TWI378264B - Microlens - Google Patents

Microlens Download PDF

Info

Publication number
TWI378264B
TWI378264B TW97118360A TW97118360A TWI378264B TW I378264 B TWI378264 B TW I378264B TW 97118360 A TW97118360 A TW 97118360A TW 97118360 A TW97118360 A TW 97118360A TW I378264 B TWI378264 B TW I378264B
Authority
TW
Taiwan
Prior art keywords
microlens
concave
light
lens
convex
Prior art date
Application number
TW97118360A
Other languages
Chinese (zh)
Other versions
TW200949297A (en
Inventor
Wei Ko Wang
Original Assignee
Visera Technologies Co Ltd
Omnivision Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visera Technologies Co Ltd, Omnivision Tech Inc filed Critical Visera Technologies Co Ltd
Priority to TW97118360A priority Critical patent/TWI378264B/en
Publication of TW200949297A publication Critical patent/TW200949297A/en
Application granted granted Critical
Publication of TWI378264B publication Critical patent/TWI378264B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

1378264 九、發明說明: 【發明所屬之技術領域】 本發明係有關於微透鏡,特別是有關於一種具有抗 反射微結構的微透鏡。 【先前技術】 ' 微透鏡常用於CMOS、CCD等固態影像感測裝置, 用以提升入射光的利用效率。然而如果在透鏡表面未作 Φ 任何處理,入射光會因為不同介質間的折射率的差異及 入射角等因素,會有一部分的光因為全反射的現象而損 失,除了會降低固態影像感測裝置的感度之外,反射光 經過其他物體再反射而再度入射至固態影像感測裝置 時,會發生鬼影等問題。 為了解決上述問題,業界已發表各種在微透鏡上塗 裝或鍍上抗反射膜的技術,雖然大多可得到令人滿意的 抗反射效果,但是在製程上需要額外增加塗裝、鍍膜的 — 設備、材料、製程步驟等等而增加製造成本,或是在製 • 程中反而造成微透鏡本身性質的劣化,或是這些薄膜本 身會帶來新的問題點如吸濕性等。 【發明内容】 有鑑於此,本發明的實施例是提供一種微透鏡,可 解決上述習知技術所面臨的問題。 本發明的一實施例是提供一種微透鏡,包含:一透 鏡本體,具有一曲面,對具有一特定波長範圍的光具有 0978-A33483TWF/2007-046/dwwang 5 U/8264 、光f 乂及凹凸結構於上述曲面上,對具有上述 ,波長範圍的光具有透紐,上述凹凸結構具有複數個寸 早f凹凸體’每—個單元凹凸體中的任何二個點之間的 距離’小於上述特定波長範圍的最小值。 、 【實施方式】 為讓本發明之上述和其他目的、特徵、和優點能更 明顯易十重,下文特舉出較佳實施例,並配合所附圖式, 作洋細說明如下: —叫參考第1A圖,為一剖面圖,係顯示本發明— 實施例之微透鏡及其一應用例。 土 、在第1A圖中,本發明較佳實施例之微透鏡是包含一 透鏡本體10與一凹凸結構2〇,用以接收光%至其下 一發光二極體晶片100 ’光5〇具有-特定波長範圍。在 本實施例中’此一「特定波長範圍」為(391H 775 )nm; =其他實施例中,此—「特定波長範圍」是本發明所 屬技術領域中具有通常知識者在實施本發 需求所決定者。 八 透鏡本體10具有-曲面10a,對光5〇具有透光性, 其材質可以是環氧樹脂、二氧切(si㈣、膠材(咖e)、 破璃(glass)、塑膠(plastic)等材料。凹凸結才籌2〇是位於曲 面l〇a上,亦對光50具有透光性。凹凸結構2〇具有複 數個單元凹凸體21’每-個單元凹凸體21中的任何二個 點之間的距離’是小於《50的波長範圍的最小值,以使 〇978-A33483TWF/2007-046/dwwang 果。由n㈣具有抗反射、提高光%的穿透率的效 州〜^m述本實施例中的光50的波長範圍為 的_ 故在本實施例中,每-個單元凹凸體21中 例中若間的距離是小於391nm;而在其他實施 凹凸體ΐΓ 波長1 請有所改變時,對應的單元 ㈣=大小也會隨之改變而小於光5G的波長範圍1378264 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to microlenses, and more particularly to a microlens having an anti-reflective microstructure. [Prior Art] 'Microlenses are commonly used in solid-state image sensing devices such as CMOS and CCD to improve the utilization efficiency of incident light. However, if there is no Φ treatment on the surface of the lens, the incident light will be lost due to the difference in refractive index between different media and the incident angle, and some of the light will be lost due to the phenomenon of total reflection, except that the solid-state image sensing device will be lowered. In addition to the sensitivity, when the reflected light is reflected by other objects and re-reflected to the solid-state image sensing device, ghosting and the like may occur. In order to solve the above problems, various techniques for coating or plating an anti-reflection film on a microlens have been published in the industry. Although most of them have satisfactory anti-reflection effects, it is necessary to additionally increase the number of coatings and coatings in the process. , materials, process steps, etc. increase the manufacturing cost, or cause deterioration of the microlens itself in the process, or the film itself will bring new problems such as hygroscopicity. SUMMARY OF THE INVENTION In view of the above, embodiments of the present invention provide a microlens that can solve the problems faced by the above-described prior art. An embodiment of the present invention provides a microlens comprising: a lens body having a curved surface having 0978-A33483TWF/2007-046/dwwang 5 U/8264, light f 乂 and bumps for light having a specific wavelength range And the light having the wavelength range of the above-mentioned curved surface has a translucent structure, and the concave-convex structure has a plurality of indentations, and the distance between any two points in each of the unit asperities is smaller than the specific The minimum value of the wavelength range. The above and other objects, features, and advantages of the present invention will become more apparent and <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Referring to Fig. 1A, which is a cross-sectional view showing a microlens of the present invention - an embodiment thereof and an application example thereof. In the first embodiment, the microlens of the preferred embodiment of the present invention comprises a lens body 10 and a concave-convex structure 2 for receiving light % to the next light-emitting diode wafer 100. - a specific wavelength range. In the present embodiment, the "specific wavelength range" is (391H 775 ) nm; in other embodiments, the "specific wavelength range" is a person having ordinary knowledge in the technical field to which the present invention pertains. decision maker. The eight lens body 10 has a curved surface 10a and is translucent to the light 5〇, and the material thereof may be epoxy resin, dioxo (si), rubber (glass), glass, plastic, etc. The material is embossed on the curved surface l〇a and also has light transmissivity to the light 50. The concave-convex structure 2 〇 has a plurality of unit concave and convex bodies 21', and any two points in each unit concave and convex body 21 The distance between 'is less than the minimum value of the wavelength range of 50, so that 〇978-A33483TWF/2007-046/dwwang fruit. From n (four) has anti-reflection, improve the transmittance of light% of the effect of the state ~ ^ m In the present embodiment, the wavelength of the light 50 in the present embodiment is _. Therefore, in the present embodiment, the distance between each of the unit asperities 21 is less than 391 nm; and in other embodiments, the 凹凸 ΐΓ wavelength 1 When changing, the corresponding unit (4) = size will also change and is smaller than the wavelength range of light 5G

及=1! 第1A圖中的其中一個單元凹凸體21 所在的部分曲面⑽的放大剖面圖。在本實施例中, ㈣凸體2丨的任何二個點之間的距離的最大 二、B圖所示的截面寬度w,即單元凹凸體: 之 =的波長範圍的最小值。另外,兩相鄰的凸 - 距碓,亦要小於光50的波長範圍的最小值。And =1! An enlarged cross-sectional view of a partial curved surface (10) in which one of the unit asbestos bodies 21 in Fig. 1A is located. In the present embodiment, (4) the maximum distance between any two points of the convex body 2丨, the cross-sectional width w shown in the B-picture, that is, the minimum value of the wavelength range of the unit asperity body: =. In addition, the two adjacent convex-distance 碓 are also smaller than the minimum value of the wavelength range of the light 50.

另外’凹凸結構2〇對光5〇的折射率,較好為介於 先50的入射端的介質對% 5㈣折射率與透鏡本體㈣ 先50的折射率之間,可幫助光5〇順利地經由凹凸 2〇而牙透透鏡本體1G ’而有助於凹凸結構發輝盆抗 反射、提高光50的穿透率的效果。而在本實施例中’,、凹 凸結構20對光50的折射率,是介於空氣對光%的折射 率與透鏡本體10對光50的折射率之間。 在第1A、1B圖所示的實施财,凹凸結構20的每 一個單元凹凸體2!均為相對於曲^㈣凸起的結構。 如第1B圖所示,單元凹凸體21的高度方向以垂直於 其所在的曲® 10a的切線方向,而單元凹凸體2ι的形 〇978-A33483TWF/2007-046/dwwang 1378264 垂直於高度方向H的截面積沿著高度方 古戶方= 如第】β圖所示,高度較高的垂直於 呵度方向Η的截面王且π 向Η的截面浐Α 士 2疋小南度較低的垂直於高度方 提4 ^ ί2 於凹凸結構20發輝其抗反射、 透率的效果。另外,在另—實施例中,單 = Γ:;1度方向Η是平行於第1Α圖所示微透鏡 η為球狀的凸起m斤示的實施例中’單元凹凸體 起物,但在其他實施例中,單元凹凸體21 亦可以是錐狀、梯形等截面積合 體21 小的凸起物。 積曰隨间度&amp;化、較好為變 在第1A、1B圖中,單元 週期性的㈣,且的大小相同且成 例中,母—個單元凹凸體2 ^ 同、或不完全相同,視需求而定。幻了以凡王不 另外,凹凸結構20的材質可以是環氧樹脂、二氧化 夕㈨叫、膠材(glue)、破璃(啦叫、 :可以與透鏡本體10具有相同材質或二:好 為凹凸結構20與透鏡本體1()具有 :質、仁較= 化製程與材料的使用。 貝,以可以簡 在第Μ圖所示的微透鏡的製造方面 事先提供一模仁,其且有笛—固&amp; _ 权住的衣耘 凸社谨?Ω沾^ 士闰、Ζ、 圖所不的透鏡本體10與凹 、、“冓20的反相圖形。接下來,將上述微 ^主入該模仁的圖形中成形,再Μ =之 〇978-A33483TWF/2007-046/dwwang 8 1378264 製程,可一次形成透鏡本體10及其曲面】〇a上之具有抗 反射功能的凹凸結構20,可以簡化製程步驟並節省材^ 方面的成本,因而降低本發明較佳實施例之微透鏡 造成本。 除此之外,可先提供㈣於製造透鏡本體1〇的模 仁,注入上述微透鏡用材料後,再依需求進行硬化、脫 模、表面修整等步驟而先形成不具凹凸結構2〇的透鏡本 體10。接下來’再經由轉印、壓印等技術,將凹凸么士構 20形成於透鏡本體10的曲面1〇a上。藉此製程,透鏡本 體10與凹凸結構20就可以是相同材質或不同材質。 另外’可如上所述先形成不具凹凸結構如的透鏡本 後,再藉由乾姓刻(例如電漿钱刻)、座侧等技術, =二°!形成單元凹凸體21°但是藉由_技術,較 不易控制早凡凹凸體21#大小及排列 程須在較高温度下進行,如以右嫵 材料开…二 機材料等耐熱性降低的 ,有使其品質發生變化的疑慮。 較低的㈣錢㈣熱性 凹凸結構20。 τ财建礒採用钱刻的製程來形成 鏡之ί第二1中’光5〇通過本發明較佳實施例之微透 _,即本^ ^紐謂3g,而料發光二極體晶片 片⑽的^光=貫施例之微透鏡是作為發光二極體晶 圖所不的透光性矽膠30與發光二極體 0978^33483X^00,.^ 'vwang !378264 ^ 之間的介面,可在該介㈣成類似凹凸結構20 二:射結構例如第1A圖所示具有單元凹凸體“的凹 凸,··。構40。此時’凹凸結構4〇對光5〇的折射率,同樣 =父好為介於光50的入射端的介質對光5〇的折射率與 發光一極體晶片1〇〇對光50的折射率之 =地經由凹凸結構4。而穿到達發光二極體/片二5。 二=凹=冓40發輝其抗反射、提高光外的穿透 2錢二而在本貫施例中’凹凸結構40對光50的折 =:透光”谬%對光5°的折射率與發光二 體日日片100對光50的折射率之間。 在弟1A圖所示實施例中,本發明之微透鏡是作為 可體晶片1〇0的收光透鏡;而在其他實施例中:: 可藉由類似於第1A圖所示結構或是其In addition, the refractive index of the concave-convex structure 2〇 to the light 5〇 is preferably between the refractive index of the medium 50% at the incident end of the first 50 and the refractive index of the lens body (4) 50, which can help the light 5〇 smoothly pass through The concave-convex lens 牙 牙 牙 牙 牙 牙 牙 牙 牙 牙 牙 牙 牙 牙 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In the present embodiment, the refractive index of the concave and convex structure 20 with respect to the light 50 is between the refractive index of the air to the light % and the refractive index of the lens body 10 to the light 50. In the first embodiment shown in Figs. 1A and 1B, each of the unit concavo-convex bodies 2 of the uneven structure 20 has a structure with respect to the convex portion (four). As shown in Fig. 1B, the height direction of the unit asbestos 21 is perpendicular to the tangential direction of the curve 10a where it is located, and the shape of the unit asperity 2 〇 978-A33483TWF/2007-046/dwwang 1378264 is perpendicular to the height direction H The cross-sectional area along the height square is as shown in the figure β, the height is higher than the cross section of the 呵-direction Η and the π-Η Η section 浐Α 2 疋 small south is lower perpendicular to The height of the square is 4^ ί2 and the anti-reflection and permeability effects of the concave-convex structure 20 are enhanced. In addition, in another embodiment, the single = Γ:; 1 degree direction Η is parallel to the first embodiment shown in the first figure, the microlens η is spherical, and the unit of the protrusion is shown in the embodiment, but In other embodiments, the unit asbestos 21 may be a protrusion having a small cross-sectional area 21 such as a tapered shape or a trapezoidal shape. In the case of the first and second graphs, the unit is periodic (4), and the size is the same. In the example, the maternal unit asbestos 2 ^ is the same or not identical. , depending on the needs. The phantom is not the other, the material of the concave-convex structure 20 may be epoxy resin, oxidized eve (nine), glue (glue), broken glass (cream, : can have the same material as the lens body 10 or two: good For the concave-convex structure 20 and the lens body 1 (), there is a quality, a comparison of the process and the use of the material. In addition, a mold core can be provided in advance for the manufacture of the microlens shown in the first figure, and Flute-solid &amp; _ 权 的 的 Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω 透镜 透镜 透镜 透镜 透镜 透镜 透镜 透镜 透镜 透镜 透镜Forming into the pattern of the mold core, and then Μ 〇 〇 978-A33483TWF/2007-046/dwwang 8 1378264 process, the concave-convex structure 20 having anti-reflection function on the lens body 10 and its curved surface 〇a can be formed at one time, The process steps can be simplified and the cost of the material can be saved, thereby reducing the microlens cause of the preferred embodiment of the present invention. In addition, the mold core for manufacturing the lens body 1 , can be provided first, and the microlens is injected. After the material, the steps of hardening, demoulding, and surface finishing are performed according to requirements. First, the lens body 10 having no concave-convex structure 2 is formed. Next, the concave and convex structure 20 is formed on the curved surface 1〇a of the lens body 10 by a technique such as transfer or imprinting. 10 and the concave-convex structure 20 may be the same material or different materials. In addition, the lens may be formed without the concave-convex structure as described above, and then by the technique of dry surname (such as plasma money), seat side, etc. = two °! Forming the unit asbestos 21 ° but with _ technology, it is not easy to control the size of the early and the concave body 21 # and the arrangement must be carried out at a higher temperature, such as the right 妩 material opening ... heat resistance of the two materials Reduced, there are doubts about the quality of the change. Lower (four) money (four) thermal concave and convex structure 20. τ Caijian 礒 using the process of money engraving to form the mirror ί 2 in the 'light 5 〇 through the invention is better The micro-transparent _ of the embodiment, that is, the present invention is 3g, and the microlens of the light-emitting diode wafer (10) is a translucent silicone 30 which is not a crystal of a light-emitting diode. Interface with the light-emitting diode 0978^33483X^00,.^ 'vwang !378264 ^ In the medium (4), the concave-convex structure 20 can be formed. The second structure: the radiation structure has the unevenness of the unit asperity body as shown in FIG. 1A, and the structure 40. At this time, the refractive index of the concave-convex structure 4〇 to the light 5〇, Similarly, the father is the refractive index of the medium at the incident end of the light 50 and the refractive index of the light-emitting monopole wafer 1 〇〇 to the light 50 = through the concave-convex structure 4. / Sheet 2 5. 2 = concave = 冓 40 radiance anti-reflection, improve the penetration of light outside 2 money two and in the present example, 'concave structure 40 to light 50 fold =: light transmission 谬% pair The refractive index of light 5° is between the refractive index of the light-emitting two-day solar sheet 100 and the light 50. In the embodiment shown in Figure 1A, the microlens of the present invention is a light-receiving lens as a body wafer 1〇0; and in other embodiments: may be similar to the structure shown in Figure 1A or

=嶋是作為其他褒置例如⑽8或其:二 測器、太陽能電池、或其他光學或集能裝置J 在第ΙΑ、1B圖所示的實施例中,凹凸結構 —個車元凹凸體21均為相對於曲面⑽為凸起的社構 而在其他實施例例如第2圖所示的實施起=二 在透鏡本體ίο的曲面10at^、^AA r U透鏡疋 凹凸社错⑺目士, 有波狀的凹凸結構60,即 、,口構60 /、有連續、交錯的凸狀體6ι與凹狀 其中凸狀體61的材質可與透鏡本 η, :、而第2圖所不結構,視需求亦可修正為連 固凸狀體61之後、再接著排列一或複數個凹狀體62、又 〇978-A33483TWF/2〇〇7-〇46/dwwang 1378264 再接著排列一或複數個凸狀體6〗;另外,本發明所屬技 術領域中具有通常知識者可依其需求,任意排列凸狀體 61與凹狀體62。而關於凸狀體61與凹狀體62的較佳或 建議的形狀、尺寸等、以及凹凸結構6〇的光學性質等, 白相同或等義於第1A、1B圖所示的單元凹凸體21,而 不再重複敘述。= 嶋 is used as other devices such as (10) 8 or its: two-detector, solar cell, or other optical or energy-collecting device J. In the embodiment shown in FIG. 1B, the concave-convex structure - a vehicle element asperity body 21 In the embodiment shown in FIG. 2 for the convex structure with respect to the curved surface (10), the curved surface 10at^, ^AA r U lens 疋 社 社 ( (7), in the lens body ίο The corrugated concave-convex structure 60, that is, the mouth structure 60 /, has a continuous, staggered convex body 6 ι and a concave shape, wherein the material of the convex body 61 can be different from the lens η, and the second figure is not structured. If necessary, it may be corrected to be followed by the consolidating convex body 61, followed by arranging one or a plurality of concave bodies 62, and then 〇978-A33483TWF/2〇〇7-〇46/dwwang 1378264 and then arranging one or more convex portions. In addition, the person having ordinary knowledge in the technical field of the present invention can arbitrarily arrange the convex body 61 and the concave body 62 according to the needs thereof. The preferred or suggested shape, size, and the like of the convex body 61 and the concave body 62, and the optical properties of the uneven structure 6A, etc., are the same or equivalent to the unit asbestos 21 shown in the first and second FIGS. And no longer repeat the narrative.

在第ΙΑ、1B圖所示的實施例中,凹凸結構2〇的每 —個單元凹凸體21均為相對於曲面l〇a為凸起的結構。 而在又另—實施例例如第3圖所示的實施例中,形成於 微透鏡的透鏡本體1 0的曲面丨〇a上的凹凸結構,是具 f相對於曲面10a為凹下的單元凹凸體72。另外,關於 單兀凹凸體72的較佳或建議的形狀、尺寸等、以及凹凸 結構的光學性質等,皆相同或等義於第ΙΑ、1B圖所 示的單元凹凸體21 ,而不再重複敘述。 在第ΙΑ、1B圖所示的實施例中,微透鏡為一平凸透 鏡,而在其他實施例中的微透鏡亦可為雙凸透鏡或凹凸 透鏡且第1A、2、3圖所示的各種型態的凹凸結構均可 視需求應用於雙凸透鏡及/或凹凸透鏡的曲面上。 在第ΙΑ、1B圖所示的實施例中,微透鏡為一平凸透 鏡,而在其他貫施例中的微透鏡例如第4圖所示的微透 鏡,則為一平凹透鏡。第4圖所示的微透鏡是包含一透 鏡本體15與一凹凸結構8〇,透鏡本體15具有一曲面 15a而凹凸結構80則是位於曲面15a上。凹凸結構80 具有複數個單元凹凸體81。而第4圖所示的透鏡本體 0978-A33483TWF/2〇〇7-〇46/dwwang /OZD4 凸結構80的光學㈣及材料 1的較佳或建議的形狀、尺寸 =早-凹凸體 1A、1B圖所示的透 i :或等義於第 凸體L而不再重複敛述、-構2。、與單元凹 亦可:4:=:屬:二f中具有通常知識者 2或3圖所示的凹凸結構6:或7〇結構8°置換為如同第 而在的實施例中’微透鏡為-平凹透鏡; 你八他只施例中的微透鏡亦 心規, 鏡,且前述可應用於第4圖所示^透鏡或凸凹透 的凹凸結構均可視需求應用於雙凹透各種型態 曲面上。 逍鏡及/或凸凹透鏡的 猎由本發明,係提供一種料读於 習知技術所面臨的問題。政透鏡,而可以解決前述 雖然本發明已以較佳實施例 識者,在不脫離本發明之籍〃 更動與潤飾,因此本發明當可作些許之 利範圍所界定者為準。“圍當視後附之申請專 〇^-A33483TWF/20O7-046/dwwang 1378264 【圖式簡單說明】 第A圖為—剖面圖,係顯示本發明較佳實施例之微 透鏡及其—應用例。 、 第1B圖為第1A圖所示的其中一個單元凹凸體21 及其所在的部分曲面1〇a的放大剖面圖。 第2圖為—剖面圖,係顯示第1A圖所示之微透鏡的 一變化形式。 第3圖為一剖面圖,係顯示第1A圖所示之微透鏡的 另一變化形式。 第4圖為一剖面圖,係顯示第1A圖所示之微透鏡的 又另一變化形式。 【主要元件符號說明】 10、15〜透鏡本體; 10a、15a~曲面; 2〇、40、60、70、8〇&lt;凹凸結構; 21、41、72、81〜單元凹凸體; 3〇〜透光性矽膠; 5 0〜光; 61〜凸狀體; 62〜凹狀體; 1〇〇〜發光二極體晶片; Η〜高度方向; W〜寬度。 0978-A33483TWF/2007-046/d^-wangIn the embodiment shown in FIGS. 1B and FIG. 1B, each of the unit asbestos bodies 21 of the uneven structure 2A is convex with respect to the curved surface l〇a. On the other hand, in the embodiment shown in FIG. 3, the uneven structure formed on the curved surface 丨〇a of the lens body 10 of the microlens is a concave-convex concave portion having f with respect to the curved surface 10a. Body 72. Further, the preferred or suggested shape, size, and the like of the unitary concavities and convexities 72, and the optical properties of the concavo-convex structure are the same or equivalent to the unit asbestos bodies 21 shown in FIGS. 1B, and are not repeated. Narrative. In the embodiment shown in FIG. 1B, the microlens is a plano-convex lens, and in other embodiments, the microlens may be a lenticular lens or a meniscus lens and various types shown in FIGS. 1A, 2, and 3. The relief structure can be applied to the curved surface of the lenticular lens and/or the lenticular lens as required. In the embodiment shown in Figs. 1B, the microlens is a plano-convex lens, and the microlenses in other embodiments, such as the microlens shown in Fig. 4, are a plano-concave lens. The microlens shown in Fig. 4 includes a lens body 15 and a concave-convex structure 8a. The lens body 15 has a curved surface 15a and the concave-convex structure 80 is located on the curved surface 15a. The uneven structure 80 has a plurality of unit asbestos 81. The lens body 0978-A33483TWF/2〇〇7-〇46/dwwang/OZD4 of the convex structure 80 shown in Fig. 4 and the preferred or suggested shape and size of the material 1 = early-embossed body 1A, 1B The transmission i shown in the figure is equivalent to the first convex body L, and the reference structure 2 is not repeated. And the unit concave can also be: 4:=: genus: two f in the general knowledge of the 2 or 3 figure shown in the concave-convex structure 6: or 7 〇 structure 8 ° replacement as in the first embodiment of the 'microlens It is a plano-concave lens; you can only use the microlens in the example, the heart gauge, the mirror, and the above-mentioned concave and convex structures that can be applied to the lens or the convex and concave surface shown in Fig. 4 can be applied to the double concave type. On the surface. The invention of the frog mirror and/or the convex-concave lens provides a problem that is expected to be read by conventional techniques. The present invention has been described in terms of a preferred embodiment, and the invention may be modified and modified without departing from the scope of the invention. [Appendix to the application of the omnipotent ^-A33483TWF/20O7-046/dwwang 1378264 [A brief description of the drawings] Fig. A is a cross-sectional view showing the microlens of the preferred embodiment of the present invention and its application example Fig. 1B is an enlarged cross-sectional view showing one of the unit asbestos bodies 21 and the partial curved surface 1〇a thereof shown in Fig. 1A. Fig. 2 is a cross-sectional view showing the microlenses shown in Fig. 1A. Fig. 3 is a cross-sectional view showing another variation of the microlens shown in Fig. 1A. Fig. 4 is a cross-sectional view showing another microlens shown in Fig. 1A. A variation. [Main component symbol description] 10, 15~ lens body; 10a, 15a~ curved surface; 2〇, 40, 60, 70, 8〇&lt; concave-convex structure; 21, 41, 72, 81~ unit 3〇~translucent silicone; 5 0~ light; 61~ convex; 62~ concave; 1〇〇~light diode wafer; Η~height direction; W~width. 0978-A33483TWF/2007 -046/d^-wang

Claims (1)

^/8264 十、申請專利範圍: L一種微透鏡,包含: 一透鏡本體,具有一曲面,對 的光具有透m及 有叙波長範圍 *且::凸結構於該曲面上,對具有該特定波長範圍的 —個…紐,該凹凸結構具有複數個單元凹凸體,每 個早兀凹凸體中的任何二個點 母 定波長範圍的最小值。 ]的距離’小於該特 y盖請專利第1項所述之微透鏡,其中該凹凸 特定波長範圍的光的折射率,是介於具有 範圍的光的折射率與該透鏡本體對具有4:=' 的光的折射率之間。 行疋波長乾圍 _ 3‘如^專圍第〗項所述之微透鏡 凡凹凸體的大小相同且成週期性的排列。 τ〜早 级構專利範圍第1項所述之微透鏡,其中該凹凸 ^的材質為觀樹脂、:氧切⑽iea 破璃(㈣、或塑穋材(pIastic)。 材(glue) 本申請專利範圍第1項所述之微透鏡,其中該透鏡 本體/、該凹凸結構為相同材質。 本㉟2申請專利範圍第1項所述之微透鏡,其中該透鏡 本體與該凹凸結構為相異材質。 _ 7’如申請專利範圍第1項所述之微透鏡,其中該些單 疋凹凸體的高度方向垂直於其所在的該曲面的切線方 〇978-A33483TWF/2007-046/dw wang 14 1378264 向。 8. 如申請專利範圍第7項所述之微透鏡,其中該些單 元凹凸體之垂直於該高度方向的截面積,是沿著該高度 方向而變化。 9. 如申請專利範圍第1項所述之微透鏡,其中該些單 元凹凸體的高度方向平行於該微透鏡的光軸。 10. 如申請專利範圍第1項所述之微透鏡,其中該微 透鏡是作為用於發光二極體、CMOS影像感測器、太陽 能電池的收光透鏡。 11 .如申請專利範圍第1項所述之微透鏡,其中每相 鄰兩個單元凹凸體之距離,小於該特定波長範圍的最小 值。^/8264 X. Patent application scope: L A microlens, comprising: a lens body having a curved surface, the pair of light having a transparent wavelength range and a range of wavelengths* and:: a convex structure on the curved surface, the pair having the specific In the wavelength range, the concave-convex structure has a plurality of unit asbestos, and the minimum of the wavelength range is determined by any two points in each of the early asperities. The distance of the lens is smaller than that of the microlens described in the first aspect of the invention, wherein the refractive index of the light of the specific wavelength range of the concave and convex is between the refractive index of the light having the range and the lens body pair having 4: =' The refractive index of light between.疋 疋 疋 _ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微The microlens according to the first aspect of the invention, wherein the material of the embossing is a resin, an oxygen cut (10) iea glass ((4), or a plastic slab (pIastic). The microlens according to the first aspect of the invention, wherein the lens body and the concave-convex structure are the same material. The lens according to claim 1, wherein the lens body and the concave-convex structure are different materials. The microlens of claim 1, wherein the height direction of the monolithic concavities and convexities is perpendicular to a tangent of the curved surface on which they are located 978-A33483TWF/2007-046/dw wang 14 1378264 8. The microlens of claim 7, wherein the cross-sectional area of the unit asperities perpendicular to the height direction varies along the height direction. 9. The scope of claim 1 The microlens, wherein the height direction of the unit asperities is parallel to the optical axis of the microlens. 10. The microlens according to claim 1, wherein the microlens is used as a light emitting diode Body, CMOS image , A solar cell of the light receiving lens 11. As the microlens application of paragraph 1 patentable scope, wherein the distance of adjacent asperities two per cell, smaller than the minimum value of the specific wavelength range. 0978-A33483TWF/2007-046/dwwang0978-A33483TWF/2007-046/dwwang
TW97118360A 2008-05-19 2008-05-19 Microlens TWI378264B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97118360A TWI378264B (en) 2008-05-19 2008-05-19 Microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97118360A TWI378264B (en) 2008-05-19 2008-05-19 Microlens

Publications (2)

Publication Number Publication Date
TW200949297A TW200949297A (en) 2009-12-01
TWI378264B true TWI378264B (en) 2012-12-01

Family

ID=44870895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97118360A TWI378264B (en) 2008-05-19 2008-05-19 Microlens

Country Status (1)

Country Link
TW (1) TWI378264B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709761B (en) * 2019-04-15 2020-11-11 上暘光學股份有限公司 Optical lens with laser-induced periodic surface microstructure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120024347A1 (en) * 2010-07-27 2012-02-02 Tzy-Ying Lin Solar package structure and method for fabricating the same
JP6045718B2 (en) * 2013-12-12 2016-12-14 三菱電機株式会社 Solar cell panel and manufacturing method thereof
TWI506301B (en) * 2013-12-19 2015-11-01 Univ Nat Taiwan Science Tech Microlens structure and fabrication method thereof
US20230104190A1 (en) * 2021-10-01 2023-04-06 Visera Technologies Company Limited Image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709761B (en) * 2019-04-15 2020-11-11 上暘光學股份有限公司 Optical lens with laser-induced periodic surface microstructure

Also Published As

Publication number Publication date
TW200949297A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
TWI378264B (en) Microlens
JP5329004B2 (en) Antireflection film, display device, translucent member, and evaluation method of antireflection film
KR101911568B1 (en) Optical element, display device, and input device
JP3959803B2 (en) Method for producing multilayer coated substrate having a plurality of convex portions on outermost layer by sol-gel method
JP5078265B2 (en) Counter substrate, liquid crystal display element, and liquid crystal projector
JP2005157119A (en) Reflection preventing optical element and optical system using the same
JP2006267624A5 (en)
JP2006528424A5 (en)
JP2008541174A5 (en) Optical body
WO2008035984A3 (en) Compact polymer lens
JP2009505166A5 (en)
JP2008532088A5 (en)
RU2012147573A (en) LAYERED DESIGN WITH INTERNAL CAVITIES FOR USE WITH PHOTOCELLS AND METHOD FOR ITS MANUFACTURE
US8641212B2 (en) Anti-reflection film and display device including the same, and manufacturing method of anti-reflection film and master film therefor
TWI261693B (en) Method for making micro-lens array
EP2141521A2 (en) Light pipe and illuminating device having the same
US20160154144A1 (en) Optics with Built-In Anti-Reflective Sub-Wavelength Structures
JP2016057335A (en) Laminate, imaging device package, image acquisition apparatus, and electronic equipment
CA2981682A1 (en) Textured glass for greenhouses
KR101042257B1 (en) Hybrid micro lens array and manufacturing method thereof
JP2006330697A5 (en)
JP5105771B2 (en) Anti-reflection structure and optical device having the same
JP6545295B2 (en) Reflective polarization module capable of reducing bending and backlight unit having the same
JP2007025435A (en) Composite optical element
TWI402162B (en) Composite micro-lens and composite micro-lens array