TWI379277B - - Google Patents
Download PDFInfo
- Publication number
- TWI379277B TWI379277B TW96137361A TW96137361A TWI379277B TW I379277 B TWI379277 B TW I379277B TW 96137361 A TW96137361 A TW 96137361A TW 96137361 A TW96137361 A TW 96137361A TW I379277 B TWI379277 B TW I379277B
- Authority
- TW
- Taiwan
- Prior art keywords
- gamma
- bias
- source
- liquid crystal
- driver
- Prior art date
Links
Landscapes
- Liquid Crystal Display Device Control (AREA)
- Liquid Crystal (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
九、發明說明: 【發明所屬之技術領域】 本發明係關於一種源極驅動穿 2調整_器的偏壓電流,同時達上=:段 輪出與功率雜降低的雜驅動裝置。-電壓位準之 【先前技術】 y尺相液晶顯示器廣泛地應料各種 產…例如個人數位助理與手機,然而隨著式 =品的發展,對液晶顯示器尺寸的要求越大,電池㈣ 時間長短更是額外重要。功率消耗 φ 4® 疋手持式電子產品的重 低功率祕意味著較長的電池使用時間,只要減 夕手持式電子產品内部零件的功率消耗,就可以直接且 效地延長電池使用時間》 在液晶顯示器的驅動裝置上’主要有兩種驅動元件, 分別是用以驅動水平軸的源驅動器(S〇urce Driver)及垂直 軸的閘驅動器(Gate Driver)。而在現今薄膜電晶體液晶顯 示器(TFT-LCD)製造技術朝向解析度越高、尺寸大的發展 趨勢’在元件構造上也更加的精細及複雜,顯示面板除了 呈現水平與垂直排列的信號線(Data Line)、閘線(Gate Line) 之外,更包含了結構複雜的薄膜電晶體(TFT)與共通線 (Common Line)等元件 單晶片液晶驅動器為手持式電子產品内部常見的一 個電子元件,其功率消耗在手持式電子產品中占有一個重 要的比例。手持式電子產品之廠商無不致力於降低此單晶 1379277 片液晶驅動器之功率消耗,分析傳統液晶驅動器的功率消 ‘ 耗’源驅動器之功率消耗占整體50%以上。 . 請參閱「第1圖」與「第2圖」,在現有的液晶驅動 器及其驅動方法中’液晶驅動器10為了在一閘線時間 Tgate(—條閘線·的時間)内輸出準確的類比伽瑪(Gamma)電 . 壓位準,會提供源驅動器11 一個足夠且固定的偏壓電流 Isource_bias ’使液晶顯示面板20之信號線21上的源通道負 載(source channel loading)22 的電壓 Vs£)urce_cham^,可以很 # 快地爬升或下降至指定的伽瑪電壓位準,假設此爬升或下 降所需的時間是Trf source。並且,在此閘線時間Tgate内保 留足夠的反應時間給薄膜電晶體單體負載(TFT cell loading)23 ’使該薄膜電晶體單體負載23内儲存電容CTFT 之電壓位準VTFT攸升或下降至指定的伽瑪電壓位準,假設 此爬升或下降所需的時間是Trf TFT。於是,我們可以列出 其方私式.Tgate — Trf_source + Trf_TFT 0 習知在一閘線時間Tgate内輸出準確的類比伽瑪電壓 ® 位準為該源驅動器11的功能,但是隨著液晶顯示面板20 尺寸的增加,將使每個閘線時間Tgate縮短。因此,源驅動 器11需增加其輸出之電流驅動能力以符合縮短後的閘線 時間Tgate。傳統上,增加源驅動器U之偏壓電流IsQurcebias 可有效且直接地增加其輸出之電流驅動能力,但是增加源 驅動器11之偏壓電流Isource bias將使液晶驅動器10的功率 消耗急劇增加。 综上所述,習知的驅動裝置與方法有以下之缺失: 6 1379277 1. 在保留給該薄膜電晶體單體負載23内之儲存電容 CTFT的電壓位準Vtft攸升或下降至指定的伽瑪電壓位準 的時間Trf tfT内’仍然給予源驅動器11相同於Trf_source 時間内的偏壓電流IS〇Urce_biaS。但是此時由於液晶顯示面板 .20之源通道負載22的電壓vscmrcechannel已達指定的伽瑪電 壓位準,例如:99%的vgamma。所以,此時源驅動器11 還是輸入固定的偏壓電流IS()Ulxe_bias,將只會造成功率消耗。 2. 在源通道之電壓爬升或下降至指定的伽瑪電壓位準 鲁 的時間Trf_ source 内 5 給予該源驅動器11固定的偏壓電流 Isource_bias ’參閱「第2圖」,但僅在前1/4的Trf_sourc時間 内’源通道負載22的電壓vscurce_channel才有劇烈的暫態變 化’其餘的Trf_S()urc與Trf TFT時間,輸入固定的偏壓電流 Isource一bias, 將只會造成功率消耗。 【發明内容】 於是’為解決上述之缺失,避免缺失的存在,本發明 的主要目的在於達成伽碼電壓位準之輸出的同時,也降低 鲁 液晶驅動器的功率消乾。 基於上述理由’本發明提出一個應用於液晶驅動器之 低=率源驅動器技術,藉由分段式地調整源驅動器的偏壓 電^同時達成伽碼電壓位準之輸出與功率消耗之降低。 且隨著源驅動器之偏壓電流分段數目的增加,功率消耗可 更進一步地降低。 本發明係-種低功率源驅動裝置,係應用於液晶驅動 器用以驅動一液曰… 曰顯示面板之信號線上的源通道負載與 7 1379277 薄膜電晶體單體負載,該源驅動裝置包括:一時序控制數 位電路用以在一閘線時間内,依該液晶顯示面板之負載的 要求,產生不同的數位訊號組合,且該些數位訊號組合在 同一時間内僅有一個數位訊號的邏輯位準為1 ;而一動態 . 調整之源驅動器偏壓電路根據前述之該些數位訊號組合 產生不同的類比位準之偏壓電流;以及複數個源驅動器, 其利用前述的偏壓電流,產生相對應之輸出驅動能力,使 液晶顯示面板之負載可以在一閘線時間内爬升或下降至 • 指定的伽瑪電壓位準。 其中該數位訊號組合至少為二數位訊號的組合;以及 該動態調整之源驅動器偏壓電路其根據前述之該些數位 訊號組合產生至少二類比位準之偏壓電流,在每一閘線時 間的開端產生正常的偏壓電流,使該些源驅動器產生足夠 的驅動能力,使液晶顯示面板之負載電壓爬升或下降至指 定的伽瑪電壓位準,且於剩餘的閘線時間,產生至少一較 低的偏壓電流,使該些源驅動器產生穩定的驅動能力。越 # 接近每一閘線時間的末端,該動態調整之源驅動器偏壓電 路產生的偏壓電流越小。 本發明的另一種實施態樣係由複數個伽瑪驅動器與 複數個數位類比轉換器組合取代該些源驅動器,該些伽瑪 驅動器的數目與該液晶顯示面板欲呈現的灰階數相同,利 用前述的偏壓電流,分別產生欲呈現的灰階電壓,再由該 些數位類比轉換器輸出所需的灰階電壓至該些源通道負 載,使液晶顯示面板之負載可以在一閘線時間内爬升或下 1379277 降至指定的伽瑪電壓位準。 其中該些伽瑪驅動器進一步由複數個伽瑪預驅動 器,與位於每個伽瑪預驅動器之間的電阻組成,利用前述 的偏壓電流,分別分壓產生欲呈現的灰階電壓。 本發明的優點在於一閘線時間時間内,藉由分段式 地調整源驅動器的偏壓電流,同時達成伽瑪電壓位準的 輸出與功率消耗的降低,使用本發明可降低源驅動器約 20%之功率消耗。且隨著偏壓電流分段數目的增加,其 φ 功率消耗可更進一步地降低。 【實施方式】 茲有關本發明之詳細内容及技術說明,現以實施例 來作進一步說明,但應瞭解的是,該等實施例僅為例示 說明之用,而不應被解釋為本發明實施之限制。 如第3圖所示,本發明係一種低功率源驅動裝置,係 應用於液晶驅動器100用以驅動一液晶顯示面板200之信 號線210上的源通道負載220與薄膜電晶體單體負載230 • 的驅動裝置,其包括:一時序控制數位電路120用以在一 閘線時間Tgate内,依該液晶顯示面板200之負載的要求, 產生不同的數位訊號組合ΑΡ0〜APX,且該些數位訊號組 合ΑΡ0〜APX在同一時間内僅有一個數位訊號的邏輯位準 為1。而一動態調整之源驅動器偏壓電路130根據前述之 該些數位訊號組合ΑΡ0〜APX產生不同的類比位準之偏壓 電流Is〇urce_bias ;當數位訊號ΑΡ0的邏輯位準1時,代表選 用該動態調整之源驅動器偏壓電路130最高的偏壓電流 i 9 1379277 IS〇Urce_biaS ;當數位訊號APX的邏輯位準1時,代表選用動 態調整之源驅動器偏壓電路130最低的偏壓電流。以及複 數個源驅動器110,其利用前述的偏壓電流Isource bias控制 該些源驅動器110輸入的源電壓準位Vsource」eve丨」產生相 對應之輸出驅.動能力,使液晶顯示面板200之源通道負載 220與薄膜電晶體單體負載230可以在一閘線時間Tgate内 爬升或下降至拍定的伽瑪電壓位準。 此外,為了配合說明本發明,在該些源驅動器110之 • 輸出端連接該液晶顯示面板200的源通道負載220的等效 源通道電阻Rsource_channel_l〜Rsource_channel_N與等效源通道電 谷 CS0Urce_chamiel_l〜CSOUrce_channel_N ’ 以及薄膜電晶體單體負 載230的等效單體電阻RTFT_ i〜RTFT N與等效儲存電容c TFT_ 1 〜CtfT_N ° 本發明的數位訊號組合ΑΡ0〜APX至少為二數位訊號 的組合;以及該動態調整之源驅動器偏壓電路130其根據 該些數位訊號組合ΑΡ0〜APX產生至少二類比位準之偏壓 鲁 電流 Isource_bias ’ 在每一閘線時間Tgate的開端產生正常的偏 壓電流Is〇urce_bias,使該些源驅動IS 11 〇產生足夠的驅動能 力,使液晶顯示面板200之源通道負載220的電壓 VSOUrce_channel爬升或下降至指疋的伽瑪電壓位準,且於剩餘· 的閘線時間Tgate ’產生至少一較低的偏壓電流Is(wee bias, 使該些源驅動器110產生穩定的驅動能力。且越接近每— 閘線時間Tgate的末端,該動態調整之源驅動器偏壓電路 130產生的偏壓電流IS(nm:e bias越小。 1379277 睛參閱「第4圖」,係根據本發明的第—個實施例,IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a source drive to drive a bias current of a regulator, while at the same time achieving a miscellaneous drive device with a lower turn-off and power reduction. -Pre-voltage level [Prior Art] y-phase liquid crystal displays are widely used in various applications...for example, personal digital assistants and mobile phones. However, with the development of the product, the size of the liquid crystal display is larger, and the battery (4) is long. It is extra important. Power consumption φ 4® 重 The low power of handheld electronic products means longer battery life, as long as the power consumption of the internal parts of the handheld electronic products can be extended, the battery life can be extended directly and effectively. There are mainly two kinds of driving components on the driving device of the display, which are a source driver (S〇urce Driver) for driving the horizontal axis and a gate driver (Gate Driver) for the vertical axis. In today's thin film transistor liquid crystal display (TFT-LCD) manufacturing technology, the trend toward higher resolution and larger size is also more detailed and complicated in component construction. In addition to the horizontally and vertically arranged signal lines (the display panel) In addition to the Data Line) and the Gate Line, components such as thin-film transistors (TFTs) and common lines (Common Line), which are complex in structure, are single-chip liquid crystal drivers that are common in handheld electronic products. Its power consumption occupies an important proportion in handheld electronic products. Manufacturers of hand-held electronic products are all committed to reducing the power consumption of this single crystal 1379277 liquid crystal driver, and analyzing the power consumption of the conventional liquid crystal driver's power consumption of the source driver is more than 50%. Please refer to "1" and "2". In the conventional liquid crystal driver and its driving method, 'the liquid crystal driver 10 outputs an accurate analogy for a gate time Tgate (time of the gate line). The gamma voltage level provides a sufficient and fixed bias current Isource_bias of the source driver 11 to cause the voltage of the source channel loading 22 on the signal line 21 of the liquid crystal display panel 20 to be £V. )urce_cham^, can be quickly climbed or dropped to the specified gamma voltage level, assuming that the time required for this climb or fall is Trf source. Moreover, sufficient reaction time is reserved in the gate time Tgate for the TFT cell loading 23' so that the voltage level VTFT of the storage capacitor CTFT in the thin film transistor unit load 23 rises or falls. To the specified gamma voltage level, assume that the time required for this climb or fall is Trf TFT. Therefore, we can list its private type. Tgate — Trf_source + Trf_TFT 0 It is known to output an accurate analog gamma voltage® level within a gate time Tgate for the function of the source driver 11, but with the liquid crystal display panel An increase in size of 20 will shorten the gate time Tgate. Therefore, the source driver 11 needs to increase the current driving capability of its output to comply with the shortened gate time Tgate. Conventionally, increasing the bias current IsQurcebias of the source driver U can effectively and directly increase the current driving capability of its output, but increasing the bias current Isource bias of the source driver 11 will drastically increase the power consumption of the liquid crystal driver 10. In summary, the conventional driving device and method have the following disadvantages: 6 1379277 1. The voltage level Vtft of the storage capacitor CTFT retained in the semiconductor transistor load 23 of the thin film transistor is up or down to a specified gamma. The time Trf tfT of the voltage level of the voltage is still given to the source driver 11 in the same bias current IS〇Urce_biaS in the Trf_source time. However, at this time, the voltage vscmrcechannel of the source channel load 22 of the liquid crystal display panel .20 has reached the specified gamma voltage level, for example, 99% of vgamma. Therefore, at this time, the source driver 11 still inputs a fixed bias current IS() Ulxe_bias, which will only cause power consumption. 2. When the voltage of the source channel climbs or falls to the specified gamma voltage level, the time Trf_source 5 gives the source driver 11 a fixed bias current Isource_bias 'see Figure 2, but only in the first 1/ 4 Trf_sourc time 'source channel load 22 voltage vscurce_channel only has a sharp transient change' remaining Trf_S () urc and Trf TFT time, input fixed bias current Isource a bias, will only cause power consumption. SUMMARY OF THE INVENTION Therefore, in order to solve the above-mentioned deficiency and avoid the existence of a defect, the main object of the present invention is to achieve the output of the gamma voltage level and also reduce the power dissipation of the Lu liquid crystal driver. Based on the above reasons, the present invention proposes a low-rate source driver technique for a liquid crystal driver that adjusts the bias voltage of the source driver in a stepwise manner while achieving a reduction in output and power consumption of the gamma voltage level. And as the number of bias current segments of the source driver increases, the power consumption can be further reduced. The invention relates to a low-power source driving device, which is applied to a liquid crystal driver for driving a liquid channel load on a signal line of a display panel and a semiconductor load of a 7 1379277 thin film transistor. The source driving device includes: The sequence control digital circuit is configured to generate different digital signal combinations according to the load requirement of the liquid crystal display panel during a gate time, and the digital signal combinations have only one digital signal logic level at the same time. 1; and a dynamic. The adjusted source driver bias circuit generates different analog level bias currents according to the combination of the digital signals described above; and a plurality of source drivers that utilize the aforementioned bias currents to generate corresponding The output drive capability allows the load on the LCD panel to climb or fall to a specified gamma voltage level during a gate time. Wherein the digital signal combination is at least a combination of two digital signals; and the dynamically adjusted source driver bias circuit generates a bias current of at least two analog levels according to the combination of the digital signals, at each gate time The beginning of the normal bias current is generated, so that the source drivers generate sufficient driving capability to cause the load voltage of the liquid crystal display panel to climb or fall to a specified gamma voltage level, and generate at least one of the remaining gate time. The lower bias current allows the source drivers to produce stable drive capability. The closer to the end of each gate time, the smaller the bias current generated by the dynamically adjusted source driver bias circuit. Another embodiment of the present invention replaces the source drivers by a combination of a plurality of gamma drivers and a plurality of digital analog converters. The number of the gamma drivers is the same as the number of gray levels to be presented by the liquid crystal display panel. The aforementioned bias currents respectively generate gray scale voltages to be presented, and the digital analog converters output desired gray scale voltages to the source channel loads, so that the load of the liquid crystal display panel can be in a gate time Climb or lower 1379277 to the specified gamma voltage level. The gamma drivers are further composed of a plurality of gamma pre-drivers and resistors located between each of the gamma pre-drivers, and respectively use the aforementioned bias currents to separately generate the gray scale voltages to be presented. The invention has the advantages that the bias current of the source driver can be adjusted stepwise in a gate line time time, and the output of the gamma voltage level and the power consumption are reduced, and the source driver can be reduced by about 20 by using the invention. % power consumption. And as the number of bias current segments increases, its φ power consumption can be further reduced. The embodiments and the technical description of the present invention are further described in the following examples, but it should be understood that the embodiments are merely illustrative and should not be construed as being The limit. As shown in FIG. 3, the present invention is a low power source driving device applied to a liquid crystal driver 100 for driving a source channel load 220 and a thin film transistor unit load 230 on a signal line 210 of a liquid crystal display panel 200. The driving device includes: a timing control digit circuit 120 for generating different digital signal combinations ΑΡ0~APX according to the load requirement of the liquid crystal display panel 200 during a gate time Tgate, and the digital signal combination ΑΡ0~APX have only one digital signal with a logic level of 1 at the same time. The dynamically adjusted source driver bias circuit 130 generates different analog level bias current Is 〇urce_bias according to the foregoing digital signal combinations ΑΡ0~APX; when the logic level of the digital signal ΑΡ0 is 1, the representative selects The dynamically adjusted source driver bias circuit 130 has the highest bias current i 9 1379277 IS〇Urce_biaS; when the logic level of the digital signal APX is 1, it represents the lowest bias of the dynamically adjusted source driver bias circuit 130. Current. And a plurality of source drivers 110, which use the aforementioned bias current Isource bias to control the source voltage levels Vsource "eve" input by the source drivers 110 to generate corresponding output driving capabilities, so that the source of the liquid crystal display panel 200 The channel load 220 and the thin film transistor unit load 230 can climb or fall to a beat gamma voltage level within a gate time Tgate. In addition, in order to cope with the description of the present invention, the equivalent source channel resistances Rsource_channel_l~Rsource_channel_N of the source channel load 220 of the liquid crystal display panel 200 are connected to the output terminals of the source drivers 110, and the equivalent source channel valleys CS0Urce_chamiel_l~CSOUrce_channel_N' and The equivalent monomer resistance of the thin film transistor unit load 230 RTFT_i~RTFT N and the equivalent storage capacitor c TFT_ 1 to CtfT_N ° The digital signal combination ΑΡ0~APX of the present invention is at least a combination of two digit signals; and the dynamic adjustment The source driver bias circuit 130 generates at least two analog-level biased Lu currents Isource_bias according to the digital signal combinations 〜0~APX to generate a normal bias current Is〇urce_bias at the beginning of each gate time Tgate, The source driving IS 11 〇 generates sufficient driving capability to cause the voltage VSOUrce_channel of the source channel load 220 of the liquid crystal display panel 200 to climb or fall to the gamma voltage level of the fingerprint, and the remaining gate time Tgate ' Producing at least a lower bias current Is (wee bias) to stabilize the source drivers 110 The driving ability. The closer to the end of each gate time Tgate, the bias current IS generated by the dynamically adjusted source driver bias circuit 130 (nm:e bias is smaller. 1379277 See "Fig. 4" According to a first embodiment of the present invention,
該時序控制數位電路1 20用以力 PB 狄叫电降1用以在一閘線時間Tgate内, APO AP1 一數位訊號的組合。在本實施例中,在 ★條間線時間Tgate内,將該些源驅動B 110之偏壓電 流1:U^e_bias分成兩段,分別是使該液晶顯示面板2〇〇 之L號線210上的源通道負載22〇的電壓 VS〇Urce_channel,可以很快地爬升或不降至指定的伽瑪電 壓位準的時間Trf source,及使該薄膜電晶體單體負載23〇 内之儲存電容CTFT之電壓位準vTFT爬升或下降至指定 的伽瑪電壓位準所需的時間Trf TFT。在Trf source時間 内,該時序控制數位電路120使數位訊號ΑΡ0的邏輯 位準1 ’用以使該動態調整之源驅動器偏壓電路13〇產 生較高的偏壓電流Isource_bias(IAP()), 因而使源驅動器110 產生足夠的驅動能力,使液晶顯示面板200之源通道負 載 20 的電壓 Vsc)ujxe_channei 爬升或下降至指定的伽瑪電 壓位準’比如99%的伽瑪電壓位準。 在剩餘的Trf_TFT時間内*該時序控制數位電路120 使數位訊號API的邏輯位準1,使該動態調整之源驅動 器偏壓電路130產生較低的偏壓電流IS()urce_bias(IAP1), 因而使源驅動器110產生穩定的驅動能力,使該薄膜電 晶體單體負載230的電壓位準VTFT爬升或下降至指定 的伽瑪電壓位準,比如99%的伽瑪電壓位準。 該源通道負載220與薄膜電晶體儲存單元負載230 之電壓Vsource_channe丨與VtFT,.及源驅動器11〇之偏壓電 11 1379277 2r:bias6^形圖如「第5圖」所示,本實施例的 叙、Is 11G的功率消耗(或平均電流)ρι與傳統之源驅 的功率消耗(或平均電流)P〇相比約為:P1/P0= GapoxTV— + lAp丨 χΤ(τρτ )/(ι Αρ〇χ &一。 舉例說明,若 Rs〇urce channei 為 8K〇hm、q。—歷,為 2PF、RTFT 為 15MOhm、Ctft 為 〇 5pF、一 閉線時間‘ 為50uS,並且使源電壓由〇 5V攸升至4 5v,可得iAp〇為The timing control digital circuit 120 is used to force PB to call the voltage drop 1 for a combination of APO AP1 and a digital signal within a gate time Tgate. In the present embodiment, in the inter-strip line time Tgate, the bias currents 1: U^e_bias of the source drives B 110 are divided into two segments, respectively, which are the L-line 210 of the liquid crystal display panel 2 The voltage VS〇Urce_channel of the source channel load 22〇 can quickly climb or not drop to the specified gamma voltage level Trf source, and the storage capacitor CTFT within 23 负载 of the thin film transistor load The voltage level vTFT is the time Trf TFT required to climb or fall to the specified gamma voltage level. During the Trf source time, the timing control digital circuit 120 causes the logic level of the digital signal ΑΡ0 to 1' to cause the dynamically adjusted source driver bias circuit 13 to generate a higher bias current Isource_bias (IAP()). Therefore, the source driver 110 is caused to generate sufficient driving capability to cause the voltage Vsc)ujxe_channei of the source channel load 20 of the liquid crystal display panel 200 to climb or fall to a specified gamma voltage level 'such as 99% of the gamma voltage level. During the remaining Trf_TFT time, the timing control digital circuit 120 sets the logic level of the digital signal API to 1, causing the dynamically adjusted source driver bias circuit 130 to generate a lower bias current IS()urce_bias(IAP1), The source driver 110 is thus caused to have a stable driving capability to cause the voltage level VTFT of the thin film transistor unit load 230 to climb or fall to a specified gamma voltage level, such as a 99% gamma voltage level. The source channel load 220 and the voltage of the thin film transistor storage unit load 230 are Vsource_channe and VtFT, and the bias voltage of the source driver 11 is 11 1379277 2r: bias6 is shown in FIG. 5, this embodiment The power consumption (or average current) of the 11G is equal to the power consumption (or average current) P〇 of the conventional source: P1/P0= GapoxTV— + lAp丨χΤ(τρτ )/( Αρ〇χ & 1. For example, if Rs〇urce channei is 8K〇hm, q. - calendar, 2PF, RTFT is 15MOhm, Ctft is 〇5pF, a closed line time is '50uS, and the source voltage is made by 〇5V rises to 4 5v, you can get iAp〇
77.1 nA ’ Trf source 為 27.2uS,I AP1 為 48·7ηΑ,Trf—TFT 為 22.8uS ’由前述計算式可得Pl/PO = 83.2%。 請參閱「第6圖」,係根據本發明的第二個實施例, 該時序控制數位電路120用以在一閘線時間内產 生AP0〜AP2二數位訊號的組合。在本實施例中在一 條閘線時間Tgate内,將該些源驅動器110之偏壓電流 .channel,爬升或下降至指定的伽瑪電壓位準的時 source77.1 nA 'Trf source is 27.2uS, I AP1 is 48·7ηΑ, and Trf-TFT is 22.8uS'. From the above formula, Pl/PO = 83.2% can be obtained. Referring to Fig. 6, in accordance with a second embodiment of the present invention, the timing control digital circuit 120 is operative to generate a combination of AP0~AP2 binary signals during a gate time. In the present embodiment, during a gate time Tgate, the bias current .channel of the source drivers 110 is climbed or dropped to a specified gamma voltage level.
Lun^bias分成三段,係將該源通道負載22〇的電壓 V 間 Trf_s〇urce,分為(3/5)xTrf sourc^(2/5)xTrf source,及使 該薄膜電晶體單體負載230内之儲存電容cTFT之電壓 位準VTFT攸升或下降至指定的伽瑪電壓位準所需的時 間Trf TFT。在(3/5)xTrf source時間内,該時序控制數位電 路120使數位訊號ΑΡ0的邏輯位準1,用以使該動態調 整之源驅動器偏壓電路130產生較高的偏屋電流 ^source _bias(lAP0),因而使源驅動器11〇產生足夠的驅動能 力,使液晶顯示面板200之源通道負載220的電麗 Vs〇urce_channel爬升或下降至和疋的伽瑪電壓位準,比如 12 1379277 81.2%的伽瑪電壓位準。在(2/5)xTrf source時間内,該時 ‘序控制數位電路120使數位訊號API的邏輯位準1,使 • 該動態調整之源驅動器偏壓電路130產生次高的偏壓 電Isource-bias(lAPl) ’使液晶顯不面板200之源通道負 載220的電壓VSQUrce_channel攸升或下降至指定的伽瑪電 壓位準,比如99%的伽瑪電壓位準。 在剩餘的Trf TFT時間内,該時序控制數位電路12〇 使數位訊號AP2的邏輯位準1,使該動態調整之源驅動 • 器偏壓電路13〇產生較低的偏壓電流, 因而使源驅動器110產生穩定的驅動能力,使薄膜電晶 體單體負載230的電壓位準VTFT爬升或下降至指定的 •伽瑪電壓位準,比如99%的伽瑪電壓位準。 該源通道負載220與薄膜電晶體儲存單元負載23〇 之電壓 VS()Uree_ehaiiTiel 與VTFT ’及源驅動器11〇之偏壓電 流IS〇UrCe_biaS的波形圖如「第7圖」所示,本實施例的 源驅動器110的功率消耗(或平均電流)P2與傳統之源驅 拳動器11的功率消耗(或平均電流)p〇相比約為:p2/p〇= (lAP〇x(3/5)xTrf source+iAplx(2/5)xTrf source+ IAP2xTrf_TFT ) /(I apox Tgate)。 舉例說明’若 Rs。㈣_channeI 為 8K〇hm、Cs〇uree ch聽i 為 2pF RTFT 為 i5MOhm、CTFT 為 〇.5pF、一閘線時間 丁卿 為5〇uS,並且使源電壓由〇.5V爬升至4.5V,可得lAp(^ 77.1 nA ’ Trf source 為 27.2iiS ’ I AP1 為 57.3nA,I AP2 為 48.8nA’Trf TFT 為 22.8uS’ 由前述計算式可得 P2//p〇=77 9 13 1379277Lun^bias is divided into three segments, which is divided into (3/5)xTrf sourc^(2/5)xTrf source, and the monolithic transistor is loaded with the voltage Vf between the source channel and the voltage Trf_s〇urce. The voltage level of the storage capacitor cTFT in 230 is the time Trf TFT required for the VTFT to rise or fall to the specified gamma voltage level. During the (3/5) xTrf source time, the timing control digital circuit 120 sets the logic level of the digital signal ΑΡ0 to 1 to cause the dynamically adjusted source driver bias circuit 130 to generate a higher partial current. _bias(lAP0), thus causing the source driver 11 to generate sufficient driving capability to cause the battery channel load 220 of the liquid crystal display panel 200 to climb or fall to the gamma voltage level of the ,, such as 12 1379277 81.2 % gamma voltage level. During the (2/5)xTrf source time, the sequence control digital circuit 120 causes the logic level of the digital signal API to be 1, so that the dynamically adjusted source driver bias circuit 130 generates the second highest bias current Isource. -bias(lAPl) 'The voltage VSQUrce_channel of the source channel load 220 of the liquid crystal display panel 200 is raised or lowered to a specified gamma voltage level, such as a 99% gamma voltage level. During the remaining Trf TFT time, the timing control digital circuit 12 causes the logic level of the digital signal AP2 to be 1 to cause the dynamically adjusted source driver bias circuit 13 to generate a lower bias current, thereby The source driver 110 produces a stable drive capability to cause the voltage level VTFT of the thin film transistor unit load 230 to climb or fall to a specified gamma voltage level, such as a 99% gamma voltage level. The waveforms of the voltages of the source channel load 220 and the thin film transistor storage unit load VSV()Uree_ehaiiTiel and VTFT' and the bias current IS〇UrCe_biaS of the source driver 11〇 are as shown in FIG. 7 , this embodiment The power consumption (or average current) P2 of the source driver 110 is approximately the same as the power consumption (or average current) p〇 of the conventional source driver 11: p2/p〇= (lAP〇x(3/5 ) xTrf source+iAplx(2/5)xTrf source+ IAP2xTrf_TFT ) /(I apox Tgate). For example, 'If Rs. (4) _channeI is 8K 〇hm, Cs〇uree ch is 2 for 2pF RTFT is i5MOhm, CTFT is 〇.5pF, and one gate time is 〇uS, and the source voltage is climbed from 〇.5V to 4.5V. lAp(^ 77.1 nA ' Trf source is 27.2iiS ' I AP1 is 57.3nA, I AP2 is 48.8nA 'Trf TFT is 22.8uS'. From the above formula, P2//p〇=77 9 13 1379277
=此類推’在-閘線時間U内,本發明可將該 源驅動器11 〇之偏壓電产了 lA 爪source-bias分成複數段(如「第 圖」所不)。在一閘線時間τ㈣的起始 數位電路120使數位訊泸ΑΡΛ Μ温& 矸斤徑制 相致、β 的邏輯位準卜使該動態 調整之源驅動器偏壓電路 13U產生較咼的偏壓電流 Isource二bias,使源驅動器11〇產生足夠的驅動能力,使液 晶顯不面板200之源通道負載22〇的= In this type of push-to-gate time U, the present invention can be used to divide the source driver 11 偏压 bias to produce a bit-source source-bias into a plurality of segments (as in "Figure"). At the gate line time τ (four), the starting digit circuit 120 causes the digital signal to be tempered, and the logic level of β is made to cause the dynamically adjusted source driver bias circuit 13U to be relatively defective. The bias current Isource is biased to enable the source driver 11 to generate sufficient driving capability to cause the liquid crystal display panel 22 to have a source channel load of 22 〇.
^ v source_channel 攸升或下降至指定的伽瑪電壓位準。在—閘線時間‘ 的的最末,該時序控制數位電路12〇使數位訊號Α^χ 的邏輯位準1,使該動態調整之源驅動器偏壓電路 產生最低的偏壓電流Is〇urce bias,因而使源驅動器 產生穩定的驅動能力,使薄膜電晶體單體負載230的電 壓位準VTFT爬升或下降至指定的伽瑪電壓位準。 上述的實施架構係每個源通道有各自的源驅動器 110,而在不偏離本發明之精神與範疇情形下,本發明的 另一種實施態樣係可以由複數個伽瑪驅動器與複數個數 位類比轉換器組合取代該些源驅動器110。如本發明第三 實施例中,不似前述實施例,各個源通道並無各自的源驅 動器110,其採用的方式為:每個相同灰階的源通道由同 一個源驅動器推動,這樣的源驅動器我們稱為伽瑪驅動 器。 請參閱「第8圖」所示,本實施例係應用於該液晶驅 動器300驅動該液晶顯示面板400之信號線410上的源通 1379277 道負載420與薄膜電晶體單體負載430的驅動裝置,其包 括:該時序控制數位電路320與動態調整之源驅動器偏壓 _ 電路330,以及複數個伽瑪驅動器310,該些伽碼驅動器 310的數目與欲呈現的灰階數相同,例如Μ個灰階便有M • 個伽瑪驅動器310,該些伽瑪驅動器310受前逑的偏壓電 Xml Isource_bias 控制,使相對應輸入的伽瑪電壓準位 Vgamma」evel_l〜Vgamma」evei_M相對應輸出灰1¾電壓Gl〜GN1。 該些灰階電壓G1〜GM,再由複數個做為源驅動器的 • 數位類比轉換器340根據數位選擇資料(GS〇〇〜GSQY,..., GSN〇~GSNY)將適當的灰階電壓G1〜GM傳遞出來,使該液 晶顯示面板400之負載(源通道負載420與薄膜電晶體單體 負載430)的電壓可以在一閘線時間Tgate内爬升或下降至 指定的伽瑪電壓位準。 該時序控制數位電路320用以在一閘線時間Tgate内, 依該液晶顯示面板400之負載的要求,產生不同的數位訊 號組合ΑΡ0〜APX’且該些數位訊號組合ΑΡ0〜APX在同一 • 時間内僅有一個數位訊號的邏輯位準為1。而該動態調整 之源驅動器偏壓電路330根據前述之該些數位訊號組合 ΑΡ0〜APX產生不同的類比位準之偏壓電流Is〇urce bias;當 數位訊號ΑΡ0的邏輯位準1時,代表選用該動態調整之源 驅動器偏壓電路330最高的偏壓電流。 本實施例的操作手法與前述技術相同,在一閘線時間 Tgate内,將該些伽瑪驅動器31〇之偏壓電流Is〇urcebias分成 複數段。在一閑線時間Tgate的起始,該時序控制數位電路 1379277^ v source_channel swells or drops to the specified gamma voltage level. At the end of the -gate time, the timing control digital circuit 12 causes the logic level of the digital signal to be 1 so that the dynamically adjusted source driver bias circuit produces the lowest bias current Is 〇urce The bias, thus causing the source driver to produce a stable drive capability, causes the voltage level VTFT of the thin film transistor unit load 230 to climb or fall to a specified gamma voltage level. The above implementation architecture has a respective source driver 110 for each source channel, and another embodiment of the present invention may be analogous to a plurality of gamma drivers and a plurality of digital analogs without departing from the spirit and scope of the present invention. The converter combination replaces the source drivers 110. As in the third embodiment of the present invention, unlike the foregoing embodiments, each source channel does not have a respective source driver 110 in such a manner that each source channel of the same gray level is driven by the same source driver, such a source. The drive we call a gamma drive. Referring to FIG. 8 , the present embodiment is applied to a driving device for driving a source pass 1379277 load 420 and a thin film transistor unit load 430 on a signal line 410 of the liquid crystal display panel 400. The method includes: the timing control digital circuit 320 and the dynamically adjusted source driver bias_circuit 330, and a plurality of gamma drivers 310, the number of the gamma drivers 310 being the same as the gray level to be presented, for example, a gray There are M gamma drivers 310, which are controlled by the front bias voltage Xml Isource_bias, so that the corresponding input gamma voltage levels Vgamma"evel_l~Vgamma"evei_M correspond to the output gray 13⁄4 Voltages G1 to GN1. The gray scale voltages G1 GM GM, and then a plurality of digital analog converters 340 as the source drivers, according to the digital selection data (GS 〇〇 ~ GSQY, ..., GSN 〇 ~ GSNY), the appropriate gray scale voltage G1 to GM are transmitted so that the voltage of the liquid crystal display panel 400 (source channel load 420 and thin film transistor unit load 430) can climb or fall to a specified gamma voltage level within a gate time Tgate. The timing control digital circuit 320 is configured to generate different digital signal combinations ΑΡ0~APX' according to the load of the liquid crystal display panel 400 in a gate time Tgate, and the digital signal combinations ΑΡ0~APX are in the same time. The logical level of only one digital signal is 1. The dynamically adjusted source driver bias circuit 330 generates different analog level bias current Is 〇urce bias according to the foregoing digital signal combinations ΑΡ0~APX; when the logic level of the digital signal ΑΡ0 is 1, it represents The highest bias current of the dynamically adjusted source driver bias circuit 330 is selected. The operation method of this embodiment is the same as the foregoing technique. In a gate time Tgate, the bias current Is 〇urcebias of the gamma drivers 31 分成 is divided into a plurality of segments. At the beginning of a idle time Tgate, the timing control digital circuit 1379277
320使數位訊號APO的邏輯位準1,使該動態調整之源驅 動器偏壓電路330產生較高的偏壓電流Is〇urcebias,使各個 伽瑪驅動器310產生足夠的驅動能力,使液晶顯示面板4〇〇 之源通道負載420的電壓VS{mrce channe丨攸升或下降至指定 的伽瑪電壓位準。而在一閘線時間\咖的的最末,該時序 控制數位電路320使數位訊號APX的邏輯位準卜使該動 態調整之源驅動器偏壓電路330產生最低的偏壓電流 isourcejjias’因而使各個伽瑪驅動器310產生穩定的驅動能 力’使薄膜電晶體單體負載430的電壓位準Vtft爬升或^ 降至指定的伽瑪電壓位準。 請參閱「第9圖」本發明的第四實施例所示,本實施 例與前一實施例不同之處在於該些伽瑪驅動器31〇係可由 數個伽瑪預驅動器311,與位於每個伽瑪預驅動器3ιι之 間的電阻312(Rl〜Rk)組成,也就是每個相同灰階的源通道 係由同一個電阻分壓器與源驅動器推動。 k 該電壓驅動點是由該些伽瑪預驅動器311與電阻 分壓產生’而電壓驅動點的數目與欲呈現的灰階數相同。 該些伽瑪預驅動器311的數目(1〜Z)與分壓之電阻312的大 =數目队〜叫視工程應用而定。該些伽瑪預驅動器祀與 則述的偏壓電、流Is〇urce_bias控制,使輸入的伽瑪預電壓準位 Vga_preJeveLl〜V gapreJeveLZ 輸出預電壓準位 ^ 在透過該些電組312分壓產生所需的灰階電壓 =〜^。’ 該些灰階電壓G1〜GM,再由複數個 數位類比轉換器340根據數位選擇資動㈣ I379277 ^Sn〇〜gsny)將適當的灰階電壓Gl〜GM傳遞出來使該液 日日顯不面板400之負載(源通道減42〇與薄膜電晶體單體 、負載430)可以在一問線時間τ㈣内爬升或下降至指定的 伽瑪電壓位準。 • 該時序控制數位電路320用以在-閘線時間Tgate内, ’,該液日日顯不面板4G0之負載的要求,產生不同的數位訊 號組合ΑΡ0〜APX ’且該些數位訊號組合Ap〇〜Αρχ在同一 時間内僅有一個數位訊號的邏輯位準為1。而該動態調整 ♦之源驅動器偏壓電路33〇根據前述之該些數位訊號組合 ΑΡ0〜APX產生不同的類比位準之偏壓電流;當 數位訊號APG的邏輯位準丨時,代表選用該動態調整之源 驅動器偏壓電路330最高的偏壓電流Is_加。 本實施例的操作手法係在—閘線時間U,將該些 伽瑪預驅動器311之偏壓電流Is〇urcebias分成複數段。在一 閘線時間Tgate的起始,該時序控制數位電路32〇使數位訊 號ΑΡ0的邏輯位準卜使該動態調整之源 • 產生較高的偏壓電η—心,使各個伽瑪預驅^ 311產生足夠的驅動能力,使液晶顯示面板4〇〇之源通道 負載420的電壓Vsource channe丨攸升或下降至指定的伽瑪電 壓位準。而在一閘線時間Tgate的的最末,該時序控制數位 電路320使數位訊號APX的邏輯位準丨,使該動態調整之 源驅動器偏壓電路330產生最低的偏壓電流I m 而使各個伽瑪預驅動器311產生穩定的驅動能力「使薄膜 電晶體單體負載430的電壓位準VTFT爬升或下降至指定的 17 1379277 伽瑪電壓位準。 惟上述僅為本發明之較佳實施例而已,並非用來限 定本發明實施之範圍。即凡依本發明申請專利範圍所做 的均等變化與修飾,皆為本發明專利範圍所涵蓋。 1379277 【圖式簡單說明】 , 第1圖係習知的源驅動器驅動液晶顯示器負載示意圖。 1 第2圖係第1圖之源通道負載與薄膜電晶體儲存單元負 載之電壓,及源驅動器之偏壓電流的波形圖。 第3圖係本發明的源驅動器驅動液晶顯示器負載示意 _ 圖。 第4圖係本發明之第一實施例之示意圖。 第5圖係第4圖之源通道負載與薄膜電晶體儲存單元負 # 載之電壓,及源驅動器之偏壓電流的波形圖。 第6圖係本發明之第二實施例之示意圖。 第7圖係第6圖之源通道負載與薄膜電晶體儲存單元負 載之電壓,及源驅動器之偏壓電流的波形圖。 第8.圖係本發明之第三實施例之示意圖。 第9圖係本發明之第四實施例之示意圖。 【主要元件符號說明】 10、100、300 :液晶驅動器 • 11、110 :源驅動器 120、320 :時序控制數位電路 130、330 :動態調整之源驅動器偏壓電路 20、 200、400 :液晶顯示面板 21、 210、410 :信號線 22、 220、420 :源通道負載 23、 230、430 :薄膜電晶體單體負載 310 :伽瑪驅動器 1379277 311 :伽瑪預驅動器 312 :電阻 340 :數位類比轉換器320 causes the logic level of the digital signal APO to be 1 to cause the dynamically adjusted source driver bias circuit 330 to generate a higher bias current Is 〇 urcebias, so that each gamma driver 310 generates sufficient driving capability to enable the liquid crystal display panel The voltage of the source channel load 420 of 〇〇{mrce channe rises or falls to the specified gamma voltage level. At the end of a gate time, the timing control digital circuit 320 causes the logic level of the digital signal APX to cause the dynamically adjusted source driver bias circuit 330 to generate the lowest bias current isourcejjias' thus Each gamma driver 310 produces a stable drive capability 'to cause the voltage level Vtft of the thin film transistor unit load 430 to climb or drop to a specified gamma voltage level. Referring to FIG. 9 , the fourth embodiment of the present invention is different from the previous embodiment in that the gamma drivers 31 can be connected to a plurality of gamma pre-drivers 311. The gamma pre-driver 3 ι is composed of resistors 312 (R1 R Rk), that is, each source channel of the same gray scale is driven by the same resistor divider and source driver. k The voltage drive point is generated by the gamma pre-drivers 311 and the resistors are divided by the number of voltage drive points being the same as the number of gray levels to be presented. The number of gamma pre-drivers 311 (1 to Z) and the voltage of the divided resistors 312 are large = the number of teams ~ called engineering applications. The gamma pre-driver 祀 is controlled by the bias current and the current Is 〇 urce_bias, so that the input gamma pre-voltage levels Vga_preJeveL1 VVrereJeveLZ output pre-voltage levels are generated by dividing the voltages 312. Required grayscale voltage = ~^. The gray scale voltages G1 GM GM are further selected by the plurality of digital analog converters 340 according to the digits (4) I379277 ^Sn〇~gsny), and the appropriate gray scale voltages G1 GM GM are transmitted to make the liquid appear daily. The load on panel 400 (source channel minus 42 〇 and thin film transistor unit, load 430) can climb or fall to a specified gamma voltage level within one line time τ (four). • The timing control digital circuit 320 is used to generate different digital signal combinations ΑΡ0~APX' during the -gate time Tgate, ', the liquid daily display of the load of the panel 4G0 and the digital signal combination Ap〇 ~Αρχ Only one digital signal has a logic level of 1 at the same time. The source driver bias circuit 33 of the dynamic adjustment ♦ generates different analog level bias currents according to the foregoing digital signal combinations 〜0~APX; when the logic level of the digital signal APG is 丨, the representative selects the The dynamically adjusted source driver bias circuit 330 has the highest bias current Is_plus. The operation method of this embodiment is based on the gate line time U, and the bias current Is 〇urcebias of the gamma pre-drivers 311 is divided into a plurality of segments. At the beginning of a gate time Tgate, the timing control digital circuit 32 causes the logic level of the digital signal ΑΡ0 to make the source of the dynamic adjustment generate a higher bias voltage η-heart, so that each gamma pre-drive ^ 311 generates sufficient driving capability to cause the voltage Vsource channe of the source channel load 420 of the liquid crystal display panel 4 to rise or fall to a specified gamma voltage level. At the end of a gate time Tgate, the timing control digital circuit 320 causes the logic bit of the digital signal APX to be quasi-丨, so that the dynamically adjusted source driver bias circuit 330 generates the lowest bias current I m Each gamma pre-driver 311 produces a stable drive capability "to cause the voltage level VTFT of the thin film transistor unit load 430 to climb or fall to a specified 17 1379277 gamma voltage level. However, the foregoing is merely a preferred embodiment of the present invention. The scope of the present invention is not limited to the scope of the present invention. All changes and modifications made in accordance with the scope of the present invention are covered by the scope of the invention. 1379277 [Simple description of the drawing], Figure 1 Schematic diagram of the known source driver driving the liquid crystal display load. 1 Fig. 2 is a waveform diagram of the source channel load and the voltage of the thin film transistor storage unit load, and the bias current of the source driver according to Fig. 1. Fig. 3 is a waveform diagram of the bias current of the source driver The source driver drives the liquid crystal display load diagram _ Fig. 4 is a schematic view of the first embodiment of the present invention. Fig. 5 is the source channel load and the thin film transistor of Fig. 4. FIG. 6 is a schematic diagram of a second embodiment of the present invention. FIG. 7 is a schematic diagram of a second embodiment of the present invention. FIG. 7 is a source channel load and a thin film transistor storage unit of FIG. The waveform of the load, and the waveform of the bias current of the source driver. Fig. 8. is a schematic view of a third embodiment of the present invention. Fig. 9 is a schematic view of a fourth embodiment of the present invention. 10, 100, 300: Liquid crystal driver • 11, 110: source driver 120, 320: timing control digital circuit 130, 330: dynamically adjusted source driver bias circuit 20, 200, 400: liquid crystal display panel 21, 210, 410 : Signal line 22, 220, 420: source channel load 23, 230, 430: thin film transistor unit load 310: gamma driver 1379277 311: gamma pre-driver 312: resistor 340: digital analog converter
Tgate :閘線時間Tgate: brake line time
Isource_bias · 偏壓電流 ΑΡ0〜APX數位訊號 ^source level "源 電壓準位Isource_bias · Bias current ΑΡ0~APX digital signal ^source level "Source Voltage level
Rsource_channel_l〜Rsource_channel_N · Csource channel 1 〜Cs〇urce channel N · 等效源通道電阻 等效源通道電容Rsource_channel_l~Rsource_channel_N · Csource channel 1 ~Cs〇urce channel N · Equivalent source channel resistance Equivalent source channel capacitance
RtFT 1 〜RtFT N :等效單體電阻 C TFT_ 1〜CtfT_N :等效儲存電容。 Vgamma_level_l〜Vgamma_level_M ·伽瑪電壓準位 G1〜GM :灰階電壓。RtFT 1 to RtFT N : equivalent monomer resistance C TFT_ 1 to CtfT_N : equivalent storage capacitor. Vgamma_level_l~Vgamma_level_M · Gamma voltage level G1 to GM: Gray scale voltage.
Vga_pre_level_l〜V ga_pre_ievei—z _ 預電壓準Vga_pre_level_l~V ga_pre_ievei-z _ pre-voltage
Gprel〜Gprez :預電壓準位Gprel~Gprez: Pre-voltage level
2020
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96137361A TW200917211A (en) | 2007-10-05 | 2007-10-05 | Low power source driving device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96137361A TW200917211A (en) | 2007-10-05 | 2007-10-05 | Low power source driving device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200917211A TW200917211A (en) | 2009-04-16 |
TWI379277B true TWI379277B (en) | 2012-12-11 |
Family
ID=44726331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96137361A TW200917211A (en) | 2007-10-05 | 2007-10-05 | Low power source driving device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200917211A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9761195B2 (en) | 2012-04-11 | 2017-09-12 | Sitronix Technology Corp. | Driving circuit for increasing a driving power supply voltage for a display panel |
CN108665839B (en) * | 2017-03-31 | 2021-04-23 | 奇景光电股份有限公司 | Source driver and display device |
-
2007
- 2007-10-05 TW TW96137361A patent/TW200917211A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW200917211A (en) | 2009-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120074860A1 (en) | Dimming Circuit, A Light Emitting Diode Driver Including The Same And A Light Emitting Diode Driver | |
JP5643749B2 (en) | Liquid crystal drive device | |
US7733160B2 (en) | Power supply circuit, display driver, electro-optical device, and electronic instrument | |
TWI512714B (en) | A power supply circuit of a display device | |
US9514684B2 (en) | Display driver | |
CN1453762A (en) | Efficient liquid crystal display drive voltage generating circuit and its method | |
CN107274850B (en) | A kind of display driver circuit and its driving method, display device | |
WO2016074356A1 (en) | Pixel circuit, display panel and driving method thereof | |
JP2007189699A5 (en) | ||
CN108231022A (en) | Driving circuit and driving method, the liquid crystal display device of liquid crystal display device | |
CN1302452C (en) | Display device | |
US10871668B2 (en) | Light control device | |
TWI379277B (en) | ||
CN106097991A (en) | The data drive circuit of liquid crystal panel and driving method | |
US20160189654A1 (en) | Gate driver for providing variable gate-off voltage and display device including the same | |
CN101615904B (en) | Data buffer and method for driving liquid crystal display device using same | |
CN109509449B (en) | Current regulating circuit, driving circuit and display device | |
KR101772725B1 (en) | Apparatus for output buffer having a half-swing rail-to-rail structure | |
CN110491344B (en) | Driving chip for driving display panel and display product | |
KR102230031B1 (en) | Control method, control device, storage medium and electronic device for display power supply | |
KR20150088598A (en) | Data driver and display apparatus having the same and method of driving display panel using the same | |
CN110534066A (en) | The power control method of LCD driving chip | |
CN213751895U (en) | AMOLED display screen source electrode medium voltage level driving circuit and AMOLED display screen | |
KR101023346B1 (en) | Circuit for driving a display panel using a driving capacitor | |
CN109410837B (en) | OLED driving chip and driving method thereof |