TWI379995B - Global positioning system and dead reckoning integrated navigation system and navigation method thereof - Google Patents
Global positioning system and dead reckoning integrated navigation system and navigation method thereof Download PDFInfo
- Publication number
- TWI379995B TWI379995B TW098122362A TW98122362A TWI379995B TW I379995 B TWI379995 B TW I379995B TW 098122362 A TW098122362 A TW 098122362A TW 98122362 A TW98122362 A TW 98122362A TW I379995 B TWI379995 B TW I379995B
- Authority
- TW
- Taiwan
- Prior art keywords
- navigation
- navigation information
- information
- gps
- gyroscope
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Description
1^/9995 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種導航系統,尤其是一種關於夂球定 位系統與航海推算之整合導航系統與方法。 【先前技術】 由於全球定位系統(Global P0Siti0ning System’ GPS)具有全球搜尋以及相對較高精準度之優點,橡其被 廣泛地應用於汽車導航,以根據衛星信號提供汽車的絕對 位置。然而,由於衛星信號容易被高樓、樹木、隧道所遮 住’或衛星信號嚴重失真,因此,在都會區很難實現GPS 的連續導航。 航海推算(Dead Reckoning,DR)導航系統主要由定 位感測器(例如,迴轉儀、里程表等)紐成,其係為/獨立、 自主、且具有高取樣率之導航系統。然而,由於車輛之目 月’J絕對位置係透過在DR導航系統中,將目前計算而得之 一相對位置加上前一時刻之絕對位置而推導得知,DR導航 系統之誤差將隨時間累積。 【發明内容】 本發明要解決的技術問題在於提供一種整合導航系 統與方法’可整合多個導航定位資訊,進而得到比單一定 位資訊更好的定位性能和更全面的定位資訊。 為解決上述技術問題,本發明提供了:_種全球定 統與航海縛(GPS繼)整合導航纽。奶歸整合導叙 0444-TW-CH Spec+CIaim(fiIed-20090929).doc 4 f統包括-全球定位系統(GPS)接收器,_至一夢動 件三週期性地計算該移動物件的—GPS導航資訊;一航 海推算(DR)系統,輕接至該移動物件,週期性地計算該 移動,件之- DR導航資訊;以及—濾波器,雛至該Gps =收盗和該DKH週期性地計算該移動物件的一導航 貧訊其中,該遽波器根據該GpS導航資訊的一權重值和 3 DR&導航資訊的—權重值,整合該Gps導航資訊與該抓 航貝訊,進而得到’測資訊,且該瀘波器透過整合該 觀測資訊與-先前導航資訊,進而計算一目前導航資訊。 本發明還提供了-種為移祕件提供導航資訊的方 ^ ’包括以-全球m统⑽)接收器產生該移動物 4之-GPS導航資訊;以—航海推算(DR)系統計算該移 動物件之一 DR導航資訊;根據該GPS導航資訊之-權重 值以及該DR導航資訊之一權重值,整合該Gps導航資訊 以及該DR導航資訊,而計算一觀測資訊;以及整合該觀 /貝广貝訊以及先剛導航資訊,進而計算一目前導航資訊。 【實施方式】 以下將對本發明的實施例給出詳細的說明。雖然本發 明將結合實施例進行闡述’但應理解這並非意指將本發明 限疋於這些實施例。相反,本發明意在涵蓋由後附申請專 利範圍所界疋的本發明精神和範圍内所定義的各種變 化、修改和均等物。 此外在以下對本發明的詳細描述十,為了提供針對 本發明的完全的理解,提供了大量的具體細節。然而,於1^/9995 VI. Description of the Invention: [Technical Field] The present invention relates to a navigation system, and more particularly to an integrated navigation system and method for a croquet positioning system and a navigation calculation. [Prior Art] Because of its global search and relatively high accuracy, the Global P0Siti0ning System' GPS is widely used in car navigation to provide the absolute position of a car based on satellite signals. However, since satellite signals are easily obscured by tall buildings, trees, tunnels, or satellite signals are severely distorted, it is difficult to achieve continuous GPS navigation in the metropolitan area. The Dead Reckoning (DR) navigation system is mainly composed of positioning sensors (eg, gyroscopes, odometers, etc.), which are independent/autonomous navigation systems with high sampling rates. However, since the absolute position of the vehicle's target month is derived from the relative position of the current calculation plus the absolute position of the previous moment in the DR navigation system, the error of the DR navigation system will accumulate over time. . SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide an integrated navigation system and method that can integrate multiple navigation and positioning information, thereby obtaining better positioning performance and more comprehensive positioning information than single-bit information. In order to solve the above technical problems, the present invention provides: a global navigation and navigation binding (GPS relay) integrated navigation button. The milk is integrated into the introduction of the 0044-TW-CH Spec+CIaim (fiIed-20090929).doc 4 f system includes a global positioning system (GPS) receiver, _ to a dream piece three periodically calculate the moving object - GPS navigation information; a navigational estimation (DR) system, lightly connected to the moving object, periodically calculating the movement, the piece of - DR navigation information; and - the filter, the chick to the Gps = theft and the DKH periodicity Computing a navigation aid of the mobile object, wherein the chopper integrates the GPS navigation information and the navigation aid according to a weight value of the GpS navigation information and a weight value of the 3 DR& navigation information, thereby obtaining 'Measurement information, and the chopper calculates a current navigation information by integrating the observation information with the previous navigation information. The present invention also provides a method for providing navigation information for a moving part, including a GPS navigation information generated by the receiver (the global system (10)); and calculating the movement by a navigation estimation (DR) system. a DR navigation information of the object; integrating the GPS navigation information and the DR navigation information according to the weight value of the GPS navigation information and the weight value of the DR navigation information, and calculating an observation information; and integrating the view/Beiguang Beixun and the first navigation information, and then calculate a current navigation information. [Embodiment] Hereinafter, a detailed description will be given of an embodiment of the present invention. While the invention will be described in conjunction with the embodiments, it is understood that the invention is not limited to the embodiments. On the contrary, the invention is intended to cover various modifications, modifications, and equivalents of the scope of the invention. Further, in the following detailed description of the invention, numerous specific details are set forth However,
C 0444-TW-CH Spec+CIaim(filed-20090929).doc 5 i 1379995 本技術領域中具有通常知識者將理解,沒有這些具體細 節,本發明同樣可以實施。在另外的一些實例中,對於大 豕熟知的方法、程序、元件和電路未作詳細描述,以便於 凸顯本發明之主旨。 圖1所示為根據本發明一實施例全球定位系統與航海 推异(GPS&DR)整合導航系統10Q方塊圖。gps&dR整合導 航系統100具有較單一導航系統(例如,單一 Gps系統或 單一 DR系統)更為精準之導航定位能力。 在一實施例中,GPS&DR整合導航系統1〇〇包括一 GPS 接收器102,用於接收衛星信號並根據衛星信號產生GpS 導航資訊116。每一衛星信號皆由一相對應之導航衛星所 產生。在一實施例中,GPS導航資訊116包括一移動物件 (例如,車輛)的一位置、一方位、一線速度(Vgps)以及 角速度(Wcps)。在地球標準座標架構令,車輛的位置係由 經度分量(component)和緯度分量所組成。 GPS&DR整合導航系統1〇〇還包括一航海推算(⑽)系 統108 ’透過測量車輛的移動資訊以提供車輛的DR導航資 訊,並整合車輛之移動資訊以及車輛參考位置與方位。車 輛之移動資訊係包含車輛的線性速度以及角速度。導航 資訊包含車輛之位置、方位以及其移動資訊。當所接收到 之衛星信號被確定為可信賴信號,則採用GpS接收器1〇2 所輸出之車柄位置和方位,週期性地更新航海推算系統 108中車輛的參考位置和方位1之,#所接收到之衛星 =號被確定為不可信賴信號時,則制航海推算系統ι〇8 别-刻計算及儲存之車輛位置和方位更新車輛的參考位 0444-TW-CH Spec+Claim(filed-20090929).doc 6 置和方位。 艘海推算系統108包括用於測量車輛線速度VDR 128 的一里程表110、用於測量車輛角速度Wdr 13〇的一迴轉儀 U2、以及一航海推算模組114,透過整合車輛移動資訊以 及車辆參考位置及方位’進而計算車輛之位置及方位。由 於里程表110及迴轉儀112所分別測量得到之線速度Vdr 28和角速度wDR 130具有一定誤差(deviation),因此’ 里程表110和迴轉儀112需要分別降低線速度Vdr 128和 角速度Wdr 130的誤差。 在一實施例中,里程表110和迴轉儀112可用於分別 降低線速度VDR128和角速度Wdr 130的誤差。迴轉儀112 的參數可包括:零漂移(zero drift)和刻度因數,但不 以此為限。里程表11〇的參數可包括:車輪一周之脈衝數、 車輪故轉半徑、代表車輪旋轉半徑除以線速度之比例因 素、以及車輪旋轉半徑的靜態誤差。然而,里程表11〇和 迴轉儀112的參數會隨著時間持續變化。因此,里程表11〇 ,迴轉儀112各包括-卡爾曼㈤咖)渡波器14〇和 142,用於關性地估計里程表11()和迴轉儀ιΐ2的目前 參數值。待降麟速度Vdr 128和角速度¥⑽與實際值 Γ,線速度^ 128和角速度W" 13G可輸出至航海 推舁模組114中,以作進一步之操作。 施例中,角速度 對里程表UG參數值進行估計的條件是否滿足。 在另-實施例中線速度Vdr128可輪出 於判斷對迴觀m減值撕估計的=用 0444-TW-CH Spec+Claim(fiIed-20090929).doc 7 1379995 在另一實施例中,耦接於GPS接收器102和航海推算 系統108之間的另一濾波器(例如,卡爾曼濾波器)144 可用於降低GPS導航資訊116的雜訊。並且,卡爾曼滤波 器144可根據衛星仏號的載波雜訊比(carrier_t〇_N〇ise ration,CN0)以及由GPS接收器1〇2所輸出的車輛線速 度VcPS ’判斷GPS接收器102所接收到的衛星信號是否可 #。如果具有載波雜訊比大於一預設臨界值(例如, 30db-Hz)之衛星信號的個數大於一預設值,例如,3個, 並且GPS接收器1〇2所輸出的車輛線速度Vcps的平均值大 於一預設臨界值(例如,6m/s) ’則,所接收到的衛星信 號即為可靠。否則,接收到的衛星信號可認定為是不可靠 的。 如果GPS接收器1〇2接收到的衛星信號可靠,那麼根 據所接收到之衛星信號而計算而得之Gps導航資訊116可 被認定為可靠。卡爾曼濾波器144可降低GPS導航資訊116 的雜訊,並傳遞GPS導航資訊116中所包含之車柄位置和 方位126至航海推算模組114,以更新航海推算模組114 中的參考位置和方位。 卡爾曼濾波器144也可輸出GPS導航資訊116中所包 含之車輛線速度Vgps和角速度Wgps至里程表no和迴轉儀 112,用於參數之估計。 航海推算模組114接收來自里程表11〇之線速度Vdr 128 ’以及來自迴轉儀112之角速度Wdr 13〇。透過整合線 速度VDR 128和角速度wDR 130與儲存於航海推算模組114 中之參考位置及方位,航海推算模組114可計算車輛之目 0444-TW-CH Spec+Claim(filed-20090929).d〇i 8 1379995 前位置以及方位。如上所述,如果奶 則採用GPS導航資訊116中之位置和方 ^可罪於 抗海推算模組m中的車輛參考位置和方位。更新健存於 在-實施例中’根據地球標準座標 係由經度分量和緯度分量所定義而出。透過計its 和緯度分量,即可取得車輛的位置。«方 緯度分量可基於線速度一以: 參考位置之經緯度分量而計算得之: 人久 卜—+Γ /(〇 {»ewLat=〇ldLat + VDR n*T!R _________ 二η柄,置之經度分量。::表:3 刖_ ,、.年又刀里。〇/也0”表示參考位置的經度分量。 :表不f考位置的緯度分量。U示線速度、128 的東向分ϊ。麵線迷度Vdr128的北向分量。 線速度Vdr128的單位時間,例如,1秒。R表示參考t 與地球標準座標架構原點之間之距離。 車輛的方位可根據方程式(2)計算得之: newOri = oldOri + WnD*T------ _ (2) —”癌表示車輛的目前方位。〇撕表示參考方位 不角速度Wdr 130的單位時間,例如,i秒。 如果GPS導航資訊116不可靠,則根據計算而得 輛位置和方位更新車_參考位置和方位。隨後 模組U4即可基於更新後之參考位置和綠計算車輛^ 一個位置和方位。 此外’GPS&DR整合導航系統1〇〇還包括輕接於奶接 0444-TW-CH Spec+CIaim(filed-20090929).doc 1379995 收器102和航海推算系統108間的卡爾曼濾波器1〇6。卡 爾曼濾、波器106可根據GPS導航貧訊116的權重(簡稱gps 權重)和DR導航資訊132的權重(簡稱DR權重)將Gps 導航負訊116和DR導航資訊132整合,進而週期性地得 到觀測資訊。卡爾曼濾波器106透過整合目前的觀測資訊 以及先前計算得到之導航資訊146,進而週期性地計算車 輛目前的導航資訊146。車輛的導航資訊146可被顯示於 一顯示幕148上。 在一實施例中’一權重模組104計算GPS權值和DR 權值。權重模組104接收來自GPS接收器102之衛星信號 的位置精度因子(positi〇n Dilution Of Precision,PDOP) 和載波雜訊比(CN0),並且根據位置精度因子和載波雜訊 比計算GPS權值和DR權值。 如果載波雜訊比大於30db-hz的衛星信號個數不小於 一預定值(例如,3個)’則GPS權重和DR權重可由位置 精度因子決定。在這種情況下,根據方程式(3)可計算 GPS權重和DR權重: 0.99,PDOP<2 r = 2/PDOP,2<PDOP< 5 1 \/PDOP,5<PDOP<\0 }/(2-pdop),\〇<pdop-----------------------(3)C 0444-TW-CH Spec+CIaim(filed-20090929).doc 5 i 1379995 It will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits are not described in detail in order to facilitate the invention. 1 is a block diagram of a global positioning system and a navigation & zoom (GPS & DR) integrated navigation system 10Q in accordance with an embodiment of the present invention. The gps&dR integrated navigation system 100 has more accurate navigation and positioning capabilities than a single navigation system (eg, a single Gps system or a single DR system). In one embodiment, the GPS&DR integrated navigation system 1 includes a GPS receiver 102 for receiving satellite signals and generating GpS navigation information 116 based on the satellite signals. Each satellite signal is generated by a corresponding navigation satellite. In one embodiment, GPS navigation information 116 includes a position, an orientation, a line speed (Vgps), and an angular velocity (Wcps) of a moving object (e.g., a vehicle). In the Earth's standard coordinate architecture, the position of the vehicle consists of a longitude component and a latitude component. The GPS & DR integrated navigation system 1 also includes a navigational projection (10) system 108' that provides vehicle DR information by measuring vehicle movement information and integrating vehicle movement information as well as vehicle reference position and orientation. The vehicle's mobile information includes the linear speed of the vehicle as well as the angular velocity. Navigation Information includes the location, location, and movement information of the vehicle. When the received satellite signal is determined to be a trustworthy signal, the reference position and orientation of the vehicle in the navigational estimation system 108 are periodically updated using the handle position and orientation output by the GpS receiver 1〇2, # When the received satellite=number is determined as the untrustworthy signal, the navigation calculation system ι〇8 is used to calculate and store the vehicle position and orientation. The reference position of the vehicle is updated 0044-TW-CH Spec+Claim(filed- 20090929).doc 6 Set and orientation. The marine estimation system 108 includes an odometer 110 for measuring the vehicle linear velocity VDR 128, a gyroscope U2 for measuring the vehicle angular velocity Wdr 13〇, and a navigation estimation module 114 for integrating vehicle movement information and vehicles. Refer to the position and orientation' to calculate the position and orientation of the vehicle. Since the linear velocity Vdr 28 and the angular velocity wDR 130 measured by the odometer 110 and the gyroscope 112 respectively have a certain deviation, the odometer 110 and the gyroscope 112 need to reduce the errors of the linear velocity Vdr 128 and the angular velocity Wdr 130, respectively. . In one embodiment, odometer 110 and gyroscope 112 can be used to reduce the error of line speed VDR 128 and angular speed Wdr 130, respectively. The parameters of the gyroscope 112 may include, but are not limited to, zero drift and scale factor. The parameters of the odometer 11〇 may include: the number of pulses per week of the wheel, the radius of rotation of the wheel, the proportional factor representing the radius of rotation of the wheel divided by the linear velocity, and the static error of the radius of rotation of the wheel. However, the parameters of the odometer 11〇 and the gyroscope 112 will continue to change over time. Thus, the odometer 11〇, the gyroscopes 112 each include a - Kalman (five) coffee) ferrites 14A and 142 for the purpose of estimating the current parameter values of the odometer 11() and the gyroscope ιΐ2. The speed of the descending speed Vdr 128 and the angular velocity ¥(10) and the actual value Γ, the linear velocity ^128 and the angular velocity W" 13G can be output to the navigation push module 114 for further operation. In the example, the angular velocity determines whether the condition of the odometer UG parameter value is satisfied. In another embodiment, the linear velocity Vdr128 may be rounded out to determine the estimate of the value of the subtraction of the value of the m-value. For example, with 0044-TW-CH Spec+Claim(fiIed-20090929).doc 7 1379995 In another embodiment, the coupling Another filter (e.g., Kalman filter) 144 coupled between the GPS receiver 102 and the marine projection system 108 can be used to reduce the noise of the GPS navigation information 116. Moreover, the Kalman filter 144 can determine the GPS receiver 102 according to the carrier noise ratio (carrier_t〇_N 〇 ration, CN0) of the satellite nickname and the vehicle line speed VcPS ' output by the GPS receiver 1 〇 2 Whether the received satellite signal is #. If the number of satellite signals having a carrier-to-noise ratio greater than a predetermined threshold (for example, 30 db-Hz) is greater than a predetermined value, for example, three, and the vehicle line speed Vcps output by the GPS receiver 1〇2 The average value is greater than a predetermined threshold (eg, 6 m/s). Then, the received satellite signal is reliable. Otherwise, the received satellite signal can be considered unreliable. If the satellite signal received by the GPS receiver 1 可靠 2 is reliable, the GPS navigation information 116 calculated based on the received satellite signal can be considered reliable. The Kalman filter 144 can reduce the noise of the GPS navigation information 116 and pass the handle position and orientation 126 contained in the GPS navigation information 116 to the navigation estimation module 114 to update the reference position in the navigation estimation module 114 and Orientation. The Kalman filter 144 can also output the vehicle linear velocity Vgps and angular velocity Wgps contained in the GPS navigation information 116 to the odometer no and the gyroscope 112 for parameter estimation. The maritime projection module 114 receives the linear velocity Vdr 128 ' from the odometer 11 and the angular velocity Wdr 13 来自 from the gyroscope 112. By integrating the linear velocity VDR 128 and the angular velocity wDR 130 with the reference position and orientation stored in the navigation estimation module 114, the navigation estimation module 114 can calculate the head of the vehicle 0044-TW-CH Spec+Claim(filed-20090929).d 〇i 8 1379995 Front position and orientation. As mentioned above, if the milk uses the position and location in the GPS navigation information 116, it is sinful to the vehicle reference position and orientation in the anti-sea estimation module m. The update is stored in the "in the embodiment" and is defined by the longitude component and the latitude component according to the earth standard coordinate system. The position of the vehicle can be obtained by counting its and latitude components. The «square latitude component can be calculated based on the linear velocity one by: the latitude and longitude component of the reference position: Man Jibu-+Γ /(〇{»ewLat=〇ldLat + VDR n*T!R _________ two n handles, set Longitude component.::Table: 3 刖 _ , , . Years and knives. 〇 / also 0 ” indicates the longitude component of the reference position. : Table shows the latitude component of the position of the test. U shows the line speed, 128 eastward branch The northbound component of the line line Vdr128. The unit time of the line speed Vdr128, for example, 1 second. R represents the distance between the reference t and the origin of the earth standard coordinate structure. The orientation of the vehicle can be calculated according to equation (2). : newOri = oldOri + WnD*T------ _ (2) — “CANCER indicates the current position of the vehicle. Tear indicates the unit time of the reference azimuth velocity Wdr 130, for example, i seconds. If GPS navigation information 116 If it is unreliable, the position and orientation of the vehicle will be updated according to the calculation. The reference position and orientation will be used. Then the module U4 can calculate the vehicle based on the updated reference position and the position and orientation of the vehicle. In addition, the 'GPS&DR integrated navigation system 1〇〇 also includes light connection to the milk joint 0044-TW-CH Spec+CIaim (f Iled-20090929).doc 1379995 Kalman filter 1〇6 between the receiver 102 and the navigation calculation system 108. The Kalman filter and waver 106 can be based on the weight of the GPS navigation poor 116 (referred to as gps weight) and DR navigation information. The weight of 132 (referred to as the DR weight) integrates the GPS navigation signal 116 and the DR navigation information 132 to obtain observation information periodically. The Kalman filter 106 integrates the current observation information and the previously calculated navigation information 146, thereby The vehicle's current navigation information 146 is periodically calculated. The vehicle's navigation information 146 can be displayed on a display screen 148. In one embodiment, a weight module 104 calculates GPS weights and DR weights. Weight module 104 Receiving a positional accuracy factor (PDOP) and a carrier noise ratio (CN0) of the satellite signal from the GPS receiver 102, and calculating the GPS weight and the DR weight according to the positional accuracy factor and the carrier noise ratio If the number of satellite signals with a carrier-to-noise ratio greater than 30 db-hz is not less than a predetermined value (for example, three), then the GPS weight and DR weight can be determined by the position accuracy factor. In this case, the GPS weight and the DR weight can be calculated according to equation (3): 0.99, PDOP < 2 r = 2/PDOP, 2 < PDOP < 5 1 \/PDOP, 5 <PDOP<\0 }/(2-pdop) ,\〇<pdop-----------------------(3)
晃=1-A A表示GPS權重。爲表示DR權重。 如果載波雜訊比大於30db-hz的衛星信號個數小於此 預定值’則可根據方程式(4)計算GPS權重和DR權重: \βι= βρκΕ\' e.g.,0Shake = 1 - A A indicates the GPS weight. To indicate DR weight. If the number of satellite signals with a carrier-to-noise ratio greater than 30 db-hz is less than this predetermined value', the GPS weight and DR weight can be calculated according to equation (4): \βι=βρκΕ\' e.g.,0
\爲2 = βρΚΕ2’ e,g*A 0444-TW-CH Spec+CIaim(filed-20〇9〇929).doc 10 1379995 -----^4; 有利的是’透過整合GPS接收器ι〇2以及航海推 統108’GPS&DR整合導航系、统⑽結合了航海推算系統⑽ 之短期穩定性優點以及GPS接收器1〇2之長期穩定性優 點。由於GPS接收器1〇2可即時接收衛星信號且Gps導航 資訊116之誤差並不會隨時間累加’因此,若所接收到之 衛星信號為可靠,則由GPS接收器1〇2所確定之移動物件 (例如,車輛)的位置和方位將具有相對較高的精準度。 因此,若所接收到之衛星信號為可靠,則Gps導航資訊116 町用以更新航海推算系統1〇8之參考位置及方位。因此, 可透過週期性地更新參相置及綠,進而降低或消除航 海推算系統108之累計誤差。 此外,在某些不確定的情況下(例如,車輛停止或衛 星信號不可罪)’ GPS接收器1〇2會發生一些隨機誤差。由 於透過航海推算系統1〇8所連續推算出之車輛位置和方位 在短時間内具有較高的精準度,因此,可透過將Gps權重 設為一較低值並將DR權重設定為一較高值,以整合gps 導航資訊116以及DR導航資訊132,進而補償GPS導航資 訊116中之隨機誤差。GPS導航資訊116之補償可使得gps 導航追蹤軌跡更為平滑。因此,Gps&DR整合導航系統1〇() 能提供較高精準度、較佳可靠度之優點,且改善衛星信號 之追蹤/接收能力。 圖2所示為根據本發明一實施例更新航海推算系統的 參考位置和方位(例如,圖1中所示之航海推算系統1〇8 的參考位置和方向)流程20(^圖2將結合圖1進行描述。 0444-TW-CH Spec+Claim(filed-20090929).d〇i 11 在步驟202中,GPS接收器102根據所接收到之衛星 k號產生GPS導航資訊116。在步驟204中,卡爾曼濾波 器144降低GPS導航資訊116中的雜訊。在步驟206中, 卡爾曼濾波器144根據衛星信號的載波雜訊比(CN〇)以 及GPS接收器102所測量到之車輛線速度Vgps,判斷所接 收到之衛星信號之可靠度。 如果在一段時間内(例如,90秒),車輛線速度Vcps 的平均值Vgps_aver大於一預設值Vpre(例如,6m/s),且具有 載波雜訊比大於一預定臨界值(例如,3〇db-hz)之衛星 仏號個數大於一預定值Npre(例如,3個),則可認定接收到 的衛星號為可靠的《接著在步驟208中,採用GPS導 航 > 訊116以卡爾曼濾波器144更新航海推算系統1 〇8的 參考位置和方位。 如果在一段時間内,車輛線速度Vgps的平均值Vgps aver 不大於預設值Vm (例如,6m/s),或者具有載波雜訊比大 於一預定臨界值(例如,30db-hz)之衛星信號個數不大 於一預定值NpRE (例如,3個),則可認定接收到的衛星信 號為不可靠的。因此,在步驟210中,採用前次之DR導 航資訊132更新航海推算系統ι〇8中之參考位置和方位。 在步驟212中’航海推算系統108採用多個移動感應 器測量移動物件之移動資訊,並透過整合移動資訊以及參 考位置及方位計算DR導航資訊132。 由此可見,透過週期性地更新航海推算系統1〇8的參 考位置和方位,可矯正在航海推算的過程中,航海推算系 統108中的累計誤差《由此,當衛星信號不可靠時,則由 0444-TW-CH Spec+CIaim(filed-20090929).doc 12 1379995 航海推算系統1〇8根據前次更新之可靠的Gps導航資訊 116計算出車輛之位置。因此,可實現Gps定位和航海推 算定位間的平滑切換。 圖3所示為根據本發明一實施例之估計迴轉儀(例 如,圖1中所示之航海推算系統108中的迴轉儀112)參 數值的方法流程3〇〇。如前所述,迴轉儀112的參數可用 於降低迴轉儀112測量得到的角速度的誤差。迴轉儀112 的參數包括:迴轉儀112的零漂移和刻度因數,但不以此 為限。由於迴轉儀112的參數會隨時間變化,其係由來源 偏振度(degree of p〇iarizati〇n,d〇P)所造成,在導 航過程中,需要週期性地對迴轉儀112目前之參數值進行 估計。圖3將結合圖1進行描述。 當GPS&DR整合導航系統1〇〇被供電後,Gps接收器 =2開始工作。在步驟3〇2中,從迴轉儀112中之一儲存 單π中(圖1中未示)讀出迴轉儀112的初始參數,包括 一初始零漂移Β_。和一初始刻复因數s_·。。在另一實施 例中,儲存單το可被設計為位於迴轉儀112之外。在步驟 304中,迴轉儀112接收來自Gps接收器1〇2之線速度Vcps 和角速度wCPy在步驟306中,迴轉儀112測量一移動物 件(例如車輛)的角速度HU。,並以初始零漂移u。 根據方程式(5)對角速度Wgyr。進行修正:\为2 = βρΚΕ2' e,g*A 0444-TW-CH Spec+CIaim(filed-20〇9〇929).doc 10 1379995 -----^4; Favorablely 'through integrated GPS receiver ι 〇2 and the navigational system 108'GPS&DR integrated navigation system, system (10) combines the short-term stability advantages of the marine estimation system (10) and the long-term stability advantages of the GPS receiver 1〇2. Since the GPS receiver 1〇2 can receive satellite signals in real time and the error of the GPS navigation information 116 does not accumulate over time, therefore, if the received satellite signal is reliable, the movement determined by the GPS receiver 1〇2 The position and orientation of an object (eg, a vehicle) will have a relatively high degree of precision. Therefore, if the received satellite signal is reliable, the GPS navigation information 116 is used to update the reference position and orientation of the navigation calculation system 1〇8. Therefore, the cumulative error of the sea reckoning system 108 can be reduced or eliminated by periodically updating the phase and green. In addition, in some uncertain situations (for example, the vehicle stops or the satellite signal is not guilty), some random errors occur in the GPS receiver 1〇2. Since the position and orientation of the vehicle continuously calculated by the navigation calculation system 1〇8 have high precision in a short time, the weight of the GPS can be set to a lower value and the DR weight can be set to a higher value. Values to integrate gps navigation information 116 and DR navigation information 132 to compensate for random errors in GPS navigation information 116. The compensation of GPS navigation information 116 can make the gps navigation tracking track smoother. Therefore, Gps&DR integrated navigation system 1() can provide higher accuracy and better reliability, and improve the tracking/receiving capability of satellite signals. 2 is a flowchart showing a reference position and orientation of a navigation estimation system (for example, a reference position and direction of the navigation calculation system 1〇8 shown in FIG. 1) according to an embodiment of the present invention. 1 Description: 0444-TW-CH Spec+Claim(filed-20090929).d〇i 11 In step 202, the GPS receiver 102 generates GPS navigation information 116 based on the received satellite k number. In step 204, The Kalman filter 144 reduces noise in the GPS navigation information 116. In step 206, the Kalman filter 144 is based on the carrier noise ratio (CN〇) of the satellite signal and the vehicle line speed Vgps measured by the GPS receiver 102. Judging the reliability of the received satellite signal. If the average value Vgps_aver of the vehicle line speed Vcps is greater than a preset value Vpre (for example, 6 m/s) for a period of time (for example, 90 seconds), and has a carrier miscellaneous If the number of satellite apostrophes whose signal ratio is greater than a predetermined threshold (eg, 3 〇 db-hz) is greater than a predetermined value Npre (eg, 3), then the received satellite number may be deemed reliable. In the use of GPS navigation > The waver 144 updates the reference position and orientation of the navigation calculation system 1 。 8. If the average value Vgps aver of the vehicle line speed Vgps is not greater than the preset value Vm (for example, 6 m/s) for a period of time, or has carrier noise If the number of satellite signals greater than a predetermined threshold (eg, 30 db-hz) is not greater than a predetermined value NpRE (eg, three), then the received satellite signal may be deemed unreliable. Therefore, in step 210 The previous DR navigation information 132 is used to update the reference position and orientation in the navigational projection system ι. 8. In step 212, the navigation estimation system 108 uses a plurality of motion sensors to measure the movement information of the mobile object and integrates the mobile information. And calculating the DR navigation information 132 by referring to the position and orientation. It can be seen that by periodically updating the reference position and orientation of the navigation calculation system 1〇8, the cumulative error in the navigation calculation system 108 during the navigation estimation can be corrected. Thus, when the satellite signal is unreliable, it is reliable according to the previous update by 0044-TW-CH Spec+CIaim(filed-20090929).doc 12 1379995 The Gps navigation information 116 calculates the position of the vehicle. Therefore, smooth switching between GPS positioning and navigational estimation positioning can be achieved. Figure 3 shows an estimated gyroscope (e.g., the navigation shown in Figure 1) in accordance with an embodiment of the present invention. A method flow for estimating the parameter values of the gyroscope 112 in the system 108. As previously discussed, the parameters of the gyroscope 112 can be used to reduce the angular velocity error measured by the gyroscope 112. The parameters of the gyroscope 112 include: zero drift and scale factor of the gyroscope 112, but are not limited thereto. Since the parameters of the gyroscope 112 may change with time, it is caused by the degree of polarization of the source (degree of p〇iarizati〇n, d〇P). During the navigation process, the current parameter values of the gyroscope 112 need to be periodically Make an estimate. Figure 3 will be described in conjunction with Figure 1. When the GPS&DR integrated navigation system is powered, the Gps receiver = 2 starts working. In step 3〇2, the initial parameters of the gyroscope 112, including an initial zero drift Β_, are read from a storage unit π (not shown in Fig. 1) in the gyroscope 112. And an initial engraving factor s_·. . In another embodiment, the storage sheet το can be designed to be located outside of the gyroscope 112. In step 304, gyroscope 112 receives linear velocity Vcps and angular velocity wCPy from Gps receiver 1〇2. In step 306, gyroscope 112 measures angular velocity HU of a moving object (e.g., vehicle). And with an initial zero drift u. The angular velocity Wgyr is according to equation (5). Make corrections:
Wgyro=Wgyr〇+Bcyr〇_〇-------------------------------Wgyro=Wgyr〇+Bcyr〇_〇-------------------------------
在步驟308巾,如果線速度Vcps小於一預定臨界值VpREi ^其指示車輛處於停止狀態),或如果線速度 Vcps大於1 一預 定臨界值且角速度^騎對則、於_預定臨界值WpRE iAt step 308, if the line speed Vcps is less than a predetermined threshold value VpREi (which indicates that the vehicle is in a stopped state), or if the line speed Vcps is greater than 1 a predetermined threshold value and the angular velocity ^ rides the pair, the predetermined threshold value WpRE i
I 0444-TW-CH Spec+Claim(fiIed-20〇9〇929).doc 13 1379995 (其指示車輛處於直行狀態),則在步驟3〇6中修正之角 速度WGYR。可被認定為合格的且儲存於一儲存單元中(圖i 中未示),用於之後的計算。在步驟310中,如果健存於 儲存單元中的合格角速度Wgyr。的個數不小於一預定臨界值 Nm,則在步驟312中以儲存於儲存單元中之合格角速度 WGYR°计舁零漂移之主偏移量(primary offset of the zero drift)。零漂移之主偏移量可由方程式(6)得之: ife/to5i=-mean(WcYR〇)------------------------( 6 ) 办別表示迴轉儀112之零漂移之主偏移量。函數 niean()用於计其合格的角速度值wGYR。的平均值。在一實施 例中’仏1^可設定為50。待計算零漂移之主偏移量办如別之 後,儲存單元可從合格角速度Wgyr。中選出最早存入之角速 度Wgyrq,並將其從儲存單元中刪除。 在步驟308中,如果線速度Vgps不小於預定臨界值VpREi 且不大於預定臨界值\rPRE2,或角速度Wgps的絕對值不小於 預定臨界值WPRE,或在步驟31〇中,如果合格角速度Wgyr〇 的個數小於預定臨界值Npre,則流程300返回至步驟304。 在步驟314中’在步驟306中修正之車輛角速度Wgyr〇 可根據方程式(7)以零漂移之主偏移量制做再一次之 修正:I 0444-TW-CH Spec+Claim(fiIed-20〇9〇929).doc 13 1379995 (which indicates that the vehicle is in a straight state), then correct the angular velocity WGYR in step 3〇6. Can be considered qualified and stored in a storage unit (not shown in Figure i) for later calculations. In step 310, if the acceptable angular velocity Wgyr is stored in the storage unit. If the number is not less than a predetermined threshold value Nm, then in step 312, the primary offset of the zero drift is calculated as the acceptable angular velocity WGYR° stored in the storage unit. The main offset of zero drift can be obtained by equation (6): ife/to5i=-mean(WcYR〇)------------------------( 6) The main offset indicating the zero drift of the gyroscope 112. The function niean() is used to calculate its acceptable angular velocity value wGYR. average value. In an embodiment, '仏1^ can be set to 50. After the main offset of the zero drift is calculated, the storage unit can pass the qualified angular velocity Wgyr. Select the earliest angular velocity Wgyrq and delete it from the storage unit. In step 308, if the linear velocity Vgps is not less than the predetermined threshold value VpREi and not greater than the predetermined threshold value \rPRE2, or the absolute value of the angular velocity Wgps is not less than the predetermined threshold value WPRE, or in step 31, if the acceptable angular velocity Wgyr〇 If the number is less than the predetermined threshold Npre, then flow 300 returns to step 304. In step 314, the vehicle angular velocity Wgyr〇 corrected in step 306 can be corrected again according to equation (7) with a zero drift master offset:
Wgyr〇=Wgyro+ deltaBX-----------------------( 7 ) 在步驟316中,GPS接收器102所輸出之角速度WcPS、 在步驟314中修正之角速度队⑽、以及初始刻度因數 被發送至迴轉儀112令的卡爾曼滤、波器 142,進而估計迴 轉儀112的參數值。在—實施例中,卡爾曼濾波器142可 t 14 0444-TW-CH Spec+Claim(filed-20090929).d〇c 1379995 jgyr〇 估算零漂移之次偏移量办/tefi2以及目前之刻度因數\ 在步騾318中,迴轉儀U2的目前零漂移5cfJ可根據 方程式(8)’透過零漂移之主偏移量制/α^、零漂移之次偏 移量制如们、以及初始零漂移5Gra〇j>計算得之:Wgyr〇=Wgyro+deltaBX----------------------- (7) In step 316, the angular velocity WcPS output by the GPS receiver 102 is in step 314. The corrected angular velocity train (10) and the initial scale factor are sent to the Kalman filter and waver 142 of the gyroscope 112 command to estimate the parameter values of the gyroscope 112. In an embodiment, the Kalman filter 142 can estimate the zero-offset offset/tefi2 and the current scale factor by t 14 0444-TW-CH Spec+Claim(filed-20090929).d〇c 1379995 jgyr〇 In step 318, the current zero drift 5cfJ of the gyroscope U2 can be made according to equation (8)'s zero offset main offset system /α^, zero drift sub-offset, and initial zero drift 5Gra〇j> calculated:
Bcyro= Bcmo 0 + deltaBX + deltaBl------------------⑻ 在步騾320中,車輛之角速度可根據方程式(9), 基於步驟316估算之目前刻度因數sC)w以及步驟318中計 算而得之目前零漂移,做第三次之修正: --------------------------------------------------( 9 ) 修正後的角速度^可被發送至航海推算模組114作 為車輛的測量角速度Wdr 130,以計算DR導航資訊132。 在一實施例中,修正後的角速度%也被發送至里程表 110 ’用於控制里程表110的參數估計。 此外,待在步驟316中對迴轉儀112的目前刻度因數 心聊進行參數估計之後,且在步驟318計算得到迴轉儀i12 的目前零漂移之後,在步驟322中,每隔一段預定時 間(例如,30分鐘),儲存在儲存單元内之迴轉儀ι12之 初始參數值,包括初始零漂移。和初始刻度因數 ’可以目前零漂移和目前刻度因數知^更新之。 圖4所示為根據本發明一實施例之估計里程表(例 如’圖1中所示之航海推算系統108中之里程表11〇)參 數值之方法流程400。如前所述,里程表110的參數可用 以降低里程表11〇所測量得到之線速度誤差。里程表n〇 的參數包括:車輪一周對應輸出脈衝數、車輪旋轉半徑、 代表車輪旋轉半徑除以一線速度之比例因數、以及車輪旋 0444-TW-CH Spec+CIaim(fiJed-20090929).doc 15Bcyro= Bcmo 0 + deltaBX + deltaBl------------------(8) In step 320, the angular velocity of the vehicle can be estimated according to equation (9), based on the current scale estimated in step 316. The factor sC)w and the current zero drift calculated in step 318, the third correction: --------------------------- ----------------------- (9) The corrected angular velocity ^ can be sent to the navigation estimation module 114 as the measured angular velocity Wdr 130 of the vehicle to calculate DR navigation information 132. In one embodiment, the corrected angular velocity % is also sent to the odometer 110' for controlling the parameter estimates of the odometer 110. In addition, after the parameter estimation of the current scale factor of the gyroscope 112 is performed in step 316, and after the current zero drift of the gyroscope i12 is calculated in step 318, in step 322, every predetermined time period (eg, 30 minutes), the initial parameter values of the gyroscope ι12 stored in the storage unit, including the initial zero drift. And the initial scale factor ' can be updated by the current zero drift and the current scale factor. 4 is a flow chart 400 of a method for estimating a parameter value for an estimated odometer (e.g., the odometer 11 in the navigational projection system 108 shown in FIG. 1) in accordance with an embodiment of the present invention. As previously mentioned, the parameters of the odometer 110 can be used to reduce the linear velocity error measured by the odometer 11 。. The parameters of the odometer n〇 include: the number of output pulses corresponding to one wheel per wheel, the radius of rotation of the wheel, the scaling factor representing the radius of rotation of the wheel divided by the speed of the line, and the wheel rotation 0444-TW-CH Spec+CIaim(fiJed-20090929).doc 15
將結合圖1進行描述。 110的參數隨時間變化, 損所造成,故在導航過程 週期性地進行估計。圖4Description will be made in conjunction with FIG. 1. The parameters of 110 vary with time and are caused by losses, so the estimation is periodically performed during the navigation process. Figure 4
括單輪一周對應輸出脈衝數欠〇、 心〇〇〇、初始比例因數c^o、 既被供電後,GPS接收器 中,從里程表110中之一儲存 里程表110的初始參數,其包 數^>〇〇〇、初始車輪旋轉半徑 以及車輪旋轉半徑的初始靜態 誤差細)。在-實施財,儲存單元也可以設計在里程表 T之外。在步驟404中,里程表11〇接收來自奶接收 益10^之線速度^和角速度“,並接收來自迴轉儀112 之目别角速度Wdr 130。在步驟406中,里程表11〇在單位 時間内計數車輪脈衝數,接著,可根據方程式 (10)且基 於所計數出之車輪脈衝數、車輪一周對應輸出脈衝數 4^0、以及初始車輪旋轉半計算出一移動物件(例 如’一車輛)之線速度VGPS : V〇D〇=K〇D〇/K〇D〇0*2 7Γ ^RodoO----------------------( 1 〇) 表示里程表110所測量之車輛目前線速度Vgps。 表示單位時間内所計數出之車輪脈衝數。 在步驟408中’如果線速度Vgps大於一預設臨界值vPRE 且角速度Wdr 130小於一預設臨界值Wpre,表示車輛的運行 狀態正常’則可在下一步驟410中用於估計里程表no 的參數值。在步驟408中,如果線速度Vgps不大於預設臨 界值V咖或角速度Wdr13〇不小於預設臨界值Wm,表示車 444 TW-CH Spec+Claim(filed-20090929).doc 16 輪的運行狀態異常,則流程400返回至步驟404。 &步驟410中,GPS接收器102所測量的線速度VCPS、 里程表110在步驟406中所測量的線速度、初始比例因 &ccoo〇、以及車輪旋轉半徑的初始靜態誤差办加則被發送至 里程表110中的卡爾曼濾波器140,用於估計里程表110 的^數值。在一實施例中,卡爾曼濾波器140可用於估計 目月·】比例因數c〇〇〇以及車輪旋囀半徑的目前靜態誤差 deltaR ° 在步驟412中,可根據方程式(丨丨)計算目前車輪旋 轉半徑: ^odo C0D〇 ^ q ^ deltaR--------------------(11) 及〇〇〇表示目前的車輪旋轉半徑。表示目前比例因 數。办/toi?表示車輪旋轉半徑的目前靜態誤差表示里 程表110所測量之車輛線速度^ 表示車輛的初始車輪 旋轉半徑。 在步騾414中,可根據方程式(12)並基於目前的車 輪旋轉半徑7?咖、單位時間内所計數出之車輪脈衝數、 以及車輪一周對應輸出脈衝數尤〇〇〇0,修正由里程表η〇所 測量出之線速度匕^: ^〇d〇 ~2 7Γ ^Rodo ^Kodo/Kodo〇-----------------------(12) 之後,修正後的線速度匕如即可作為車輛之線速度VDR 128被發送至航海推算模組114中。 此外,待步驟410估計目前比例因數心^和目前靜態 誤差办之參數值後,且在步驟412中計算目前的車輪旋 轉半徑之後,在步驟416中,儲存在儲存單元中之里 0444-TW-CH Spec+Claim(filed-20090929).doc 17 =表110之初始參數(包含:初始比例因數、〇、初始靜 怎誤差办如仙、以及初始車輪旋轉半徑々咖0)可每隔—段時 ,(例如’30分鐘)’分別更新為目前比例因數^、目前 靜態誤差制⑽、以及目前的車輪旋轉半徑λ000。 圖5所示為根擄本發明一實施例由Gps&DR導航系統 (例如,圖1中所示之GPS&DR整合導航系統1〇〇)所執行 之操作流程500 〇圖5將結合圖1和圖2進行描述。 待GPS&DR整合導航系統100被供電後,在步驟5〇2 中,GPS接收器1〇2根據多個衛星信號產生Gps導航資訊 U6。在步驟5〇4令,卡爾曼濾波器144降低Gps導航資 訊11^中的雜訊。在步驟506中,卡爾曼濾波器144根據 衛星信號的載波雜訊比(CN0)以及GPS接收器1〇2測量 得到之車輛線速度VGPS,判斷接收到之衛星信號的可靠度。 、,如果在一&時間内(例如,9〇秒),車輛線速度 的平均值vGPS_AVER大於一預設速度VpRE (例如,6m/s),且具 有載波雜訊比大於一預定臨界值(例如,3〇db_hz)之衛 星仏號個數大於一預定值(例如,3個),則可認定接收到 之衛星信號為可靠的。因此,在步驟5〇8中,可採用經由 卡爾曼濾波器144修正過之GPS導航資訊116更新航海推 算系統108中之參考位置和方位。 如果在—段時_ ’車輛線速度^的平均值V_R 不大於一預設速度VpRE (例如,6m/s),或具有載波雜訊比 大於一預定臨界值(例如,30db-hz)之衛星信號個數不 大於一預定值(例如,3個),則可認定接收到之衛星信號 為不可靠的。因此,在步驟510中,可採用前一筆dr導The initial parameters of the odometer 110 are stored in one of the odometers 110 from the odometer 110 in the GPS receiver after the single-round one-way corresponding output pulse number 〇, heart palpitations, initial scale factor c^o, and after being powered. The number ^>〇〇〇, the initial wheel rotation radius and the initial static error of the wheel rotation radius are fine). In the implementation of the financial, the storage unit can also be designed outside the odometer T. In step 404, the odometer 11 receives the line speed and angular velocity "from the milk receiving benefit 10" and receives the eye velocity Wdr 130 from the gyroscope 112. In step 406, the odometer 11 is within unit time. Counting the number of wheel pulses, and then calculating a moving object (eg, a vehicle) based on equation (10) and based on the number of wheel pulses counted, the number of corresponding output pulses per wheel of the wheel 4^0, and the initial wheel rotation half. Line speed VGPS : V〇D〇=K〇D〇/K〇D〇0*2 7Γ ^RodoO----------------------( 1 〇) Indicates the current line speed Vgps of the vehicle measured by the odometer 110. Indicates the number of wheel pulses counted per unit time. In step 408, 'if the line speed Vgps is greater than a predetermined threshold vPRE and the angular velocity Wdr 130 is less than a predetermined threshold The value Wpre, indicating that the running state of the vehicle is normal, may be used to estimate the parameter value of the odometer no in the next step 410. In step 408, if the line speed Vgps is not greater than a preset threshold value V or angular velocity Wdr13 〇 not less than The preset threshold Wm, which means the car 444 TW-CH Spec+Claim(filed-20090929).do If the operating state of the c16 wheel is abnormal, the process 400 returns to step 404. & Step 410, the line speed VCPS measured by the GPS receiver 102, the line speed measured by the odometer 110 in step 406, the initial ratio factor & The initial static error of the ccoo 〇 and wheel radius of rotation is sent to the Kalman filter 140 in the odometer 110 for estimating the value of the odometer 110. In one embodiment, the Kalman filter 140 Can be used to estimate the current month ·] scale factor c 〇〇〇 and the current static error deltaR ° of the wheel rim radius. In step 412, the current wheel radius of rotation can be calculated according to the equation (丨丨): ^odo C0D〇^ q ^ deltaR --------------------(11) and 〇〇〇 denote the current wheel rotation radius. Indicates the current scale factor. Do/toi? indicates the current static of the wheel's radius of rotation. The error indicates that the vehicle line speed measured by the odometer 110 represents the initial wheel rotation radius of the vehicle. In step 414, it can be counted according to equation (12) and based on the current wheel rotation radius 7 Number of wheel pulses, to The number of output pulses corresponding to the wheel in a week is especially 0, and the linear velocity measured by the odometer η〇 is corrected. :^: ^〇d〇~2 7Γ ^Rodo ^Kodo/Kodo〇--------- -------------- (12) Thereafter, the corrected line speed can be transmitted to the navigation estimation module 114 as the vehicle line speed VDR 128, for example. In addition, after step 410 estimates the current scale factor and the current static error parameter value, and after calculating the current wheel rotation radius in step 412, in step 416, stored in the storage unit 0044-TW- CH Spec+Claim(filed-20090929).doc 17=The initial parameters of Table 110 (including: initial scale factor, 〇, initial static error, such as 仙, and initial wheel radius of rotation 々 0 0) can be every other time , (for example, '30 minutes'' updated to the current scale factor ^, the current static error system (10), and the current wheel rotation radius λ000. FIG. 5 is a flowchart showing an operation performed by a Gps&DR navigation system (for example, the GPS&DR integrated navigation system shown in FIG. 1) according to an embodiment of the present invention. FIG. 5 will be combined with FIG. And FIG. 2 is described. After the GPS&DR integrated navigation system 100 is powered, in step 5〇2, the GPS receiver 1〇2 generates GPS navigation information U6 based on a plurality of satellite signals. In step 5〇4, the Kalman filter 144 reduces the noise in the GPS navigation information 11^. In step 506, the Kalman filter 144 determines the reliability of the received satellite signal based on the carrier noise ratio (CN0) of the satellite signal and the vehicle line speed VGPS measured by the GPS receiver 1〇2. If, within one & time (eg, 9 seconds), the average value of the vehicle line speed vGPS_AVER is greater than a preset speed VpRE (eg, 6 m/s), and the carrier noise ratio is greater than a predetermined threshold ( For example, if the number of satellite apostrophes of 3〇db_hz) is greater than a predetermined value (for example, 3), it can be determined that the received satellite signal is reliable. Therefore, in step 5-8, the reference position and orientation in the navigational estimation system 108 can be updated using GPS navigation information 116 corrected via the Kalman filter 144. If the average value V_R of the vehicle line speed ^ is not greater than a preset speed VpRE (for example, 6 m/s), or a satellite having a carrier noise ratio greater than a predetermined threshold (for example, 30 db-hz) If the number of signals is not greater than a predetermined value (for example, three), it can be determined that the received satellite signal is unreliable. Therefore, in step 510, the previous dr guide can be used.
S 0444-TW-CH Spec+Claim(filed-20090929).doc 18 1379995 航資訊132更新航海推算系統⑽中之參考 ^ 器測= 二 算系統1〇8透過多個移動感立應 詞置移動物件的轉#訊,並透 ^ 位置及方位計算⑽導航資訊132透過“移動貝訊和參考 在步驟514中,權重模組1〇4計算咖導 的權重和DR導航資訊132的權重。在步驟516中,卡爾 曼滤波器⑽可猶GPS導航資訊116的權重和 貧訊132的權重,整合Gps導航資訊116和⑽導航 132,進而得到觀測資訊。在步驟518中,卡爾曼遽波器 106透過整合觀測資訊與前一筆導航資訊,進S 0444-TW-CH Spec+Claim(filed-20090929).doc 18 1379995 The navigation information 132 updates the reference in the navigation calculation system (10) ^ Measure = two calculation system 1 〇 8 through a number of mobile sensitivities to move objects Turning to the message, and calculating the location and orientation (10) navigation information 132 by "moving the beacon and reference in step 514, the weight module 1〇4 calculates the weight of the coffee guide and the weight of the DR navigation information 132. At step 516 The Kalman filter (10) can calculate the weight of the GPS navigation information 116 and the weight of the poor 132, integrate the GPS navigation information 116 and (10) the navigation 132 to obtain the observation information. In step 518, the Kalman chopper 106 is integrated. Observation information and previous navigation information
的導航資訊。 异目月J 因此’GPS&DR整合導航系統1〇〇包括-奶接收器 ⑽根據户個衛星信號產生移動物件的奶導航 HGPS&DR整合導航系統還包括一航海推算系統1〇8°, 透過整合移動物件的移動資訊以及參考位置和方位進而 ,算移動物件賴導航資訊132。若魅㈣被認定為可 靠’則採用GPS導航資訊ι16更新航海推算系統1〇8令之 參考位置和方位。若衛星信號被認定為不可靠則採用前 週期中之DR導航資訊132更新航海推算系統108中之 參考位置和方位。此外,可採用多個移動感應器測量移動 物件的移動資訊。GPS接收器1〇2所接收到之線速度和角 速度可被輸入至航海推算系統108,以估計移動感應器的 參數,並根據參數修正所測量的移動資訊。因此,當衛星 仏號被認定為不可靠時,航海推算系統1〇8的最新參數可 用於平滑GPS定位和航海推算定位間的切換。 _ 0444-TW-CH Spec+Claim(filed'20090929).d< oc 19 1379995 GPS&DR整合導航系統100還包括卡爾曼滤波器1 〇6, 其可根據GPS導航資訊116的權重和DR導 權重,整細導航資訊,DR導航資 == 异導航貢訊。權重模組104可根據衛星信號之位置精度因 子(PDOP)和載波雜訊比(CN0),進而計算Gps導航資訊 116的權重和DR導航資訊132的權重。 上文具體實施方式和附圖僅為本發明之常用實施 例。顯然,在*麟__請專利朗所界定的本發明精 神和保護範圍的前提下可以有各種增補、修改和替換。本 技術領域中具有通常知識者應該理解,本發明在實際應用 :可根據具體的&境和工作要求在不背離發明準則的前 提下在形式、結構、佈局、比例、材料、元素、元件及其 它方面有所變化。因此’在此披露之實_僅用於說明: 非限制,本發明之範圍由後附申請專利範圍及其合法均等 物界定’而不限於此前之描述。 【圖式簡單說明】 〜以下結合附圖和具體實施例對本發明的技術方法進 行詳細的描述,以使本發明的特徵和優點更為明顯。其中: 圖1所不為根據本發明一實施例全球定位系統與 推算(GPS&DR)整合導航系統方塊圖。 圖2所示為根據本發明一實施例之更新航 的參考位置和方位之流程。 异糸統 圖3所不為根據本發明一實施例之估計迴 之方法流程。 > 值 0444-TW-CH Spec+Claim(filed-20〇9〇929).doc 20 1379995 圖4所不為根據本發明一實施例之估計里 之方法流程。 狂衣,数值 圖5所示為根據本發明一實施例由全球 海推算⑽膽合導航系統所執行之操作流=、航 【主要元件符號說明】 100 .全球定位系統與航海推算(GPS&DR)整合導航 系統 102:GPS接收器Navigation information. Diverse Moon J therefore 'GPS & DR integrated navigation system 1 〇〇 includes - milk receiver (10) based on the satellite signal generated by the mobile satellite milk navigation HGPS & DR integrated navigation system also includes a navigation calculation system 1 〇 8 °, through Integrating the movement information of the moving object with the reference position and orientation, and then calculating the moving object 132. If the charm (4) is deemed to be reliable, then the GPS navigation information ι16 is used to update the reference position and orientation of the navigation calculation system. If the satellite signal is deemed unreliable, the reference position and orientation in the navigational projection system 108 is updated using the DR navigation information 132 in the previous cycle. In addition, multiple motion sensors can be used to measure the movement information of moving objects. The linear velocity and angular velocity received by the GPS receiver 1〇2 can be input to the marine estimation system 108 to estimate the parameters of the motion sensor and correct the measured movement information based on the parameters. Therefore, when the satellite nickname is deemed unreliable, the latest parameters of the maritime projection system 〇8 can be used to smooth the switching between GPS positioning and navigational estimation. _ 0444-TW-CH Spec+Claim(filed'20090929).d< oc 19 1379995 The GPS&DR integrated navigation system 100 further includes a Kalman filter 1 〇6, which can be based on the weight of the GPS navigation information 116 and the DR weight , fine navigation information, DR navigation resources == different navigation Gongxun. The weight module 104 can calculate the weight of the GPS navigation information 116 and the weight of the DR navigation information 132 based on the position accuracy factor (PDOP) and the carrier noise ratio (CN0) of the satellite signal. The above detailed description and the drawings are merely illustrative of the common embodiments of the invention. Obviously, there may be various additions, modifications and substitutions under the premise of the spirit and scope of the invention as defined by the patent. It should be understood by those of ordinary skill in the art that the present invention can be applied in a practical manner: in terms of specific & and work requirements, without departing from the inventive principles, in terms of form, structure, layout, proportion, materials, elements, components and Other aspects have changed. Therefore, the disclosures herein are for illustrative purposes only and not for limitation, the scope of the invention is defined by the scope of the appended claims and their legal equivalents. BRIEF DESCRIPTION OF THE DRAWINGS The technical method of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. Wherein: FIG. 1 is a block diagram of a global positioning system and a computing (GPS & DR) integrated navigation system according to an embodiment of the invention. 2 is a flow chart for updating a reference position and orientation of a navigation according to an embodiment of the present invention. The different method of Figure 3 is not a method flow for estimating back according to an embodiment of the present invention. > Value 0444-TW-CH Spec+Claim(filed-20〇9〇929).doc 20 1379995 Figure 4 is not a flow of the method in the estimation according to an embodiment of the present invention.狂衣, Numerical Figure 5 shows the operational flow performed by the global sea (10) bile navigation system according to an embodiment of the invention. ??? [Main component symbol description] 100. Global positioning system and navigation calculation (GPS & DR Integrated navigation system 102: GPS receiver
104 :權重模組 106 :卡爾曼濾波器/據波器 108 :航海推算(DR)系統 110 :里程表 112 :迴轉儀 114 :航海推算模組 116:GPS導航資訊 126 :位置和方位104: Weight Module 106: Kalman Filter/Data Filter 108: Navigational Estimation (DR) System 110: Odometer 112: Gyro 114: Navigation Estimation Module 116: GPS Navigation Information 126: Position and Orientation
128 :線速度 130 :角速度 132 : DR導航資訊 140、142、144 :卡爾曼濾波器 146 :導航資訊 148 :顯示幕 200 ·流程 202〜212 :步驟 0444-TW-CH Spec+Claim(filed-20090929).doc 21 1379995 300 :流程 302〜322 : 400 :流程 402〜416 : 500 :流程 502〜518 : 步驟 步驟 步驟 0444-TW-CH Spec+Claim(filed-20090929).doc 22128: line speed 130: angular velocity 132: DR navigation information 140, 142, 144: Kalman filter 146: navigation information 148: display screen 200 • flow 202 to 212: step 0044-TW-CH Spec+Claim (filed-20090929 ).doc 21 1379995 300: Process 302~322: 400: Process 402~416: 500: Process 502~518: Step Step Step 0044-TW-CH Spec+Claim(filed-20090929).doc 22
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13374308P | 2008-07-02 | 2008-07-02 | |
US12/495,349 US8239133B2 (en) | 2008-07-02 | 2009-06-30 | Global positioning system and dead reckoning (GPSandDR) integrated navigation system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201003041A TW201003041A (en) | 2010-01-16 |
TWI379995B true TWI379995B (en) | 2012-12-21 |
Family
ID=41152392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098122362A TWI379995B (en) | 2008-07-02 | 2009-07-02 | Global positioning system and dead reckoning integrated navigation system and navigation method thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US8239133B2 (en) |
EP (1) | EP2141507B1 (en) |
JP (1) | JP5295016B2 (en) |
CN (1) | CN101762805B (en) |
TW (1) | TWI379995B (en) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7948769B2 (en) * | 2007-09-27 | 2011-05-24 | Hemisphere Gps Llc | Tightly-coupled PCB GNSS circuit and manufacturing method |
US7885745B2 (en) * | 2002-12-11 | 2011-02-08 | Hemisphere Gps Llc | GNSS control system and method |
US8686900B2 (en) | 2003-03-20 | 2014-04-01 | Hemisphere GNSS, Inc. | Multi-antenna GNSS positioning method and system |
US8594879B2 (en) * | 2003-03-20 | 2013-11-26 | Agjunction Llc | GNSS guidance and machine control |
US8190337B2 (en) * | 2003-03-20 | 2012-05-29 | Hemisphere GPS, LLC | Satellite based vehicle guidance control in straight and contour modes |
US8271194B2 (en) * | 2004-03-19 | 2012-09-18 | Hemisphere Gps Llc | Method and system using GNSS phase measurements for relative positioning |
US8634993B2 (en) | 2003-03-20 | 2014-01-21 | Agjunction Llc | GNSS based control for dispensing material from vehicle |
US8138970B2 (en) * | 2003-03-20 | 2012-03-20 | Hemisphere Gps Llc | GNSS-based tracking of fixed or slow-moving structures |
US8140223B2 (en) * | 2003-03-20 | 2012-03-20 | Hemisphere Gps Llc | Multiple-antenna GNSS control system and method |
US8265826B2 (en) | 2003-03-20 | 2012-09-11 | Hemisphere GPS, LLC | Combined GNSS gyroscope control system and method |
US9002565B2 (en) | 2003-03-20 | 2015-04-07 | Agjunction Llc | GNSS and optical guidance and machine control |
US8583315B2 (en) * | 2004-03-19 | 2013-11-12 | Agjunction Llc | Multi-antenna GNSS control system and method |
USRE48527E1 (en) | 2007-01-05 | 2021-04-20 | Agjunction Llc | Optical tracking vehicle control system and method |
US7835832B2 (en) * | 2007-01-05 | 2010-11-16 | Hemisphere Gps Llc | Vehicle control system |
US8311696B2 (en) | 2009-07-17 | 2012-11-13 | Hemisphere Gps Llc | Optical tracking vehicle control system and method |
US8000381B2 (en) | 2007-02-27 | 2011-08-16 | Hemisphere Gps Llc | Unbiased code phase discriminator |
US7808428B2 (en) * | 2007-10-08 | 2010-10-05 | Hemisphere Gps Llc | GNSS receiver and external storage device system and GNSS data processing method |
US20100161179A1 (en) * | 2008-12-22 | 2010-06-24 | Mcclure John A | Integrated dead reckoning and gnss/ins positioning |
US9002566B2 (en) * | 2008-02-10 | 2015-04-07 | AgJunction, LLC | Visual, GNSS and gyro autosteering control |
US8018376B2 (en) * | 2008-04-08 | 2011-09-13 | Hemisphere Gps Llc | GNSS-based mobile communication system and method |
US8217833B2 (en) * | 2008-12-11 | 2012-07-10 | Hemisphere Gps Llc | GNSS superband ASIC with simultaneous multi-frequency down conversion |
US8386129B2 (en) | 2009-01-17 | 2013-02-26 | Hemipshere GPS, LLC | Raster-based contour swathing for guidance and variable-rate chemical application |
US8085196B2 (en) * | 2009-03-11 | 2011-12-27 | Hemisphere Gps Llc | Removing biases in dual frequency GNSS receivers using SBAS |
US8401704B2 (en) * | 2009-07-22 | 2013-03-19 | Hemisphere GPS, LLC | GNSS control system and method for irrigation and related applications |
US8174437B2 (en) * | 2009-07-29 | 2012-05-08 | Hemisphere Gps Llc | System and method for augmenting DGNSS with internally-generated differential correction |
US8334804B2 (en) * | 2009-09-04 | 2012-12-18 | Hemisphere Gps Llc | Multi-frequency GNSS receiver baseband DSP |
US8649930B2 (en) | 2009-09-17 | 2014-02-11 | Agjunction Llc | GNSS integrated multi-sensor control system and method |
US8548649B2 (en) | 2009-10-19 | 2013-10-01 | Agjunction Llc | GNSS optimized aircraft control system and method |
US20110172887A1 (en) * | 2009-11-30 | 2011-07-14 | Reeve David R | Vehicle assembly control method for collaborative behavior |
US20110188618A1 (en) * | 2010-02-02 | 2011-08-04 | Feller Walter J | Rf/digital signal-separating gnss receiver and manufacturing method |
US8583326B2 (en) * | 2010-02-09 | 2013-11-12 | Agjunction Llc | GNSS contour guidance path selection |
TWI399521B (en) * | 2010-02-23 | 2013-06-21 | Htc Corp | Mobile navigation device |
JP5742450B2 (en) * | 2011-05-10 | 2015-07-01 | セイコーエプソン株式会社 | Position calculation method and position calculation apparatus |
EP2541197B1 (en) * | 2011-06-30 | 2014-08-27 | Furuno Electric Company Limited | Tightly coupled gps and dead-reckoning vehicle navigation |
CN102654582A (en) * | 2012-04-16 | 2012-09-05 | 东莞市泰斗微电子科技有限公司 | Combined navigation system and method |
CN102636165B (en) * | 2012-04-27 | 2015-02-11 | 航天科工惯性技术有限公司 | Post-treatment integrated navigation method for surveying and mapping track of oil-gas pipeline |
CN103675859A (en) * | 2012-09-10 | 2014-03-26 | 迈实电子(上海)有限公司 | Satellite navigation receiver and equipment as well as method for positioning satellite navigation receiver |
CN103454660B (en) * | 2012-12-28 | 2015-11-04 | 北京握奇数据系统有限公司 | A kind of vehicle positioning method and device |
CN103414547B (en) * | 2013-07-22 | 2017-10-10 | 大唐移动通信设备有限公司 | A kind of main website controls method, main website and the system of many slave stations |
CN103558617B (en) * | 2013-10-30 | 2017-01-18 | 无锡赛思汇智科技有限公司 | Positioning method and device |
CN104854428B (en) * | 2013-12-10 | 2018-12-14 | 深圳市大疆创新科技有限公司 | sensor fusion |
CN104898139A (en) * | 2014-03-07 | 2015-09-09 | 中兴通讯股份有限公司 | Vehicle positioning excursion-correcting method and device |
CN105980950B (en) | 2014-09-05 | 2019-05-28 | 深圳市大疆创新科技有限公司 | The speed control of unmanned vehicle |
CN105517666B (en) | 2014-09-05 | 2019-08-27 | 深圳市大疆创新科技有限公司 | Offline mode selection based on scene |
CN105492985B (en) | 2014-09-05 | 2019-06-04 | 深圳市大疆创新科技有限公司 | A kind of system and method for the control loose impediment in environment |
JP2016057126A (en) * | 2014-09-08 | 2016-04-21 | 富士通株式会社 | Electronic apparatus and traveling azimuth estimation program |
US9366540B2 (en) * | 2014-10-23 | 2016-06-14 | At&T Mobility Ii Llc | Facilitating location determination employing vehicle motion data |
CN104360366B (en) * | 2014-11-05 | 2017-02-08 | 中国科学院嘉兴微电子与系统工程中心 | Dead reckoning and GPS (global positioning system) combined positioning method |
CN104482933B (en) * | 2014-12-03 | 2017-12-29 | 北京航空航天大学 | A kind of method based on particle filter reckoning and WLAN integrated positioning |
CN104502942A (en) * | 2015-01-06 | 2015-04-08 | 上海华测导航技术有限公司 | System and method for positioning agricultural machinery based on satellite navigation and dead reckoning |
US9964648B2 (en) * | 2015-06-16 | 2018-05-08 | Insero LLC | Guidiance system and method based on dead reckoning positioning and heading augmented by GNSS and predictive path selection |
CN106170676B (en) | 2015-07-14 | 2018-10-09 | 深圳市大疆创新科技有限公司 | Method, equipment and the system of movement for determining mobile platform |
CN105180943B (en) * | 2015-09-17 | 2016-08-17 | 江苏中大东博信息科技有限公司 | Ship-positioning system and method |
CN105318877A (en) * | 2015-11-21 | 2016-02-10 | 广西南宁至简至凡科技咨询有限公司 | Embedded vehicle-mounted navigation system based on GPS or DR |
CN105571591A (en) * | 2015-12-15 | 2016-05-11 | 中国电子科技集团公司第二十六研究所 | Multi-information deep integration navigation micro-system and navigation method |
CN106896393B (en) * | 2015-12-21 | 2020-01-10 | 财团法人车辆研究测试中心 | Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device |
CN106041925A (en) * | 2016-05-30 | 2016-10-26 | 北京玄通海纳科技发展有限公司 | System for measuring advancing distance of pipeline robot |
JP6686985B2 (en) * | 2017-08-03 | 2020-04-22 | カシオ計算機株式会社 | Trajectory estimation device, trajectory estimation method, and trajectory estimation program |
CN107576327A (en) * | 2017-08-07 | 2018-01-12 | 西南技术物理研究所 | Varistructure integrated navigation system design method based on Observable degree analysis of Beidou double |
CN109782312A (en) * | 2017-11-10 | 2019-05-21 | 北京金坤科创技术有限公司 | A kind of adaptive outdoor positioning method of multi-source |
CN109932739A (en) * | 2017-12-15 | 2019-06-25 | 财团法人车辆研究测试中心 | The localization method of Adaptive Weight adjustment |
WO2019134104A1 (en) * | 2018-01-05 | 2019-07-11 | 深圳市沃特沃德股份有限公司 | Positioning method and device, and smartwatch |
CA3093839A1 (en) | 2018-03-14 | 2019-09-19 | Protect Animals with Satellites, LLC | Corrective collar utilizing geolocation technology |
DE102018206828A1 (en) | 2018-05-03 | 2019-11-07 | Continental Teves Ag & Co. Ohg | Vehicle speed dependent method for determining the position of a vehicle |
CN109443349A (en) * | 2018-11-14 | 2019-03-08 | 广州中海达定位技术有限公司 | A kind of posture Course Measure System and its fusion method, storage medium |
CN110095793B (en) * | 2019-04-10 | 2021-11-09 | 同济大学 | Automatic driving low-speed sweeper positioning method based on tire radius self-adaption |
CN110199961B (en) * | 2019-06-13 | 2024-05-28 | 浙江大学 | Multifunctional intelligent fishing boat capable of automatically avoiding obstacle and seeking trace for identification |
US11525926B2 (en) | 2019-09-26 | 2022-12-13 | Aptiv Technologies Limited | System and method for position fix estimation using two or more antennas |
CN112771411A (en) * | 2020-04-24 | 2021-05-07 | 深圳市大疆创新科技有限公司 | Positioning method, system and storage medium |
CN111562603B (en) * | 2020-06-30 | 2022-10-04 | 深圳摩吉智行科技有限公司 | Navigation positioning method, equipment and storage medium based on dead reckoning |
CN111811521A (en) * | 2020-07-09 | 2020-10-23 | 北京百度网讯科技有限公司 | Positioning method and device, electronic equipment, vehicle-end equipment and automatic driving vehicle |
CN113075713B (en) * | 2021-03-29 | 2024-06-18 | 北京理工大学重庆创新中心 | Vehicle relative pose measurement method, system, equipment and storage medium |
CN113821032A (en) * | 2021-09-17 | 2021-12-21 | 上海快仓自动化科技有限公司 | Positioning method, system, device and mobile equipment |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5311195A (en) * | 1991-08-30 | 1994-05-10 | Etak, Inc. | Combined relative and absolute positioning method and apparatus |
US5390124A (en) * | 1992-12-01 | 1995-02-14 | Caterpillar Inc. | Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system |
US5416712A (en) * | 1993-05-28 | 1995-05-16 | Trimble Navigation Limited | Position and velocity estimation system for adaptive weighting of GPS and dead-reckoning information |
EP0934506A4 (en) | 1997-04-07 | 2001-01-17 | Motorola Inc | Methods for gyro bias estimation using gps |
EP1218694B1 (en) * | 1999-09-16 | 2006-11-15 | Sirf Technology, Inc. | Navigation system and method for tracking the position of an object |
AU2002315595B2 (en) | 2001-06-04 | 2007-06-07 | Novatel Inc. | An inertial/GPS navigation system |
US7916070B2 (en) * | 2006-04-28 | 2011-03-29 | L-3 Communications Corporation | Tight coupling of GPS and navigation estimates with reducer or eliminated inertial measurement unit data |
US20080071476A1 (en) | 2006-09-19 | 2008-03-20 | Takayuki Hoshizaki | Vehicle dynamics conditioning method on MEMS based integrated INS/GPS vehicle navigation system |
US7512487B1 (en) * | 2006-11-02 | 2009-03-31 | Google Inc. | Adaptive and personalized navigation system |
JP2008116370A (en) * | 2006-11-06 | 2008-05-22 | Toyota Motor Corp | Mobile location positioning device |
-
2009
- 2009-06-30 US US12/495,349 patent/US8239133B2/en active Active
- 2009-07-01 EP EP09164294A patent/EP2141507B1/en not_active Not-in-force
- 2009-07-02 JP JP2009157766A patent/JP5295016B2/en active Active
- 2009-07-02 TW TW098122362A patent/TWI379995B/en not_active IP Right Cessation
- 2009-07-02 CN CN2009101495405A patent/CN101762805B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20100030470A1 (en) | 2010-02-04 |
JP5295016B2 (en) | 2013-09-18 |
CN101762805B (en) | 2012-09-05 |
JP2010014715A (en) | 2010-01-21 |
TW201003041A (en) | 2010-01-16 |
EP2141507B1 (en) | 2012-09-12 |
US8239133B2 (en) | 2012-08-07 |
CN101762805A (en) | 2010-06-30 |
EP2141507A1 (en) | 2010-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI379995B (en) | Global positioning system and dead reckoning integrated navigation system and navigation method thereof | |
US8756001B2 (en) | Method and apparatus for improved navigation of a moving platform | |
JP5270184B2 (en) | Satellite navigation / dead reckoning integrated positioning system | |
EP0870174B1 (en) | Improved vehicle navigation system and method using gps velocities | |
TW479145B (en) | Terrain navigation apparatus for a legged animal traversing terrain | |
US8159393B2 (en) | Systems and methods for synthesizing GPS measurements to improve GPS location availability | |
US20090115656A1 (en) | Systems and Methods for Global Differential Positioning | |
WO2014002211A1 (en) | Positioning device | |
TW200916730A (en) | Augmented navigation system and method of a moving object | |
US9927526B2 (en) | Systems and methods for position determination in GPS-denied situations | |
CN107121141A (en) | A kind of data fusion method suitable for location navigation time service micro-system | |
TW201411170A (en) | Satellite navigation receivers, apparatuses and methods for positioning | |
US20210258733A1 (en) | Method and system for determining and tracking an indoor position of an object | |
JP2014102137A (en) | Self position estimation device | |
US20190128674A1 (en) | Method and system for tracking and determining a position of an object | |
JP5994237B2 (en) | Positioning device and program | |
US20160349057A1 (en) | Multiple data sources pedestrian navigation system | |
TWM439800U (en) | Position estimation device for calibration of distance and direction | |
RU2539131C1 (en) | Strapdown integrated navigation system of average accuracy for mobile onshore objects | |
US20190104492A1 (en) | Cell Phone-Based Land Navigation Methods and Systems | |
Zhuang et al. | Automated estimation and mitigation of wireless time-delays in smartphones for a robust integrated navigation solution | |
GB2567887A (en) | Method and system for tracking and determining a position of an object | |
RU2419767C1 (en) | Gyro azimuth compass with automatically corrected latitude of fix | |
Thang et al. | Application of Extended and Linear Kalman Filters for an Integrated Navigation System | |
Konatowski et al. | Vehicle Positioning System Based on GPS and Autonomic Sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |