from the group consisting of SiO 2 , A 120 3 , and MgF 2 •, the multilayer anti-reflective composite structure layer is formed by alternating even-numbered layers formed by Ti305, wherein the multilayer anti-reflection The composite structural layer can operate over a wide range of wavelengths from about 400 nm to about 700 nm. 2. The photovoltaic device of claim 1, wherein the top surface of the semiconductor structure combination is selected from the group consisting of oxides, silicium, GaAs, InGaP, CuInSe, CuInGaSe, and CdTe. One of the groups is provided. 3. A method of fabricating a photovoltaic device, the method comprising the steps of: forming a semiconductor structure combination comprising at least one p_n junction njunction) and having a top surface; Forming a multi-layer anti-reflection composite structure on the top surface, the odd-numbered layer of the multilayer anti-reflective composite structure layer is selected from the group consisting of Si〇2, Al2〇3, and MgF2 Formed by one of the materials in a group, the even number of layers of the multilayer anti-reflective composite structure layer is formed by Ti3〇5 material, wherein the multi-layer 6UCHIP/200901TW 11 1380460 layer anti-reflective composite structure layer can be It operates over a wide range of wavelengths from 4 〇〇 nm to 700 nm. 4. The method of claim 3, wherein the multilayer anti-reflective composite structure is formed by an elec^on seven eam evaporate process. 5. The method of claim 4, wherein the multilayer anti-reflective composite structure is formed by the electron beam plating process using a hard mask. 6. The method of claim 4, wherein the electron beam evaporation process is a plasma assisted electron beam evaporation process (i〇n_assisted eiectr〇n_beam evaporation process). 7. The method of claim 3, wherein the top surface of the semiconductor structure combination is selected from the group consisting of oxides, silic(R), GaAs, InGaP, (TuInSe 'CuInGaSe W & CdTe One of the group consisting of 0 6UCHIP/200901TW 126UCHIP/200901TW 12
TW098127785A 2009-08-19 2009-08-19 Photovoltaic device with broadband multi-layer anti-reflection composite structure and method of fabricating the same TWI380460B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098127785A TWI380460B (en) 2009-08-19 2009-08-19 Photovoltaic device with broadband multi-layer anti-reflection composite structure and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098127785A TWI380460B (en) 2009-08-19 2009-08-19 Photovoltaic device with broadband multi-layer anti-reflection composite structure and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201108424A TW201108424A (en) 2011-03-01
TWI380460B true TWI380460B (en) 2012-12-21

Family

ID=44835605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127785A TWI380460B (en) 2009-08-19 2009-08-19 Photovoltaic device with broadband multi-layer anti-reflection composite structure and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI380460B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483409B (en) * 2012-09-12 2015-05-01 Ever Energy Co Ltd Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
TW201108424A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
JP5848421B2 (en) Solar cell and manufacturing method thereof
KR100990114B1 (en) Solar cell module having interconnector and fabricating method the same
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
JP5833350B2 (en) Solar cell and manufacturing method thereof
CN108140735B (en) Multi-junction photoelectric conversion device and photoelectric conversion module
TWI420700B (en) Solar cell
US20080223436A1 (en) Back reflector for use in photovoltaic device
US20120258568A1 (en) Solar cell and manufacturing method thereof
CN102187469B (en) Electromagnetic radiation converter and a battery
KR101738000B1 (en) Solar cell and method for manufacturing the same
KR20120002222A (en) Up conversion oxide fluorescent composition for solar cell and method of fabrication of high efficiency solar cell using thereof
KR20110125041A (en) Solar cell
JP2023507176A (en) Bifacial tandem solar cells and modules
JP6437582B2 (en) Solar cell and solar cell module
US20120048360A1 (en) Solar cell and method of manufacturing the same
JP5667280B2 (en) Solar cell and manufacturing method thereof
WO2009110409A1 (en) Solar cell
TWI495123B (en) Method for making solar battery
US20120118364A1 (en) Solar cell
JP5968244B2 (en) Photoelectric conversion module and manufacturing method thereof
KR101135585B1 (en) Solar cell and method for manufacturing the same
TWI380460B (en) Photovoltaic device with broadband multi-layer anti-reflection composite structure and method of fabricating the same
KR101155890B1 (en) Solar cell and method for manufacturing the same
TWM467179U (en) Solar cell with passivation layer
TWI578552B (en) Solar cell, solar battery and method for making the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees