TWI377499B - - Google Patents

Download PDF

Info

Publication number
TWI377499B
TWI377499B TW98105214A TW98105214A TWI377499B TW I377499 B TWI377499 B TW I377499B TW 98105214 A TW98105214 A TW 98105214A TW 98105214 A TW98105214 A TW 98105214A TW I377499 B TWI377499 B TW I377499B
Authority
TW
Taiwan
Prior art keywords
trace
signal
capacitance value
ghost
finger
Prior art date
Application number
TW98105214A
Other languages
Chinese (zh)
Other versions
TW201032110A (en
Inventor
Po Hao Kuo
Hsin Shieh Tsai
Min Jhih Lin
Original Assignee
Elan Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Microelectronics Corp filed Critical Elan Microelectronics Corp
Priority to TW98105214A priority Critical patent/TW201032110A/en
Priority to US12/649,779 priority patent/US8619056B2/en
Publication of TW201032110A publication Critical patent/TW201032110A/en
Application granted granted Critical
Publication of TWI377499B publication Critical patent/TWI377499B/zh

Links

Description

1377499 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種電容式觸控板,特別是關於一種電容式觸控 板的鬼影偵測方法。 【先前技術】 在眾多觸她術巾,雙軸交錯(AxisInte咖;AI)财列投影式 電容感測技術(ProjectedCapacitance) ’由於具有透光度(〇ptical clarity)高 '耐用、成本低的特性,成為最受歡迎的技 其掃描方式在兩指或兩指以上的多指觸控時,會有可能產生鬼 影點(Ghost-Point) ’因而無法分辨每隻手指的正確位置〆 圖1為鬼影現象的示意圖,當使用者的兩根手指在電容式觸控 板上的位置為左上右下(A,D)或左下右上(c,b)時,在跡線 Yl、Y2和跡線XI、X2上都造成電容變化,因此控制電路偵 測到的X方向電容值變化波形和γ方向電容值變化波形都是 一樣的,因此控制電路無法判斷出真正的手指接觸位置。 .在雙指輸入狀態下,發生鬼影現象時可能的座標有兩組,如圖 2所示。當鬼影現象發生時’ X方向的電容值在跡線〜和^ 處出現變化,而Y方向的電容值則在跡線71和>^2處增加,排 除掉具有相同X或Y座標的排列組合後,可能的手指座標有 (χιΥι,χπ2)和(xobhyi)兩組,其中一組為實際座標,另一組則 為鬼影座標。在更多手指輸入時,鬼影座標的數量將迅速增 加,例如圖3所示,在三指輸入時’可能的手指座標有(Xlyh X2y2 X3y3)、(xiyi,X2y3, X3y2)、(xiy2, x2yi,χ#3)、(xiy2, x2y3, x3y,)、(x]y3, 3 χ^χπι)、(χο^χ^,χ^2)六組,其中五組為鬼影座標。 多指應用(Multi-toucli)必然是未來觸控技術的發展趨勢之一, 因此,一種改善習知AI型陣列投影式電容感測技術中鬼影點 問題的鬼影偵測方法,乃為所冀。 【發明内容】 本發明的目的之-’在於提出—種鬼影位置的偵測方法。 根據本發明’-種鬼影位置的侧方法在該電容式觸控板上的 第-位置及第二位置出現鬼影現象,且該第-位置及該第二位 置具有相同的第一方向座標時: (A)以第-訊號驅動該第一位置的第一方向跡線,並以與該 第-訊號同步的第二訊號驅動該第—位置的第二方向跡線^ ⑼取得該第-位置的第—或第二方向跡線電容值; 扣)以該第-訊號驅動該第二位置的第—方向跡線,並以該 第一訊號驅動該第一位置的第二方向跡線; ⑼取得該第二位置的第-或第二方向跡線電容值;以及 _⑹根據該第-位置的第—或第二方向跡線電容值以及該第 二位置的第-或第二歹向跡線電容值,判斷實際接觸位置。 該第—及第二訊號互為同步同相或同步異相訊號。 ^者,對該電容式觸控板上的跡線做交又調校,以使各跡線 獍件相同的基本電容值。 【實施方式】 圖4為本卿第-實施觸示賴,手指⑽座標以他表 1377499 的_〜丨表示’手指12和手指14造成電 二=上化值在位置Xmyi、·、-以及- =現軸,產生鬼影現象,控制電路端無法分辨手指12是 礙Xmyk,亦無法判斷伽4是位於㈣還是哪, 此時出現敝細_標(心χ·(χΛ,妨),位置 =丨、wk、Xnyi以及Xnyk為鬼影候選位置。本發日月提出一種 鬼影偵測方法,在歧絲現树,逐—對每個魏峰值的位 置,即各鬼影候選位置上的X和γ方向跡線同時充電並進行 電谷值伽|卜當對受測位置16(Xmyk)進行伽】時,開關Μ和 S3關上’控制器(圖中未示)同時對跡線、和凡充電,取得跡 線^和yk的電容值。跡線Xm上的電容值Cx為Cxm+Cw+ dCVOw ’ dCxm表示跡線Xm因手指12接近產生的電容變 化’ Cxm表示其他接地跡線與接地和跡線〜間的電容值确人, Cxmyi表示跡線Xm與跡線yi間的電容值,表示跡線^ 與跡線yk間的電容值,其中,因為跡線^和跡線外等電位;1 CXinyk之量測值為零。由於受測位置16是手指12實際接觸的 位置,從跡上量測出之電容值總合Cx等於實際位置電容 值Crx=CXm+CXmy|+dCXm。從跡線yk測得的γ方向跡線電容^ ,cy亦由於手指12的實際接觸位置在,其量測出之電= 為實際位置電容值crv=cyk+cXnyk+dcyk。 4 圖5繪示當手指12實際接觸位置在Xmyi,受測位置16為龙影 位置時的示意圖,控制器—樣同時對跡線xm和跡線yk充電^ . 跡線乂印和yk等電位,因此Cx〇iyk之量測值為零,但位在X 的手指12使得跡線yi和跡線Xm間產生電容變化 dCxmyi為負值’此時跡線^上的電容值總合Cx等於鬼影位置 電容值CgfCXm+CXmyrKKXyrfdCXm。從跡線九測得的γ方 向電容值Cy因為手指14位在xnyk,在跡線\和外之間造成 貪的電容變化dCXnyk,因此測得的電容值(^為鬼影位置電容 值 CgysCyk+Cxj^+dCxnYk+dCyk 0 將圖4及圖5獲得之X方向電容值和γ方向電容值互相比較, 由於dCxmyi為負值,實際位置測得的χ方向電容值 CrxCXm+Cx^+dCXm大於鬼影位置測得的X方向電容值為 CgxtCXm+CXmy^dCXmh+dCXm ’ 相同地,因為 dCXnyk 為負值, 實際位置測得的γ方向電容值Cj:y=Cyk+CXnyk+dCyk亦大於鬼 影位置測得的γ方向電雜Cgy=Cyk+CXnyk+dCXnyk+dCyk, 5之,在完成前述對XY跡線同時充電並取得X及γ方向電 容值後,將二點所得的電容值相比較,即可分辨何者為實際接 觸位置。 、 圖6及圖7係本發明之鬼影侧方法的另一實_,將受測位 置的X方向跡線和γ方向跡線連接,以直接取得受測位置的 X方向跡線電容值和γ方向跡線電容值的總合。如圖6所示, 當受測位置16為手指12實際位置時,測得的電容值Cxy為實1377499 VI. Description of the Invention: [Technical Field] The present invention relates to a capacitive touch panel, and more particularly to a ghost detection method for a capacitive touch panel. [Prior Art] In many touches of the towel, the two-axis interlaced (AxisInte coffee; AI) financial projection capacitive sensing technology (ProjectedCapacitance) 'because of the high transparency (〇ptical clarity) 'durable, low cost characteristics It becomes the most popular technology. When the scanning method is multi-finger touch with two fingers or more, Ghost-Point may be generated. Therefore, the correct position of each finger cannot be distinguished. A schematic diagram of ghosting, when the user's two fingers are on the capacitive touchpad at the top left, bottom right (A, D) or left lower right (c, b), at traces Y1, Y2, and traces. Both XI and X2 cause a change in capacitance. Therefore, the X-direction capacitance value change waveform and the γ-direction capacitance value change waveform detected by the control circuit are the same, so the control circuit cannot determine the true finger contact position. In the two-finger input state, there are two possible coordinates when ghosting occurs, as shown in Figure 2. When the ghost phenomenon occurs, the capacitance value in the X direction changes at the traces ~ and ^, and the capacitance value in the Y direction increases at the trace 71 and >^2, excluding the coordinates having the same X or Y coordinates. After the combination, the possible finger coordinates are (χιΥι, χπ2) and (xobhyi), one of which is the actual coordinate and the other is the ghost coordinate. When more fingers are input, the number of ghost coordinates will increase rapidly, as shown in Figure 3. For three-finger input, the possible finger coordinates are (Xlyh X2y2 X3y3), (xiyi, X2y3, X3y2), (xiy2, X2yi, χ#3), (xiy2, x2y3, x3y,), (x]y3, 3 χ^χπι), (χο^χ^, χ^2) six groups, five of which are ghost coordinates. Multi-toucli is inevitably one of the development trends of touch technology in the future. Therefore, a ghost detection method that improves the ghost point problem in the conventional AI-type array projection capacitive sensing technology is Hey. SUMMARY OF THE INVENTION The object of the present invention is to provide a method for detecting ghost position. According to the present invention, the side method of the ghost position has a ghosting phenomenon at the first position and the second position of the capacitive touch panel, and the first position and the second position have the same first direction coordinate (A) driving the first direction trace of the first position by the first signal, and driving the second direction trace ^ (9) of the first position by the second signal synchronized with the first signal to obtain the first - a first- or second-direction trace capacitance value of the position; a buckle-driven first-direction trace of the second position by the first signal, and driving the second-direction trace of the first position by the first signal; (9) obtaining a first or second direction trace capacitance value of the second position; and _(6) a first or second direction trace capacitance value according to the first position and a first or second direction of the second position Trace capacitance value to determine the actual contact position. The first and second signals are synchronous in-phase or synchronous out-of-phase signals. ^, the traces on the capacitive touch panel are adjusted and adjusted to make the same basic capacitance values of the traces. [Embodiment] Figure 4 is the first implementation of the touch, the finger (10) coordinates with his table 1377499 _ ~ 丨 indicates that 'finger 12 and finger 14 caused electricity two = up value in the position Xmyi, ·, - and - = the current axis, the phenomenon of ghosting occurs, the control circuit can not tell whether the finger 12 is obstructing Xmyk, and it is impossible to judge whether the gamma 4 is located at (four) or where, at this time, the _ fine _ mark (heart χ · (χΛ, )), position =丨, wk, Xnyi, and Xnyk are candidate locations for ghosts. This method proposes a ghost detection method in the current day and the moon, in the position of each Wei peak, that is, the position of each ghost candidate position. Simultaneously charging with the γ-direction trace and performing an electric valley gamma. When the gamma is measured for the measured position 16 (Xmyk), the switches Μ and S3 are turned off by the 'controller (not shown) at the same time for the trace, and Charging, the capacitance values of the traces ^ and yk are obtained. The capacitance value Cx on the trace Xm is Cxm+Cw+ dCVOw ' dCxm represents the change in capacitance of the trace Xm due to the proximity of the finger 12' Cxm indicates other ground traces and ground and traces The capacitance value between the lines ~ is true, Cxmyi represents the capacitance value between the trace Xm and the trace yi, indicating the trace ^ and the trace The capacitance value between yk, in which the potential of the CXinyk is zero because of the trace ^ and the outer potential of the trace; since the measured position 16 is the position where the finger 12 actually touches, the capacitance value measured from the trace is measured. The total Cx is equal to the actual position capacitance value Crx=CXm+CXmy|+dCXm. The γ-direction trace capacitance ^, cy measured from the trace yk is also due to the actual contact position of the finger 12, and the measured electric quantity = The actual position capacitance value crv=cyk+cXnyk+dcyk. 4 FIG. 5 is a schematic diagram showing when the actual contact position of the finger 12 is at Xmyi and the measured position 16 is a dragon shadow position, and the controller is simultaneously at the same time on the trace xm and the trace. Yk charging ^ . Trace 乂 and yk equipotential, so the measured value of Cx〇iyk is zero, but the finger 12 at X causes a capacitance change dCxmyi between the trace yi and the trace Xm to be negative' The total capacitance Cx on the trace ^ is equal to the ghost position capacitance value CgfCXm+CXmyrKKXyrfdCXm. The γ-direction capacitance value Cy measured from the trace nine causes a greedy relationship between the trace and the outside because the finger 14 is at xnyk. The capacitance changes dCXnyk, so the measured capacitance value (^ is the ghost position capacitance value CgysCyk+Cxj^+dCxnYk+dCyk 0 will be Figure 4 The X-direction capacitance value and the γ-direction capacitance value obtained in FIG. 5 are compared with each other. Since dCxmyi is a negative value, the actual position measured χ-direction capacitance value CrxCXm+Cx^+dCXm is larger than the ghost position measured X-direction capacitance value CgxtCXm +CXmy^dCXmh+dCXm ' Similarly, since dCXnyk is a negative value, the γ-direction capacitance value measured by the actual position Cj:y=Cyk+CXnyk+dCyk is also larger than the γ-direction electric hybrid Cgy=Cyk+ measured at the ghost position. CXnyk+dCXnyk+dCyk, 5, after the above-mentioned XY traces are simultaneously charged and the X and γ direction capacitance values are obtained, the capacitance values obtained from the two points are compared, and the actual contact position can be distinguished. 6 and FIG. 7 are another embodiment of the ghost side method of the present invention, connecting the X-direction trace of the measured position and the γ-direction trace to directly obtain the X-direction trace capacitance value of the measured position and The sum of the um-direction trace capacitance values. As shown in FIG. 6, when the measured position 16 is the actual position of the finger 12, the measured capacitance value Cxy is true.

Crxy=Cxm+Cyk+Cxmyi+Cxnyk+dCxm+dCyk , 圖7,當受測位置丨6不是手指實際位置時,測得的電容值c、、 ^ 1. f: ^ Cgxy=Cxm+Cyk+Cxmyi+Cxnyk+dCxm+dCyk+ myi dCxnyk,其中dCxmyA dCxnyk為負值。兩指觸控造成 之鬼影現象雖共有四個鬼影候選位置,但因紋出第一個實際 位置後,與該實際位置具有相同X《γ座標的鬼影候選位置 便不可能是第二個實際位置,因此在偵測兩指觸控造成之 現象時,僅需對兩個具相同X或Y座標的鬼影候選位置做= 次比較’即可獲知實際位置的座標。Crxy=Cxm+Cyk+Cxmyi+Cxnyk+dCxm+dCyk, Fig. 7. When the measured position 丨6 is not the actual position of the finger, the measured capacitance value c,, ^ 1. f: ^ Cgxy=Cxm+Cyk+Cxmyi +Cxnyk+dCxm+dCyk+ myi dCxnyk, where dCxmyA dCxnyk is a negative value. The ghost phenomenon caused by two-finger touch has a total of four ghost candidate positions, but after the first actual position is traced, the ghost position candidate with the same X "γ coordinate" cannot be the second. Actual position, so when detecting the phenomenon caused by two-finger touch, only two comparisons of ghost candidate positions with the same X or Y coordinates are needed to get the coordinates of the actual position.

以别述请測方法處理三指觸控造成之鬼影現象時,鬼影候選位 置共九點,參删3,在該些鬼雜選位置中,具有相同^ 標的位置各有三點,妓測試具有相同χ座標的兩點 和(X!,乃)為例,若測試得到之電容值相等,表示(A,⑹和& U 二點皆為鬼影位置,剩餘與該二點具有相同χ座標的^1,y2) 即為實際位置;若測試制之電容财鱗 y3 即為實際位置,耻僅需細_讀可定料 在定出第-個實際位置,例如判定(Μ)為實際位置後,即可 得知其他與(Xl,乃)具有相同X座標或γ座標的鬼影候選位置 (χι’ yi)、(X】,y2)、(X2, y3)和(x3, y3)必然皆為鬼影位置,因此可 直接排除該些鬼影位置,接著再對鬼影候選位置^ 做鬼影偵測,判斷出第二個實際位置後,再刪除與該第二$ 位置具相同X或γ座標的絲候選位置,即可獲得最後一個 實際位置’換言之,即使在三指造成之鬼影現象中,本發明提 出之_方法僅需執行兩次比較’即可定出實際手指座標。在When the ghosting phenomenon caused by the three-finger touch is handled by the other method, the candidate position of the ghost is a total of nine points, and the deletion is three. In the ghost miscellaneous positions, there are three points each having the same position, and the test is performed. For example, if two points and (X!,) are the same χ coordinates, if the capacitance values obtained by the test are equal, it means that (A, (6) and & U are both ghost positions, and the remaining points are the same as the two points. The coordinate ^1, y2) is the actual position; if the test capacitor y3 is the actual position, the shame only needs to be fine-read to determine the actual position, for example, the judgment (Μ) is the actual After the position, you can know other ghost candidate positions (χι' yi), (X], y2), (X2, y3), and (x3, y3) that have the same X coordinate or γ coordinate as (Xl, 乃). It must be a ghost position, so you can directly exclude the ghost positions, and then perform ghost detection on the ghost candidate position ^, determine the second actual position, and then delete the same X with the second position. Or the γ coordinate silk candidate position, you can get the last actual position' In other words, even in the ghost phenomenon caused by three fingers, Issued only explicitly mentioned a method of performing the two comparisons _ 'to fix the actual coordinates of the finger. in

其他實施辦,亦可以逐—偵測每個鬼影候選點,取得I ,候選點的跡線電容值,再由t讀根據該些跡線電容值 斷,以提昇可靠度。 交跡線上電容的示意圖,此處之cxm表示跡線、 的電今值’ Cyn表示跡線乂對地的電容值, 線、和跡線㈣财綱,細麵== 1377499 交界處時,紅Xmyn^降,树崎^齡接偵測跡 線=和跡線yn之間的電容值Cwn的方法,时辨鬼影位置 接觸位置H同時對跡線、和^充電,並_跡 ^上的電雜,㈣職x^ynf恤,如之量測值 為零’測得的電容值為跡線Xm對地的電容值Cxm ;接著再對 跡線^充電並將跡線yn接地,此時跡線%不等電位, 因_測跡線、所得的電容值為〜+(:χΛ,兩者相減即可 得到跡線W yn間_合電雜Cxmyn。 圖9及圖10為俄測兩跡線間電容值4施例的示意圖,圖9 繪Γ當受測位置16為手指12實際位置時的狀況,圖!叫示 田又測位置16為鬼影位置時的狀況〇如圖示 置=手指士 12實際位置時,首先在師同時對跡線^ yk电此日守偵測跡線Xm取得的電容值;接著,於 Pha二2中對跡線、充電並將跡線祕地,取得跡線以的 電谷值 cx=cXm+CXmyk+dCXmyk;將 phase 2 取得 W仙翁敗餘紐W树際位置電 谷差值△CpCxa+dC^。t受測位置16為絲位置時, 如圖H)所示’對受測位置16進行前述偵測,取得之電容差值 柄位置電容差值,其中,* ^ ’因財際手餘置關定可藉由嫌電容餘△(:、達成。 ^發明提出之各實鮮實财述運算,在其他實施例 中,可以將手指及跡線等造成的誤差加入運算。 1^ .1 始後,先進行X方向跡線_201,接著進行γ方向跡 8 線偵浪】2〇2,判斷是否有危影發生2〇3,若否,輸出貞測結果 並結束2〇4。在步驟2〇3中,若發現有鬼影發生,則進入鬼影 處理程序,首先產生鬼影候選列表2〇5,將所有鬼影候選點加 入魏影候選列表中,雜於步驟2G6中從該鬼影候選列表中 取一鬼影候親’並順細是料該絲候選酿的最後一 『2〇7 ’右疋,輪出解答列表·,若否,進行鬼影分析感測 09。鬼影分析感測209的步驟如前所述,取得受測點的χ方 向跡線電容值、Υ方向跡線電容值、兩者加總後之電容值或受 、!點的χ、γ方向間電容值’再與從其他候選點取得的電容值 才旦目比較’以判斷該受測點是否為鬼影點2Π),若是,便自該鬼 影候選列表歸該受_ 2U,並_步驟鄕,繼續對其他 候選點做偵測及判斷,若否,表示該受測點為實際位置,便將 =測點加人解答列表212 ’並從該鬼影候選列表移除該點以 /山.尤、相同X或γ座標的候選點mi,再回到步驟2〇6 繼續對鬼影候選列表中的其他候選點進行_,最後輸出解答 ^表208 ’縣2G[在她謝,每-絲候選點的位置 =XY座標表示,因此最後輸出的解答列表已包含解答點的 座標,可以提供精確的接觸點定位能力。Other implementation offices can also detect each ghost candidate point one by one, obtain the trace capacitance value of I and the candidate point, and then read the capacitance value according to the traces by t reading to improve the reliability. Schematic diagram of the capacitance on the intersection line, where cxm represents the current value of the trace, 'Cyn' represents the capacitance value of the trace 乂 to the ground, the line, and the trace (4) Finance, fine surface == 1377499 at the junction, red Xmyn^ drop, the method of the capacitance value Cwn between the detection line and the trace yn, and the contact position H of the ghost position is simultaneously charged to the trace, and ^, and Electric hybrid, (four) job x ^ ynf shirt, if the measured value is zero 'measured capacitance value is the capacitance value of the trace Xm to the ground Cxm; then charge the trace ^ and ground the trace yn, at this time The trace % is not equal, because the measured trace value and the obtained capacitance value are ~+(:χΛ, the difference between the two can be obtained to obtain the trace W yn _ _ electric hybrid Cxmyn. Figure 9 and Figure 10 are Russian The schematic diagram of the capacitance value between the two traces is shown in Fig. 9. Fig. 9 shows the situation when the measured position 16 is the actual position of the finger 12, and the situation when the field is measured and the position 16 is the ghost position is shown in the figure. Set = the actual position of the finger 12, first at the same time the division on the trace ^ yk electric current to observe the trace Xm obtained capacitance; then, in the Pha 2 in the trace, charge and trace the secret , Obtain the electric valley value of the trace cx=cXm+CXmyk+dCXmyk; obtain the phase 2 to obtain the W-class position electric valley difference ΔCpCxa+dC^. When the measured position 16 is the wire position, As shown in Figure H), the above-mentioned detection is performed on the measured position 16 to obtain the capacitance difference between the position and the capacitance of the shank, where * ^ ' can be determined by the 电容 电容 ( (: In the other embodiments, the errors caused by fingers and traces can be added to the operation. 1^.1 After the start, the X-direction trace _201 is first performed. Then carry out the γ-direction trace 8 line detection wave 2〇2 to determine whether there is a danger occurrence 2〇3, if not, output the measurement result and end 2〇4. In step 2〇3, if ghosting is found Then enter the ghost processing program, first generate ghost candidate list 2〇5, add all ghost candidate points to the Wei Ying candidate list, and mix it with a ghost candidate from the ghost candidate list in step 2G6. And the smoothness is the last "2〇7' right 该 of the silk candidate, turn out the answer list. If not, perform ghost analysis sensation 09 The steps of ghost analysis 209 are as described above, and the 迹 direction trace capacitance value, the Υ direction trace capacitance value, the summed capacitance value or the 、, γ direction of the received point are obtained. The capacitance value 'is further compared with the capacitance value obtained from other candidate points' to determine whether the measured point is a ghost point 2Π), and if so, the _ 2U is returned from the ghost candidate list, and _ Step 鄕, continue to detect and judge other candidate points. If no, indicating that the measured point is the actual position, then the = measuring point is added to the answer list 212' and the point is removed from the ghost candidate list to / Mountain. Especially, the candidate point mi of the same X or γ coordinates, go back to step 2〇6 to continue to _ other candidate points in the ghost candidate list, and finally output the answer ^ table 208 'County 2G [in her thank, each - The position of the wire candidate point = XY coordinate representation, so the final output of the answer list already contains the coordinates of the solution point, which can provide accurate contact point positioning ability.

本發^還提出—細目交錯驅邮n.PhaSe Cri咖ss)的方法, 以使交錯點(受測點)上的基本電容值變小,如此—來,受測點 電斧值的高低變化更為明顯’利於實際的電路控制,如圖U ^上的電容值以進行前述之交錯驅動判 夺控制電路以訊號Muxl驅動跡線财,同時以與訊號 Muxl同相的峨Mux 2 _赠⑼,_跡線辦以取得 其上的電容值。圖13係同相交錯驅動造成之adc讀值差異的 示意圖’以訊號Muxl驅動跡線X卜並以同相訊號Mux2分 別驅動跡線Y1和Y2 ’受測點a是手指實際接觸位置,因此 在同相交錯驅動跡線XI和γ2時,偵測跡線χι獲得的 ADC(;Analog_to_Digital Converter)讀值高,判斷為邏輯The present invention also proposes a method of carefully interleaving n.PhaSe Cri ss) to make the basic capacitance value at the interlaced point (measured point) smaller, so that the value of the electric axe of the measured point changes. More obvious 'to facilitate the actual circuit control, as shown in Figure U ^ the capacitance value to carry out the above-mentioned interleaved drive compensation control circuit to drive the trace money with the signal Muxl, while in the same phase as the signal Muxl 峨 Mux 2 _ gift (9), _ Trace to get the capacitance value on it. Figure 13 is a schematic diagram of the difference in adc reading caused by the in-phase interleaved drive. The trace Xb is driven by the signal Mux1 and the traces Y1 and Y2 are driven by the in-phase signal Mux2 respectively. The measured point a is the actual contact position of the finger, and thus interleaved in phase. When driving traces XI and γ2, the ADC (;Analog_to_Digital Converter) obtained by the detection trace 高ι has a high reading value and is judged as logic.

High(l) ’受測點c為鬼影位置,因此在同相交錯驅動跡線χι 和Y1時,偵測跡線XI獲得的ADC讀值低,判斷為邏輯 Low(O) 〇 由於前述之交錯驅動偵測到實際位置與鬼影位置間的電容值 差異小,本發明提出一種調校(Calibration)方法,在原本的調 校流程中增加一單軸的交叉調校(Intersecti〇nal Calibrati〇n)# 驟,以更進一步提升偵測的準確性,圖14為其示意圖。以訊 號Mux2驅動Y軸的其.中一條跡線YM,並以訊號Muxl驅動 並掃瞄所有X軸方向跡線,取得每一條跡線的AQC值,提供 給調變器(Modulator)做為後續調校的參數,供校正跡線上的調 變值和DAC值,使每條跡線的ADC(Analog-to-Digital Converter)讀值處於相同準位、 由於本發明係先判斷出一隻手指的實際位置,再導出另一隻手 才曰的位置,為降低因手指粗細差距太大產生的錯誤率,參照圖 15 ’本發明遠擇以域應量較大(X」丽)的手指做為判斷的 第一根手指。 圖16係應用本發明之電容式觸控板一實施例的示意圖,電容 式觸控板30上具有多個感應器32,縱向的感應器32間有導 線相連’組成跡線(trace) X卜幻……迦,橫向的感應器% 同樣分別組成跡線Y卜Y2··.···ΥΜ,調變器36產生之電流訊 號藉由類比多工器34選擇要接至的跡線,調變成訊號 及mux2,由於本實施例在原本的調校流程中增加前述之交又 調校步驟,因此在產生出習知的lst調變參數和lstDAC參數 後,交叉調校步驟提供之2nd調變參數和2nd DAC參數亦提 供給調變器36 ’輔助調校每條跡線的aj^c讀值,而由於使用 同相交錯驅勤,本實施例之解調器38需以額外提供之參考訊 號Mux_Vref解調訊號muxl ’產生訊號卯eak和叩eak給電壓 處理電路40,電壓處理電路4〇再將訊競ppeak和叩eak間的 電歷差加以轉換,以獲得電容式觸控板⑴上的電容變化資 訊。調變器以調變參數和DAC參數調整跡線的基本電容值為 習知技術,熟習本發明所屬之技術領域者當知。 在其他實施例中,亦可以使用同步但異相的訊號做為Muxl和High(l) 'The measured point c is the ghost position, so when the in-phase interleaved drive traces χι and Y1, the ADC trace value obtained by the detection trace XI is low, and it is judged as logical Low(O) 〇 due to the aforementioned interleaving The driver detects that the difference in capacitance between the actual position and the ghost position is small. The present invention proposes a calibration method to add a single-axis cross adjustment in the original calibration process (Intersecti〇nal Calibrati〇n ), to further improve the accuracy of detection, Figure 14 is a schematic diagram. Drive the signal Yux2 to drive one of the Y lines, and drive and scan all the X-axis traces with the signal Mux1 to obtain the AQC value of each trace, which is provided to the Modulator as a follow-up. The parameters of the calibration are used to correct the modulation value and the DAC value on the trace, so that the ADC (Analog-to-Digital Converter) reading value of each trace is at the same level, because the invention first determines a finger In the actual position, and then the position of the other hand is extracted, in order to reduce the error rate caused by the difference in the thickness of the finger, refer to FIG. 15 'The invention is based on the finger with a larger amount (X) Li. The first finger of the judgment. 16 is a schematic diagram of an embodiment of a capacitive touch panel to which the present invention is applied. The capacitive touch panel 30 has a plurality of inductors 32, and the longitudinal inductors 32 are connected by wires to form a trace X. The illusion...jia, the horizontal sensor % also form the trace Yb. Y2······ΥΜ, the current signal generated by the modulator 36 is selected by the analog multiplexer 34 to be connected to the trace. The signal and mux2 are changed. Since the present embodiment adds the aforementioned adjustment and adjustment steps in the original calibration process, the 2nd modulation provided by the cross adjustment step is provided after the conventional lst modulation parameter and the lstDAC parameter are generated. The parameters and 2nd DAC parameters are also provided to the modulator 36' to assist in adjusting the aj^c reading of each trace, and the demodulator 38 of the present embodiment requires an additional reference signal due to the use of in-phase interleaved drive. The Mux_Vref demodulation signal muxl 'generates the signals 卯eak and 叩eak to the voltage processing circuit 40, and the voltage processing circuit 4 converts the electrical history difference between the communication ppeak and 叩eak to obtain the capacitive touch panel (1). Capacitance change information. The modulator adjusts the basic capacitance values of the traces with modulation parameters and DAC parameters as known in the art, and is well known to those skilled in the art to which the present invention pertains. In other embodiments, synchronous but out-of-phase signals can also be used as Muxl and

Mux2 ,進行前述之交錯驅動及交叉調校以分辨鬼影位置和實 際位置。 圖17係偵測圖15之鬼影現象一實施例的流程*圖,在圖15中, A點的手指較D點手指粗,因此A點的電容值較d點大。首 先,以習知的一般調校501取得電容式觸控板上各跡線的ht 調變參數和1 st DAC參數,接著以交叉調校5〇2取得2nd調變 參數和2nd DAC參數提供給調變器,使電容式觸控板上各跡 線具有相同的ADC讀值後,對觸控板掃瞄5〇3,判斷在乂和 Y軸上的手指數目是否大於2 504 ’若否,判定此時為單指應 用505,回到步驟503 ;若否,進入交錯驅動程序。在交錯驅 動程序中,先找出出現電容變化的Y方向跡線Y1和Y2 5〇6, 1377499 接著找出X方向上具最大值的跡線如狀(Χ1)507,接著在步 驟508中以訊號Mux2驅動跡線Y1,並以訊號Muxl偵測跡 線Xmax’於步驟509取得並儲存跡線γι的值A£)C_Y1, 接著’再於步驟510以訊號Mux2驅動跡線Y2並以訊號Muxl 偵測跡線X一max,取得並儲存跡線γ2的值adc+y〗 51卜判斷^C-Y1是否大於ADC_Y2 512 ;若是,判斷手指 位置在(Xmax,Yl),(Xmin,Y2) 513 ;若否,判斷手指位置在 (Xmax’ Y2),(Xmin,Y1) 514,判斷出手指位置後,判定當前為 多指應用515,回到步驟5〇3繼續掃瞄觸控板。 以上對於本發明之較佳實施例所作的敘述係為闡明之目的,而 無意限定本發明精確地為所揭露的形式,基於以上的教導或從 本發明的實施例學習而作修改或變化是可能的,實施例係為解 說本發明的原理以及讓熟習該項技術者以各種實施例利用本 發明在實際應用上而選擇及敘述,本發明的技術思想企圖由以 下的申請專利範圍及其均等來決定。 【圖式簡單說明】 圖1為龙影現象的示意圖; 圖2為雙指觸控造成之鬼影現象的示意圖; 圖3為三指觸控造成之鬼影現象的示意圖; 圖4及圖5為本發明一實施例的示意圖; 圖6及圖7為本發明另一實施例的示意圖; 圖8係兩相交跡線上電容的示意圖; 圖9及圖1〇為偵測兩跡線間電容值一實施例的示意圖; 12 1377499 圖11係應用本發明一實施例的流程圖; 圖12為本發明提出之同相交錯驅動的示意圖; 圖13係同相交錯驅動造成之ADC讀值差異的示意圖; 圖14為本發明提出之交叉調校的示意圖; 圖15為不同粗細手指造成鬼影現象的示意圖; 圖16係應用本發明之電容式觸控板一實施例的示意圖;以及 圖17係偵測圖15之鬼影現象一實施例的流程圖。 【主要元件符號說明】 12 手指 14 手指 16 受測俾置 200 開始 201 X方向跡線偵測 202 Y方向跡線偵測 203 鬼影發生? 204 結束 205 產生鬼影候選列表 206 自該鬼影候選列表中取一點 207 該點為鬼影候選列表的最後一點? 208 輸出解答列表 209 龙影分析感測 210 該點為鬼影點 自該鬼影候選列表移除該點 13 211 1377499 212 將該點加入解答列表 213 自該鬼影候選列表移除與該點具相同X或Y座標的候 選點 30 電容式觸控板 32 感應器 34 類比多工器 36 調變器 38 解調器 40 電壓處理電路 501 一般調校 · 502 交叉調校 503 觸控板掃瞒 504 在第一和第二方向上的手指數目大於2? 505 判定為單指應用 506 找出出現電容變化的Y方向跡線Y1和Y2 507 找出X方向上具最大值的線跡Xmax 508 以訊號Mux2驅動跡線Y1,並以訊號Muxl偵測跡線 X_max 509 取得並儲存跡線Y1的ADC值ADC_Y1 510 以訊號Mux2驅動跡線Y2並以訊號Muxl偵測跡線 X_max 511 .取得並儲存跡線Y2的ADC值ADC_Y2 512 ADC_Y1>ADC_Y2? 513 手指實際位置在(Xmax,Yl)及(Xmin,Y2) 1377499 514 手指實際位置在(Xmax, Y2)及(Xmin,Yl) 515 判定為多指應用Mux2 performs the aforementioned interleaved driving and cross tuning to distinguish ghost position and actual position. 17 is a flow chart of the embodiment of detecting ghosting phenomenon of FIG. 15. In FIG. 15, the finger at point A is thicker than the finger at point D, so the capacitance value at point A is larger than point d. First, the ht modulation parameter and the 1 st DAC parameter of each trace on the capacitive touch panel are obtained by the conventional general adjustment 501, and then the 2nd modulation parameter and the 2nd DAC parameter are obtained by cross-adjusting 5〇2. The modulator, after the traces on the capacitive touch panel have the same ADC reading value, scan the touchpad for 5〇3, and determine whether the number of fingers on the 乂 and Y axes is greater than 2 504 'if no, It is determined that the single-finger application 505 is at this time, and the process returns to step 503; if not, the interleaved driver is entered. In the interleaving driver, first find the Y-direction traces Y1 and Y2 5〇6 where the capacitance change occurs, and 1377499 then find the trace with the largest value in the X direction as the shape (Χ1) 507, and then in step 508 The signal Mux2 drives the trace Y1, and the signal Mmax1 is detected by the signal Mux1. In step 509, the value of the trace γι, A£)C_Y1 is obtained and stored, and then the signal Mux2 is used to drive the trace Y2 with the signal Mux1 at step 510. Detect trace X_max, obtain and store the value of trace γ2 adc+y〗 51 Determine whether ^C-Y1 is greater than ADC_Y2 512; if yes, judge finger position at (Xmax, Yl), (Xmin, Y2) 513 If not, it is judged that the finger position is (Xmax' Y2), (Xmin, Y1) 514, after determining the finger position, it is determined that the current multi-finger application 515, and the process returns to step 5〇3 to continue scanning the touch panel. The above description of the preferred embodiments of the present invention is intended to be illustrative, and is not intended to limit the scope of the invention to the disclosed embodiments. It is possible to make modifications or variations based on the above teachings or learning from the embodiments of the present invention. The embodiments are described and illustrated in the practical application of the present invention in various embodiments, and the technical idea of the present invention is intended to be equivalent to the scope of the following claims. Decide. [Simple diagram of the figure] Figure 1 is a schematic diagram of the dragon shadow phenomenon; Figure 2 is a schematic diagram of the ghost phenomenon caused by two-finger touch; Figure 3 is a schematic diagram of the ghost phenomenon caused by three-finger touch; Figure 4 and Figure 5 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 and FIG. 7 are schematic diagrams of another embodiment of the present invention; FIG. 8 is a schematic diagram of capacitance on two intersecting traces; FIG. 9 and FIG. 12 1377499 FIG. 11 is a flow chart of an embodiment of the present invention; FIG. 12 is a schematic diagram of the in-phase interleaved driving proposed by the present invention; FIG. 13 is a schematic diagram showing a difference in ADC reading caused by the in-phase interleaved driving; 14 is a schematic diagram of cross-adjustment proposed by the present invention; FIG. 15 is a schematic diagram of ghosting caused by different thickness fingers; FIG. 16 is a schematic diagram of an embodiment of a capacitive touch panel to which the present invention is applied; A flow chart of an embodiment of a ghosting phenomenon of 15. [Main component symbol description] 12 Fingers 14 Fingers 16 Tested device 200 Start 201 X-direction trace detection 202 Y-direction trace detection 203 Ghost occurrence? 204 End 205 Generate ghost candidate list 206 Take a point from the ghost candidate list 207 Is this the last point of the ghost candidate list? 208 Output Answer List 209 Dragon Shadow Analysis Sensing 210 This point is the ghost point. The point is removed from the ghost candidate list. 13 211 1377499 212 Add the point to the answer list 213 Remove from the ghost candidate list and the point Candidate points with the same X or Y coordinates 30 Capacitive touch panel 32 Sensor 34 Analog multiplexer 36 Modulator 38 Demodulator 40 Voltage processing circuit 501 General tuning · 502 Cross tuning 503 Touchpad broom 504 The number of fingers in the first and second directions is greater than 2? 505 is determined to be a single finger application 506 to find the Y-direction traces Y1 and Y2 507 where the capacitance change occurs. Find the stitch Xmax 508 having the largest value in the X direction with the signal Mux2 drives trace Y1 and acquires and stores ADC value Y_max1 509 of signal Y1 with signal Mux1. ADC_Y1 510 is driven by signal Mux2 and trace X_max 511 is detected by signal Mux1. Trace is acquired and stored. ADC value of Y2 ADC_Y2 512 ADC_Y1>ADC_Y2? 513 The actual position of the finger is at (Xmax, Yl) and (Xmin, Y2) 1377499 514 The actual position of the finger is judged as multi-finger application at (Xmax, Y2) and (Xmin, Yl) 515

1515

Claims (1)

101年8月30日修正替換頁 +、申請專利範圍: I一種電容摘控板的絲偵測綠,該f容式觸控板上的第 位置及第二位置為鬼影候選位置,該第__位置及該第二位置 具有相_第-方向座標’該_方法包括下列步驟: (A) 以第—訊號驅動該第—位置的第—方向跡線,並以與該 第-訊號同步的第二訊號驅動該第一位置的第二方向跡線°; (B) 取得該第-位置的第—或第二方向跡線電容值; (Q以該第-訊號驅動該第二位置的第—方向跡線並以該 第二訊號驅動該第二位置的第二方向跡線; (D) 取得該第二位置的第一或第二方向跡線電容值;以及 (E) 比較該第-位置的第—方向跡線電容值及該第二位置的 ^-方向_電讀或比較該第—位置㈣二方向跡線電 容值及該第二位置的第二方向麟電容值,判斷實際接 置。 2·如請求項1之鬼影_方法,其中該第二訊號與該第一譬 同步且同相。 °〜 3·如請求項丨之鬼影偵測方法,其中該第二訊號與該第一 同步但異相。 °〜 4.如請求項1之鬼影_方法,其中步驟E包括: 若該第-位置的第一或第二方向跡線電容值大於該第二位 置的第-或第二方向跡線電容值,判斷該第—位置為 觸位置;以及 右遠第—位置的第—方向麟電容值小於該第二位置的第 -方向跡線f容值’判_第二位置騎際接觸位置。 IJ77499Modified on August 30, 2011, the replacement page +, the scope of the patent application: I. The wire detection green of a capacitor pick-up board, the first position and the second position of the f-capacity touch panel are ghost candidate positions, the first The __ position and the second position have phase_first-direction coordinates. The method includes the following steps: (A) driving the first-direction trace of the first position by the first signal, and synchronizing with the first-signal The second signal drives the second direction trace of the first position; (B) obtains the first or second direction trace capacitance value of the first position; (Q drives the second position by the first signal a first direction trace and driving the second direction trace of the second position with the second signal; (D) obtaining a first or second direction trace capacitance value of the second position; and (E) comparing the first - the position-direction trace capacitance value of the position and the ^-direction of the second position _ electrical reading or comparing the first-position (four) two-direction trace capacitance value and the second direction of the second direction lining capacitance value, determining the actual 2. The ghosting method of claim 1, wherein the second signal is synchronized with the first frame and is in phase. °~3·If the ghost detection method of the request item, wherein the second signal is synchronized with the first one but is out of phase. °~ 4. The ghost image_method of claim 1, wherein step E includes: - the first or second direction trace capacitance value of the position is greater than the first or second direction trace capacitance value of the second position, determining that the first position is a touch position; and the right direction - the position of the first direction The capacitance value is smaller than the first-direction trace f of the second position, and the second position is the riding position. IJ77499 l〇l 〇Γ 5·如請求項i之鬼影價測方法, 更包括下列步替換頁I 以該第二訊號驅動該電容式觸控板上任—第二 以該第-訊號驅動並掃猫該電容式觸控板上所有°的=線, 向跡線;以及 取得每一該第一方向跡線的電容值,以供調校該電容式觸 控板上各跡線的基本電容值。 17L〇l 〇Γ 5·If the ghost price measurement method of the request item i, the following step is replaced by the following step: the second signal drives the capacitive touch panel, and the second signal is driven by the first signal. All the == lines of the capacitive touch panel, the traces; and the capacitance values of each of the first direction traces for adjusting the basic capacitance values of the traces on the capacitive touch panel. 17
TW98105214A 2009-01-07 2009-02-19 Ghost image detection method of capacitive touch panel TW201032110A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW98105214A TW201032110A (en) 2009-02-19 2009-02-19 Ghost image detection method of capacitive touch panel
US12/649,779 US8619056B2 (en) 2009-01-07 2009-12-30 Ghost resolution for a capacitive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98105214A TW201032110A (en) 2009-02-19 2009-02-19 Ghost image detection method of capacitive touch panel

Publications (2)

Publication Number Publication Date
TW201032110A TW201032110A (en) 2010-09-01
TWI377499B true TWI377499B (en) 2012-11-21

Family

ID=44854780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98105214A TW201032110A (en) 2009-01-07 2009-02-19 Ghost image detection method of capacitive touch panel

Country Status (1)

Country Link
TW (1) TW201032110A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463358B (en) * 2010-05-07 2014-12-01 Silicon Integrated Sys Corp Ghost cancellation method for multi-touch sensitive device
TWI454995B (en) * 2011-08-11 2014-10-01 Wistron Corp Optical touch device and coordinate detection method thereof

Also Published As

Publication number Publication date
TW201032110A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
TWI407355B (en) Detection and Correction of Capacitive Touchpad
US9904417B2 (en) Projected capacitive touch detection with touch force detection using self-capacitance and mutual capacitance detection
KR101453347B1 (en) Touch detecting method and apparatus for decreasing noise
KR101084448B1 (en) A multi-point touch-sensitive system
US8144132B2 (en) Multipoint sensing method for capacitive touch panel
JP5367175B2 (en) Touch panel capable of detecting multi-touch and multi-touch detection method of the device
JP4897983B1 (en) Touch panel device and indicator distinguishing method
CN103676272B (en) Liquid crystal indicator
US20100283752A1 (en) Capacitive touch panel and method for detecting touched input position on the same
TWI463382B (en) Touch sensing apparatus and touch sensing method
JP2011180854A (en) Coordinate input device and display device including the same
TW201207710A (en) Method and device for analyzing positions
TW201015399A (en) Method for detecting multiple touch positions on touch panel
TWI428809B (en) Two - dimensional structure of the capacitive touchpad positioning method
US8654089B2 (en) Touch sensing circuit and touch sensing method
CN106030476B (en) Equipment for improving the signal-to-noise performance of projection-type capacitive touch screen and panel
US9612704B2 (en) Apparatus and method for sensing touch
CN106030463A (en) Determining touch locations and forces thereto on touch and force sensing surface
TWI412983B (en) Detecting method of performing multi-touch on a capacitive touch panel
TWI377499B (en)
TWI536231B (en) Multi-touch detection method and device thereof
TW201533624A (en) Touch panel and sensing method thereof
US10528178B2 (en) Capacitive touch sensing with conductivity type determination
CN101825976B (en) Ghost detecting method of capacitive touch control plate
CN101996009B (en) Touch sensing circuit and method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees