TWI379419B - Methods of achieving linear capacitance in symmetrical and asymmetrical emi filters with tvs - Google Patents

Methods of achieving linear capacitance in symmetrical and asymmetrical emi filters with tvs Download PDF

Info

Publication number
TWI379419B
TWI379419B TW98101483A TW98101483A TWI379419B TW I379419 B TWI379419 B TW I379419B TW 98101483 A TW98101483 A TW 98101483A TW 98101483 A TW98101483 A TW 98101483A TW I379419 B TWI379419 B TW I379419B
Authority
TW
Taiwan
Prior art keywords
insulating layer
semiconductor substrate
transient suppression
electromagnetic interference
doped regions
Prior art date
Application number
TW98101483A
Other languages
Chinese (zh)
Other versions
TW200943554A (en
Inventor
Moses Ho
Madhur Bobde
Mike Chang
Limin Weng
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/080,104 external-priority patent/US7863995B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW200943554A publication Critical patent/TW200943554A/en
Application granted granted Critical
Publication of TWI379419B publication Critical patent/TWI379419B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

1379419 . 12012年10月5日修正丨 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明一般涉及帶有包括瞬態抑制二極體(TVS)的電感 的濾波電路的電路結構及製造方法。更特別的是,本發 明涉及一種設置有增加了電容的電阻-電容(RC)或電感 -電容(LC)的濾波電路的優化的電路結構和製造方法, 用於對稱的雙向模組化的包括穩壓二極體和穩壓二極體 觸發雙極電晶體的瞬態抑制二極體(TVS)。 【先前技術】 ® [0002] 現有技術中設計及製造具有電阻-電容(RC)或電感-電 容(LC)的濾波電路的方法面臨著需要增加電容以達到 一定濾波效果的挑戰。為達到增加電容的目的,本技術 領域的普通技術人員的典型做法是增加連接區域。然而 ,由於應用本方法生產的器件進一步具有較大的晶片尺 寸或者在溝槽中具有更厚的氧化層,因此,會引起不必 要的器件設計以及性能的退化。 φ 除了這些技術挑戰之外,設計以及製造例如由瞬態抑制 二極體(T V S )和電磁干擾(Ε ΜI )慮波器組合而成的遽 波電路的現有技術仍然面臨著一個技術問題,就是由於 目前用於EM I濾波器的電容的變化使得濾波性能變得不可 靠。特別是如下文所要進一步敍述的那樣,通過偏壓的 變化以及包括光線和雜訊之類的若干環境影響都會感應 到電容的變化。對於音頻信號接收,當ΕΜΙ濾波器所表現 的性能不能被很精確地控制時,輸入信號接收的質量就 會受到負面影響。當操作環境狀態改變時,ΕΜΙ濾波器 中電容的變化或許會導致例如截止頻率這樣的信號接收 表單編號Α0101 第5頁/共32頁 13794191379419 . 1 October 5, 2012, revised invention, invention: [Technical Field] [0001] The present invention generally relates to a circuit structure of a filter circuit with an inductor including a transient suppression diode (TVS) and Production method. More particularly, the present invention relates to an optimized circuit structure and manufacturing method for a filter circuit provided with a resistor-capacitor (RC) or an inductor-capacitor (LC) with increased capacitance, for symmetrical bidirectional modularization including The regulated diode and the regulated diode trigger the transient suppression diode (TVS) of the bipolar transistor. [Prior Art] ® [0002] A method of designing and manufacturing a filter circuit having a resistor-capacitor (RC) or an inductor-capacitor (LC) in the prior art faces the challenge of increasing the capacitance to achieve a certain filtering effect. A typical practice for those of ordinary skill in the art is to increase the connection area for the purpose of increasing capacitance. However, since the device produced by the present method further has a larger wafer size or a thicker oxide layer in the trench, it causes unnecessary device design and degradation of performance. In addition to these technical challenges, the prior art of designing and fabricating chopper circuits such as a combination of a transient suppression diode (TVS) and an electromagnetic interference (Ε Μ I) filter still faces a technical problem, namely The filter performance becomes unreliable due to changes in the capacitance currently used for the EM I filter. In particular, as will be further described below, changes in capacitance are induced by changes in bias voltage and several environmental effects including light and noise. For audio signal reception, the quality of the input signal reception is negatively affected when the performance exhibited by the chirp filter is not accurately controlled. When the operating environment state changes, the change in capacitance in the ΕΜΙ filter may result in signal reception such as cutoff frequency. Form No. 1010101 Page 5 of 32 1379419

12012年1&月5日修正I 的特殊功能參數發生變化。因此,現在對於這個問題迫 切需要一個有效的解決方法。 特別的,瞬態抑制二極體(TVS)電路通常與電磁干擾( EMI )濾波器一起設置,用於實現音頻信號的接收。與12012 1 & 5th, the special function parameters of Amendment I changed. Therefore, there is an urgent need for an effective solution to this problem. In particular, transient suppression diode (TVS) circuits are typically placed with electromagnetic interference (EMI) filters for receiving audio signals. versus

EMI濾波器一起設置的TVS可以具有分別如第1A圖或第1B 圖中所示的對稱或非對稱結構。如圖所示的MI濾波器設 置有一個電阻-電容(RC)與電阻—電感(RL)的組合並 — 集成有結合的TVS» EMI濾波器和TVS積體電路作為一個 整體的器件設置,由此帶來的進步是與Tvs一起設置的 EMI濾波器具有更好的濾波性能。典型的,在低通濾波器 · 對800MHz至3GHz範圍内的蜂窩帶通信號(ceUular band signals)進行衰減時,其衰減至少可以達到 35dB。另外,這樣的器件具有低寄生電阻、電容和電感 在如第1A圖和第1B圖所示的與TVS一起設置的⑽丨濾波器 中,EM I濾波器所需的電容通常通過在遽波器中設置穩壓 二極體來提供,同時穩壓二極體具有固有的結電容❶因 此,應用於TVS的穩壓二極體中的二極體結電容也可以作 為EM I濾波器電容。然而,所設置的穩壓二極體的結電容 也是偏置電壓的函數。為達到如第1A圖和第1B圖所示的 EMI濾波器的設計意圖,對稱濾波器的偏壓為零伏特,不 對稱濾波器的偏歷為V c c / 2 ’其中,v c c為電源電壓。然 而’電容或許會隨偏壓而產生改變,而這會導致遽波器 的截止頻率隨著直流偏壓而變化,從而導致濾波性能的 不可靠。第1C圖和第1D圖所示的是對稱與非對稱濾波器 中的電容變化的大小與晶片級封裝(CSP)和雙列扁平無 表單編號A0101 第6頁/共32頁 1379419 12012年10月5日修正丨 引線(DFN,Dual Flat No Lead)封裝的直流偏壓之 間的函敫關係。 當對稱模組結構與對稱EMI濾波器如第1A圖所示一起設置 時,除了對依賴於直流偏壓的電容變化十分敏感之外, 二極體的結電容還對例如光線和嗓音類的環境情況非常 敏感,故而設置穩壓二極體來使用一個浮動連接。當EMI 與TVS集成的器件以晶片級封裝(CSP)封裝時,所設置 的集成EMI-TVS要求一個更高的電容耐受值約20%,以使 其在例如光線等環境情況發生變化時保持可靠的濾波性 • 能。 因此,提供一種新的優化的電路結構和製造方法以解決 上述的困難的需求在電路設計及器件製造領域依然存在 。特別是,提供新的優化的EMI濾波器與TVS組合從而可 以提供線性的可控的電容使所述的限制及困難可以得到 解決的需要仍然存在。 • [0003] 【号务明内容】 本發明的一個方面提供一種設置有RC和/或LC的濾波電路 ,例如集成有EM I濾波器的T VS保護電路。該濾波電路通 過提供具有可調節厚度的氮化及氧化層所組成的新的優 化的絕緣層,使電容值可以靈活增加以形成所要求的濾 波電容值,而無需增加晶片連接區域也無需增加氧化物 厚度。由此,上述常見的濾波電路所面臨的技術困難可 以得到解決。 本發明的另一個方面提供一種集成有EM I濾波器的TVS保 護電路,通過提供一種優化的器件結構以使輸入端與接 地端之間的總電容值實質上保持一個常量,從而使上述 表單編號A0101 第7頁/共32頁 1379419 12012年1!3月5日修正丨 的現有技術的所面臨的限制與困難得到解決。 特別的,本發明的一個方 、 的TVS雷路,勺扛s I 疋形成一個集成有EMI濾波器 的TVb電路,包括至少—個 輸入端和接地端之胃和若干電容並聯在 與接地端之間時,其中:電偏置載入在輸入端 保持-個固定值。 各所具有的總電容值總體上 本發明的另一個方面是在半 EMI濾波器的TVS電路,其 -开)成一個集成有 與半導雜襯底㈣作用;使之 時開設兩組填入絕緣材料和广功能’同 用-種氣化物(S1N)㈣夕阳石夕拇極的溝槽,並 ❹n# 3 4、、'邑緣層和-種氧化物(Si〇2)絕 緣層進彳于填充’使其且^ u Λ 0 2 s(金屬氧化物半導體)電容 的功能’其*栅極連接胁… 要至丨輪入端的MOS電容的數量實質上 等於柵極連接到接地終端 篁I貞 鸲之間的MOS電容的數量,從而, 當不同的偏壓載人在輸人端與接地端之間時,總電容值 實質上保持-個固定值。類似的,在帶有摻雜區域的器 件的輸出側形成兩個摻雜區域,具有穩壓二極體的功能 。兩組填人絕緣材料和多㈣栅極的溝槽,用—種氮化 物(Sl^4)絕緣層和—種氧化物(Si〇2)絕緣層進行填 充,所述溝槽被開設在摻雜區城作為M0S電容的功能,其 中栅極連接輸出端的M〇s電容的數量實質上等於柵極連接 接地端的MOS電容的數量,從而,當不同的偏壓載入在輸 出端與接地端之間時,總電容值實質上保持一個固定值 本發明的優選實施方式大體上公開了一種利用集成有電 磁干擾(EMI)據波器的瞬態抑制二極體(TVS)電路進 表單编號A0101 第8頁/共32頁 |2012年10月5日修正丨 行保護的電子器件。集成有EMI濾波器的TVS電路還包括 並聯在輸入端和接地端之間的至少一個穩壓二極體和若 干個電容,當不同的電壓偏置載入在輸入端與接地端時 ,其中的電容所具有的總電容值實質上保持在一個固定 值上。在一個典型實施方式中,EMI濾波器還包括一個對 稱的濾波器,該對稱濾波器中連接輸入端與連接接地端 的電容數量相同。在一個特殊的典型實施方式中,集成 有EMI濾波器的TVS由一個半導體襯底支持,若干個電容 包括開設在半導體襯底上的若干個淺溝槽’所述的淺槽 填入絕緣體材料,並填充有一氮化物(Si N )絕緣層 〇 4 一氧化物(S1 〇2 )絕緣層。在另一個典型實施方式中’ 集成有EMI濾波器的TVS由一個半導體襯底支持,EMI濾 波器還包括-個具有與開設在半導體襯底上的淺槽相同 數量的電容的對稱的慮波器,淺槽由—氮化物(w) 絕緣層和一氧化物(训2)絕緣層進行填充,並連^ 輸入端與接地端之間。在另_個典型實施方式中,集成 有EMI遽波器的TVS由一個半導體襯底支持其中,輸入 端形成於半導體襯底上的第—摻雜區域,接地端形成於 半導體襯底上的第二摻雜區域;半導體襯底還包括設置 於第-和第二摻雜區域之間的獨立深溝槽。在另一個典 型實施方式中,集成有EMI漆波器的TVS由-個具有第一 種導電形式的半導體襯底支持’輸人端形成於半導體襯 底上的第-摻雜區域,接地端形成於半導體襯底上的第 二摻雜區域’其中第一及第二摻雜區域由第二種導電形 式摻雜,借此,第—和第二穩壓二極體就可以形成在具 有第二種導電形式的第—及第二_區域與具有第一種 1379419 12012年10月5日修正| 導電形式的半導體襯底之間。 本發明進一步公開了一種集成有電磁干擾(EMI)濾波器 的瞬態抑制二極體(TVS)電路,該TVS電路由具有第一 種導電形式的半導體襯底支持。在對稱模組結構的情況 下,集成有EMI濾波器的TVS電路包括設置在底表面上的 接地端和設置在頂表面上的輸入及輸出端,半導體襯底 上設置有至少一個穩壓二極體和若干個電容,利用直接 電容耦合,而無需採用介入浮體區域的方法將接地端與 輸入及輸出端進行耦合。在一種典型實施方式中,集成 有EMI濾波器的TVS電路還包括兩個設置於第二種導電形 ® 式的材料中的具有第一種導電形式的橫向分隔的摻雜區 域,以此形成一個雙向模組化穩壓二極體。所連接的第 一摻雜區域形成輸入端,所連接的第二摻雜區域形成接 地端。另外,填入絕緣材料和多晶矽栅極且填充有一氮 化(Si3N4)絕緣層和一氧化(Si〇2)絕緣層的第一組溝 槽設置於第一摻雜區域,多晶矽柵極連接接地端。這樣 可以在輸入端與接地端之間形成第一組M0S電容。類似的 | ,填入絕緣材料和多晶矽柵極的第二組溝槽設置於第二 摻雜區域,多晶矽柵極連接輸入端。這樣可以在輸入端 與接地端之間形成第二組M0S電容,其與第一組溝槽M0S 電容相比具有相反的導電性。重複相同的設計以在輸出 與接地端之間形成穩壓二極體和M0S電容。另兩個設置於 第二種導電形式的材料中的具有第一種導電形式的橫向 分隔的摻雜區域,以此形成一個雙向模組穩壓二極體。 所連接的第四摻雜區域形成輸出端,所連接的第三摻雜 區域形成接地端《另外’填入絕緣材料和多晶妙棚·極的 表單編號A0101 第10頁/共32頁The TVS provided together with the EMI filter may have a symmetrical or asymmetrical structure as shown in FIG. 1A or FIG. 1B, respectively. The MI filter shown in the figure has a resistor-capacitor (RC) and resistor-inductor (RL) combination - integrated with the TVS» EMI filter and TVS integrated circuit as a whole device setup, The improvement is that the EMI filter set with Tvs has better filtering performance. Typically, in low-pass filters, the attenuation of ceUular band signals in the 800MHz to 3GHz range can be at least 35dB. In addition, such devices have low parasitic resistance, capacitance, and inductance. In the (10) 丨 filter set up with TVS as shown in Figures 1A and 1B, the capacitance required for the EM I filter is usually passed through the chopper. The voltage regulator diode is provided to provide, and the Zener diode has an inherent junction capacitance. Therefore, the diode junction capacitance used in the regulated diode of the TVS can also be used as the EM I filter capacitor. However, the junction capacitance of the regulated regulator is also a function of the bias voltage. To achieve the design intent of the EMI filter as shown in Figures 1A and 1B, the bias of the symmetric filter is zero volts, and the offset of the asymmetric filter is V c c / 2 ' where v c c is the supply voltage. However, the capacitance may change with the bias voltage, which causes the chopper's cutoff frequency to vary with the DC bias, resulting in unreliable filtering performance. Figure 1C and Figure 1D show the magnitude of the change in capacitance in a symmetric and asymmetric filter with wafer level package (CSP) and double-column flat no form number A0101 Page 6 of 32 Page 1379419 1 October 2012 On the 5th, the relationship between the DC bias voltages of the DFN (Dual Flat No Lead) package was corrected. When the symmetrical module structure is set together with the symmetrical EMI filter as shown in Figure 1A, in addition to being sensitive to changes in capacitance dependent on DC bias, the junction capacitance of the diode is also for environments such as light and hum. The situation is very sensitive, so set the regulator diode to use a floating connection. When EMI and TVS-integrated devices are packaged in a chip-level package (CSP), the integrated EMI-TVS is required to have a higher capacitance tolerance of approximately 20% to maintain it in environmental conditions such as light. Reliable filterability • Energy. Therefore, there is still a need to provide a new and optimized circuit structure and manufacturing method to solve the above-mentioned difficulties in the field of circuit design and device manufacturing. In particular, the need to provide new optimized EMI filters in combination with TVS to provide linear, controllable capacitance still allows for the limitations and difficulties that can be addressed. • [0003] One aspect of the present invention provides a filter circuit provided with RC and/or LC, such as a TVS protection circuit integrated with an EM I filter. The filter circuit provides a flexible capacitor value by providing a new optimized insulating layer with an adjustable thickness of nitride and oxide layers to form the required filter capacitor value without increasing the wafer connection area and increasing oxidation. Material thickness. Thus, the technical difficulties faced by the above conventional filter circuits can be solved. Another aspect of the present invention provides a TVS protection circuit integrated with an EM I filter, which provides the above-described form number by providing an optimized device structure such that the total capacitance value between the input terminal and the ground terminal is substantially constant. A0101 Page 7 of 32 Page 1379419 12012 1! The limitations and difficulties faced by the prior art of March 5 were resolved. In particular, the TVS lightning path of the invention, the scoop 扛 疋 I 疋 forms a TVb circuit integrated with an EMI filter, including at least one input and ground of the stomach and several capacitors in parallel with the ground In between, where: the electrical offset is loaded at the input to maintain a fixed value. The total capacitance value of each of the present invention is generally another aspect of the present invention in a TVS circuit of a semi-EMI filter, which is turned on and integrated into a semiconducting substrate (4); Material and wide function 'same use-species gasification (S1N) (four) sunset stone octagonal pole groove, and ❹n# 3 4, '邑 edge layer and - type oxide (Si〇2) insulation layer Fill the 'make and ^ u Λ 0 2 s (metal oxide semiconductor) capacitor function' its * gate connection threat... The number of MOS capacitors to the turn-in end is substantially equal to the gate connected to the ground terminal 篁I贞The number of MOS capacitors between turns, so that when different biases are carried between the input and ground, the total capacitance value remains substantially a fixed value. Similarly, two doped regions are formed on the output side of the device with doped regions, having the function of a voltage stabilizing diode. Two sets of trenches filled with insulating material and multiple (four) gates are filled with a nitride (Sl 4 ) insulating layer and an oxide (Si 〇 2 ) insulating layer, the trench being opened in the doping As a function of the M0S capacitor, the number of M〇s capacitors at the gate connection output is substantially equal to the number of MOS capacitors connected to the ground terminal, so that when different bias voltages are loaded at the output terminal and the ground terminal In the meantime, the total capacitance value substantially maintains a fixed value. A preferred embodiment of the present invention generally discloses a transient suppression diode (TVS) circuit using an integrated electromagnetic interference (EMI) data filter into form number A0101. Page 8 of 32 | October 5, 2012 Amendment to electronic devices protected by Minhang. The TVS circuit integrated with the EMI filter further includes at least one voltage stabilizing diode and a plurality of capacitors connected in parallel between the input end and the ground end, when different voltage offsets are loaded at the input end and the ground end, wherein The total capacitance value of the capacitor is substantially maintained at a fixed value. In a typical embodiment, the EMI filter further includes a symmetrical filter having the same number of capacitors connected to the input terminal. In a particular exemplary embodiment, a TVS integrated with an EMI filter is supported by a semiconductor substrate, and a plurality of capacitors include a plurality of shallow trenches formed on the semiconductor substrate, said shallow trenches being filled with an insulator material, It is filled with a nitride (Si N ) insulating layer 〇 4 oxide (S1 〇 2 ) insulating layer. In another exemplary embodiment, a TVS integrated with an EMI filter is supported by a semiconductor substrate, and the EMI filter further includes a symmetrical wave filter having the same number of capacitances as the shallow trenches formed on the semiconductor substrate. The shallow trench is filled with a nitride (w) insulating layer and an oxide (train 2) insulating layer, and is connected between the input terminal and the ground terminal. In another exemplary embodiment, the TVS integrated with the EMI chopper is supported by a semiconductor substrate, wherein the input terminal is formed on the first doped region on the semiconductor substrate, and the ground terminal is formed on the semiconductor substrate. A doped region; the semiconductor substrate further includes an independent deep trench disposed between the first and second doped regions. In another exemplary embodiment, the TVS integrated with the EMI painter supports a first doped region formed on the semiconductor substrate by the semiconductor substrate having the first conductive form, and the ground terminal is formed. a second doped region on the semiconductor substrate, wherein the first and second doped regions are doped by a second conductive form, whereby the first and second regulated diodes can be formed in the second The first and second regions of the conductive form are interposed between the semiconductor substrate having the first type of 1379419 1 October 5, 2012 modified | conductive form. The present invention further discloses a transient suppression diode (TVS) circuit integrated with an electromagnetic interference (EMI) filter supported by a semiconductor substrate having a first conductive form. In the case of a symmetrical module structure, the TVS circuit integrated with the EMI filter includes a ground terminal disposed on the bottom surface and input and output terminals disposed on the top surface, and the semiconductor substrate is provided with at least one voltage stabilizing diode Body and several capacitors, using direct capacitive coupling, without the need to intervene in the floating region to couple the ground to the input and output. In an exemplary embodiment, the TVS circuit integrated with the EMI filter further includes two laterally separated doped regions of the first conductive form disposed in the second conductive type of material to form a doped region. Two-way modular regulator diode. The connected first doped region forms an input and the connected second doped region forms a ground terminal. In addition, a first group of trenches filled with an insulating material and a polysilicon gate and filled with a nitrided (Si3N4) insulating layer and an oxidized (Si2) insulating layer are disposed in the first doped region, and the polysilicon gate is connected to the ground. . This creates a first set of MOS capacitors between the input and ground. Similarly, a second set of trenches filled with an insulating material and a polysilicon gate are disposed in the second doped region, and the polysilicon gate is connected to the input. This creates a second set of MOS capacitors between the input and ground that have opposite conductivities compared to the first set of trench MOS capacitors. Repeat the same design to form a Zener diode and MOS capacitor between the output and ground. The other two are disposed in a second conductive form of the material having a laterally separated doped region of the first conductive form to form a bidirectional module voltage stabilizing diode. The connected fourth doped region forms an output terminal, and the connected third doped region forms a ground terminal "additionally" filled with an insulating material and a polycrystalline porch. Form No. A0101 Page 10 of 32

|2012年10月5日修正I 第三組溝槽,由一氮化物(Si N )絕緣層和一氧化物 Si〇2)絕緣層進行填充’設置於第三摻雜區域,多晶矽 柵極連接輸出端。這樣可以在輸出端與接地端之間形成 第組電谷。類似的,填入絕緣材料和多晶石夕柵極的 第四組溝槽,由一氮化物(si N )絕緣層和一氧化物 Sl〇2)絕緣層進行填充,設置於第四摻雜區域,多晶石夕 柵極連接基地端。這樣可以在輸出端與接地端之間形成 第二組MOS電容,其與第一組溝槽MOS電容相比具有相反 的導電性。第二和第三摻雜區域都是接地端,並通過金 屬短接。 本領域的普通技術人員在結合各種附圖閱讀了以下的關 於本發明的優選實施方式的詳細敍述後,上述及其它的 本發明所述物件及改進都將是顯而易見的。 【實施方式】 第2圖所示為本發明中與組合有TVS的對稱EMI濾波器。與 TVS組合的對稱EMI濾波器由具有一N外延層115的!^ +襯底 110支援,同時顯示了位於左邊的輸入側以及在右邊的輸 出側。襯底的輪入側由P型摻雜物摻雜為第一體區域 120-1和第二體區域120_2。在第一摻雜體區域12〇1和 N外延層115之間形成穩壓二極體。另一個穩壓二 極體122-2形成於第二掺雜體區域12〇_2和|^外延層115之 間。所形成的第一體區域^卜丨具有第一連接摻雜區域 125-1和第二連接摻雜區域125_2用於電連接電極13〇1 和130-2從而在其中接收輸入電壓。第一體區域還具有多 個填入絕緣材料和多晶矽栅極的淺槽135_1 、1 3 5 - 2 和 135-3,作用相當於M〇s電容。溝槽電容、135_2 1379419|October 5, 2012 Revision I The third set of trenches, filled with a nitride (Si N ) insulating layer and an oxide Si 2 ) insulating layer, is placed in the third doped region, and the polysilicon gate is connected. Output. This creates a first set of valleys between the output and ground. Similarly, the fourth group of trenches filled with the insulating material and the polycrystalline silicon gate are filled with a nitride (si N ) insulating layer and an oxide S1 〇 2) insulating layer, and are disposed on the fourth doping. In the area, the polycrystalline shi gate is connected to the base end. This forms a second set of MOS capacitors between the output and ground that have opposite conductivity compared to the first set of trench MOS capacitors. The second and third doped regions are both grounded and shorted by metal. The above and other objects and modifications of the present invention will be apparent to those skilled in the <RTIgt; [Embodiment] Fig. 2 shows a symmetric EMI filter in combination with a TVS in the present invention. The symmetric EMI filter combined with the TVS is supported by a +^ substrate 110 having an N epitaxial layer 115, showing both the input side on the left and the output side on the right. The wheel-in side of the substrate is doped with a P-type dopant into a first body region 120-1 and a second body region 120_2. A Zener diode is formed between the first dopant region 12〇1 and the N epitaxial layer 115. Another Zener diode 122-2 is formed between the second dopant region 12?_2 and the epitaxial layer 115. The formed first body region has a first connection doping region 125-1 and a second connection doping region 125_2 for electrically connecting the electrodes 13〇1 and 130-2 to receive an input voltage therein. The first body region also has a plurality of shallow trenches 135_1, 1 3 5 - 2 and 135-3 filled with an insulating material and a polysilicon gate, which acts as an M〇s capacitor. Trench capacitance, 135_2 1379419

12012年1〇月5日倐正I 和135-3電連接接地端,所述的電連接是通過金屬觸點 140-1至140-3連接到設置於襯底頂層表面上的觸點金屬 145,而該觸點金屬再連接到接地端而完成的。所形成的 第二體區域120-2也具有第一連接摻雜區域12 5G-1和第 二連接摻雜區域125G-2用於電連接電極130G-1和 1 3 0G-2以連接接地電壓。第二體區域120-2還具有多個 填入絕緣材料和多晶矽柵極的淺槽135’ -1至135’ -3, 作用相當於MOS電容。溝槽電容135’ -1至135’ -3是分 別通過金屬觸點140’ -1至140’ -3連接到設置在襯底頂 層表面上的觸點金屬145,,從而電連接到輸入端的。兩 個獨立深溝槽150-1和150-2設置在第一和第二體區域 120-1和120-2之間。深溝槽150-1和150-2用於隔離目 的。該器件結構具有一橫向寄生PNP電晶體。在橫向pnp 的基區加入深溝槽可以明顯地減少寄生電晶體的增益, 從而去除任何不需要的電流路徑。 襯底的輸出側也由P型摻雜物摻雜為第一體區域170-;[和 第二體區域170-2。所形成的第一體區域170-1具有第一 連接摻雜區域17 5-1和第二連接摻雜區域175-2用於電連 接電極18G-1和180-2以提供輸出電壓。穩壓二極體 172 1形成在第一擦雜體區域170〜1和N -外延層115之間 。另一個穩壓二極體172-2形成於第二摻雜體區域i7〇_2 和N-外延層115之間》第一體區域還具有多個填入絕緣材 料和多晶矽柵極的淺槽185-1、185-2和185-3,作用相 當於MOS電容。溝槽電容分別通過金屬觸 點190-1至190-3連接到設置在襯底頂層表面上的觸點金 屬195電連接到接地端。所形成的第二體區域17〇_2也具 表單编號A0101 第12頁/共32頁 有弟一連接穆雜區域175G-1和第 12012年10月5日修正| 二連接摻雜區域175G-2 用於電連接電極180G’mG_2以連接接地電|。第二 體區域17G-2還具有多個填入絕緣材料和多晶石夕栅極的淺 槽185 1至185 -3’作用相當於M〇s電容。溝槽電容 185’ -1至185, -3分別通過金屬觸點19〇,丨至丨㈣, -3電連㈣設置在襯底頂層表面上料接金们95,,然 後電連接到輸出電壓。兩個接地體區12〇_2和17〇_2通過 金屬200短接。輸入和輸出端13〇和18〇通過一串聯電阻 205互連,電阻205是由多晶矽層於EMI_TVS器件的輸入 和輸出端之間形成的,作用相當於濾波電阻。兩個獨立 深溝槽150’ -1和150, -2設置於第一和第二體區域 170-1和170-2之間。深溝槽150, _H〇15〇, _2用於隔 離目的。該器件結構具有一橫向寄生pNp電晶體。在橫向 PNP的基礎區域加入深溝槽可以明顯地減少寄生電晶體的 所得,從而去除任何不需要的電流通路。 第2A圖所示是本發明的詳細實施方式,其_,M〇s電容, 也就是淺槽 135-1 至 135-3、135,-1 至 135,-3、 185-1至185-3和185,-1至185,_3,填充有多晶矽柵 極材料101和包括一氮化絕緣層1〇2和一氧化絕緣層1〇3 的組合絕緣層。氧化絕緣層103用於釋放在矽表面上的氮 化層的薄膜應力。由於具有包括一氮化絕緣層1〇2和一氧 化絕緣層的組合絕緣層,電容值就可以進一步增加而不 需要增加連接區域。如下表所示,矽氮化層的介電常數 要高於矽氧化層。因此,在薄膜厚度相同的情況下, M3N4可以提供更南的電容值。 1379419 [0005]12012, January 5, 倐I and 135-3 are electrically connected to the ground, and the electrical connection is connected to the contact metal 145 disposed on the top surface of the substrate through the metal contacts 140-1 to 140-3. And the contact metal is then connected to the ground to complete. The formed second body region 120-2 also has a first connection doping region 12 5G-1 and a second connection doping region 125G-2 for electrically connecting the electrodes 130G-1 and 1 3 0G-2 to connect the ground voltage. . The second body region 120-2 also has a plurality of shallow trenches 135'-1 to 135'-3 filled with an insulating material and a polysilicon gate, which function as a MOS capacitor. The trench capacitors 135'-1 to 135'-3 are connected to the contact metal 145 provided on the surface of the top layer of the substrate through the metal contacts 140'-1 to 140'-3, respectively, so as to be electrically connected to the input terminal. Two separate deep trenches 150-1 and 150-2 are disposed between the first and second body regions 120-1 and 120-2. Deep trenches 150-1 and 150-2 are used for isolation purposes. The device structure has a lateral parasitic PNP transistor. The addition of deep trenches in the base region of the lateral pnp can significantly reduce the gain of the parasitic transistor, thereby removing any unwanted current paths. The output side of the substrate is also doped with a P-type dopant as a first body region 170-; [and a second body region 170-2. The formed first body region 170-1 has a first connection doping region 175-1 and a second connection doping region 175-2 for electrically connecting the electrodes 18G-1 and 180-2 to provide an output voltage. The voltage stabilizing diode 172 1 is formed between the first etched body regions 170 to 1 and the N - epitaxial layer 115. Another Zener diode 172-2 is formed between the second dopant region i7〇_2 and the N- epitaxial layer 115. The first body region also has a plurality of shallow trenches filled with an insulating material and a polysilicon gate. 185-1, 185-2, and 185-3, functioning as MOS capacitors. The trench capacitors are electrically connected to the ground via contact metal 195 disposed on the top surface of the substrate via metal contacts 190-1 through 190-3, respectively. The formed second body region 17〇_2 also has a form number A0101, page 12/32 pages, a brother-connected MU region 175G-1, and a correction on October 5, 2012 | two-connected doped region 175G -2 is used to electrically connect the electrode 180G'mG_2 to connect the grounding power |. The second body region 17G-2 also has a plurality of shallow trenches 185 1 to 185 -3' filled with an insulating material and a polycrystalline gate, which acts as an M 〇 s capacitor. The trench capacitors 185'-1 to 185, -3 are respectively connected through the metal contacts 19, 丨 to 丨 (4), -3 (4) are disposed on the top surface of the substrate, and then electrically connected to the output voltage. . The two grounding body regions 12〇_2 and 17〇_2 are short-circuited by the metal 200. The input and output terminals 13A and 18B are interconnected by a series resistor 205 which is formed by a polysilicon layer between the input and output terminals of the EMI_TVS device and acts as a filter resistor. Two independent deep trenches 150'-1 and 150, -2 are disposed between the first and second body regions 170-1 and 170-2. Deep trenches 150, _H〇15〇, _2 are used for isolation purposes. The device structure has a lateral parasitic pNp transistor. The addition of deep trenches in the base region of the lateral PNP can significantly reduce the gain of parasitic transistors, thereby removing any unwanted current paths. Figure 2A shows a detailed embodiment of the present invention, where _, M 〇 s capacitors, that is, shallow slots 135-1 to 135-3, 135, -1 to 135, -3, 185-1 to 185-3 And 185, -1 to 185, -3, filled with a polysilicon gate material 101 and a combined insulating layer comprising a nitride insulating layer 1〇2 and an oxide insulating layer 1〇3. The oxidized insulating layer 103 serves to release the film stress of the nitride layer on the surface of the crucible. Since the combined insulating layer including a nitride insulating layer 1 2 and an oxidized insulating layer, the capacitance value can be further increased without increasing the connection area. As shown in the table below, the tantalum nitride layer has a higher dielectric constant than the tantalum oxide layer. Therefore, M3N4 can provide a souther capacitance value with the same film thickness. 1379419 [0005]

Si〇2 介電常數 3. 9 介電強度 107 氮化物(Si3N4)Si〇2 Dielectric constant 3. 9 Dielectric strength 107 Nitride (Si3N4)

[2〇12,1〇月5曰修正I Ί. 10 第2Β圖所示為,在保持由一氮化絕緣(Si3N4)層和—氧 化絕緣(Si〇2)層組合而成的絕緣層的總體厚度恒定的 情況下,溝槽電容的電容值隨著氮化層厚度的增加而增 加的情況。因此,在保持組合絕緣層總體厚度恒定的情 況下,可以通過調整氮化物絕緣層的厚度來方便地調整[2〇12,1〇月5曰修正I Ί. 10 Figure 2 shows the insulation layer that is composed of a combination of a nitrided insulation (Si3N4) layer and an oxidized insulation (Si〇2) layer. In the case where the overall thickness is constant, the capacitance value of the trench capacitor increases as the thickness of the nitride layer increases. Therefore, it is easy to adjust by adjusting the thickness of the nitride insulating layer while keeping the overall thickness of the combined insulating layer constant.

濾波電路的電容值。該濾波電路的靈活性和應用範圍可 以通過調整這樣的可調電容中氮化和氧化層的相應厚度 來繼續延伸及優化。 第3圖為相對於電壓的電容值的變化示意圖,即M〇s電容 的C-V圖。第3圖中所示的電容一電壓(C-V)圖是一種典 型的溝槽電容的C-V關係。電容形成於淺槽中的溝槽多晶 石夕之間。有一半的溝槽電容的柵極連接到輸入端,另一 半的溝槽電容的柵極連接到接地端。因此,C1代表連接 在輸入端和接地端之間的總電容值的一半,而C2代表連 接在輸入端和接地端之間的總電容值的另一半。電容值 C1和C2的變化如C-V曲線所示,彼此互為鏡像《兩個電容 值C1和C2的總和’即Ctotal=Cl+C2,保持在一個恒定 的值而與電壓的變化無關。濾波操作的對稱性是通過將 溝槽總數的一半連接到輸入端而餘下的連接到接地電壓 而達到的。 第4圖是本發明的優化器件結構中的與Tvs電路2〇〇組合的 非對稱EMI濾波器的側面剖視圖。與tVS電路2〇〇組合的 表單编號A0101 第14頁/共32頁 1379419 12012年10月5曰修正丨 EMI濾波器由一半導體襯底2〇1支援’半導體襯底2〇1具 有連接到接地電壓的底部電極205。如圖中所示,EMI濾 波器和TVS器件200具有位於左邊的輸入側和位於右邊的 輸出側。在輸入側,襯底210包括若干設置於由N +襯底 210支持的N-外延層215上的溝槽207-1、207-2和207_3 。帶有外延層21 5的溝槽207-1至207-3通過穿過絕緣層 230的金屬觸點265-1至265-3連接到輸入電壓。穩壓二 極體通過使用一個由橫向穩壓二極體觸發的垂直NPN電晶 體來實現。NPN集電極由N +摻雜層255實現,基極由p摻 雜層240實現。發射極由N +摻雜襯底210實現。NPN的觸 發由形成於N +集電極255和P基極240之間的橫向穩壓二 極體實現。P型體區的表面摻雜通過使用分離的淺p型植 入進行調整,以控制穩壓擊穿電壓。橫向穩壓二極體的p 極端通過淺P +植入245與接地端短接。分離金屬225用於 連接淺P+植入以石 植入連接到襯底。 在輸出側,襯底2 及通過N +摻雜層220和N-外延層將淺P +The capacitance value of the filter circuit. The flexibility and range of application of the filter circuit can be extended and optimized by adjusting the corresponding thickness of the nitride and oxide layers in such a tunable capacitor. Figure 3 is a diagram showing the change in capacitance with respect to voltage, that is, the C-V diagram of the M〇s capacitor. The Capacitance-Voltage (C-V) plot shown in Figure 3 is a typical C-V relationship for trench capacitors. Capacitance is formed between the trenches in the shallow trenches. Half of the trench capacitor has its gate connected to the input and the other half of the trench capacitor has its gate connected to ground. Thus, C1 represents half of the total capacitance connected between the input and ground, and C2 represents the other half of the total capacitance connected between the input and ground. The capacitance values C1 and C2 are changed as shown by the C-V curve, and each other is mirrored "the sum of the two capacitance values C1 and C2", that is, Ctotal = Cl + C2, which is maintained at a constant value regardless of the voltage change. The symmetry of the filtering operation is achieved by connecting half of the total number of trenches to the input and the remaining connected to the ground voltage. Figure 4 is a side cross-sectional view of the asymmetric EMI filter in combination with the Tvs circuit 2A in the optimized device structure of the present invention. Form No. A0101 combined with tVS circuit 2〇〇 Page 14 of 32 pages 1379419 1 October 5, 2012 Revision 丨 EMI filter supported by a semiconductor substrate 2〇1 'The semiconductor substrate 2〇1 has a connection to The bottom electrode 205 of the ground voltage. As shown in the figure, the EMI filter and TVS device 200 have an input side on the left and an output side on the right. On the input side, substrate 210 includes a plurality of trenches 207-1, 207-2, and 207_3 disposed on N- epitaxial layer 215 supported by N+ substrate 210. The trenches 207-1 to 207-3 with the epitaxial layer 215 are connected to the input voltage through the metal contacts 265-1 to 265-3 passing through the insulating layer 230. The regulated diode is implemented by using a vertical NPN transistor that is triggered by a laterally regulated diode. The NPN collector is implemented by an N+ doped layer 255 and the base is implemented by a p doped layer 240. The emitter is implemented by an N+ doped substrate 210. The triggering of the NPN is achieved by a lateral voltage stabilizing diode formed between the N + collector 255 and the P base 240. Surface doping of the P-type body region is adjusted by using separate shallow p-type implants to control the regulated breakdown voltage. The p-extreme of the laterally regulated diode is shorted to ground by a shallow P+ implant 245. Separating metal 225 is used to connect the shallow P+ implant to the substrate with a stone implant. On the output side, substrate 2 and through the N + doped layer 220 and the N- epitaxial layer will be shallow P +

成,基極由P摻雜層240’ 〜1至265’ -3連接到輸出電 1 —個由橫向穩壓二極體觸發的 NPN集電極由N +摻雜層255’形 形成。發射極由N +摻雜襯底 210形成。NPN的觸發由形成於…集電極奶,和p基極 240’之間的橫向穩壓二極體實現。p型體區的表面摻雜 通過使用分離的淺P型植入進行調整,以控制穩壓擊穿電 表單編號A0101 第15頁/共% 1379419 12012年10月5日修正丨 壓。橫向穩壓二極體的P極端通過淺p +植入區域245,與 · 接地端短接。分離金屬225’用於連接淺p +植入以及通過 N +摻雜層220和N外延層將淺P +植入連接到襯底❶輸入和 輸出端250和250’通過一串聯電阻互連,電阻是由多晶 矽層在EMI-TVS器件200的輸入和輸出端之間形成的,作 用相當於濾波電阻。 同樣的’如第2A圖所示,功能為MOS溝槽電容的溝槽 207-1至207-3以及207’ -1至207’ -3由包括一氮化絕 緣層102和一氧化絕緣層1〇3的組合絕緣層進行填充,這 0 樣就無需要求增加晶片尺寸或增加絕緣層的總體厚度來 增加電容值。 在EMI-TVS集成器件中,輸入輸出端250和250’與接地 端205無需借助它們之間的浮體而直接進行電容耦合而。 當浮體連接於輸入輸出端和接地端之間,兩者之間的網 電容值是兩個接觸電容的串聯電容值,這就比獨立的接 觸電容值要小得多’因此,電容值需要更小的區域。由 於不需要浮動基底’而採用直接的電容耦合,所以就不 · 會對光線或其他環境情況的變化敏感。由於對稱的電容 值作為正負偏壓,濾波電容值就不再取決於直流偏壓。 恒定的電容值在實際應用中帶來特殊的進步,因為帶有 恒定電容值的器件可以通過變化範圍從+ Vcc到_Vcc的低 頻率的音頻/資料信號,覆蓋該器件額定電壓的全部範圍 。使用本器件濾波的高頻射頻信號將處於低頻信號的峰 值之上。與此相反,如果濾波電容值的變化是電壓的函 數則滤波益件性成的變化也取決於低頻音頻/資料信號 的電壓等級。在〇偏壓處,濾波器會對射頻信號產生高度 表單编號A0101 第16頁/共32頁 1379419 . 12012年10月5日修正1 衰減,但是’如果其電容值隨偏壓減少,其衰減將會在 + /-Vcc偏壓處大幅減少。通過設置一個與本發明中的 TVS電路200組合的非對稱EMI濾波器就可以解決這個困 難。 • 第5圖是電容值的變化與直流偏壓比較的示意圖。在仙3 器件處於蓄積模式中時,電容值形成於多晶矽溝槽與1^外 延層以及N +源極區域之間。電容值不會因電壓偏置而變 化,其原因是’對於所有的正偏壓來說,N外延層處於蓄 積模式,而且從柵極到襯底的電容值都是M〇s氧化物電容 值。 儘管依據現有的優選實施方式對本發明進行了敍述,但 應當認識到這樣的公開不能被解釋為限制。對於本領域 的技術人員而言’閱讀了上述公開内容後,多種變化及 修改都將是顯而易見的。相應的,應該認識到附後的權 利要求書應被理解為覆蓋了落入本發明真正精神與範圍 内的所有變化和修改。 • [0006] 【圖式簡單說明】 第1A圖和第1B圖是結合了 EM I濾波器的TVS電路的電路圖 〇 第1C圖和第1D圖所示是由直流偏壓的變化所引起的電容 變化的圖表。 第2圖所示為本發明中的結合有TVS電路的對稱龍1濾波器 的側面剖視圖。 第2A圖是一種典型實施方式的剖視圖,其中,所形成的 帶有多晶矽填充溝槽的MOS溝槽電容由一氮化物(Si N 3 4 )絕緣層和一氧化物(Si 〇)絕緣層組合而成的絕緣層 表單編號A〇l〇l 第Π頁/共32頁 1379419The base is connected to the output power by the P-doped layers 240' 〜1 to 265' -3. The NPN collector triggered by the lateral voltage stabilizing diode is formed by the N + doped layer 255'. The emitter is formed by an N+ doped substrate 210. The triggering of the NPN is achieved by a laterally regulated diode formed between the collector milk and the p-base 240'. Surface doping of the p-type body region is adjusted by using a separate shallow P-type implant to control the voltage breakdown breakdown. Form No. A0101 Page 15 / Total 1379419 1 October 5, 2012 Correction pressure. The P-extreme of the laterally regulated diode is shorted to the ground via the shallow p+ implant region 245. A separate metal 225' is used to connect the shallow p+ implant and a shallow P+ implant is connected to the substrate via the N+ doped layer 220 and the N epitaxial layer, and the input and output terminals 250 and 250' are interconnected by a series resistor, The resistor is formed by a polysilicon layer between the input and output of the EMI-TVS device 200, acting as a filter resistor. Similarly, as shown in FIG. 2A, the trenches 207-1 to 207-3 and 207'-1 to 207'-3 functioning as MOS trench capacitors include a nitride insulating layer 102 and an oxidized insulating layer 1. The composite insulating layer of 〇3 is filled, which eliminates the need to increase the wafer size or increase the overall thickness of the insulating layer to increase the capacitance value. In the EMI-TVS integrated device, the input and output terminals 250 and 250' and the ground terminal 205 are directly capacitively coupled without the aid of a floating body therebetween. When the floating body is connected between the input and output terminals and the ground terminal, the value of the mesh capacitance between the two is the series capacitance value of the two contact capacitors, which is much smaller than the independent contact capacitance value. Therefore, the capacitance value needs to be Smaller area. Since direct capacitive coupling is used without the need for a floating substrate, it is not sensitive to changes in light or other environmental conditions. Since the symmetrical capacitance value acts as a positive and negative bias, the filter capacitor value is no longer dependent on the DC bias. Constant capacitance values offer special advancements in practical applications because devices with constant capacitance values can cover the full range of rated voltages of the device by varying the low frequency audio/data signals ranging from + Vcc to _Vcc. The high frequency RF signal filtered by this device will be above the peak of the low frequency signal. In contrast, if the change in the value of the filter capacitor is a function of the voltage, the change in filter benefit is also dependent on the voltage level of the low frequency audio/data signal. At the 〇 bias, the filter generates a height form number for the RF signal. A0101 Page 16 of 32 Page 1379419. 1 October 5, 2012 Correction 1 attenuation, but 'if its capacitance decreases with bias, its attenuation It will be greatly reduced at the +/-Vcc bias. This difficulty can be solved by providing an asymmetric EMI filter combined with the TVS circuit 200 of the present invention. • Figure 5 is a schematic diagram comparing the change in capacitance with DC bias. When the device is in the accumulation mode, the capacitance value is formed between the polysilicon trench and the 1^ epitaxial layer and the N + source region. The capacitance value does not change due to the voltage bias. The reason is that for all positive biases, the N epitaxial layer is in the accumulation mode, and the capacitance value from the gate to the substrate is the M〇s oxide capacitance value. . Although the present invention has been described in terms of the preferred embodiments thereof, it should be understood that such disclosure is not to be construed as limiting. Various changes and modifications will become apparent to those skilled in the <RTIgt; Accordingly, it is to be understood that the appended claims are intended to cover all such modifications and modifications that fall within the true spirit and scope of the invention. • [0006] [Simple diagram of the diagram] Figures 1A and 1B are circuit diagrams of a TVS circuit incorporating an EM I filter. The 1C and 1D diagrams show the capacitance caused by the change in DC bias voltage. Changing chart. Fig. 2 is a side cross-sectional view showing a symmetrical dragon 1 filter incorporating a TVS circuit in the present invention. 2A is a cross-sectional view of an exemplary embodiment in which the formed MOS trench capacitor with a polysilicon filled trench is composed of a nitride (Si N 3 4 ) insulating layer and an oxide (Si 〇) insulating layer. Insulation layer form number A〇l〇l page / total 32 pages 1379419

12012年1〇月5日條正I 進行填充。 第2 B圖所示為在保持由一氣化物(s i 3 N 4 )絕緣層和一氧 化物(Si〇2)絕緣層組合而成的絕緣層的總體厚度不變 的情況下’溝槽電容的電容值隨著氮化物層厚度的增加 而增加的情況。 第3圖是電容值的變化與偏壓之間的函數的示意圖,由於 本發明中的EM I -TVS器件所提供的第一及第二電容的自然 屬性從而導致總電容值實質上保持恒定。 第4圖所示是本發明中的與TVS電路組合的非對稱em I渡波 器的側面剖視圖。 ® 第5圖是第4圖中的EM I -TVS器件的電容值相對於直流偏 壓的變化圖表。 【主要元件符號說明】 [0007] 101 多晶矽栅極材料 102 氮化絕緣層 103 氧化絕緣層 110 N +概底 · 115 、 215 N外延層 120-1 、 170-1 第一摻雜體區域 120-2 、 170-2 第一捧雜體區域 122-1、122-2、172-1、 穩壓二極體 172-2 125-1、125G-1、175-1、 第一連接摻雜區域 175G-1 125-2、125G-2、175-2、 第二連接摻雜區域 175G-2 表單编號A0101 第18頁/共32頁12012, the first day of the month, the fifth is filled with I. Figure 2B shows the 'trench capacitance' in the case where the overall thickness of the insulating layer composed of a combination of a vaporized (si 3 N 4 ) insulating layer and an oxide (Si 2 ) insulating layer is maintained. The capacitance value increases as the thickness of the nitride layer increases. Fig. 3 is a diagram showing a function between a change in capacitance value and a bias voltage, which causes the total capacitance value to remain substantially constant due to the natural properties of the first and second capacitances provided by the EM I - TVS device of the present invention. Fig. 4 is a side cross-sectional view showing an asymmetric em I ferrite combined with a TVS circuit in the present invention. ® Figure 5 is a plot of the capacitance of the EM I -TVS device in Figure 4 versus DC bias. [Main element symbol description] [0007] 101 polycrystalline germanium gate material 102 nitride insulating layer 103 oxide insulating layer 110 N + basic · 115, 215 N epitaxial layer 120-1, 170-1 first doped region 120- 2, 170-2 The first hand holding region 122-1, 122-2, 172-1, the voltage stabilizing diode 172-2 125-1, 125G-1, 175-1, the first connection doping region 175G -1 125-2, 125G-2, 175-2, second connection doped region 175G-2 Form No. A0101 Page 18 of 32

1379419 . 12012年10月5日修正I 130 、 250 輸入端 130-卜 130-2 、 130G-1 、 電連接電極 130G-2、180-1、180-2、 180G-1 ' 180G-2 135小 135-2、135-3、135 淺槽、溝槽電容 ’ -1、135’ -2、135’ -3、 185-1 、 185-2 、 185-3 、 185 ’ -1、185’ -2、185’ -3 140-卜 140-2、140-3、140 金屬觸點 ’ -1、140’ -3、190-1、 190-2、190-3、190,-1、 190’ -2 、 190, -3 、 265-1 、265-2 、 265-3 、 265’ -1 、265,-2、265,-3 145、145, 、195 觸點金屬 150小 150-2、150’ -1、 深溝槽 150, -2 180 、 250’ 輸出端 195, 連接金屬 200 金屬、TVS電路、TVS器件 205 電阻、底部電極、接地端 210 襯底 220 N +摻雜層 225 、 225, 分離金屬 230 、 230, 絕緣層 240 、 240’ P掺雜層、P基極 表單編號A0101 第19頁/共32頁 1379419 丨2012年10月5日修正丨 245、245’ 淺P +植入 255 、 255’ N +摻雜層、N +集電極1379419 . 1 October 5, 2012 Amendment I 130, 250 Input 130-Bu 130-2, 130G-1, Electrical connection electrode 130G-2, 180-1, 180-2, 180G-1 '180G-2 135 small 135-2, 135-3, 135 shallow groove, trench capacitor '-1, 135'-2, 135'-3, 185-1, 185-2, 185-3, 185 '-1, 185' -2 , 185' -3 140-b 140-2, 140-3, 140 metal contacts '-1, 140'-3, 190-1, 190-2, 190-3, 190, -1, 190'-2 , 190, -3, 265-1, 265-2, 265-3, 265' -1, 265, -2, 265, -3 145, 145, 195 Contact metal 150 small 150-2, 150' - 1. Deep trench 150, -2 180, 250' output 195, connection metal 200 metal, TVS circuit, TVS device 205 resistor, bottom electrode, ground terminal 210 substrate 220 N + doped layer 225, 225, separation metal 230 , 230, Insulation 240, 240' P-doped layer, P-base form number A0101 Page 19 / Total 32 pages 1379419 10 October 5, 2012 Amendment 丨245, 245' Shallow P + implant 255, 255' N + doped layer, N + collector

表單編號A0101 第20頁/共32頁Form No. A0101 Page 20 of 32

Claims (1)

1379419 . 12012年10月5日修ϋ 七, 1 ‘申請專利範圍: .一種電子器件,其受到集成有電磁干擾濾波器的雙向對稱 模組化瞬態抑制二極體電路保護,其中: 集成有電磁干擾濾波器的所述的瞬態抑制二極體還包 括並聯在輸入端與接地端之間的至少一個穩壓二極體與若 干個電容’其中,當在所述輸入端與所述接地端之間設置 反向偏壓時’所述輸入端與所述接地端之間的總電容值實 質上處於一個恒定值;並且 • 集成有電磁干擾滤波器的所述的瞬態抑制二極體由一 半導體襯底支持,所述的若干個電容包括若干開設在半導 體襯底上的填充有絕緣材料的淺槽,並且,所述的淺槽由 包括一氮化物絕緣層和一氧化物絕緣層組成的組合絕緣層 進行填充。 2 • 3 4 .如申請專利範圍第1項所述的電子器件,其中: 所述的電磁干擾濾波器還包括一個對稱濾波器,在該 對稱濾波器中,連接所述輸入端和連接所述接地端的電容 的數量是相同的。 .如申請專利範圍第1項所述的電子器件,盆中: 所述的電磁干擾濾波器還包括一個具有相同數量的開 設在半導體襯底上的淺槽的對稱濾波器,所述淺槽由所述 的包括-氣化物絕緣層和一氧化物絕緣層組成的組合絕緣 層進灯填充’其作用相當於連接在所述輸入端與所述接地 端之間的電容。 .如申請專利範圍第1項所述的電子器件,盆中: 集成有電磁干㈣波器的所述的瞬態抑制三極體由一半 表單編號A0101 第21頁/共32頁 _ 1__年10月5日修— v體襯底域,其_,所述的輸人㈣成純於—1 體襯底上的第-摻雜區域’所述接地端形成於所述半導體 襯底上的第二摻雜區域;並且 所述半導電襯底進-步包括設置在所述第一和第二推 雜區域之間的獨立深溝槽。 .如申請專利範圍第1項所述的電子器件,其中 集成有電磁干擾慮波器的所述的瞬態抑制二極體由一 具有第-種導電形式的半導體襯底支持,所述的輸入端形 成於位於半導體襯底上的第一推雜區域中,所述的接地端 形成於位於半導體襯底上的第二推雜區域中其中所述的 第-及第二摻雜區域以第二種導電形式捧雜,由此,第一 和第二穩壓二極體就可以形成於具有所述第二種導電形式 的第-和第二摻雜區域以及具有所述第—種導電形式的所 述半導體襯底之間。 .一種集成有電磁干擾濾波器的瞬態抑制:極體電路,其由 具有第-種導電形式的半導體襯底支持,所述的瞬態抑制 二極體電路進一步包括: 具有第二種導電形式的第-和第二摻雜區域與所述的 具有第-種導電形式的半導體襯底共同作用形成第一和第 二穩壓二極體,以及第-和第二組具有相同數量的開設於 所述的第-和第二摻雜區域上的由絕緣材料和半導體拇極 填充的淺槽,從而作為金屬氧化物半導體電容,所述的金 屬氧化物半導體電容由包括一氮化絕緣層和—氣化絕緣層 的組合絕緣層進行填充。 7.如申請專利範圍第6項所述的集成有電磁干擾漉波器的瞬 態抑制二極體還包括: 表單編號 AG1G1 I 22 I / # 32 I 10 11 12 表單編號A0101 設置在所述第-和第二捧雜區域之間的獨立深溝= .Γ請專利範圍第6項所述的集成有電磁干㈣波器的瞬 態抑制二極體還包括: 第金屬觸點的輪入端,第一金屬觸點將所述第 :編域電連接到輪入電壓,以及包括第二金屬觸點的 地端’第二金屬觸點將所述第二摻雜區域電連接到接地 電壓。 • Γ請專利範㈣6項所述的集成有電磁干擾舰器的瞬 慼抑制二極體還包括: ”有第—種導電形式的第三和第四摻雜區域與所述的 具有第一種導電形式的半導體襯底共同作用形成第三和第 四穩壓-極體,以及第三和第四組具有相同數量的開設於 ::的第_和第二摻雜區域上的由絕緣材料和半導體柵極 、的淺槽&amp;包括一氮化絕緣層和一氧化絕緣層的組合 絕緣層進行填充’料為結電容。 σ 飞;to月專利乾圍第9項所述的集成有電磁干擾遽、波器的瞬 態抑制二極體還包括: 置於所述第—和第二摻雜區域之間的獨立深溝槽。 2請專利範圍第9項所述的集成有電磁干擾據波器的瞬 態抑制二極體還包括: -包括第三金屬觸點的輸出端,第三金屬觸點將所述第 域電連接到輸出電壓,以及包括第四金屬觸點的 Μ觸點將所述第四捧雜區域電連接到接地 ’、中,所述的第四摻雜區域設置在所述的第二摻雜 區域旁邊。 ’、 ^種集成有電磁干擾缝器的單向模組化瞬態抑制二極體 第23頁/共32頁 1379419 12012年10月5日.修正| 電路,由具有第一種導電形式的半導體襯底支持,該單向 模組化瞬態抑制二極體電路還包括: 設置在所述半導體襯底底部的接地端以及設置在頂表 面的輸入及輸出端,半導體襯底上設置有至少一個穩壓二 極體和若干個電容,利用直接電容耦合,而無需採用介入 浮體區域的方法將接地端與輸入端及輸出端進行耦合;以 及 第一組淺槽,每個均由一包含氮化絕緣層和氧化絕緣 層組合的絕緣層進行填充,並且由絕緣材料和一多晶砂柵 極進行填充,而且連接到輸入端,從而在輸入端與所述接 ® 地端之間形成金屬氧化物半導體電容。 13 . 如申請專利範圍第12項所述的集成有電磁干擾濾波器的瞬 態抑制二極體還包括: 一個並聯在輸入與接地端之間的穩壓二極體,作為由 橫向二極體觸發的垂直NPN電晶體’ N P N電晶體的體區也 作為橫向二極體的電極,穿過分離的金屬觸點連接到襯底 14 . • 如申請專利範圍第12項所述的集成有電磁干擾濾波器的瞬 態抑制二極體還包括: 第二組淺槽,每個均由包含一氮化絕緣層和一氧化物 絕緣層的組合絕緣層進行填充,還由絕緣材料和一多晶矽 柵極填充,並連接輸出端,以此,在輸出端與所述接地端 之間形成金屬氧化物半導體電容。 15 . 如申請專利範圍第14項所述的集成有電磁干擾濾波器的瞬 態抑制二極體還包括: 一個並聯在輸出端與接地端之間的穩壓二極體,作為 表單编號A0101 第24頁/共32頁 1379419 12012年10月5日修正I 由橫向二極體觸發的垂直NPN電晶體,NPN電晶體的體區 也作為橫向二極體的電極,穿過分離的金屬觸點連接到襯 底。 16 一種通過集成有電磁干擾濾波器的瞬態抑制二極體電路來 保護電子器件的方法,包括: 通過將至少一個穩壓二極體與若干個電容並聯在輸入 端與接地端之間,來集成帶有所述的電磁干擾濾波器的瞬 態抑制二極體,同時,當在所述輸入端與所述接地端之間 設置反向偏壓時,所述輸入端與所述接地端之間的總電容 值實質上處於一個恒定值;並且 通過在所述的半導體襯底上開設若干個淺槽的方法在 半導體襯底上形成所述的若干個電容,在每個所述的淺槽 中,先用包含一氮化物絕緣層和一氧化物絕緣層的組合絕 緣層填充其淺槽邊牆,再用絕緣材料填充所述淺槽。 17 . 18 . 如申請專利範圍第16項所述的方法,其特徵在於,其中: 所述的集成帶有所述的電磁干擾濾波器的瞬態抑制二 極體的步驟還包括以下步驟:通過分別連接相同數量的電 容到所述的輸入端和所述的輸出端的方法來集成對稱電磁 干擾濾、波器。 如申請專利範圍第16項所述的方法,其中: 所述的集成帶有所述的電磁干擾濾波器的瞬態抑制二 極體的步驟還包括以下步驟:通過在所述的半導體襯底上 開設若干個淺槽的方法來形成所述的若干個位於半導體襯 底上的電容,然後用包含一氮化物絕緣層和一氧化物絕緣 層的組合絕緣層來填充每個所述溝槽的溝槽邊牆,並用絕 緣材料填充所述溝槽,分別連接相同數量的作用相當於電 表單編號A0101 第25頁/共32頁 1379419 12012年ίο月 5 日修正 I 容的開設在所述半導體襯底上的淺溝槽到所述的輸入端和 所述的輸出端,從而形成一個連接於所述瞬態抑制二極體 的對稱電磁干擾濾波器。 19 .如申請專利範圍第16項所述的方法,還包括: 在所述的半導體襯底上形成第一摻雜區域用以連接所 述的輸入端,以及在所述的半導體襯底上形成第二摻雜區 域用以連接所述的接地端,以及 在所述第一和第二摻雜區域之間形成位於所述半導體 襯底中的獨立深溝槽。 20 .如申請專利範圍第16項所述的方法,其中: φ 所述的並聯穩壓二極體與若干個電容的步驟還包括以 下步驟:在具有第一種導電形式的半導體襯底中形成具有 第二種導電形式的第一及第二摻雜區域的步驟,以此,在 所述的第-和第二摻雜區域與所述的半導體概底之間構成 兩個穩壓一極體,並開設若干個淺槽,然後用包含一氮化 物緣層和-氧化物絕緣層的組合絕緣層填充每個所述溝 槽的溝槽邊牆,並用絕緣材料填充所述溝槽,從而在所述 的第—和第二摻雜區域内形成若干個結電容,進一步將戶斤· 述的第-及第二換雜區域分別連接到所述輸入端和所述接 地端。 有寻利範圍第20項所述的方法,其中: =所述的f &amp;第二摻雜區域狀若干個溝槽的方法 還包括以下步驟:在所述的半 雜區域中開設相同數量的溝_ _及第-摻 ...,,χ, ^ #槽,攸而,當在所述輸入端與 所迹接地端之間設置反向 個恒定β 值實質上處於- 第26頁/ 表單編號Α0101 1379419 . 12012年10月5日修正丨 - 22 .如申請專利範圍第16項所述的方法,還包括: • 在所述的具有第一種導電形式的半導體襯底上形成具 有第二種導電形式的第三和第四摻雜區域,以此,在所述 的第三和第四摻雜區域與所述的半導體襯底之間構成第三 和第四穩壓二極體,並開設若干個淺槽,然後用包含一氮 化物絕缘層和一氧化物絕緣層的組合絕緣層填充每個所述 溝槽的溝槽邊牆,並用絕緣材料填充所述溝槽,從而在所 述的第三和第四摻雜區域内形成若干個結電容,進一步將 所述的第一及第二摻雜區域分別連接輸出端和所述接地端 23 .如申請專利範圍第22項所述的方法,其中: 在所述的第三及第四摻雜區域中開設若干個溝槽的方 法還包括以下步驟:在所述的半導體襯底上的第三及第四 摻雜區域中開設相同數量的溝槽,從而,當在所述輸出端 與所述接地端之間設置反向偏壓時,總電容值實質上處於 一個恒定值。 表單編號A0101 第27頁/共32頁1379419 . 1 October 5, 2012 Revision VII, 1 'Scope of application: An electronic device protected by a bidirectional symmetric modular transient suppression diode circuit integrated with an EMI filter, where: The transient suppression diode of the electromagnetic interference filter further includes at least one voltage stabilizing diode and a plurality of capacitors connected in parallel between the input terminal and the ground terminal, wherein when the input terminal and the grounding The total capacitance between the input terminal and the ground terminal is substantially at a constant value when a reverse bias is applied between the terminals; and • the transient suppression diode integrated with the electromagnetic interference filter Supported by a semiconductor substrate, the plurality of capacitors comprise a plurality of shallow trenches filled with an insulating material formed on the semiconductor substrate, and the shallow trenches comprise a nitride insulating layer and an oxide insulating layer The combined insulating layer is composed for filling. The electronic device of claim 1, wherein: the electromagnetic interference filter further comprises a symmetric filter, in the symmetric filter, connecting the input terminal and connecting the The number of capacitors at the ground is the same. The electronic device according to claim 1, wherein the electromagnetic interference filter further comprises a symmetric filter having the same number of shallow grooves formed on the semiconductor substrate, wherein the shallow groove is The combined insulating layer comprising a vapor-gas insulating layer and an oxide insulating layer is filled with a lamp which functions as a capacitance connected between the input terminal and the ground terminal. The electronic device according to claim 1, wherein the transient suppression triode integrated with the electromagnetic dry (four) wave is composed of half of the form number A0101 page 21 / total 32 pages _ 1__ year On October 5, the v-substrate domain is repaired, and the input (four) is pure to the first doped region on the -1 bulk substrate. The ground terminal is formed on the semiconductor substrate. a second doped region; and the semiconductive substrate further comprises a separate deep trench disposed between the first and second doped regions. The electronic device of claim 1, wherein the transient suppression diode integrated with an electromagnetic interference filter is supported by a semiconductor substrate having a first conductive form, the input The terminal is formed in a first dummy region on the semiconductor substrate, the ground terminal is formed in a second dummy region on the semiconductor substrate, wherein the first and second doped regions are second a conductive form, whereby the first and second voltage stabilizing diodes can be formed in the first and second doped regions having the second conductive form and having the first conductive form Between the semiconductor substrates. A transient suppression integrated with an electromagnetic interference filter: a polar body circuit supported by a semiconductor substrate having a first conductive form, the transient suppression diode circuit further comprising: having a second conductive form The first and second doped regions cooperate with the semiconductor substrate having the first conductive form to form the first and second voltage stabilizing diodes, and the first and second groups have the same number of openings a shallow trench filled by the insulating material and the semiconductor thumb electrode on the first and second doped regions, thereby serving as a metal oxide semiconductor capacitor, the metal oxide semiconductor capacitor comprising a nitride insulating layer and The combined insulating layer of the vaporized insulating layer is filled. 7. The transient suppression diode integrated with the electromagnetic interference chopper according to claim 6 of the patent application further includes: Form No. AG1G1 I 22 I / # 32 I 10 11 12 Form No. A0101 is set in the above - an independent deep trench between the second and the second mixed area = . The transient suppression diode integrated with the electromagnetic dry (four) waver described in claim 6 further includes: a wheeled end of the metal contact, A first metal contact electrically connects the first: field to a wheeling voltage, and a ground end comprising a second metal contact electrically connects the second doped region to a ground voltage. • The transient suppression diode integrated with the electromagnetic interference ship described in the sixth paragraph of the patent specification (4) further includes: “the third and fourth doped regions having the first conductive form and the first type The conductive semiconductor substrates cooperate to form third and fourth voltage stabilizing bodies, and the third and fourth groups have the same number of insulating materials and the first and second doped regions: The semiconductor gate, the shallow trench &amp; includes a combined insulating layer of a nitrided insulating layer and an oxidized insulating layer for filling the material as a junction capacitance. σ fly; to the integrated patent electromagnetic interference according to item 9 of the patent The transient suppression diode of the 遽, the waver further comprises: an independent deep trench disposed between the first and second doped regions. 2 The integrated electromagnetic interference data device according to the scope of claim 9 The transient suppression diode further includes: - an output including a third metal contact, the third metal contact electrically connecting the first domain to an output voltage, and a germanium contact including the fourth metal contact Four holdings of the electrical area are electrically connected to the grounding ', medium, said A fourth doped region is disposed beside the second doped region. ', a one-way modular transient suppression diode integrated with an electromagnetic interference slot device. Page 23 / Total 32 pages 1379419 12012 10 The fifth modification. The circuit is supported by a semiconductor substrate having a first conductive form, the one-way modular transient suppression diode circuit further comprising: a ground terminal disposed at the bottom of the semiconductor substrate and setting At the input and output ends of the top surface, at least one voltage stabilizing diode and a plurality of capacitors are disposed on the semiconductor substrate, and the direct current coupling is used, and the grounding end and the input end and the output end are not required to be used in the method of interposing the floating body region. Coupling; and a first set of shallow trenches, each filled with an insulating layer comprising a combination of a nitride insulating layer and an oxidized insulating layer, filled with an insulating material and a polysilicon gate, and connected to the input a metal oxide semiconductor capacitor is formed between the input terminal and the ground terminal. 13. The transient suppression diode integrated with the electromagnetic interference filter according to claim 12 The body further includes: a voltage stabilizing diode connected in parallel between the input and the ground, as a vertical NPN transistor triggered by the lateral diode, the body region of the NPN transistor also acts as an electrode of the lateral diode, passing through The separated metal contact is connected to the substrate 14. The transient suppression diode integrated with the electromagnetic interference filter according to claim 12 further includes: a second group of shallow grooves, each of which comprises one A combination insulating layer of a nitride insulating layer and an oxide insulating layer is filled, further filled with an insulating material and a polysilicon gate, and connected to the output end, thereby forming a metal oxide between the output end and the ground end The semiconductor capacitor 15. The transient suppression diode integrated with the electromagnetic interference filter according to claim 14 further includes: a voltage stabilizing diode connected in parallel between the output terminal and the ground terminal as a form No. A0101 Page 24 of 32 1379419 1 October 5, 2012 Revision I Vertical NPN transistor triggered by a lateral diode, the body region of the NPN transistor also acts as an electrode of the lateral diode, passing through the separation gold Contact to the substrate. 16 A method of protecting an electronic device by a transient suppression diode circuit integrated with an electromagnetic interference filter, comprising: by connecting at least one voltage stabilizing diode in parallel with a plurality of capacitors between the input terminal and the ground terminal Integrating a transient suppression diode having the electromagnetic interference filter, and simultaneously, when a reverse bias is applied between the input terminal and the ground terminal, the input terminal and the ground terminal The total capacitance value is substantially at a constant value; and the plurality of capacitors are formed on the semiconductor substrate by opening a plurality of shallow trenches on the semiconductor substrate, in each of the shallow trenches The shallow trench sidewall is first filled with a combined insulating layer comprising a nitride insulating layer and an oxide insulating layer, and the shallow trench is filled with an insulating material. 17. The method of claim 16, wherein: the step of integrating the transient suppression diode with the electromagnetic interference filter further comprises the steps of: A method of respectively connecting the same number of capacitors to the input terminal and the output terminal to integrate a symmetric electromagnetic interference filter and a wave filter. The method of claim 16, wherein: the step of integrating the transient suppression diode with the electromagnetic interference filter further comprises the step of: passing on the semiconductor substrate a plurality of shallow trenches are formed to form the plurality of capacitors on the semiconductor substrate, and then a trench of each of the trenches is filled with a combined insulating layer comprising a nitride insulating layer and an oxide insulating layer The side wall of the groove is filled with the insulating material, and the same number of functions are respectively connected to the electric form number A0101. Page 25/32 pages 1379419 12012 ίο月5日 Revision I is opened on the semiconductor substrate A shallow trench is applied to the input terminal and the output terminal to form a symmetric electromagnetic interference filter coupled to the transient suppression diode. 19. The method of claim 16, further comprising: forming a first doped region on the semiconductor substrate for connecting the input terminal, and forming on the semiconductor substrate A second doped region is used to connect the ground terminal, and a separate deep trench in the semiconductor substrate is formed between the first and second doped regions. The method of claim 16, wherein: the step of φ the parallel voltage stabilizing diode and the plurality of capacitors further comprises the step of: forming in a semiconductor substrate having the first conductive form; a step of having first and second doped regions in a second conductive form, whereby two stabilizing polar bodies are formed between the first and second doped regions and the semiconductor substrate And opening a plurality of shallow trenches, then filling the trench sidewalls of each of the trenches with a combined insulating layer comprising a nitride edge layer and an oxide insulating layer, and filling the trenches with an insulating material, thereby A plurality of junction capacitances are formed in the first and second doped regions, and the first and second impurity-changing regions are further connected to the input terminal and the ground terminal, respectively. The method of claim 20, wherein: the method of f &amp; second doped region-like plurality of trenches further comprises the step of: opening the same number in the semi-hetero-region Ditch _ _ and the first - doping ...,, χ, ^ #槽, ,, when the reverse constant β value is set between the input and the grounded ground is substantially at - page 26 / form The method of claim 16, wherein the method of claim 16 further comprises: • forming a second on the semiconductor substrate having the first conductive form Third and fourth doped regions in a conductive form, whereby third and fourth stabilizing diodes are formed between the third and fourth doped regions and the semiconductor substrate, and Opening a plurality of shallow trenches, then filling a trench sidewall of each of the trenches with a combined insulating layer comprising a nitride insulating layer and an oxide insulating layer, and filling the trenches with an insulating material, thereby Forming a plurality of junction capacitances in the third and fourth doped regions, further The first and second doped regions are respectively connected to the output end and the ground end 23. The method of claim 22, wherein: a plurality of the third and fourth doped regions are opened The method of trenching further includes the steps of: opening the same number of trenches in the third and fourth doped regions on the semiconductor substrate, such that when disposed between the output terminal and the ground terminal When reverse biased, the total capacitance value is essentially at a constant value. Form No. A0101 Page 27 of 32
TW98101483A 2008-04-01 2009-01-16 Methods of achieving linear capacitance in symmetrical and asymmetrical emi filters with tvs TWI379419B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/080,104 US7863995B2 (en) 2007-06-16 2008-04-01 Methods of achieving linear capacitance in symmetrical and asymmetrical EMI filters with TVS

Publications (2)

Publication Number Publication Date
TW200943554A TW200943554A (en) 2009-10-16
TWI379419B true TWI379419B (en) 2012-12-11

Family

ID=41156380

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98101483A TWI379419B (en) 2008-04-01 2009-01-16 Methods of achieving linear capacitance in symmetrical and asymmetrical emi filters with tvs

Country Status (2)

Country Link
CN (1) CN101552272B (en)
TW (1) TWI379419B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667817B (en) * 2009-10-09 2012-12-12 华为终端有限公司 Method for inhibiting electromagnetic interference and electromagnetic interference filter
CN102333267A (en) * 2011-06-29 2012-01-25 惠州Tcl移动通信有限公司 Mobile phone and microphone circuit thereof
US20130069154A1 (en) * 2011-09-20 2013-03-21 Alpha And Omega Semiconductor Incorporated Semiconductor chip integrating high and low voltage devices
US10363425B2 (en) * 2015-06-01 2019-07-30 Avx Corporation Discrete cofired feedthrough filter for medical implanted devices
CN106252226A (en) * 2016-10-17 2016-12-21 上海先进半导体制造股份有限公司 The manufacture method of TVS pipe
CN111418061B (en) * 2017-11-29 2024-03-19 德州仪器公司 Single capacitor used as RC filter
TWI726515B (en) 2019-12-04 2021-05-01 台灣茂矽電子股份有限公司 Transient-voltage-suppression diode structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN101552272A (en) 2009-10-07
CN101552272B (en) 2011-01-19
TW200943554A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
TWI379419B (en) Methods of achieving linear capacitance in symmetrical and asymmetrical emi filters with tvs
US7863995B2 (en) Methods of achieving linear capacitance in symmetrical and asymmetrical EMI filters with TVS
US7795987B2 (en) Methods of achieving linear capacitance in symmetrical and asymmetrical EMI filters with TVS
US9343455B2 (en) Apparatus and method for high voltage I/O electro-static discharge protection
TWI380429B (en) Circuit configuration and manufacturing processes for vertical transient voltage suppressor (tvs) and emi filter
TWI373913B (en) Applying trenched transient voltage suppressor (tvs) technology for distributed low pass filters
US7589392B2 (en) Filter having integrated floating capacitor and transient voltage suppression structure and method of manufacture
US9806148B2 (en) Device isolator with reduced parasitic capacitance
CN101102100B (en) Integrated filter structure having improved interchannel isolation and method of manufacture
WO2014185599A1 (en) Esd-emi common mode semiconductor filter element and method for manufacturing same
US8581356B2 (en) Semiconductor structures for biasing devices
KR101402632B1 (en) Semiconductor filter structure and method of manufacture
US6903373B1 (en) SiC MOSFET for use as a power switch and a method of manufacturing the same
JP2013065771A (en) Emi filter
KR101041752B1 (en) Semiconductor filter of multi-stage structure and fabrication method thereof
US20050127452A1 (en) Resistive isolation between a body and a body contact
JP2003243521A (en) Capacity element and semiconductor integrated circuit using it
US10998308B2 (en) Area-efficient bi-directional ESD structure
JP2004158699A (en) Semiconductor integrated circuit
JP2004022737A (en) Semiconductor capacitor and high-frequency amplifier using the same
JPS5853864A (en) Seiconductor variable capacitance element
TW492176B (en) Silicon epitaxial layer diode and its manufacturing method
TW202201708A (en) Bidirectional electrostatic discharge (esd) protection device
JPH03232266A (en) Semiconductor device and manufacture thereof