TWI376974B - Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system - Google Patents

Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system Download PDF

Info

Publication number
TWI376974B
TWI376974B TW98122139A TW98122139A TWI376974B TW I376974 B TWI376974 B TW I376974B TW 98122139 A TW98122139 A TW 98122139A TW 98122139 A TW98122139 A TW 98122139A TW I376974 B TWI376974 B TW I376974B
Authority
TW
Taiwan
Prior art keywords
base station
unit
code
terminal device
information
Prior art date
Application number
TW98122139A
Other languages
Chinese (zh)
Other versions
TW201101913A (en
Inventor
Takaharu Nakamura
Takayoshi Ode
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW98122139A priority Critical patent/TWI376974B/en
Publication of TW201101913A publication Critical patent/TW201101913A/en
Application granted granted Critical
Publication of TWI376974B publication Critical patent/TWI376974B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

1376974 · 六、發明說明: t:發明所屬之技術領域3 本發明係有關於一種無線通訊系統、基地台裝置、终 端裝置、及無線通訊系統之無線通訊方法。1376974 · VI. Description of the invention: t: Technical field to which the invention belongs 3 The present invention relates to a wireless communication system, a base station apparatus, a terminal apparatus, and a wireless communication method of a wireless communication system.

CC

在 LTE-A(Long Term Evolution-Advanced : LTE- Advanced ; 長程演進)系統中檢討有一種依據CoMP(Coordinate Multi Point access;座標多點存取)之無線通訊(例如以下之非專利 文獻1、2)。In the LTE-A (Long Term Evolution-Advanced: LTE-Advanced; Long-Range Evolution) system, there is a wireless communication based on CoMP (Coordinate Multi Point Access) (for example, Non-Patent Documents 1 and 2 below). ).

CoMP,例如藉終端機位於可與多數基地台(或扇區)通 訊之區域時,各基地台使用MIMO(Multiple Input Mutiple Ortput;多輸入多輸出),將不同資料發送至終端機而執行β 另一方面,LTE等之無線通訊系統中,基地台對發送資 料進行攪拌處理(例如以下之非專利文獻3、4:^例如,基地 台係將發送資料6(0)、. · ·和攪拌碼φ·)相加, 運算「2」之剩餘(Modul〇 ;模數),而實施攪拌。即:CoMP, for example, when the terminal is located in an area that can communicate with most base stations (or sectors), each base station uses MIMO (Multiple Input Mutiple Ortput) to send different data to the terminal to perform β On the one hand, in a wireless communication system such as LTE, the base station performs agitation processing on the transmission data (for example, the following non-patent documents 3, 4: ^, for example, the base station system will transmit the data 6 (0), . . . φ·) is added, and the remainder (Modul〇; modulus) of "2" is calculated, and stirring is performed. which is:

[數 1 ] ^0.) = (6(/) + c(/)) mod 2。 在此’攪拌碼Φ·)為如長度「31」之黃金碼,此時藉以下的 產生多項式求得。 [數2] [數3] [數4] c(«) = (Χι(η + A^c) + x2{n + Nc)) mod2 xi + 31) = (χ, (/7 + 3) + X, («)) mod 2 x2 + 31) = (χ2 (/7 + 3) + x2 (« + 2) + x2 (« + !) + x2 (n)) mod 2 在此, [數5] 尤丨(〇) = 1,x丨(《) = 0,《 = 1,2,...,30,^Vc= 1600 3 1376974 進而,攪拌碼φ·)之初始值係如下給與。 [數 6] €Μι=ηΗΝΤΙ·2'^[η5Ι2\·29+Ν^ 即,攪拌碼Φ_)之初始值係以下列數字決定之值,各數 為終端機號碼: [數 7] «娜/ ( RNTI: Radio Network Temporally ID ) i (實體)細胞(或扇區)號碼: [數 8] AC ; 及槽號: [數9]义。 此外,以此種習知技術而言,例如揭示有一種控制裝 置等,該控制裝置包含有:發送分配機構,係根據由行動 台通知之接收品質,選擇至少2個對行動台發送之發送扇 區,對行動台進行發送分配者;及發送機構,係由發送扇 區使用扇區識別用之同一攪拌碼,發送至行動台者(例如以 下之專利文獻1)。 又,揭示有一種基地台裝置等,該基地台裝置包含有: 基地台固有攪拌碼產生部,係產生基地台固有攪拌碼者; 扇區固有正交序列產生部》係產生扇區固有之正父序列 者;及,乘法控制部,係根據每一實體通道之軟體合成之 必要與否,控制前述基地台固有搜摔碼與前述扇區固有正 交序列之乘法之必要與否者(例如以下之專利文獻2)。 先行技術文獻 專利文獻 專利文獻1 :曰本發明專利申請案公開公報第2006-311475號 4 專利文獻2 .日本發明專利案公P,Vi^S2()G8-92379號 非專利文獻 非專利文獻 1 : 3GPPTSG-RAN-WG1 ru〇842〇3 非專利文獻2 : 3GPP TS 36. 210 V8. 6.0 非專利文獻3 : 3GPPTS36.211 V8.2.0 非專利文獻4 : 3GPPTSG-RAN-WG1 Ri_Q8m9 發明欲解決之課題 如上述,攪拌碼之初始值係由終端機號碼、細胞號碼、 及槽唬決定,但終端機號碼係按每—細胞經由基地台設 疋’細胞Μ亦是每-細胞各有不同者。&,槽號亦有在 細胞間形成不同的號碼之情況。因此,由不同的細胞對終 端機進行CoMP發送時,授拌碼之初始值成為每一細胞不同 之值。藉此,各基地台及終端機作成不同的攪拌碼,使用 該攪拌碼,進行攪拌及解拌的處理。因此,各基地台及終 端機之處理變得複雜,進而耗電也大。 又,專利文獻1及2所载者,並沒有針對由2個扇區發送 不同資料之情況有所揭露。如專利文獻丨所載,這是因為, 使用同一攪拌碼,由兩個扇區發送不同的資料時,行動台 疋接收兩個訊號,但這兩個訊號相混,不能識別由兩個扇 區發送之資料所致者。 C發明内容】 在此’本發明之一目的係於提供一種在終端裝置或基 地台裝置_謀求處理的減輕之無線通訊系統基地台裝 置、終端裝置、及無線通訊系統之無線通訊方法。 1376974 又,本發明之另一目的係於提供終端裝置或基地台裝 \ 置中謀求耗電減少之無線通訊系統等。 用以解決課題之方式 依一態樣,乃提供一種無線通訊系統,該無線通訊系 統係於各具有一個或多個細胞或扇區之第1及第2基地台裝 置與終端裝置之間進行無線通訊者,其特徵在於前述第1及 第2基地台裝置各包含有:處理部,係於將每一前述細胞或 前述扇區各有不同之第1及第2發送資料各發送至前述終端 裝置時,使用具有特定相位差之第1及第2攪拌碼,各對前 · 述第1及第2發送資料進行攪拌處理者;及,發送部,係將 前述業經攪拌處理之前述第1及第2發送資料各發送至前述 終端裝置者,前述終端裝置包含有接收部,該接收部係接 收前述第1及第2發送資料,使用前述第1及第2攪拌碼,各“ 對前述第1及第2發送資料進行解拌處理者。 又,依另一態樣,乃提供一種無線通訊系統,該無線 通訊系統係於各具有一個或多個細胞或扇區之第1及第2基 地台裝置與終端裝置之間進行無線通訊者,其特徵在於前 ® 述終端裝置包含有:處理部,係使用第1攪拌碼,對每一前 述細胞或前述扇區各有不同之第1及第2發送資料進行攪拌 處理者;及發送部,係將前述業經攪拌處理之第1及第2發 送資料各發送至前述第1及第2基地台裝置者,前述第1及第 2基地台裝置各包含有接收部,該接收部係使用前述第1攪 · 拌碼,各對前述第1及第2發送資料進行解拌處理者。 發明之效果 6 1376974 · 本發明可提供構造成在終端裝置或基地台裝置謀求處 理的減輕之無線通訊系統、基地台裝置、終端裝置、及無 線通訊系統之無線通訊方法。又,可提供構造成在終端裝 置或基地台裝置謀求耗電減少之無線通訊系統等。 圖式簡單說明 第1圖係顯示無線通訊系統之構成例之圖。 第2圖係顯示下鏈方向中之無線通訊系統之構成例之圖。 第3圖係顯示主基地台裝置之構成例之圖。 • 第4圖係顯示從屬基地台裝置之構成例之圖。 第5圖係顯示終端裝置之構成例之圖。 第6圖係顯示黃金碼產生器之構成例之圖。 第7圖係顯示黃金碼產生器之構成例之圖。 第8圖係顯示黃金碼產生器之構成例之圖。 第9圖係顯示攪拌碼作成部之構成例之圖。 第10圖係顯示動作例之流程。 第11圖係顯示動作例之流程。 ® 第12圖係顯示下鏈方向中之無線通訊系統之構成例之圖。 第13圖係顯示主基地台裝置之構成例之圖。 第14圖係顯示從屬基地台裝置之構成例之圖。 第15圖係顯示動作例之流程。 第16圖係顯示上鏈方向中之無線通訊系統之構成例之圖。 • 第17圖係顯示主基地台裝置之構成例之圖。 第18圖係顯示從屬基地台裝置之構成例之圖。 ' 第19圖係顯示終端裝置之構成例之圖。 7 1376974 第20圖係顯示動作例之流程。 ·_ 第21圖係顯示動作例之流程。 第22圖係顯示終端裝置之構成例之圖。 第23圖係顯示終端裝置之構成例之圖。 第24圖係顯示基地台裝置之構成例之圖。[number 1] ^0.) = (6(/) + c(/)) mod 2. Here, the 'stirring code Φ·) is a gold code of length "31", and is obtained by the following polynomial. [Number 2] [Number 3] [Number 4] c(«) = (Χι(η + A^c) + x2{n + Nc)) mod2 xi + 31) = (χ, (/7 + 3) + X, («)) mod 2 x2 + 31) = (χ2 (/7 + 3) + x2 (« + 2) + x2 (« + !) + x2 (n)) mod 2 Here, [Number 5]尤丨(〇) = 1, x丨(") = 0, " = 1,2,...,30,^Vc= 1600 3 1376974 Further, the initial value of the stirring code φ·) is given as follows. [Number 6] The initial value of €Μι=ηΗΝΤΙ·2'^[η5Ι2\·29+Ν^, stirring code Φ_) is determined by the following numbers, each number is the terminal number: [7] «娜/ ( RNTI: Radio Network Temporally ID ) i (physical) cell (or sector) number: [number 8] AC; and slot number: [number 9] meaning. Further, in the prior art, for example, a control device or the like is disclosed. The control device includes: a transmission distribution mechanism that selects at least two transmission fans for transmitting to the mobile station based on the reception quality notified by the mobile station. The area transmits the assigner to the mobile station; and the transmitting means transmits the same stirring code for the sector identification using the sector to the mobile station (for example, Patent Document 1 below). Further, a base station apparatus or the like is disclosed. The base station apparatus includes: a base station-specific agitating code generating unit that generates a base station-specific agitating code; and a sector-specific orthogonal sequence generating unit that generates a sector-specific positive The parent sequencer; and the multiplication control unit controls whether or not the base station inherent search code is multiplied by the sector-specific orthogonal sequence according to the necessity of software synthesis of each physical channel (for example, Patent Document 2). PRIOR ART DOCUMENT PATENT DOCUMENT Patent Document 1 : 曰 发明 发明 发明 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 . . . . . . . . . . : 3GPP TSG-RAN-WG1 ru〇842〇3 Non-Patent Document 2: 3GPP TS 36. 210 V8. 6.0 Non-Patent Document 3: 3GPP TS 36.211 V8.2.0 Non-Patent Document 4: 3GPP TSG-RAN-WG1 Ri_Q8m9 Invention to be solved As described above, the initial value of the agitation code is determined by the terminal number, the cell number, and the slot. However, the terminal number is set to be a cell per cell through the base station, and each cell is different. &, the slot number also has a different number between cells. Therefore, when CoMP transmission is performed on the terminal by different cells, the initial value of the code is a different value for each cell. Thereby, each base station and the terminal machine are made to have different stirring codes, and the stirring code is used to perform the mixing and dissolving process. Therefore, the processing of each base station and the terminal is complicated, and the power consumption is also large. Further, those disclosed in Patent Documents 1 and 2 do not disclose the case where different materials are transmitted by two sectors. As stated in the patent document, this is because, when the same data is transmitted by two sectors using the same stirring code, the mobile station receives two signals, but the two signals are mixed and cannot be recognized by two sectors. The person who sent the information. C. In view of the above, an object of the present invention is to provide a wireless communication system base station apparatus, a terminal apparatus, and a wireless communication method of a wireless communication system in which a terminal apparatus or a base station apparatus is reduced. 1376974 Further, another object of the present invention is to provide a wireless communication system or the like that seeks to reduce power consumption in a terminal device or a base station. The method for solving the problem is to provide a wireless communication system that wirelessly connects between the first and second base station devices and terminal devices each having one or more cells or sectors. The present invention is characterized in that each of the first base station and the second base station device includes a processing unit that transmits each of the first and second transmission data different from each of the cells or the sectors to the terminal device. In the case of using the first and second stirring codes having a specific phase difference, each of the first and second transmission data is agitated; and the transmitting unit is the first and the third (2) Each of the transmission data is transmitted to the terminal device, and the terminal device includes a receiving unit that receives the first and second transmission data, and uses the first and second stirring codes, respectively, for each of the first and second The second transmission data is subjected to a de-mixing processor. In addition, in another aspect, a wireless communication system is provided, the wireless communication system being the first and second base station devices each having one or more cells or sectors. versus The wireless communication device between the terminal devices is characterized in that the terminal device includes: a processing unit that uses the first agitation code to have different first and second transmission data for each of the cells or the sectors. And a transmitting unit that transmits the first and second transmission data that have been subjected to the agitation processing to the first and second base station apparatuses, wherein each of the first and second base station apparatuses includes reception The receiving unit uses the first stirring code to perform the unmixing process on the first and second transmission materials. Effect of the Invention 6 1376974 · The present invention can be provided in a terminal device or a base station device A wireless communication system for a wireless communication system, a base station device, a terminal device, and a wireless communication system for reducing the processing, and a wireless communication system configured to reduce power consumption in a terminal device or a base station device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a configuration example of a wireless communication system. Fig. 2 is a view showing a configuration example of a wireless communication system in a downlink direction. Fig. 4 is a view showing a configuration example of a slave base station device. Fig. 5 is a view showing a configuration example of a terminal device. Fig. 6 is a view showing a configuration example of a gold code generator. Fig. 7 is a view showing a configuration example of a gold code generator. Fig. 8 is a view showing a configuration example of a gold code generator. Fig. 9 is a view showing a configuration example of a stirring code creation unit. The figure shows the flow of the operation example. Fig. 11 shows the flow of the operation example. Fig. 12 shows a configuration example of the wireless communication system in the downlink direction. Fig. 13 shows the configuration example of the main base station device. Fig. 14 is a view showing a configuration example of a slave base station device. Fig. 15 is a view showing a flow of an operation example. Fig. 16 is a view showing a configuration example of a wireless communication system in a winding direction. The figure shows a diagram showing a configuration example of the main base station apparatus. Fig. 18 is a view showing a configuration example of a slave base station device. Fig. 19 is a view showing a configuration example of the terminal device. 7 1376974 Figure 20 shows the flow of the action example. ·_ Figure 21 shows the flow of the operation example. Fig. 22 is a view showing a configuration example of the terminal device. Fig. 23 is a view showing a configuration example of the terminal device. Fig. 24 is a view showing a configuration example of the base station apparatus.

【'AC 針對用以實施本發明之形態’乃如下說明。第1圖係顯 示無線通訊系統10之構成例之圖。無線通訊系統包含有2 個基地台裝置(eNB : evolved Node_B,以下稱為「基地台」) 鲁 100-1、100-2、及終端裝置(UE : User Equipment、以下稱 為「終端機」)200。基地台100-1、100-2係發送不同的資 料,終端機200係接收該資料(下鏈方向)。又,終端機200 亦可將不同的資料發送至基地台100-卜100-2 (上鏈方向)。 ύ 基地台100-1 ' 100-2與終端機200皆可進行所謂CoMP通訊 者。以下分成下鏈方向(第1及第2實施例)及上鏈方向(第3 實施例)說明。此外,在3GPP中,「細胞」係以與所謂「扇 區」同一内容定義者’在後述實施例中無特別說明時,是 · 以「細胞」=「扇區」來說明。 <第1實施例> 首先針對下鏈方向進行說明。第2圖係顯示下鏈方向中 之無線通訊系統1〇之構成例之圖。2個基地台ι〇〇_ι、丨〇〇_2 中,基地台100-1為主基地台,基地台100_2為從屬基地台。 主基地台100-1,是例如在實施c〇MP發送之前,與終端機 . 200連線中之基地台,從屬基地台100-2’是例如實施coMP - 8 發送之基地台。主基地台100-1係將控制訊號發送至終端機 2〇〇。終端機200係根據控制訊號,接收由主基地台丨⑼^及 從屬基地台100-2發送之不同發送資料(DSCH)。 <主基地台之構成例> 針對第1實施例中之主基地台100-1之構成例予以說 明。第3圖係顯示主基地台100-1之圖。 主基地台100-1包含有:天線1(H、接收無線部1〇2、解 調解碼部103、連接要求訊號擷取部1〇4、無線線路控制邹 105、細胞資訊訊號作成部106、coMp通訊要求訊號擷取部 107、CoMP通訊實施判定暨控制部(以下稱為「控制部」) 1〇8、無線線路品質資訊擷取部丨〇9、排程器11〇、控制訊號 作成部111、攪拌碼作成部112 '發送資料緩衝器Π3、編碼 調變部114、及發送無線部115。 天線101’係於與終端機200之間發送並接收無線訊號。 接收無線部102,係輸出於天線101接收之無線訊號, 作為接收訊號。 解調解碼部103,係冑由接收無線部1〇2輸出之接收訊 號進行解調及解碼。 連接要求訊號擷取部丨〇 4,係由業經解調等之接收訊號 擷取連接要求减。連接要求訊號,例如是終端獅〇在與 主基地台_·1之間進行線路連接之要求時所使用之訊號。 無線線路控制部1〇5,係由連接要求訊號操取部ι〇4輸 入連接要求訊號時,選擇例如已固持(或記憶)在内部之多數 細胞號碼及終端機號碼巾任—個細親碼及終端機號碼, 1376974 而輸出至細胞資訊訊號作成部106及授拌碼作成部ii2。 細胞資訊訊號作成部106 ’係由無線線路控制部1〇5輸 出之細胞號碼及終端機號碼、及由排程器Π0輸出之槽號, 作成細胞資訊。所作成之細胞資訊係作為細胞資訊訊號, 而發送至實施CoMP發送之基地台(例如從屬基地台ι〇〇_2)。 又’細胞資訊訊號作成部106 ’為了將細胞資訊訊號發送至 終端機200,亦將其輸出至編碼調變部114。進而,細胞資 訊訊號作成部106 ’係將顯示主基地台1〇〇_1與從屬基地台 100-2各產生之攪拌碼之相位差之相位差資訊發送至從屬 隹 基地台100-2。相位差’例如從屬基地台ι〇〇_2所產生之擾拌 碼相對於主基地台100-1所產生之攪拌碼之相位差。細胞資 訊訊號作成部106,亦須將相位差資訊通知終端機2〇〇,將 該相位差資訊輸出至編碼調變部114。相位差資訊容後詳 u 述。細胞資訊訊號作成部106 ’例如事先將相位差資訊固持 (或記憶)者。['AC is directed to the form for carrying out the invention' is as follows. Fig. 1 is a view showing a configuration example of the wireless communication system 10. The wireless communication system includes two base station devices (eNB: evolved Node_B, hereinafter referred to as "base station"). Lu 100-1, 100-2, and terminal devices (UE: User Equipment, hereinafter referred to as "terminal device") 200. The base stations 100-1, 100-2 transmit different data, and the terminal 200 receives the data (downlink direction). Further, the terminal 200 can also transmit different data to the base station 100-b 100-2 (winding direction).基地 Both the base station 100-1 '100-2 and the terminal 200 can perform so-called CoMP communicators. The following description will be divided into the lower chain direction (first and second embodiments) and the upper chain direction (third embodiment). Further, in 3GPP, "cell" is defined by the same content as the so-called "sector", and is not described in the following examples, and is described by "cell" = "sector". <First Embodiment> First, the direction of the lower chain will be described. Fig. 2 is a view showing a configuration example of the wireless communication system 1 in the downlink direction. Among the two base stations ι〇〇_ι, 丨〇〇_2, the base station 100-1 is the base station, and the base station 100_2 is the slave base station. The master base station 100-1 is, for example, a base station connected to the terminal set 200 before the c〇MP transmission is performed, and the slave base station 100-2' is, for example, a base station that performs coMP-8 transmission. The primary base station 100-1 transmits control signals to the terminal unit 2〇〇. The terminal 200 receives different transmission data (DSCH) transmitted by the primary base station (9) and the slave base station 100-2 based on the control signal. <Configuration Example of Main Base Station> A configuration example of the master base station 100-1 in the first embodiment will be described. Figure 3 is a diagram showing the main base station 100-1. The main base station 100-1 includes an antenna 1 (H, a receiving radio unit 1 2, a demodulation decoding unit 103, a connection request signal capturing unit 1〇4, a radio channel control device 105, and a cell information signal generating unit 106, The coMp communication request signal extraction unit 107, the CoMP communication implementation determination and control unit (hereinafter referred to as "control unit") 1〇8, the radio channel quality information acquisition unit 丨〇9, the scheduler 11〇, and the control signal preparation unit 111. The stirring code creating unit 112' transmits the data buffer Π3, the code modulating unit 114, and the transmitting wireless unit 115. The antenna 101' transmits and receives a wireless signal to and from the terminal 200. The receiving wireless unit 102 outputs The radio signal received by the antenna 101 is used as a reception signal. The demodulation and decoding unit 103 demodulates and decodes the reception signal outputted by the reception radio unit 1 to 2. The connection request signal acquisition unit 4 is used by the system. The receiving signal of the demodulation and the like is required to be reduced. The connection request signal is, for example, a signal used by the terminal griffin to perform a line connection with the main base station _·1. The wireless line control unit 1〇5, Connected by When the signal operation department ι〇4 is requested to input the connection request signal, select, for example, the majority of the cell number and the terminal number that have been held (or memorized), and the number and terminal number of the terminal number, 1376974, and output to the cell information. The signal generating unit 106 and the mixing code creating unit ii2. The cell information generating unit 106' is a cell number and a terminal number output by the wireless line control unit 〇5, and a slot number outputted by the scheduler Π0, and is made into a cell. Information. The cell information is sent to the base station that implements CoMP transmission (for example, the slave base station ι〇〇_2) as a cell information signal. The 'cell information signal generation unit 106' sends the cell information signal to The terminal 200 also outputs the same to the code modulation unit 114. Further, the cell information signal generation unit 106' displays the phase difference between the stirring codes generated by the main base station 1〇〇_1 and the slave base station 100-2. The phase difference information is sent to the slave base station 100-2. The phase difference 'e.g., the jamming code generated by the slave base station ι〇〇_2 is relative to the stirring code generated by the master base station 100-1. The cell information signal generating unit 106 is also required to notify the terminal device 2 of the phase difference information, and output the phase difference information to the code modulation unit 114. The phase difference information is described in detail later. The cell information signal generating unit 106 'For example, the phase difference information is held (or remembered) in advance.

CoMP通訊要求訊號操取部107,係由解調解碼部1〇3 輸出之接收訊號中’操取CoMP通訊要求訊號。c〇MP通訊 · 要求訊號,例如是在終端機200欲進行CoMP通訊時由終端 機200發送之訊號。 控制部108,係判定是否實施CoMP發送,在判定實施 CoMP發送時,則將CoMP發送實施通知通報從屬基地台 . 100-2。控制部108,例如根據由無線線路品質資訊操取部 · 109輪出之無線線路品質及由從屬基地台100-2發送之無線 線路品質’判定是否實施CoMP發送者。c〇MP發送實施通 10 1376974 , 知亦輸出至排程器110及細胞資訊訊號作成部106。 無線線路品質資訊擷取部109,係由解調解碼部103輸 出之接收訊號中擷取無線線路品質資訊。無線線路品質資 訊’例如是由終端機2〇〇發送之資訊。 排裎器110,係根據由無線線路品質資訊擷取部109輸 出之無線線路品質資訊,決定與終端機200之在下鏈方向通 訊所使用之編碼率、調變方式等(進行排程)。排程器110係 將與已決定之編碼率等有關之排程資訊輸出至控制訊號作 成部111。又,排程器11〇係於排程資訊中將使用頻率及前 置編碼資訊作為CoMP控制訊號,發送至從屬基地台 100-2 ’且將槽號輸出至細胞資訊訊號作成部106及授拌碼 作成部112。又’排程器11〇係依已決定之排程資訊,控制 編碼調變部114及發送無線部115,俾進行對於發送資料之 編碼處理等。 控制訊號作成部111,係作成含有由排程器輸出之 排程資訊之控制訊號,並輸出至編碼調變部114。 攪拌碼作成部112,係根據由排程器ι1〇輸出之槽號、 由無線線路控制部105輸出之細胞號碼及終端機號碼,作成 攪拌碼之初始值,作成攪拌碼。攪拌碼作成部112容後詳述。 發送資料緩衝器113,係暫時記憶由主基地台丨⑻“發 送至終端機200之發送資料。 編碼調變部114,係使用在攪拌碼作成部112所作成之 攪拌碼,對由發送資料緩衝器113輸出之發送資料進行攪拌 處理。又,編碼調變部U4根據排程資訊,將業經攪拌後之 11 發达貧料編碼及調變。此外,編碼調變部114係對細胞資訊 及控制訊號進行編碼等處理,但亦可對其等進行授掉處理。 發送無線部115,例如是對由編碼調變部114輸出之發 - 送 &gt; 料荨依據在排程器1 1 〇所作成之前置編码資訊,進行 加權之處理(或權重處理)等。又,發送無線部11S係例如產 生引不訊號(或已知訊號)。來自發送無線部115之輸出,係 作為無線訊號,以天線1〇1為中介而發送至終端機2〇〇。 C從屬基地台之構成例&gt; 其次’針對第1實施例之從屬基地台100_2之構成例予 秦 以說明。第4圖係顯示從屬基地台1〇〇_2之構成例之圖。從 屬基地台100-2係與主基地台同樣之構成。 控制部108,係由CoMP通訊要求訊號擷取部107輸入 CoMP通訊要求訊號’更由主基地台接收c〇MP實施通 一 知時,將CoMP實施通知輸出至排程器11()。 排程器110係根擄無線線路品質資訊擷取部1〇9輸出之 無線線路品質資訊,進行下鏈方向之排程。又,排程器110 係由控制部1〇8收到CoMP實施通知,且由主基地台loo-ι接 · 收到CoMP控制訊號時,進行CoMP發送用之排程。排程器 110係依據排程而控制編碼調變部114及發送無線部115,俾 進行編碼處理等。 攪拌碼作成部112,係輸入來自主基地台l00_i之細胞 資訊(含有細胞號碼、終端機號碼、及槽號之資訊)與相位差 資訊,作成相對於主基地台1 〇〇-1產生之授掉瑪(例如第1授 拌碼)具相位差之攪拌碼(例如第2攪拌碼)。其内容容後詳 12 1376974 述。攪拌碼作成部112係將所作成之攪拌碼輸出至編碼調變 部 114。 編碼調變部114,係使用攪拌碼而進行對發送資料等之 攪拌處理等。 &lt;終端機之構成例&gt; 其次’針對终端機200之構成例予以說明。第5圖係顯 示終端機200之構成例之圖。 終端機200包含有:天線201、接收無線部2〇2、解調解 碼部203、無線線路品質測定暨算出部(以下稱為算出部) 204 '無線線路品質資訊作成部205、細胞資訊及相位差資 訊擷取部(以下稱為相位差資訊擷取部)2〇6、攪拌碼作成部 207、接收控制訊號擷取部2〇8、終端機設定控制部2〇9、接 收功率測定部210、線路連接控制部211、連接要求訊號作 成部212、編碼調變部213、發送無線部214、CoMP通訊控 制部220、及CoMP通訊要求訊號作成部221。 天線201,係於與各基地台1〇〇_丨、1〇〇_2之間發送及接 收無線訊號。 接收無線部202,係輸出天線2〇1所接收之無線訊號, 作為接收訊號。 解調解碼部203 ’係使用已於攪拌碼作成部207作成之 攪拌碼’對接收訊號進行解拌,依照藉終端機設定控制部 209所設定之解調方式等,對接收訊號進行解調及解碼。 算出部204,係對主基地台100-1或從屬基地台100-2發 送之引不汛號等,測定各無線線路之無線品質。算出部 13 1376974 204,例如藉測疋引示訊號之siNR (Signal to Interference Noise Ratio:訊號對干擾雜訊比)等,來測定無線線路品質。 無線線路品質資訊作成部205,係根據由算出部2〇4輸 出之無線線路品質,作成無線線路品質資訊。無線線路品 質資訊係諸如為CQI(Channel Quality Indicator)等。所作成 之無線線路品質資訊係輸出至編碼調變部213。 相位差資訊擷取部206,係從解調解碼部2〇3輸出之接 收訊號中掘取細胞資訊及相位差資訊,將所擷取之細胞資 訊等輸出至攪拌碼作成部207。 · 搜拌碼作成部207 ’係根據由主基地台i〇〇_h^送之細 胞資訊,作成在主基地台100-1所作成之授拌碼(例如第1搜 拌碼)。又,攪拌碼作成部207係根據由主基地台1〇〇_1所發 送之細胞資訊及相位差資訊,作成在從屬基地台1〇〇_2作成 : 之攪拌碼(例如第2攪拌碼)。攪拌碼作成部2〇7係將所作成之 2個攪拌碼輸出至解調解碼部2〇3。 接收控制訊號擷取部208,係從接收訊號中操取控制訊 號,輸出至終端機設定控制部209。 隹 終端機設定控制部209 ’係依據控制訊號所含之排程訊 號,控制接收無線部202及解調解妈部2〇3,俾可對來自基 地台100-1、100-2之接收資料等進行解調、解碼等。 接收功率測定部210,係從接收訊號中,例如測定引示 訊號之接收功率,將測定結果輸出至線路連接控制部211及 CoMP通訊控制部220。 線路連接控制部211,係根據接收功率,決定是否連接 · 14 1376974 基地台100-1、100-2之線路。線路連接控制部211 ’例如在 接收功率在極限值以上時,決定進行連線,不是時,則決 定不連線。線路連接控制部211係於決定連線時,將指示訊 號輸出至連接要求訊號作成部212。 連接要求訊號作成部212,係根據指示訊號,作成連接 要求訊號’且將其輸出至編碼調變部213。The CoMP communication request signal operation unit 107 operates the CoMP communication request signal from the received signal outputted by the demodulation and decoding unit 1〇3. c〇MP communication • The request signal is, for example, a signal transmitted by the terminal 200 when the terminal 200 wants to perform CoMP communication. The control unit 108 determines whether or not to perform CoMP transmission, and when determining to perform CoMP transmission, notifies the slave base station 100-2 of the CoMP transmission execution notification. The control unit 108 determines whether or not to execute the CoMP sender based on, for example, the radio channel quality rotated by the radio channel quality information acquisition unit 109 and the radio channel quality transmitted by the slave base station 100-2. The c〇MP transmission implementation 10 1376974 is also output to the scheduler 110 and the cell information signal creation unit 106. The radio channel quality information acquisition unit 109 extracts radio channel quality information from the reception signals output from the demodulation and decoding unit 103. The wireless line quality information 'is, for example, information transmitted by the terminal 2〇〇. The drainer 110 determines the coding rate, modulation method, and the like used for communication in the downlink direction of the terminal 200 based on the wireless channel quality information outputted by the wireless channel quality information capturing unit 109 (scheduled). The scheduler 110 outputs schedule information relating to the determined coding rate and the like to the control signal generation unit 111. Moreover, the scheduler 11 transmits the use frequency and the preamble information as a CoMP control signal to the slave base station 100-2' in the schedule information, and outputs the slot number to the cell information signal generation unit 106 and the mixing. The code creation unit 112. Further, the scheduler 11 controls the code modulation unit 114 and the transmission radio unit 115 based on the scheduled schedule information, and performs encoding processing for the transmission data. The control signal creating unit 111 is configured to generate a control signal containing the schedule information outputted by the scheduler, and output it to the code modulation unit 114. The agitation code creation unit 112 creates an initial value of the agitation code based on the slot number output from the scheduler ι1〇, the cell number output by the radio channel control unit 105, and the terminal number, and creates an agitation code. The agitation code creation unit 112 will be described later in detail. The transmission data buffer 113 temporarily memorizes the transmission data transmitted by the main base station (8) to the terminal unit 200. The code modulation unit 114 uses the agitation code created by the agitation code creation unit 112 to buffer the transmission data. The data sent by the device 113 is subjected to agitation processing. Further, the code modulation unit U4 encodes and modulates the developed and lean material after the stirring according to the scheduling information. In addition, the code modulation unit 114 controls the cell information and controls. The signal is subjected to processing such as encoding, but the processing may be performed, etc. The transmission radio unit 115, for example, sends the transmission-sending information to the code modulation unit 114 based on the scheduler 1 1 . The encoding information is previously transmitted, the processing (or weight processing) is performed, etc. Further, the transmitting wireless unit 11S generates, for example, a signal (or a known signal). The output from the transmitting wireless unit 115 is a wireless signal. The antenna is transmitted to the terminal device 2 as an intermediary. The configuration example of the C-subordinate base station> Next, the configuration example of the slave base station 100_2 of the first embodiment will be described by Qin. The fourth figure shows A diagram showing a configuration example of the base station 1〇〇_2. The slave base station 100-2 has the same configuration as the master base station. The control unit 108 inputs the CoMP communication request signal by the CoMP communication request signal extraction unit 107. When the main base station receives the c〇MP implementation, the CoMP implementation notification is output to the scheduler 11(). The scheduler 110 is based on the wireless line quality information acquisition unit 1〇9 output wireless line quality information. The scheduler 110 performs the scheduling of the downlink direction. Further, the scheduler 110 receives the CoMP implementation notification from the control unit 1〇8, and receives the CoMP control signal from the main base station loo-ι, and performs CoMP transmission. The scheduler 110 controls the code modulation unit 114 and the transmission wireless unit 115 according to the schedule, performs encoding processing, etc. The agitation code creation unit 112 inputs cell information (including the cell number) from the main base station 100_i. , the terminal number, and the information of the slot number) and the phase difference information, and the stirring code generated by the phase difference (for example, the first mixing code) generated by the main base station 1 〇〇-1 (for example, the second Stirring code). The contents are detailed in 12 1376974. The code creation unit 112 outputs the prepared agitation code to the code modulation unit 114. The code modulation unit 114 performs a process of agitation such as transmission of data using a stirring code, etc. <Configuration Example of Terminal Machine> A description will be given of a configuration example of the terminal device 200. Fig. 5 is a view showing a configuration example of the terminal device 200. The terminal device 200 includes an antenna 201, a receiving wireless unit 2, a demodulation and decoding unit 203, and a radio channel quality. Measurement and calculation unit (hereinafter referred to as calculation unit) 204 'Wireless channel quality information creation unit 205, cell information and phase difference information acquisition unit (hereinafter referred to as phase difference information acquisition unit) 2〇6, and agitation code creation unit 207 Receive control signal acquisition unit 2〇8, terminal setting control unit 2〇9, reception power measurement unit 210, line connection control unit 211, connection request signal creation unit 212, code modulation unit 213, transmission wireless unit 214, The CoMP communication control unit 220 and the CoMP communication request signal creation unit 221. The antenna 201 is configured to transmit and receive wireless signals between the base stations 1〇〇_丨 and 1〇〇_2. The receiving wireless unit 202 outputs the wireless signal received by the antenna 2〇1 as a received signal. The demodulation and decoding unit 203' demixes the reception signal using the agitation code □ which has been created by the agitation code creation unit 207, and demodulates the reception signal according to the demodulation method set by the terminal setting control unit 209 and the like. decoding. The calculation unit 204 measures the wireless quality of each wireless line by transmitting a signal to the primary base station 100-1 or the slave base station 100-2. The calculation unit 13 1376974 204 measures the radio channel quality by, for example, siNR (Signal to Interference Noise Ratio) of the signal. The wireless channel quality information creating unit 205 creates wireless channel quality information based on the quality of the wireless channel output by the calculating unit 2〇4. The wireless channel quality information is, for example, a CQI (Channel Quality Indicator). The created wireless channel quality information is output to the code modulation unit 213. The phase difference information acquisition unit 206 extracts cell information and phase difference information from the reception signal output from the demodulation and decoding unit 2〇3, and outputs the extracted cell information and the like to the agitation code creation unit 207. The search code creation unit 207' creates a feed code (for example, a first search code) created by the main base station 100-1 based on the cell information sent from the main base station i〇〇_h^. Further, the agitation code creation unit 207 creates a kneading code (for example, a second agitation code) which is created in the subordinate base station 1〇〇_2 based on the cell information and the phase difference information transmitted from the main base station 1〇〇_1. . The agitation code creation unit 2〇7 outputs the two pieces of the agitation code to the demodulation and decoding unit 2〇3. The reception control signal acquisition unit 208 reads the control signal from the reception signal and outputs it to the terminal setting control unit 209. The terminal setting control unit 209' controls the receiving wireless unit 202 and the demodulating and decoding unit 2〇3 according to the scheduling signal included in the control signal, and can receive the received data from the base stations 100-1 and 100-2. Perform demodulation, decoding, and the like. The received power measuring unit 210 measures, for example, the received power of the pilot signal from the received signal, and outputs the measurement result to the line connection control unit 211 and the CoMP communication control unit 220. The line connection control unit 211 determines whether or not to connect the lines of the base stations 100-1 and 100-2 according to the received power. The line connection control unit 211' determines to perform connection when the received power is equal to or higher than the limit value, and determines that the line is not connected when it is not. The line connection control unit 211 outputs an instruction signal to the connection request signal creation unit 212 when determining the connection. The connection request signal creation unit 212 creates a connection request signal ’ based on the instruction signal and outputs it to the code modulation unit 213.

CoMP通訊控制部220,係於接收功率在例如極限值以 上時,將CoMP通訊要求訊號之作成指示輸出至c〇MP通訊 要求訊號作成部221。The CoMP communication control unit 220 outputs an instruction to generate a CoMP communication request signal to the c〇MP communication request signal creation unit 221 when the received power is, for example, a limit value.

CoMP通訊要求訊號作成部22卜係根據來自CoMP通訊 控制部之指示,作成CoMP通訊要求訊號,並將其輸出至編 碼調變部213。 編碼調變部213,係對無線線路品質資訊、連接要求訊 號、CoMP通訊要求訊號等實施編碼及調變處理。 發送無線部214,係對業已編碼之無線線路品質資訊等 進行發送功率之控制等,作為無線訊號而輸出至天線201 β 無線線路品質資訊等係作為無線訊號而發送至基地台 100-1、100-2。 &lt;攪拌碼作成邹之構成例〉 其次’針對攪拌碼作成部112、2 0 7之構成例予以說明。 第6圖係顯示產生長度「31」之黃金碼(或攪拌碼)之黃 金碼產生器之構成例之圖。黃金碼產生器包含有第1及第2 移位暫存器U2-l、112-3、及第1〜第3互斥性邏輯和電絡 112_2、112-4、112_5。第6圖所示之黃金碼產生器係根據以 15 則述數2〜數5所示之產生多項式之構成例。 用以產生相對於藉數2〜數5所示之產生多項式所產生 之搜掉碼進行1位元移位之搜拌碼之產生多項式,係可以如 下式子顯示。 [數 10] 又,用 則為: Φ) = (^, (« +1) + x2 (n +1)) mod 2 以產生進行了 2位元移位之攪拌碼之產生多項式 J c{n) = (χ, (η + 2) + χ2 (« + 2)) m〇d 2The CoMP communication request signal creation unit 22 creates a CoMP communication request signal based on an instruction from the CoMP communication control unit, and outputs it to the code modulation unit 213. The code modulation unit 213 performs coding and modulation processing on the radio channel quality information, the connection request signal, and the CoMP communication request signal. The transmission radio unit 214 controls the transmission power of the encoded radio channel quality information and the like, and outputs it to the antenna 201 as a radio signal. The radio channel quality information is transmitted as a radio signal to the base stations 100-1 and 100. -2. &lt;Example of the configuration of the stirring code to be created by Zoe. Next, the configuration example of the stirring code creating units 112 and 207 will be described. Fig. 6 is a view showing a configuration example of a gold code generator which produces a gold code (or a stirring code) of length "31". The gold code generator includes first and second shift registers U2-1, 112-3, and first to third mutually exclusive logical and electrical circuits 112_2, 112-4, and 112_5. The gold code generator shown in Fig. 6 is based on a configuration example of a generator polynomial shown by 15 to 2 to 5. The polynomial of the search code for generating a 1-bit shift with respect to the search code generated by the polynomial shown in Figures 2 to 5 can be displayed as shown in the following equation. [10] Again, use: Φ) = (^, (« +1) + x2 (n +1)) mod 2 to produce a generator polynomial J c{n with a 2-bit shift ) = (χ, (η + 2) + χ2 (« + 2)) m〇d 2

的第7圖係顯示黃金碼產生器之構成例之圖,該黃金碼產 生器係用以產生對於第6圖進行了丨位元或2位元移位(具1 j元或2位元相位差)之搜拌碼者。第7圖所示之黃金碼產生 咨更包含有第4及第5互斥性邏輯和電路112_6、112 7。Figure 7 is a diagram showing a configuration example of a gold code generator for generating a bit or a 2-bit shift for Figure 6 (with 1 j or 2 bit phase) Poor). The gold code generation protocol shown in Fig. 7 further includes the 4th and 5th mutually exclusive logic sum circuits 112_6, 112 7 .

第4互斥性邏輯和電路112_6,如虛線所示,對於在第! 移㈣存器112-1中自與LSB對應之暫存器移位元之暫 存器之輪出、及在第2移位暫存器112·3中自與LSB對應之暫 存器移位1位元之暫存器之輸出,運算互斥性邏輯和。第4 互斥性邏輯和電路112-6係輸出對於第3互斥性邏輯和電路 112·5之輸出進行了 1位元移位(具丨位元相位差)之攪拌碼。 第5互斥性邏輯和電路112·7,如虛線所示,對於來自 第移仅暫存器112-1中自LSB移位了 2位元之暫存器之輪 出、與來自第2移位暫存器112_3中自LSB移位了 2位元之暫 存器之輪出,運算互斥性邏輯和。第5互斥性邏輯和電路 112·7係輸出對第3互斥性邏輯和電路112_5之輸出進行了 2 位元移位(具2位元相位差)之授拌碼。 16 1376974 進而,對第6圖之攪拌碼進行.了 32位元移位之攪拌碼的 產生多項式係如下所示。 [數 12] c{n) = + + + mod2 [數 13] χ} (η + 32) = (x, (« + 4) + x, (n +1)) mod 2 [數 14] x2 (η H- 32) = (x2 (/2 + 4) + x2 (^ + 3) + x2 (a? + 2) + jc2 (n +1)) mod 2 進而,進行了 33位元移位之攪拌碼之產生多項式則為: [數 15] c{n) - (x,(n -\- Nc)-\- x2(n-l· Nc))mod2 [數 16] x} (n + 32) = (x, (n + 5) + x, (w + 2)) mod2The 4th mutually exclusive logic and circuit 112_6, as shown by the dotted line, is for the first! Shifting (4) register 112-1 from the register of the register shifter corresponding to the LSB, and shifting from the register corresponding to the LSB in the second shift register 112·3 The output of the 1-bit scratchpad, the operation of the mutual exclusion logic sum. The fourth mutual exclusion logic sum circuit 112-6 outputs a stirring code for 1-bit shift (with a bit phase difference) for the output of the third mutually exclusive logical AND circuit 112·5. The fifth mutually exclusive logical sum circuit 112·7, as indicated by the broken line, is for the round-off and the second shift from the temporary register shifted from the LSB by the 2-bit from the first shift register 112-1. In the bit buffer 112_3, the 2-bit scratchpad is shifted from the LSB to calculate the mutual exclusion logic sum. The fifth mutually exclusive logical sum circuit 112·7 outputs a spreading code for shifting the output of the third mutually exclusive logical AND circuit 112_5 by two bits (with a two-bit phase difference). 16 1376974 Further, the stirring code of Fig. 6 is performed. The generating polynomial of the 32-bit shifting stirring code is as follows. [Number 12] c{n) = + + + mod2 [number 13] χ} (η + 32) = (x, (« + 4) + x, (n +1)) mod 2 [number 14] x2 ( η H- 32) = (x2 (/2 + 4) + x2 (^ + 3) + x2 (a? + 2) + jc2 (n +1)) mod 2 Further, 33-bit shifting is performed The generator polynomial of the code is: [number 15] c{n) - (x,(n -\- Nc)-\- x2(nl· Nc))mod2 [number 16] x} (n + 32) = ( x, (n + 5) + x, (w + 2)) mod2

[數 17] χ2 (η H- 33) = (x2 (« + 5) + x2 (« + 4) + x2 (^ + 3) + x2 {n + 2)) mod2 第8圖係顯示產生進行了 32位元及33位元移位之攪拌 碼之黃金碼產生器之構成例之圖。黃金碼產生器更包含 有:第6〜9互斥性邏輯和電路112-8〜112-11、及第10〜11互斥 性邏輯和電路112-12〜112-13。[Number 17] χ2 (η H- 33) = (x2 (« + 5) + x2 (« + 4) + x2 (^ + 3) + x2 {n + 2)) mod2 Figure 8 shows that the production has taken place A diagram of a configuration example of a gold code generator for a 32-bit and 33-bit shifting stirring code. The gold code generator further includes: 6th to 9th mutually exclusive logical AND circuits 112-8 to 112-11, and 10th to 11th mutually exclusive logical AND circuits 112-12 to 112-13.

第6互斥性邏輯和電路112-8,如以虛線所示,對於第1 移位暫存器112-1中自LSB移位了 1位元之暫存器及移位了 4 位元之暫存器之各輸出,運算互斥性邏輯和,且將運算結 果輸出至第7互斥性邏輯和電路112-9。 第10互斥性邏輯和電路112-12,如以虛線所示,對於 第2移位暫存器112-3中自LSB移位了 1位元〜4位元之各暫存 器之輸出,運算互斥性邏輯和,且將其輸出輸出至第7互斥 性邏輯和電路112-9。 第7互斥性邏輯和電路112-9係對於第6及第10互斥性 邏輯和電路112-8、112-12之輸出,運算互斥性邏輯和,並 輸出對第3互斥性邏輯和電路112-5之輸出進行了 32位元移 17 1376974 位(具32位元相位差)之攪拌碼。 . 已進行了 33位元移位之攪拌碼係由第9互斥性邏輯和 電路112-11之輸出段輸出,但第8及第11互斥性邏輯和電路 112-10、112-13更運算對於來自已進行了 1位元移位之各暫 存器之輸出之互斥性邏輯和。 一般而言,在由m次產生多項式所產生之序列中令特定 相位之值為α (0)時,由α (0)移位η位元相位之序列之值α (η) 可如下表示。 [數 18] α{π) = αηα{ϋ) 鲁 在此,將α η展開成具有(m — 1)次以下之次方之α的乘冪 和,則成為: m-\ [數 19] α⑻= Zc,or,&quot;a(0)。 _ /=0 - 此外,ς.(i=0〜m —1)係藉相位差η決定之「1」或「0」之值, 為分接器係數列。 第9圖係顯示攪拌碼作成部112、207之構成例之圖。進 而,包含有:初始值設定部112-14、第1及第2開關群112-15、 · 118-16、第12及第13互斥性邏輯和電路112-17、112-18、及 第14互斥性邏輯和112-19。 初始值設定部112-14係根據細胞資訊(細胞號碼、終端 機號碼、槽號)與相位差資訊,控制第1及第2開關群112-15、 118-16之各開關(或各分接器)的開啟及關閉。初始值設定部 112-14之輸出,例如和分接器係數列^,相對應者。輸入至初 始值設定部112-14之初始值,例如為細胞資訊及相位差資 · 18 1376974 - 訊。 第12互斥性邏輯和電路112-17,係對第1開關群112-15 之各輸出,運算互斥性邏輯和,且將運算結果輸出至第13 互斥性邏輯和電路112-18。 第14互斥性邏輯和電路112-19,係對第2開關群112-16 之各輸出,運算互斥性邏輯和,且將運算結果輸出至第13 互斥性邏輯和電路112-18。 第13互斥性邏輯和電路112-18,係運算第12及第14互 • 斥性邏輯和電路112-17、112-19之各輸出的互斥性邏輯和, 且輸出相對於第3互斥性邏輯和電路112-5之輸出具任意相 位差之攪拌瑪。 如此,攪拌碼作成部112、207,係藉互斥性邏輯和, ‘ 而由兩個線形移位暫存器112-1、112-3之各段將適當的成分 合成,可輸出具相位差之攪拌碼(或多數攪拌碼)。 例如,初始值設定部112-14係根據主基地台100-1之細 胞資訊,控制第1及第2開關群112-15、112-16,第3互斥性 ® 邏輯和電路112-5係輸出主基地台100-1所產生之攪拌碼(第 1攪拌碼)。又,初始值設定部112-14係根據從屬基地台100-2 之細胞資訊及相位差資訊,控制第1及第2開關群112-15、 112-16。此時,第13互斥性邏輯和電路112-18係輸出從屬基 地台100-2所產生之攪拌碼(例如第2攪拌碼)。 〈下鏈方向之動作例&gt; 其次,針對第1實施例之動作例進行說明。第10及11圖 ' 係顯示動作例之流程。又,終端機200為位於可與主基地台 19 1376974 100-1與從屬基地台100-2雙方連線通訊之區域者β 首先,主基地台100-1係向終端機200通報細胞資訊等 (S10)。例如’細胞資訊訊號作成部106作成細胞資訊。 其次,主基地台100-1係發送引示訊號(S11)。 接著’終端機200係根據所接收之引示訊號等,選擇成 為通訊對象之細胞(S12) ’在與所選擇之細胞之間設定綠路 (S13)。例如,終端機200之接收功率測定部21〇係測定引示 訊號之接收功率,線路連接控制部211判定線路之連接選 擇細胞(例如主基地台1 〇〇_ 1)。 其次,终端機200係測定與主基地台loo」間之無線線 路之品質(例如C QI)( S14 ),且將無線線路品質資訊發送至主 基地台100-1(S15)。例如,終端機2〇〇之算出部2〇4係根據引 示訊號,測定無線線路品質。 接著,主基地台100-1係根據無線線路品質資訊進行排 程(S16)。例如,主基地台ioo-丨之排程器ι1〇根據在無線線 路品質貢訊擷取部1 〇 9所擷出之無線線路品質資訊進行排 程。 其次,主基地台100-丨係進行發送訊號處理(Sl7)。例 如,編碼調變部114係讀出發送資料緩衝器113所記憶之發 送資料,根據排程資訊進行編碼等之處理。 接著,主基地台100-i係將控制訊號及發送資料發送至 終端機200(S18、S19)。 終端機200係一接收到控制訊號與發送資料,即進行接 收訊號處理(S20)。例如,終端機設定控制部2〇9係依照所接 20 1376974 收之控制訊號所含之排程資訊,控制接收無線部2〇2及解調 解碼部203,以進行解調及解碼等。 其次,終端機200係接收由從屬基地台丨〇〇 2通報之細 胞資訊等及引示訊號(S21、S22)。再者,終端機2〇〇係選擇 從屬基地台100-2,作為連接基地台(S23),在與從屬基地台 100-2之間設定線路(S24)。 接著,在終端機200與基地台ι〇〇·ι、i〇〇_2之間進行 CoMP發送用之處理。首先,終端機2〇〇係由主基地台 與從屬基地台100-2各接收引示訊號(S25、S26),測定各無 線線路之線路品質(S27)。又,此時,為了輕易進行來自主 基地台100·1與從屬基地台100·2之引示訊號之識別,亦可作 為基於主基地台100-1之細胞號碼及從屬基地台1〇〇 2的原 有細胞號碼所作成之相異的引示訊號。 其次’終端機200係將所測定之各無線線路品質各發送 至從屬基地台100-2及主基地台l〇〇-l(S28、S30)。 從屬基地台100-2係將由終端機200發送的無線線路品 質資訊發送至主基地台l〇〇-l(S29)。例如,從屬基地台ι〇〇·2 之無線線路品質資訊擷取部1 〇 9係將所擷出之與終端機2 〇 〇 間之無線線路品質發送至主基地台100-1。 再者,主基地台100-1係進行可否進行CoMP發送之判 定(S3U。例如,主基地台100-1之控制部108係於來自從屬 基地台100-2之無線線路品質與CoMP通訊要求訊號擷取部 107所擷出之無線線路品質都在極限值以上時,判定可做 CoMP通訊。與來自主基地台ιοο-丨之無線線路品質比較之 21 1376974 極限值及與來自從屬基地台100-2之無線線路品質比較之 極限值可為相同,亦可為相異。此外,控制部108判定不是 可做CoMP發送時,結束一連串的處理。 其次,終端機200係將CoMP發送實施要求發送至從屬 基地台100-2及主基地台100-1(S32、S33)。例如,終端機2〇〇 之CoMP通訊控制部220輸出實施要求之指示,CoMP通訊要 求訊號作成部221發送該要求訊號。The sixth mutually exclusive logical sum circuit 112-8, as indicated by a broken line, is shifted by 1 bit from the LSB in the first shift register 112-1 and shifted by 4 bits. Each output of the register is operated to perform a mutually exclusive logical sum, and the operation result is output to the 7th mutually exclusive logical sum circuit 112-9. The 10th mutually exclusive logical sum circuit 112-12, as indicated by a broken line, outputs the output of each of the registers of the second shift register 112-3 shifted from the LSB by 1 bit to 4 bits, The mutually exclusive logical sum is operated, and its output is output to the 7th mutually exclusive logical sum circuit 112-9. The seventh mutually exclusive logical sum circuit 112-9 operates the mutually exclusive logical sum for the outputs of the sixth and tenth mutually exclusive logical AND circuits 112-8, 112-12, and outputs the third mutually exclusive logic The output of the AND circuit 112-5 is a 32-bit shifting 17 1376974 bit (with a 32-bit phase difference) stirring code. The 33-bit shifting agitation code is output by the output segment of the ninth mutually exclusive logic AND circuit 112-11, but the 8th and 11th mutually exclusive logic sum circuits 112-10, 112-13 are further The operation is a mutually exclusive logical sum of the outputs from the registers that have undergone a 1-bit shift. In general, when the value of the specific phase is α (0) in the sequence generated by the m-th generation polynomial, the value α (η) of the sequence of the n-bit phase shifted by α (0) can be expressed as follows. [Equation 18] α{π) = αηα{ϋ) Lu, where α η is expanded to a power sum of α with a power of (m - 1) or less, becomes: m-\ [19] α(8)= Zc,or,&quot;a(0). _ /=0 - In addition, ς.(i=0~m-1) is the value of "1" or "0" determined by the phase difference η, which is the tap coefficient column. Fig. 9 is a view showing a configuration example of the stirring code forming units 112 and 207. Further, the initial value setting unit 112-14, the first and second switch groups 112-15, 118-16, the 12th and 13th mutually exclusive logic and circuits 112-17, 112-18, and the 14 mutually exclusive logic and 112-19. The initial value setting unit 112-14 controls the switches (or taps) of the first and second switch groups 112-15 and 118-16 based on the cell information (cell number, terminal number, slot number) and phase difference information. Turn on and off. The output of the initial value setting unit 112-14, for example, corresponds to the tap coefficient coefficient ^. The initial value input to the initial value setting unit 112-14 is, for example, cell information and phase difference. The 12th mutually exclusive logical sum circuit 112-17 calculates the mutually exclusive logical sum for each output of the first switch group 112-15, and outputs the operation result to the 13th mutually exclusive logical sum circuit 112-18. The 14th mutually exclusive logical sum circuit 112-19 calculates the mutually exclusive logical sum for each output of the second switch group 112-16, and outputs the operation result to the 13th mutually exclusive logical sum circuit 112-18. The 13th mutually exclusive logical sum circuit 112-18 is a mutually exclusive logical sum of the outputs of the 12th and 14th mutually exclusive logical AND circuits 112-17, 112-19, and the output is relative to the 3rd mutual The output of the repulsion logic and circuit 112-5 has an agitator of arbitrary phase difference. In this way, the agitation code generating sections 112 and 207 combine the appropriate components by the segments of the two linear shift registers 112-1 and 112-3 by the mutual exclusion logic sum, and can output the phase difference. Stirring code (or most stirring code). For example, the initial value setting unit 112-14 controls the first and second switch groups 112-15 and 112-16 based on the cell information of the master base station 100-1, and the third mutually exclusive ® logic and circuit 112-5 are The stirring code (first stirring code) generated by the main base station 100-1 is output. Further, the initial value setting unit 112-14 controls the first and second switch groups 112-15 and 112-16 based on the cell information and the phase difference information of the slave base station 100-2. At this time, the 13th mutually exclusive logical sum circuit 112-18 outputs the stirring code (e.g., the second stirring code) generated by the slave base station 100-2. <Example of Operation in the Downlink Direction> Next, an operation example of the first embodiment will be described. Figures 10 and 11 ' show the flow of the action example. Further, the terminal device 200 is located in an area where the main base station 19 1376974 100-1 and the slave base station 100-2 can communicate with each other. First, the master base station 100-1 notifies the terminal device 200 of cellular information or the like ( S10). For example, the cell information signal creation unit 106 creates cell information. Next, the primary base station 100-1 transmits a pilot signal (S11). Then, the terminal device 200 selects the cell (S12)' to be the communication target to set a green path between the selected cells based on the received pilot signal or the like (S13). For example, the reception power measuring unit 21 of the terminal 200 measures the received power of the pilot signal, and the line connection control unit 211 determines the connection selection cell of the line (e.g., the primary base station 1 〇〇 1). Next, the terminal 200 measures the quality (e.g., C QI) of the wireless line between the main base station and the main base station (S14), and transmits the radio channel quality information to the base station 100-1 (S15). For example, the calculation unit 2〇4 of the terminal unit 2 measures the quality of the radio line based on the pilot signal. Next, the main base station 100-1 performs scheduling based on the radio channel quality information (S16). For example, the main base station ioo-丨's scheduler ι1〇 is scheduled based on the wireless line quality information extracted from the wireless line quality tribute capture unit 1 〇 9. Next, the main base station 100-丨 performs transmission signal processing (S17). For example, the code modulation unit 114 reads the transmission data stored in the transmission data buffer 113, and performs processing such as encoding based on the schedule information. Next, the master base station 100-i transmits the control signal and the transmission data to the terminal device 200 (S18, S19). The terminal 200 receives the control signal and transmits the data, that is, performs the reception signal processing (S20). For example, the terminal setting control unit 2〇9 controls the receiving radio unit 2〇2 and the demodulation and decoding unit 203 to perform demodulation, decoding, and the like in accordance with the schedule information included in the control signal received by the receiver 20 1376974. Next, the terminal 200 receives the cell information and the like and the pilot signal notified by the slave base station 2 (S21, S22). Further, the terminal device 2 selects the slave base station 100-2 as a connection base station (S23), and sets a line between the slave base station 100-2 (S24). Next, the process for CoMP transmission is performed between the terminal 200 and the base stations ι〇〇·ι, i〇〇_2. First, the terminal unit 2 receives the pilot signals (S25, S26) from the master base station and the slave base station 100-2, and measures the line quality of each wireless line (S27). Further, at this time, in order to easily recognize the pilot signals from the master base station 100·1 and the slave base station 100·2, it may be used as the cell number based on the master base station 100-1 and the slave base station 1〇〇2. The original cell number is made into a different indication signal. Next, the terminal 200 transmits the measured radio channel qualities to the slave base station 100-2 and the master base station 100-1 (S28, S30). The slave base station 100-2 transmits the wireless channel quality information transmitted by the terminal set 200 to the master base station l〇〇-1 (S29). For example, the wireless channel quality information capturing unit 1 〇 9 of the slave base station 〇〇 〇〇 2 transmits the wireless channel quality transmitted between the terminal and the terminal 2 to the primary base station 100-1. Furthermore, the master base station 100-1 determines whether or not the CoMP transmission can be performed (S3U. For example, the control unit 108 of the master base station 100-1 is connected to the radio channel quality and the CoMP communication request signal from the slave base station 100-2. When the quality of the wireless line extracted by the capturing unit 107 is above the limit value, it is determined that CoMP communication can be performed. The 21 1376974 limit value compared with the quality of the wireless line from the main base station ιοο-丨 and the slave base station 100- The limit value of the wireless channel quality comparison of 2 may be the same or different, and when the control unit 108 determines that CoMP transmission is not possible, the series of processing ends. Next, the terminal 200 transmits a CoMP transmission implementation request to The slave base station 100-2 and the master base station 100-1 (S32, S33). For example, the CoMP communication control unit 220 of the terminal unit 2 outputs an instruction to execute the request, and the CoMP communication request signal creation unit 221 transmits the request signal.

主基地台100-1係判定可做CoMP發送(S31),由終端機 200接收CoMP實施要求時(S33) ’將CoMP實施通知發送至 從屬基地台100-2及終端機200(S34、S35)。例如,主基地台 100-1之控制部108係將CoMP實施通知發送至從屬基地台 100-2。又,例如,控制部108係將CoMP實施通知輸出至排 程器110,由排程器110將CoMP實施通知發送至終端機 200,作為控制訊號。The primary base station 100-1 determines that CoMP transmission is possible (S31), and when the terminal 200 receives the CoMP implementation request (S33) 'Sends the CoMP implementation notification to the secondary base station 100-2 and the terminal 200 (S34, S35) . For example, the control unit 108 of the primary base station 100-1 transmits a CoMP enforcement notification to the secondary base station 100-2. Further, for example, the control unit 108 outputs a CoMP implementation notification to the scheduler 110, and the scheduler 110 transmits a CoMP implementation notification to the terminal 200 as a control signal.

接著,主基地台100-1及從屬基地台100-2係進行用以於 基地台間取同步之處理(S36)。例如,主基地台1 〇〇-1與從屬 基地台100-2之控制部108互相進行訊號之收發,進行相位 同步,以進行同步處理。 其次,主基地台100-1係進行CoMP發送用之排程 (S37)。例如,排程器110—由控制部108收到CoMP實施通 知,便根據無線線路品質(S29、S30)等進行排程。所作成 之排程資訊含有CoMP發送時所使用之使用頻率及前置編 碼資訊。 其次,主基地台100-1係將細胞資訊及相位差資訊發送 22 1376974 · 至從屬基地台l〇〇-2(S38)。例如,主基地台100-1之細胞資 訊訊號作成部106係發送自台之細胞資訊及做了事前固持 等之相位差資訊。相位差資訊亦可固持在無線線路控制部 105。 接著,主基地台100-1係將相位差資訊發送至終端機 200(S39)。例如,主基地台100-1之細胞資訊訊號作成部106 係以編碼調變部114等為中介而發送已作成之相位差資訊。 其次,主基地台100-1係將發送資料(例如發送資料2) 轉送至從屬基地台100-2(S40)。例如,主基地台100-1之排 程器110係讀出發送資料緩衝器113所記憶之發送資料中一 部分的資料(例如發送資料2),並發送至從屬基地台100-2。 從屬基地台100-2之發送資料緩衝器113係記憶由主基地台 100-1發送之發送資料。發送資料1及發送資料2,諸如為每 一細胞各異之發送資料。 接著,主基地台100-1係將發送控制資訊通報從屬基地 台100-2(S41)。例如,排程器11〇係將含有前置編碼資料等 之排程資訊(S37)作為發送控制資訊,而發送至從屬基地台 100_2 。 其次’主基地台1〇〇_1及從屬基地台100-2係進行發送訊 號處理(S41、S42)。例如,主基地台100-1之攪拌碼作成部 112係根據自台之細胞資訊,作成攪拌碼(例如第1攪拌碼)。 主基地台100-1之編碼調變部114係使用該攪拌碼,而對發 送資料(例如發送資料丨)進行攪拌處理。又,從屬基地台 100·2之攪拌碣作成部112係根據由主基地台100-1發送之細 23 1376974 胞資訊及相位差資訊,作成攪拌碼(例如第2攪拌碼)。從屬 基地台100-2之編碼調變部114係使用所作成之搜拌碼,而 對發送資料2進行攪拌處理。 接著’主基地台100-1係將控制訊號及發送資料(例如發 送資料1)發送至終端機200(S44、S45)。控制訊號,除了 c〇MP 發送所使用之編碼率等之外,亦含有使用頻率及前置編碼 資料,亦可含有細胞資訊訊號作成部106所作成之細胞資 訊0 其次,從屬基地台100-2係將與主基地台丨㈨-丨所發送之 發送資料不同之發送資料(例如發送資料2)發送至終端機 200(S46)。例如,發送資料1及發送資料2係依照前置編碼資 訊而被加權且發送者。 其次’終端機200係對於由主基地台wo」與從屬基地 台100-2發送之發送資料,進行接收訊號處理(S47)。例如, 終端機200之終端機設定控制部209係依照控制訊號(S43)所 含之排程資訊,控制接收無線部2〇2及解調解碼部2〇3,此 時,終端機200之攪拌碼作成部2〇7,例如根據細胞資訊(s!〇 或S43),作成攪拌碼(例如第丨攪拌碼),並將之輸出至解調 解碼部203。又,攪拌碼作成部2〇7係根據細胞資訊與相位 差資訊(S39) ’作成攪拌碼(例如第2授拌碼),並將之輸出至 解調解碼部203。解調解碼部2〇3,例如使用第丨攪拌碼而對 由主基地台100-1發送之發送資料(例如發送資料丨)進行解 拌處理。又,解調解碼部203,例如使用第2搜拌碼,而對 由從屬基地台1〇〇_2發送之發送資料(例如發送資料2)進行 24 1376974 解拌處理。 如此,本第1實施例係於進行c〇Mp發送時,主基地台 100-1係以主基地台iOO-丨之細胞資訊為主,作成攪拌碼,並 且從屬基地台100-2係以根據由主基地台iooj所接收之細 胞資訊所狀龄碼為準,作成已進行了脉差資訊移位 之攪拌碼。對終端機200亦通知有主基地台1〇〇1之細胞資 訊及相位差資訊,作成以細胞資訊為主所產生之第一攪拌 碼及以其為準已進行了相位差資訊移位之第二攪拌碼進 行解拌處理。藉此,與在終端機2〇〇中以基地台1〇〇1之細 胞資訊及基地台100-2之細胞資訊為主而獨立地作成兩系 統之攪拌碼來進行解拌處理之型態相比,終端機2〇〇之處理 較能減輕。進而,終端機200之耗電亦可減少。 又,主基地台100-1係將前置編碼資訊發送至從屬基地 台100-2(S44),兩個基地台1〇〇_1、1〇〇_2係根據前置編碼資 机而將不同的資料發送至終端機2〇〇。因此,即使有不同的 資料由兩個基地台100-1、100-2發送,終端機2〇〇亦可根據 控制訊號所含之前置編碼資訊進行接收處理(§47),所以亦 可防止兩個不同的資料之混淆。 &lt;第2實施例&gt; 其次’說明第2實施例。第2實施例係下鏈方向之另一 例。第12圖係顯示第2實施例之無線通訊系統1〇之構成例之 圖。從屬基地台100-2係將細胞資訊發送至主基地台100-1。 主基地台100-1係由從屬基地台100-2之細胞資訊與自台之 細胞資訊,算出各基地台100-卜100-2所使用之攪拌碼的相 25 1376974 位差。 - &lt;主基地台之構成例&gt; - 第13圖係顯示第2實施例之主基地台100-1之構成例。 細胞資訊訊號作成部1 〇 6係由C ο MP實施基地台(例如 從屬基地台100-2)接收細胞資訊。又,細胞資訊訊號作成部 106係由無線線路控制部105輸出之細胞號碼及終端機號碼 及由排程器110輸出之槽號,作成自台之細胞資訊。又’細 胞資訊訊號作成部106係根據主基地台100-1及從屬基地台 100·2之兩個細胞資訊,運算各基地台100_1、1〇〇_2作成之 籲 攪拌碼的相位差。運算係容後詳述。細胞資訊訊號作成部 106係將相位差資訊,連同自台的細胞資訊而輸出至編碼調 變部114。 ’ 攪拌碼作成部112係根據自台的細胞資訊,作成攪拌碼 (例如第1攪拌碼)。 &lt;從屬基地台之構成例&gt; 第14圖係顯示第2實施例之從屬基地台赛2之構成例Next, the master base station 100-1 and the slave base station 100-2 perform processing for synchronizing between the base stations (S36). For example, the master base station 1 〇〇-1 and the control unit 108 of the slave base station 100-2 perform signal transmission and reception with each other to perform phase synchronization for synchronization processing. Next, the master base station 100-1 performs scheduling for CoMP transmission (S37). For example, the scheduler 110 receives the CoMP implementation notification from the control unit 108, and schedules it based on the radio channel quality (S29, S30) or the like. The schedule information generated includes the frequency of use and pre-coded information used in CoMP transmission. Next, the primary base station 100-1 transmits the cell information and phase difference information 22 1376974 to the slave base station l〇〇-2 (S38). For example, the cell information generating unit 106 of the main base station 100-1 transmits the phase difference information of the cell information transmitted from the station and the pre-holding. The phase difference information can also be held by the wireless line control unit 105. Next, the master base station 100-1 transmits the phase difference information to the terminal device 200 (S39). For example, the cell information signal creation unit 106 of the main base station 100-1 transmits the created phase difference information by using the code modulation unit 114 or the like as an intermediary. Next, the master base station 100-1 transfers the transmission data (for example, the transmission material 2) to the slave base station 100-2 (S40). For example, the scheduler 110 of the master base station 100-1 reads out a portion of the data (e.g., the transmission material 2) of the transmission data stored in the transmission data buffer 113, and transmits it to the slave base station 100-2. The transmission data buffer 113 of the slave base station 100-2 memorizes the transmission data transmitted by the master base station 100-1. Send data 1 and send data 2, such as sending data for each cell. Next, the master base station 100-1 notifies the slave base station 100-2 of the transmission control information (S41). For example, the scheduler 11 transmits the schedule information (S37) containing the preamble data or the like as the transmission control information to the slave base station 100_2. Next, the main base station 1〇〇_1 and the slave base station 100-2 perform transmission signal processing (S41, S42). For example, the agitation code creation unit 112 of the main base station 100-1 creates a stirring code (for example, a first agitation code) based on the cell information of the self-stage. The code modulation unit 114 of the main base station 100-1 uses the agitation code to perform agitation processing on the transmission data (e.g., transmission data). Further, the stirring/mixing unit 112 of the slave base station 100·2 creates a stirring code (for example, a second stirring code) based on the cell information and the phase difference information transmitted from the main base station 100-1. The code modulation unit 114 of the slave base station 100-2 performs the stirring process on the transmission data 2 by using the created search code. Next, the main base station 100-1 transmits a control signal and transmission data (e.g., transmission material 1) to the terminal 200 (S44, S45). The control signal, in addition to the coding rate used for c〇MP transmission, also includes the frequency of use and pre-encoded data, and may also contain cellular information generated by the cell information signal generation unit 106. Second, the slave base station 100-2 The transmission data (for example, the transmission material 2) different from the transmission data transmitted by the primary base station (9)-丨 is transmitted to the terminal 200 (S46). For example, the transmitted material 1 and the transmitted data 2 are weighted and transmitted according to the pre-encoded information. Next, the terminal device 200 performs reception signal processing on the transmission data transmitted from the main base station wo" and the slave base station 100-2 (S47). For example, the terminal setting control unit 209 of the terminal 200 controls the receiving wireless unit 2〇2 and the demodulation decoding unit 2〇3 in accordance with the scheduling information included in the control signal (S43). At this time, the terminal 200 is agitated. The code creation unit 2〇7 generates a stirring code (for example, a second stirring code) based on the cell information (s!〇 or S43), and outputs it to the demodulation decoding unit 203. Further, the agitation code creation unit 2〇7 creates a stirring code (e.g., a second mixing code) based on the cell information and the phase difference information (S39), and outputs it to the demodulation decoding unit 203. The demodulation and decoding unit 2〇3, for example, performs a descrambling process on the transmission data (e.g., transmission data 发送) transmitted from the main base station 100-1 using the third mash code. Further, the demodulation decoding unit 203 performs the deserial processing of the transmission data (e.g., the transmission material 2) transmitted from the slave base station 1 〇〇 2, for example, using the second search code. As described above, in the first embodiment, when the c〇Mp transmission is performed, the main base station 100-1 mainly generates the agitation code based on the cell information of the main base station iOO-丨, and the slave base station 100-2 is based on The age code of the cell information received by the main base station iooj is taken as the standard, and the stirring code for shifting the pulse difference information is created. The terminal device 200 also notifies the cell information and the phase difference information of the main base station 1〇〇1, and creates the first stirring code generated mainly by the cell information, and the phase difference information shift has been performed. The two stirring codes are used for the demixing treatment. Thereby, in the terminal device 2, the cell information of the base station 1〇〇1 and the cell information of the base station 100-2 are used as the main body, and the two-system stirring code is independently created to perform the demixing process. Compared with the terminal 2, the processing can be reduced. Furthermore, the power consumption of the terminal 200 can also be reduced. Moreover, the master base station 100-1 transmits the preamble information to the slave base station 100-2 (S44), and the two base stations 1〇〇_1 and 1〇〇_2 are based on the pre-coded equipment. Different data is sent to the terminal 2〇〇. Therefore, even if different data is transmitted by the two base stations 100-1, 100-2, the terminal unit 2 can also receive processing according to the pre-coded information contained in the control signal (§ 47), so it can also be prevented. Confusion of two different materials. &lt;Second embodiment&gt; Next, the second embodiment will be described. The second embodiment is another example of the downward chain direction. Fig. 12 is a view showing a configuration example of the wireless communication system 1 of the second embodiment. The slave base station 100-2 transmits cell information to the primary base station 100-1. The main base station 100-1 calculates the phase difference of 25 1376974 of the stirring code used by each base station 100-b 100-2 from the cell information of the slave base station 100-2 and the cell information of the slave base station 100-2. - &lt;Configuration Example of Main Base Station&gt; - Fig. 13 shows an example of the configuration of the primary base station 100-1 of the second embodiment. The cell information signal creation unit 1 〇 6 receives the cell information from the C ο MP implementation base station (for example, the slave base station 100-2). Further, the cell information signal creation unit 106 is a cell number and a terminal number output by the radio channel control unit 105 and a slot number output by the scheduler 110, and the cell information of the self-stage is created. Further, the cell information signal creating unit 106 calculates the phase difference of the agitation code created by each of the base stations 100_1 and 1〇〇_2 based on the two cell information of the master base station 100-1 and the slave base station 100·2. The operation system is detailed later. The cell information signal creation unit 106 outputs the phase difference information to the code modulation unit 114 together with the cell information of the self-stage. The agitation code creation unit 112 creates a stirring code (e.g., a first agitation code) based on the cell information of the self-stage. &lt;Configuration Example of Subordinate Base Station&gt; Fig. 14 shows a configuration example of the subordinate base station game 2 of the second embodiment

之圖 無線線路控制部105 ’例如由控制部108輸入coMP實施 ’無線線路控制部 =便令事先固持之細胞號碼、終端機號碼及槽號作 為田胞貧訊,發送至主基地台mu。又 105係將細胞資訊輸出至_瑪作成部⑴。 ㈣碼作成部⑴係根據細皰資訊, 地台1〇〇.2之_碼,並將之輪出至編碼調變部= 此外’終端機跋構成例係與㈣施例(第5圖)同樣。 26 1376974 &lt;算出相位差資訊&gt; 其次,針對相位差資訊之運算進行說明。例如,由主 基地台100-1之細胞資訊訊號作成部106運算。運算係如下 進行。 即,主基地台100-1係求出自台的細胞資訊產生之攪拌 碼的初始值,作為η行1列之列向量(力⑼ xJO) · · · '⑼)。 主基地台100-1求出由該初始值進行了 1位元移位之攪拌 碼,作為列向量U⑴七⑴· · · χ„(1)),且求出由該初The wireless line control unit 105' inputs the coMP implementation 'wireless line control unit' from the control unit 108, for example, so that the cell number, the terminal number, and the slot number held in advance are transmitted to the main base station mu. In addition, the 105 series outputs the cell information to the _Ma making part (1). (4) The code making part (1) is based on the blister information, the _ code of the platform 1〇〇.2, and it is taken out to the code modulation part = in addition to the 'terminal machine 跋 constituting the system and (4) the example (figure 5) same. 26 1376974 &lt;Calculation of phase difference information&gt; Next, the calculation of the phase difference information will be described. For example, the cell information signal creation unit 106 of the master base station 100-1 operates. The operation is performed as follows. In other words, the main base station 100-1 obtains the initial value of the agitation code generated from the cell information of the self-stage, and serves as a column vector of n rows and columns (force (9) xJO) · · · '(9)). The main base station 100-1 obtains a stirring code that has been shifted by one bit from the initial value, and is a column vector U(1) seven (1) · · · χ „(1)), and is obtained from the beginning

始值進行了 2位元移位之攪拌碼,作為列向量(χ,(2) χ2(2) · · · χ„(2))。進而,主基地台100-1係求出已進行了 η位元移位時之授拌碼,作為列向量(々⑻ χ2{ή) · · · χ„(«))。主基地台100-1係求出η組列向量,作為η行η列之行 列X。行列X為: [數 20] 'X丨⑼X丨⑴…X丨⑻、 尤2⑼尤2(1)…心⑻ 、以〇)〜⑴…\(吟The starting value is a 2-bit shifting stirring code as a column vector (χ, (2) χ 2 (2) · · · χ „ (2)). Further, the main base station 100-1 is found to have been performed. The mixing code when the η bit shifts is used as the column vector (々(8) χ2{ή) · · · χ„(«)). The main base station 100-1 obtains the n-column column vector as the row X of the n-row n-column. The rank X is: [number 20] 'X丨(9)X丨(1)...X丨(8), especially 2(9) especially 2(1)...heart (8), 〇)~(1)...\(吟

同樣地,主基地台100-1係求出由從屬基地台100-2之細 胞資訊所產生之攪拌碼之初始值,作為列向量(%⑼ :^⑼· · ·凡⑼),求取由n組列向量所構成之nRn列之行 列Y。行列Y為: [數 21] 、⑼少丨(1)…少丨(》)、 :^⑼义⑴…h⑻ 、兄,(〇)凡(1)…·y», 在此,令行列Y為使行列X前移一定相位量之攪拌碼。主基 27 地台1〇〇-1為了求取使其相位關係決定出一意之行列A,二 進行以下之運算。 [數 22] κ = Α = Α·Χ·^' =Υ·Χ'' 行列Α係定出兩個攪拌碼之相位差之行列,主基 10〇-1係進行數22之運算來運算相位差。細胞資訊訊鱿作戍 部106,例如將攪拌碼的全部組合,進而將運算結果等事先 作為表單而予以固持(或記憶)。接著,細胞資訊訊號作戍部 106 ’亦可構造成由表單取出對於任意細胞資訊給與兩甸授 拌碼之相位差之分接器係數(相位差資訊),並予以輸出者。 細胞資訊訊號作成部100,例如固持該表單。 〈下鏈方向之動作例&gt; 其次,針對第2實施例之動作例進行說明。第1〇及15圖 係顯示動作例之流程。S10〜S37係與第1實施例同樣。 接著,從屬基地台100-2係將自台的細胞資訊通知主基 也〇 第15圖之S50)。例如,從屬基地台ι〇〇·2之無線 線路控制部105來通知。 /、人,主基地台100-1算出相位差資訊(S51)。例如,主 基地台100-丨之細胞資訊訊號作成部1〇6利用表單等算出Similarly, the primary base station 100-1 determines the initial value of the agitation code generated by the cell information of the slave base station 100-2 as a column vector (%(9):^(9)· · · (9)), The row and column Y of the nRn column formed by the n sets of column vectors. The rank Y is: [number 21], (9) less 丨 (1)... less 丨 ("), :^(9) 义(1)...h(8), brother, (〇)凡(1)...·y», here, order rank Y A stirring code for moving the rank X forward by a certain amount of phase. The main base 27 ground stage 1〇〇-1 determines the phase relationship A to determine the phase relationship, and performs the following operations. [Number 22] κ = Α = Α·Χ·^' =Υ·Χ'' The row and column system determines the phase difference between the two stirring codes, and the main base 10〇-1 performs the operation of the number 22 to calculate the phase. difference. The cell information processing unit 106, for example, combines all of the agitation codes, and then holds (or memorizes) the calculation results and the like as a form in advance. Then, the cell information signal as the crotch portion 106' may be configured to take out the tap coefficient (phase difference information) for the phase difference of the arbitrary cell information to the two Dynamics code from the form and output it. The cell information signal creation unit 100 holds, for example, the form. <Example of Operation in the Downlink Direction> Next, an operation example of the second embodiment will be described. The first and fifth diagrams show the flow of the operation example. S10 to S37 are the same as in the first embodiment. Next, the slave base station 100-2 notifies the main unit of the cell information of the station. S50 of Fig. 15). For example, the wireless line control unit 105 of the slave base station 〇〇 〇〇 2 notifies. /, person, main base station 100-1 calculates phase difference information (S51). For example, the main base station 100-丨 cell information signal creation unit 1〇6 is calculated using a form or the like.

編碼調變部114等為中介而將 所算出之相位差資 其二欠, 端機200(852)。例如 部106係以編碼調變 訊通知終端機200。 1376974 . 接著,主基地台1〇〇·1係將發送資料(例如發送資訊2) 及發送控制資訊,發送至從屬基地台l〇〇-2(S4〇、S41),各 基地台100·1、100-2進行發送訊號處理(S42、S43)。例如, 各基地台100-1 ' 100-2分別根據自台之細胞資訊,作成攪拌 碼,進行攪拌處理。 其次’主基地台100-1係將控制訊號及發送資料(例如發 送資料1)發送至終端機200(S44、S45)。 接著’從屬基地台100-2係將發送資料(例如發送資料2) •發送至終端機2GG(S46)。 其次,終端機200係由各基地台100-1、100-2接收藉 , CoMP發送所發送之各有不同之發送資料,進行接收訊號處 : 理(S47)。例如,終端機200之相位差資訊擷取部206係擷取 相位差資訊,並將此輸出至攪拌碼作成部207。攪拌碼作成 部207係由主基地台〗〇〇“之細胞資訊(sl〇等)作成攪拌碼 (例如第1授掉碼),並將此輸出至解調解碼部203。又,檀拌 • 碼作成部207係根據主基地台100-1之細胞資訊(S10等)及相 位差資料(S52)’作成攪拌碼(例如第2攪拌碼),並將之輸出 至解調解碼部2〇3。解調解碼部203利用第1攪拌碼,對由主 也σ 1 〇〇- 1所發送之發送資料(例如發送資料1)進行解拌 。又,解調解碼部203利用第2攪拌碼,對由從屬基地 〇 發送之發送資料(例如發送資料2)進行解拌處理。 如此,在本第2實施例中,在CoMP發送之時,主基地 •台100-1係算出在從屬基地台100-2作成之攪拌碼之相位 並將之發送至終端機200。因此,終端機200可事先作 29 1376974 成具有相位差之攪拌碼。藉此,本無線通訊系統10係與在 終端機200中以基地台100-1之細胞資訊及基地台100-2之細 胞資訊為基礎,作成獨立且互不相干之2系統的攪拌碼,進 行解拌處理之情況相比,較能減輕終端機200之處理,可減 少耗電。 &lt;第3實施例&gt; 其次’針對第3實施例說明。第3實施例係由終端機200 向基地台100-1、100-2發送資料之上鏈方向之例。 第16圖係顯示第3實施例中之無線通訊系統1〇之構成 例。主基地台100-1係將控制訊號發送至終端機20〇。終端 機200係根據所接收之控制訊號,將不同的發送資料(USCH) 發送至主基地台100-1及從屬基地台1〇〇_2。 &lt;主基地台之構成例&gt; 其次’說明第3實施例中之主基地台1 〇〇_丨之構成例。 第17圖係顯示主基地台ioo—丨之構成例之圖。 主基地台100-1更具有無線線路品質測定暨算出部(以 下簡稱為算出部)12h算出部121係根據由終端機2〇〇發送 2弓丨示訊號等,測定與終端機2〇〇之間之無線線路品質,測 定無線線路品質(例如CQI)。 又主基地口 100-1之排程器11〇係進行上鏈方向之排 因此依據所作成之排程資訊,控制解調解碼部及接 收無線部102。 …進而’撥拌碼作成部⑴係對由終端機雇發送之發送 貝料等進行解拌處理,因此將所作成之_碼輸出至解調 30 1376974 解碼部103。 &lt;從屬基地台之構成例&gt; 其次,說明第3實施例中之從屬基地台10〇、2之構成 例。第18圖係顯示從屬基地台100-2之構成例之圖。 從屬基地台100-2亦更具有算出部121。 又,從屬基地台100-2之排程器11〇係為了進行上鏈方 向之排程,因此依據排程資訊控制解調解碼部103及接收無 線部102。 進而,攪拌碼作成部112亦對由終端機200發送之發送 資料等進行解拌處理,將所作成之攪拌碼輸出至解調解碼 部 103。 &lt;終端機之構成例&gt; 其次,說明第3實施例中之終端機200之構成例。第19 圖係顯示終端機200之構成例之圖。 終端機200更具有細胞資訊擷取部225。細胞資訊掏取 部225,例如擷取由基地台丨〇〇_1、1〇〇_2發送之細胞資訊, 並輸出至授拌碼作成部207。 攪拌碼作成部207,例如根據由主基地台100-1發送之 細胞資訊(含有細胞號碼、終端機號碼及槽號之資訊)作成授 拌碼。攪拌碼作成部2〇7係將所作成之攪拌碼(例如第丨攪拌 碼)輸出至編碼調變部213。 終端機設定控制部209係控制編碼調變部213,俾依據 控制訊號而對於發送至基地台發送資料等進 行編碼等處理者。又,終端機設定控制部2〇9,例如依據控 31 1376974 制訊號所含之前置編碼資訊控制發送無線部214,而對不同 發送資料加權以發送至基地台100-1、100-2。 &lt;攪拌碼作成部之構成例&gt; 各基地台100-1、100-2及終端機200之攪拌碼作成部 112、2〇7係與第1實施例(例如第9圖)同樣。 &lt;上鏈方向之動作例&gt; 其次’針對第3實施例之動作例說明。第20及21圖係顯 示動作例之流程。 在主基地台100-1與終端機200之間設定線路後(S10 〜S13),終端機200將引示訊號發送至主基地台l〇〇_1(S6〇)。 例如,終端機200之發送無線部214係產生引示訊號後發送 者。主基地台100-1發送之細胞資訊(S10)亦可含有細胞資訊 訊號作成部106所作成之細胞資訊。 其次,主基地台100-1係根據引示訊號,測定上鏈方向 之無線線路品質(例如CQI)(S61)。例如在主基地台1 〇〇_ i之 算出部121進行測定等。 接著,主基地台100-1係根據所測定之無線線路品質進 行上鏈方向之排程(S16)。例如,排程器丨丨〇係根據由算出部 121輸出之無線線路品質進行排程。 其次’主基地台100-1係發送含有上鏈方向之排程資訊 之控制訊號(S18),終端機200根據該控制訊號進行發送訊號 處理(S62)。例如,主基地台1〇〇_丨之控制訊號作成部nl作 成含有排程資訊之控制訊號,以蝙馬調變部等為中介而 發送者。又,終端機200之編碼調變部213係依照所接收之 32 1376974 • 控制訊號所含之排程資訊,對發送資料進行編碼及調變處 理。 接著’終端機200係將發送資料發送至主基地台100-1 (S63)〇 其次’終端機200係於與從屬基地台100-2之間進行線 路設定等之處理(S21〜S24)。又,在終端機2〇〇與基地台 100-1、100-2之間進行c〇MP發送用之處理。 首先’終端機200係將CoMP發送實施要求發送至各基 鲁 地台 100-1、100-2 (S32〜S33)。 其次’終端機200係將引示訊號發送至各基地台 100-1、100-2(S64、S65)。 接著’各基地台100-1、100-2各測定無線線路品質 ' (S66、S67)。例如各基地台100-1、1〇〇_2之算出部121測定 無線線路品質。 接著’從屬基地台100-2係將已測定之無線線路品質發 送至主基地台100-1(S68)。例如,從屬基地台100-2之算出 ® 部121係將已測定之無線線路品質發送至主基地台10(M。 其次,主基地台100-1係根據2個無線線路品質,進行 CoMP發送之判定(S31)。例如,控制部1〇8係於2個無線線 路品質都在極限值以上時,判定進行CoMP發送。又,與主 基地台100-1測定算出之無線線路品質比較之極限值,和與 在從屬基地台100-2測定算出之無線線路品質比較之極限 值可為相同,亦可為相異者。 主基地台100-1係於實施CoMP發送時,將CoMP發送實 33 1376974 施通知發送至從屬基地台100-2及終端機2〇〇(S34〜S35)。 接著,主基地台100-1係於與從屬基地台1〇〇_2之間進行 同步處理(S36)。 接著,從屬基地台100-2係與第2實施例同樣,將自台 之細胞資訊通報主基地台l〇〇_l(S50)。 其次’主基地台100-1係進行C〇MP發送用之排程’與 第2實施例同樣進行相位差資訊之算出(S70)e相位差資訊之 算出,例如與第2實施例同樣,在主基地台ιοο-丨之細胞資 訊訊號作成部106進行。 接著’主基地台100-1係與第2實施例同樣,將所算出 之相位差資訊發送至從屬基地台l〇〇_2(S71)。 其次,主基地台1〇〇_1係將含有上鏈方向之排程資訊 (S37)之發送控制資訊發送至從屬基地台i〇〇-2(S72),且將 控制訊號發送至終端機2〇〇(S73)。發送控制資訊及控制訊號 中亦含有使用頻率及前置編碼資訊。 接著,終端機200係進行發送訊號處理(S74)。例如,攪 拌碼作成部207係根據來自主基地台100-1之細胞資訊 (S10、S43等),作成攪拌碼(例如第1攪拌碼),並輸出至編 碼調變部213。編碼調變部213係使用例如第1攪拌碼而對不 同的發送資料(例如發送資料1及發送資料2)進行攪拌處 理。使用同一攪拌碼而做攪拌處理之不同的2個資料係發送 至各基地台100-1、1〇〇_2(S75、S76)。又,終端機200之終 端機設定控制部209係控制編碼調變部213,以依照排程資 訊進行編碼等之處理。進而,終端機設定控制部209亦可控 34 制發送無線部214,俾依照控制訊 , 则巩就所含之前置編碼資訊輪 出業已加權之發送資料者。 其次,主基地台HKM係進行接收訊號處理(s77)。例 如’主聽台HKM之·碼作❹卩⑽錄據自台之細胞 貝訊’作錢拌碼,並輸出至解购㈣鬧。解調解碼部 1〇3係使用該_碼而對發送資料(例如發送資 拌處理等。 又,從屬基地台1〇〇-2亦進行接收訊號處理(S78)。例 如,從屬基地台ΗΚ)·2之勝碼作成部112餘據自台之細 胞資訊及相位差資訊,賴拌碼之相位移位,輸出與主基 地台1.1同-相位之攪拌碼。解調解碼部丨_使用職 拌碼而對發送資料(例如發送㈣υ騎解拌處理等。 其次’從屬基地台100-2係將業經解調等之發送資料(例 如發送資m)轉送至主基地台100_1(S79)。例如,從屬基地 台1()0-2之解調解碼部103係藉排程器11〇之控制等而將發 送資料1發送至主基地台100-1。 如此,在本第3實施例中,終端機200係使用主基地台 10(M側之㈣碼,料同的發送f料進賴拌處理後發送 者。又,2個基地台10CM ' 100_2係共有相位差資訊,作成 同一相位之攪拌碼,進行解拌處理。因此,終端機2〇〇沒有 對於不同的發送資料作成相異之攪拌螞,因此终端機2〇〇之 處理減輕’耗電亦減少。 &lt;其他實施例&gt; 其次’針對其他實施例說明。上述之各實施例係當做 35 1376974 為主基地台100-1進行CoMP通訊之判定者予以說明(第丨丨圖 之S31等)。例如,亦可構造成該判定由終端機2〇〇進行者。 例如,終端機200之CoMP通訊控制部220係可根據所測定之 _ 無線通訊品質(第10圖之S27),同時藉是否為極限值以上而 判定。此時,因為所測定之無線通訊品質不能發送至基地 〇 100-1、100-2,因此可課求主基地台1 〇〇_ 1之處理的減輕 者。 又,上述各實施例係當做為CoMP通訊之實施要求由終 端機200進行者來說明。例如,亦可構造成主基地台1〇〇1 · 進行貫施要求者。下鏈方向時,例如主基地台i 〇〇_丨判定進 行CoMP通訊時(S31) ’亦可將CoMP實施要求發送至終端機 f 200及從屬基地台100-2。其後,主基地台iooq可通報實施 通知(S34、S35)可實施。又’針對上鏈方向,主基地台1〇〇_ι * 亦可於判定CoMP發送後(S31),將CoMP發送要求發送至終 端機200等,通報CoMP實施通知(S34〜S35)而實施。該型態 之終端機200之構成例係示於第22圖(下鏈方向之型態)、第 23圖(上鏈方向之型態)。終端機2〇〇係與上述之實施例比 ® 較,由於不具CoMP通訊控制部220及CoMP通訊要求訊號作 成部221,因此可進一步煤求耗電之減少。 進而,上述各實施例係針對由主基地台100-1及從屬基 地台100-2之2個基地台100發送發送資料之例說明。例如, 亦可構造成具有多數細胞(或扇區)之1個基地台100發送發 送資料者。第24圖係顯示基地台1〇〇之構成例之圖。基地台 100包含有主通訊部150-1、從屬通訊部150-2、及連接各通 36 1376974 訊部15(M、150-2之天線HH-i、101_2。主通訊部15〇1具有 主基地台100-1内之各部102,從屬通訊部15〇_2具有從屬基 地台100-2内之各部102。例如,主通訊部15〇1係將所固持 之相位差資訊輸出至從屬通訊部150·2,從屬通訊部15〇·2 根據相位差資訊作成搜拌碼。又’從屬通訊部15〇 2係將細 胞資訊發送至主通訊部150-卜主通訊部^(^丨係與自台之細 胞資訊一同算出相位差資訊,而輸出至從屬通訊部15〇 2。 藉此,可與第1〜第3實施例同樣實施。 進而,在上述各實施例中,在CoMP通訊所使用之細胞 唬碼、終端機號碼、及槽號亦可作為c〇Mp專用之細胞號 碼、終端機號碼、及槽號。例如,細胞資訊訊號作成部1〇6 亦可將細胞號碼、終端機號碼、及槽號改寫為c〇Mp專用之 各7虎碼。 進而’上述之各實施例係針對攪拌碼之相位差說明。 例如利用終端機號碼之差、細胞號碼之差、或槽號之差 之至少一個亦可同樣實施。攪拌碼之初始值係由終端機號 碼等之細胞資訊作成,因此終端機號碼之差等可和攪拌碼 之相位差做同樣處理。例如,主基地台100-1之細胞資訊訊 號作成部106(第3圖)係使細胞號碼之差等作為相位差資訊 而發送至從屬基地台1〇〇-2 ’亦可與第1實施例同樣實施者。 進而,上述之各實施例係針對在2個基地台100-1、1〇〇 2 &gt;、、冬*^機2〇〇之間進行CoMP通訊之例說明。例如,亦可在3 個以上之基地台1 〇〇與終端機2〇〇之間實施c〇MP通訊。此 時,3個以上之基地台中任一個為主基地台,其餘基地台當 37 1376974 做為從屬基地台,與上述各實施例同樣地,可由主基地台 . 將細胞資訊發送至多數從屬基地台予以實施。 C圖式簡單說明3 第1圖係顯示無線通訊系統之構成例之圖。 第2圖係顯示下鏈方向中之無線通訊系統之構成例之圖。 第3圖係顯示主基地台裝置之構成例之圖。 第4圖係顯示從屬基地台裝置之構成例之圖。 第5圖係顯示終端裝置之構成例之圖。 第6圖係顯示黃金碼產生器之構成例之圖。 修 第7圖係顯示黃金碼產生器之構成例之圖。 第8圖係顯示黃金碼產生器之構成例之圖。 第9圖係顯示攪拌碼作成部之構成例之圖。 第10圖係顯示動作例之流程。 : 第11圖係顯示動作例之流程。 第12圖係顯示下鏈方向中之無線通訊系統之構成例之圖。 第13圖係顯示主基地台裝置之構成例之圖。 第14圖係顯示從屬基地台裝置之構成例之圖。 ® 第15圖係顯示動作例之流程。 第16圖係顯示上鏈方向中之無線通訊系統之構成例之圖。 第17圖係顯示主基地台裝置之構成例之圖。 第18圖係顯示從屬基地台裝置之構成例之圖。 第19圖係顯示終端裝置之構成例之圖。 第20圖係顯示動作例之流程。 第21圖係顯示動作例之流程。 38 1376974 第22圖係顯示終端裝置之構成例之圖。 第23圖係顯示終端裝置之構成例之圖。 第24圖係顯示基地台裝置之構成例之圖 【主要元件符號說明】 10 無線通訊系統 100 基地台裝置(基地台) 100-1 主基地台 100-2從屬基地台 101,201 天線 102,202接收無線部 103 解調解碼部 104 連接要求訊號擷取部 105 無線線路控制部 106 細胞資訊訊號作成部 107 CoMP通訊要求訊號擷取 部 108 CoMP通訊實施判定暨控 制部(控制部) 109 無線線路品質資訊擷取部 110 排程器 111 控制訊號作成部 112 攪拌碼作成部 113 發送資料緩衝器 114 編碼調變部The code modulation unit 114 or the like intervenes to calculate the phase difference, and the terminal 200 (852). For example, the unit 106 notifies the terminal device 200 by the code modulation. 1376974. Next, the main base station 1〇〇·1 will send data (such as sending information 2) and send control information to the slave base station l〇〇-2 (S4〇, S41), each base station 100·1 100-2 performs transmission signal processing (S42, S43). For example, each base station 100-1 '100-2 generates a stirring code based on the cell information of the self-stage, and performs a stirring process. Next, the main base station 100-1 transmits a control signal and transmission data (e.g., transmission material 1) to the terminal device 200 (S44, S45). Next, the slave base station 100-2 transmits the transmission data (e.g., transmission material 2) to the terminal device 2GG (S46). Next, the terminal device 200 receives the borrowing from each of the base stations 100-1 and 100-2, and the CoMP transmits the different transmitted data transmitted by the CoMP, and performs reception signal processing (S47). For example, the phase difference information capturing unit 206 of the terminal 200 captures the phase difference information and outputs the result to the stirring code creating unit 207. The agitation code creation unit 207 creates a stirring code (for example, the first transmission code) from the cell information (sl〇, etc.) of the main base station, and outputs the result to the demodulation decoding unit 203. The code creation unit 207 generates a stirring code (for example, a second stirring code) based on the cell information (S10 or the like) and the phase difference data (S52) of the main base station 100-1, and outputs the result to the demodulation decoding unit 2〇3. The demodulation and decoding unit 203 unmixes the transmission data (for example, the transmission material 1) transmitted by the main σ 1 〇〇-1 by using the first agitation code. Further, the demodulation decoding unit 203 uses the second agitation code. In the second embodiment, at the time of CoMP transmission, the primary base station 100-1 calculates the slave base station 100 at the time of the CoMP transmission. -2 is made into the phase of the stirring code and sent to the terminal 200. Therefore, the terminal 200 can be made into a stirring code having a phase difference in advance by 29 1376974. Thereby, the wireless communication system 10 is connected to the terminal 200. Based on the cell information of base station 100-1 and the cell information of base station 100-2, It is possible to reduce the power consumption of the terminal 200 by reducing the power consumption of the terminal system 200 by performing the unmixing process of the two systems which are independent and independent of each other. [Third embodiment] Next, the third embodiment is implemented. The third embodiment is an example in which the terminal device 200 transmits the data in the uplink direction to the base stations 100-1 and 100-2. Fig. 16 shows a configuration example of the wireless communication system 1 in the third embodiment. The main base station 100-1 transmits a control signal to the terminal unit 20. The terminal unit 200 transmits different transmission data (USCH) to the primary base station 100-1 and the slave base station 1 according to the received control signal. 〇〇_2. &lt;Configuration Example of Main Base Station&gt; Next, a description will be given of a configuration example of the main base station 1 〇〇 丨 in the third embodiment. Fig. 17 is a view showing a configuration example of the main base station ioo-丨The main base station 100-1 further includes a radio channel quality measurement and calculation unit (hereinafter simply referred to as a calculation unit) 12h. The calculation unit 121 measures the terminal device 2 based on the transmission of the signal by the terminal device 2, and the like. Measure the quality of the radio line between 〇〇, and measure the quality of the radio line (for example, CQI). The scheduler 11 of the main base port 100-1 is arranged in the winding direction, and thus controls the demodulation decoding unit and the receiving radio unit 102 according to the schedule information made. Further, the 'mixing code creation unit (1) is paired The de-mixing process is performed by the terminal device or the like, and the _ code is output to the demodulation unit 30 1376974. The decoding unit 103. <Configuration example of the slave base station> Next, the third embodiment will be described. A configuration example of the slave base stations 10 and 2, and Fig. 18 is a diagram showing a configuration example of the slave base station 100-2. The slave base station 100-2 also has a calculation unit 121. Further, since the scheduler 11 of the slave base station 100-2 is scheduled for the uplink direction, the demodulation decoding unit 103 and the reception wireless unit 102 are controlled based on the schedule information. Further, the agitation code creation unit 112 also performs demixing processing on the transmission data and the like transmitted from the terminal device 200, and outputs the prepared agitation code to the demodulation and decoding unit 103. &lt;Configuration Example of Terminal Machine&gt; Next, a configuration example of the terminal device 200 in the third embodiment will be described. Fig. 19 is a view showing a configuration example of the terminal unit 200. The terminal 200 further has a cell information capturing unit 225. The cell information capturing unit 225 extracts, for example, cell information transmitted from the base stations _1, 1 and 2, and outputs the cell information to the add code generation unit 207. The agitation code creation unit 207 creates a coding code based on, for example, cell information (including cell number, terminal number, and slot number information) transmitted from the main base station 100-1. The stirring code creating unit 2〇7 outputs the prepared stirring code (for example, the third stirring code) to the code modulation unit 213. The terminal setting control unit 209 controls the code modulation unit 213 to perform processing such as encoding and transmitting data to the base station in accordance with the control signal. Further, the terminal setting control unit 2〇9, for example, controls the transmission radio unit 214 based on the preamble information included in the control signal of the control unit 31 1376974, and weights the different transmission data to be transmitted to the base stations 100-1 and 100-2. &lt;Configuration Example of Stirring Code Creation Unit&gt; The agitation code creation units 112 and 2〇 of each of the base stations 100-1 and 100-2 and the terminal unit 200 are the same as those of the first embodiment (for example, Fig. 9). &lt;Example of operation in the winding direction&gt; Next, the operation example of the third embodiment will be described. Figures 20 and 21 show the flow of the action example. After the line is set between the primary base station 100-1 and the terminal 200 (S10 to S13), the terminal 200 transmits the pilot signal to the primary base station 10_1 (S6〇). For example, the transmitting radio unit 214 of the terminal 200 generates a pilot signal and transmits the transmitter. The cell information (S10) transmitted from the main base station 100-1 may also contain cellular information created by the cell information signal generating unit 106. Next, the master base station 100-1 measures the radio channel quality (e.g., CQI) in the uplink direction based on the pilot signal (S61). For example, the calculation unit 121 of the main base station 1 〇〇 _ i performs measurement or the like. Next, the main base station 100-1 performs scheduling in the winding direction based on the measured radio line quality (S16). For example, the scheduler is scheduled based on the quality of the wireless line output by the calculation unit 121. Next, the main base station 100-1 transmits a control signal including schedule information in the uplink direction (S18), and the terminal 200 performs transmission signal processing based on the control signal (S62). For example, the control signal creation unit n1 of the main base station 1 作 作 作 作 作 作 作 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有 含有Moreover, the code modulation unit 213 of the terminal 200 encodes and modulates the transmitted data in accordance with the schedule information contained in the received control signal 32 1376974. Next, the terminal device 200 transmits the transmission data to the main base station 100-1 (S63). Next, the terminal device 200 performs processing such as line setting with the slave base station 100-2 (S21 to S24). Further, c终端MP transmission processing is performed between the terminal unit 2A and the base stations 100-1 and 100-2. First, the terminal device 200 transmits a CoMP transmission execution request to each of the base stations 100-1 and 100-2 (S32 to S33). Next, the terminal 200 transmits a pilot signal to each of the base stations 100-1 and 100-2 (S64, S65). Then, each of the base stations 100-1 and 100-2 measures the radio channel quality (S66, S67). For example, the calculation unit 121 of each of the base stations 100-1 and 1〇〇_2 measures the radio channel quality. Next, the slave base station 100-2 transmits the measured radio channel quality to the master base station 100-1 (S68). For example, the calculation unit 121 of the slave base station 100-2 transmits the measured radio channel quality to the master base station 10 (M. Next, the master base station 100-1 performs CoMP transmission based on the two radio channel qualities. For example, the control unit 1 8 determines that CoMP transmission is performed when both radio channel qualities are equal to or higher than the limit value, and the limit value of the calculated radio channel quality is compared with the main base station 100-1. The limit value compared with the radio channel quality measured by the slave base station 100-2 may be the same or may be different. The primary base station 100-1 is configured to transmit CoMP when performing CoMP transmission 33 1376974 The notification is transmitted to the slave base station 100-2 and the terminal 2 (S34 to S35). Next, the master base station 100-1 performs synchronization processing with the slave base station 1_2 (S36). Next, the slave base station 100-2 transmits the cell information of the slave station to the master base station l〇〇_1 (S50) in the same manner as in the second embodiment. Next, the master base station 100-1 performs C〇MP transmission. The scheduling of the phase difference information is calculated in the same manner as in the second embodiment (S70) e phase The calculation of the information is performed, for example, in the cell information signal creation unit 106 of the main base station ιοο-丨, as in the second embodiment. Next, the main base station 100-1 is the same as the second embodiment, and the calculated phase difference is obtained. The information is sent to the slave base station l〇〇_2 (S71). Next, the master base station 1〇〇_1 transmits the transmission control information including the schedule information (S37) in the uplink direction to the slave base station i〇〇 -2 (S72), and the control signal is sent to the terminal 2 (S73). The transmission control information and the control signal also include the use frequency and the pre-coded information. Next, the terminal 200 performs the transmission signal processing (S74). For example, the agitation code creation unit 207 generates a stirring code (for example, a first agitation code) based on the cell information (S10, S43, etc.) from the main base station 100-1, and outputs it to the code modulation unit 213. The variable unit 213 performs agitation processing on different transmission materials (for example, transmission material 1 and transmission material 2) using, for example, a first agitation code. Two data systems different in agitation processing using the same agitation code are transmitted to each base station. 100-1, 1〇〇_2 (S75, S76) Further, the terminal setting control unit 209 of the terminal 200 controls the code modulation unit 213 to perform processing such as encoding in accordance with the schedule information. Further, the terminal setting control unit 209 can control the transmission wireless unit 214. According to the control message, the user will receive the weighted transmission data of the pre-coded information wheel. Secondly, the main base station HKM system performs reception signal processing (s77). For example, the main listening station HKM code is used. (10) Recording the data from Taiwan's Cell Beixing's code, and output it to the cancellation (four). The demodulation and decoding unit 1〇3 transmits the data using the _code (for example, the transmission processing, etc. Further, the slave base station 1〇〇-2 also performs reception signal processing (S78). For example, the slave base station) · 2 wins code making part 112 According to the cell information and phase difference information from Taiwan, the phase shift of the mix code, output the same-phase stirring code with the main base station 1.1. The demodulation and decoding unit 丨 uses the job code to transmit data (for example, transmission (four) υ 解 解 。 。. Next, the slave base station 100-2 transfers the transmission data (for example, transmission money m) that has been demodulated to the main The base station 100_1 (S79). For example, the demodulation and decoding unit 103 of the slave base station 1 () 0-2 transmits the transmission material 1 to the master base station 100-1 by the control of the scheduler 11 or the like. In the third embodiment, the terminal device 200 uses the (4) code of the M-side of the main base station 10, and sends the same material to the sender after the processing. In addition, the two base stations 10CM '100_2 are in common phase. The difference information is made into the same phase of the stirring code, and the de-mixing process is performed. Therefore, the terminal unit 2 does not make different stirring ants for different transmission materials, so the processing of the terminal unit 2 reduces the power consumption. &lt;Other Embodiments&gt; Next, the description will be made with respect to other embodiments. The above-described embodiments are described as the judges who perform CoMP communication on the main base station 100-1 as 35 1376974 (S31 of the figure, etc.). Can also be constructed such that the decision is made by the terminal 2 For example, the CoMP communication control unit 220 of the terminal 200 can determine whether or not the wireless communication quality is determined based on the measured wireless communication quality (S27 in Fig. 10). It is sent to the base stations 100-1 and 100-2, so that the lighter of the processing of the master base station 1 〇〇 1 can be requested. Moreover, the above embodiments are required to be carried out by the terminal device 200 as the implementation of the CoMP communication. For example, it is also possible to configure the main base station 1〇〇1 to perform the request. In the downlink direction, for example, when the main base station i 〇〇 _ 丨 determines to perform CoMP communication (S31) 'CoMP can also be used. The implementation request is transmitted to the terminal device f 200 and the slave base station 100-2. Thereafter, the master base station iooq can notify the implementation notification (S34, S35), and can be implemented for the uplink direction, the primary base station 1〇〇_ι * After the CoMP transmission is determined (S31), the CoMP transmission request is transmitted to the terminal device 200 or the like, and the CoMP implementation notification (S34 to S35) is notified. The configuration example of the terminal device 200 of this type is shown in the 22nd. Figure (type of the lower chain direction), figure 23 (upper chain side) In the case of the terminal device 2, compared with the above-described embodiment, since the CoMP communication control unit 220 and the CoMP communication request signal preparation unit 221 are not provided, the power consumption can be further reduced by the coal. The embodiment is described as an example of transmitting data by two base stations 100 of the primary base station 100-1 and the slave base station 100-2. For example, it may be configured as a base station having a majority of cells (or sectors). 100 transmits and transmits data. Fig. 24 is a view showing a configuration example of the base station. The base station 100 includes a main communication unit 150-1, a slave communication unit 150-2, and an antenna 36 (the antennas HH-i and 101_2 of the M, 150-2) connected to each of the channels 36. The main communication unit 15〇1 has a main unit. Each unit 102 in the base station 100-1, the slave communication unit 15〇_2 has each unit 102 in the slave base station 100-2. For example, the main communication unit 15〇1 outputs the held phase difference information to the slave communication unit. 150·2, the subordinate communication department 15〇·2 creates a search code based on the phase difference information. Also, the subordinate communication unit 15〇2 sends the cell information to the main communication unit 150-b main communication unit^(^丨与自The cell information of the station is calculated together with the phase difference information, and is output to the slave communication unit 15〇2. This can be implemented in the same manner as in the first to third embodiments. Further, in the above embodiments, the CoMP communication is used. The cell number, terminal number, and slot number can also be used as cell numbers, terminal numbers, and slot numbers for c〇Mp. For example, cell information signal creation unit 1〇6 can also use cell number, terminal number, And the slot number is rewritten as 7 tiger codes for c〇Mp. Further, the above embodiments are For the phase difference of the agitation code, for example, at least one of the difference between the terminal number, the cell number, or the slot number can be similarly implemented. The initial value of the agitation code is created by cell information such as the terminal number. Therefore, the difference between the terminal numbers and the like can be handled in the same manner as the phase difference of the agitation code. For example, the cell information signal creation unit 106 (Fig. 3) of the main base station 100-1 uses the difference between the cell numbers as the phase difference information. The same can be applied to the slave base station 1〇〇-2' as in the first embodiment. Further, each of the above embodiments is directed to two base stations 100-1, 1〇〇2 &gt;, winter* Example of CoMP communication between the two machines. For example, c〇MP communication can be implemented between three or more base stations 1 and 2, and at this time, more than 3 bases Any one of Taichung is the main base station, and the remaining base stations are 37 1376974 as the subordinate base stations. As in the above embodiments, the main base station can be used to send cell information to most subordinate base stations for implementation. 3 Figure 1 shows the wireless pass Figure 2 is a diagram showing a configuration example of a wireless communication system in a downlink direction. Fig. 3 is a view showing a configuration example of a main base station device. Fig. 4 is a diagram showing a slave base station. Fig. 5 is a view showing a configuration example of a terminal device. Fig. 6 is a view showing a configuration example of a gold code generator. Fig. 7 is a view showing a configuration example of a gold code generator. Fig. 8 is a view showing a configuration example of a gold code generator. Fig. 9 is a view showing a configuration example of a stirring code forming unit. Fig. 10 is a flow chart showing an operation example. Fig. 11 is a view showing an operation example. Process. Fig. 12 is a view showing a configuration example of a wireless communication system in the downlink direction. Fig. 13 is a view showing a configuration example of the main base station apparatus. Fig. 14 is a view showing a configuration example of a slave base station device. ® Figure 15 shows the flow of the action example. Fig. 16 is a view showing a configuration example of a wireless communication system in the winding direction. Fig. 17 is a view showing a configuration example of the main base station apparatus. Fig. 18 is a view showing a configuration example of a slave base station device. Fig. 19 is a view showing a configuration example of the terminal device. Figure 20 shows the flow of the operation example. Figure 21 shows the flow of the operation example. 38 1376974 Figure 22 is a diagram showing a configuration example of a terminal device. Fig. 23 is a view showing a configuration example of the terminal device. Fig. 24 is a view showing a configuration example of a base station device. [Main element symbol description] 10 Wireless communication system 100 Base station device (base station) 100-1 Main base station 100-2 Affiliated base station 101, 201 Antenna 102, 202 receives radio unit 103 Demodulation and decoding unit 104 connection request signal acquisition unit 105 Radio channel control unit 106 Cell information signal creation unit 107 CoMP communication request signal acquisition unit 108 CoMP communication implementation determination and control unit (control unit) 109 Wireless channel quality information acquisition unit 110 scheduler 111 control signal creation unit 112 agitation code creation unit 113 transmission data buffer 114 code modulation unit

115發送無線部 112-1第1移位暫存器 112-2第1互斥性邏輯和電路 112-3第2移位暫存器 112-4第2互斥性邏輯和電路 112-5〜112-13第3〜11互斥性 邏輯和電路 112-14初始值設定部 112-15〜16第1及第2開關群 112-17〜112-19 第 12〜14 互斥 性邏輯和電路 114 編碼調變部 150-1 主通訊部 150-2從屬通訊部 2〇〇終端裝置(終端機) 203解調解碼部 204無線線路品質測定暨算出 部(算出部) 205無線線路品質資訊作成部 206細胞資訊及相位差資訊擷 39 1376974 207 208 209 210 211 取部(相位差資訊糊取部) 搜拌碼作成部 接收控制訊號祿取部 終端機設定控制部 接收功率測定部 線路連接控制邹 212連接要求訊號作成部 213 編碼調變部 214發送無線部 220 CoMP通訊控制部 221 CoMP通訊要求訊號作成部 225 細胞資訊擷取部115 transmission radio unit 112-1 first shift register 112-2 first mutex logic circuit 112-3 second shift register 112-4 second mutex logic sum circuit 112-5~ 112-13 3rd to 11th mutually exclusive logical sum circuit 112-14 initial value setting unit 112-15 to 161st and 2nd switch group 112-17 to 112-19 12th to 14th mutually exclusive logic sum circuit 114 Code modulation unit 150-1 Main communication unit 150-2 Slave communication unit 2 Terminal device (terminal device) 203 Demodulation and decoding unit 204 Radio channel quality measurement and calculation unit (calculation unit) 205 Radio channel quality information creation unit 206 Cell information and phase difference information 撷39 1376974 207 208 209 210 211 Picking section (phase difference information pasting section) Searching code generating section receiving control signal Locating section terminal setting control section receiving power measuring section line connection control Zou 212 connection Request signal creation unit 213 Code modulation unit 214 transmission radio unit 220 CoMP communication control unit 221 CoMP communication request signal creation unit 225 Cell information acquisition unit

4040

Claims (1)

1376974 七、申請專利範圍: 1. 一種無線通訊系統,係於各具有1個或多個細胞或扇區 之第1及第2基地台裝置與终端裝置之間進行無線通訊 者,其特徵係於: 前述第1及第2基地台裝置各包含有: 處理部,係將每一前述細胞或前述扇區各有不同之第 1及第2發送資料各發送至前述終端裝置時,使用具有 特定相位差之第1及第2攪拌碼,各對前述第1及第2 發送資料進行攪拌處理者;及 , 發送部,係將前述業經攪拌處理之前述第1及第2 發送資料,各發送至前述終端裝置者, 前述終端裝置包含有接收部,該接收部係接收前述第 1及第2發送資料,使用前述第1及第2攪拌碼,各對 前述第1及第2發送資料進行解拌處理。 2. 如申請專利範圍第1項之無線通訊系統,其中前述第1 基地台裝置之發送部係將顯示前述相位差之相位差資訊 發送至前述終端裝置, 前述終端裝置之接收部係根據前述相位差資訊,作 成前述第2攪拌碼。 3. 如申請專利範圍第2項之無線通訊系統,其中前述第1 基地台裝置包含有一將事先已記憶之前述相位差資訊輸 出至前述發送部之相位差資訊作成部。 4. 如申請專利範圍第2項之無線通訊系統,其中前述第1 基地台裝置包含有一將前述相位差資訊輸出至前述第2 41 1376974 基地台裝置之輸出部, 前述第2基地台裝置之處理部係根據前述相位差資 訊,作成前述第2攪拌碼。 5. 如申請專利範圍第2項之無線通訊系統,其中前述第2 基地台裝置包含有一將用以作成前述第2攪拌碼之第2 細胞資訊輸出至前述第1基地台裝置之輸出部, 前述第1基地台裝置包含有一相位差資訊作成部, 該相位差資訊作成部根據用以作成前述第丨攪拌碼之 第1細胞資訊及前述第2細胞資訊,作成前述相位差資 隹 訊。 6. 如申請專利範圍第1項之無線通訊系統,其中前述第j 基地台裝置包含有一輸出部,該輸出部係將第1細胞資 訊及顯示前述相位差之相位差資訊輸出至前述第2基地 &amp; 台裝置, 前述第1基地台裝置之處理部係作成前述第丨細胞資 訊,根據該第1細胞資訊,作成前述第丨攪拌碼, 前述第2基地台裝置之處理部係根據前述第】細胞資 · 訊及前述相位差資訊,作成前述第2攪拌碼, 刖述第1基地台裝置之發送部係將前述第丨細胞資訊 及前述相位差資訊發送至前述終端裝置, 則述終端裝置之接收部係根據前述第卜細胞資訊,作 成前述第1搜拌碼’根據前述第1細胞資訊及前述相位 差資訊,作成前述第2搜拌碼。 7·如申請專利範圍第1項之無線通訊系統,其中前述第2 42 1376974 基地台裝置包含有一將第2細胞資訊輸出至前述第1基 地台裝置之輸出部, 前述第1基地台裝置包含有一相位差資訊作成部, 該相位差資訊作成部係根據前述第2細胞資訊及第1細 胞資訊,作成顯示前述相位差之相位差資訊, 前述第1基地台裝置之處理部係作成前述第1細胞 資訊,根據該第1細胞資訊,作成前述第1攪拌碼, 前述第2基地台裝置之處理部係作成前述第2細胞 資訊,根據該第2細胞資訊,作成前述第2攪拌碼, 前述第1基地台裝置之發送部係將前述第1細胞資 訊及前述相位差資訊發送至前述終端裝置, 前述終端裝置之接收部係根據前述第1細胞資訊, 作成第1攪拌碼,根據前述第1細胞資訊及前述相位差 資訊,作成前述第2攪拌碼。 8. 如申請專利範圍第6項之無線通訊系統,其中前述第1 細胞資訊包括識別前述細胞或扇區之第1細胞號碼、識 別前述終端裝置之第1終端機號碼、及識別槽之第1槽 號。 9. 如申請專利範圍第7項之無線通訊系統,其中前述第1 及第2細胞資訊包括各識別前述細胞或扇區之第1及第 2細胞號碼、各識別前述終端裝置之第1及第2終端機 號碼、及各識別槽之第1及第2槽號。 10. 如申請專利範圍第8項之無線通訊系統,其中前述第1 細胞號碼、前述第1終端機號碼及前述第1槽號,係用 43 1376974 於發送前述第1及第2資料時之專用的第1細胞號碼、 第1終端機號碼及第1槽號。 11. 如申請專利範圍第9項之無線通訊系統,其中前述第1 及第2細胞號碼、前述第1及第2終端機號碼、及前述 第1及第2槽號,係用於發送前述第1及第2資料時之 專用的各細胞號碼、終端機號碼及槽號。 12. 如申請專利範圍第1項之無線通訊系統,其中前述第1 基地台裝置具有作成前置編碼資訊之排程器, 前述排程器將前述前置編碼資訊發送至前述第2基 地台裝置,前述第1及第2基地台裝置之各發送部根據 前述前置編碼資訊,對前述第1及第2發送資料加權, 且發送至前述終端裝置。 13. —種無線通訊方法,係於各具有1個或多個細胞或扇區 之第1及第2基地台裝置與終端裝置之間進行無線通訊 之無線通訊系統所使用之無線通訊方法,其特徵係於: 前述第1及第2基地台裝置, 係於將每一前述細胞或前述扇區各有不同之第1及 第2發送資料各發送至前述終端裝置時,使用具有特定 相位差之第1及第2攪拌碼,各對前述第1及第2發送 資料進行攪拌處理, 將前述業經攪拌處理之前述第1及第2發送資料各發 送至前述終端裝置, 前述終端裝置係接收前述第1及第2發送資料,使用 前述第1及第2攪拌碼,各對前述第1及第2發送資料 44 1376974 進行解拌處理。 14. 一種基地台裝置,係與具有一個或多個細胞或扇區之其 他基地台裝置一同在與終端裝置之間進行無線通訊者, 其特徵在於: 具有一個或多個前述細胞或前述扇區, 且包含有: 處理部,係將每一前述細胞或前述扇區各有不同之 第1或第2發送資料發送至前述終端裝置時,使用具有 特定相位差之第1或第2攪拌碼,各對前述第1或第2 發送資料進行攪拌處理者;及 發送部,係將前述業經攪拌處理之前述第1或第2 發送資料發送至前述終端裝置者。 15. —種終端裝置,係與各具有一個或多個細胞或扇區之第 1及第2基地台裝置進行無線通訊者,其特徵在於包含 有接收部, 該接收部係於各由前述第1及第2基地台裝置接收每 一前述細胞或前述扇區各有不同之第1及第2發送資料 時,接收業已使用具有特定相位差之第1及第2攪拌碼 而各自進行了攪拌處理之前述第1及第2發送資料,使 用前述第1及第2攪拌碼,各對前述第1及第2發送資 料進行解拌處理。 16. —種無線通訊系統,係於各具有一個或多個細胞或扇區 之第1及第2基地台裝置與終端裝置之間進行無線通訊 者,其特徵在於: 45 1376974 前述終端裝置包含有: 處理部,係使用第1攪拌碼,而對每一前述細胞或 前述扇區各有不同之第1及第2發送資料進行攪拌處理 者;及 發送部,係將前述業經攪拌處理之第1及第2發送 資料各發送至前述第1及第2基地台裝置者, 前述第1及第2基地台裝置各包含有接收部,前述 接收部係使用前述第1攪拌碼,各對前述第1及第2發 送資料進行解拌處理。 17. —種無線通訊方法,係於各具有1個或多個細胞或扇區 之第1及第2基地台裝置與終端裝置之間進行無線通訊 之無線通訊系統所使用之無線通訊方法,其特徵在於: 前述終端裝置,係使用第1攪拌碼,對每一前述細 胞或前述扇區各有不同之第1及第2發送資料進行攪拌 處理, 將前述業經攪拌處理之第1及第2發送資料各發送 至前述第1及第2基地台裝置, 前述第1及第2基地台裝置係使用前述第1攪拌 碼,各對前述第1及第2發送資料進行解拌處理。 18. —種基地台裝置,係與各具有一個或多個細胞或扇區之 其他基地台裝置一同在與終端裝置之間進行無線通訊 者,其特徵在於: 具有一個或多個細胞或扇區, 且包含有接收部,該接收部係使用第1攪拌碼,對 46 1376974 每一前述細胞或前述扇區各有不同之第1及第2發送資 料實施攪拌處理,接收前述業經攪拌處理之第1或第2 發送資料,使用前述第1攪拌碼,對前述第1或前述第 2發送資料進行解拌處理。 19. 一種終端裝置,係與各具有一個或多個細胞或扇區之第 1及第2基地台裝置之間進行無線通訊者,其特徵在於 包含有: 處理部,係使用第1攪拌碼,對每一前述細胞或前 述扇區各有不同之第1及第2發送資料進行攪拌處理 者;及 發送部,係將前述業經攪拌處理之第1及第2發送 資料各發送至前述第1及第2基地台裝置者。 20. —種無線通訊系統,係於具有多個扇區且包含有針對各 前述扇區之第1及第2通訊部之基地台裝置與終端裝置 之間進行無線通訊者,其特徵在於: 前述第1及第2通訊部各包含有: 處理部,係於將每一前述扇區各有不同之第1及第 2發送資料各發送至前述終端裝置時,使用具有特定相 位差之第1及第2攪拌碼,對前述第1及第2發送資料 各進行攪拌處理者;及 發送部,係將前述業經攪拌處理之前述第1及第2 發送資料各發送至前述終端裝置者, 前述終端裝置包含有接收部,該接收部係接收前述 第1及第2發送資料,各使用前述第1及第2攪拌碼, 47 1376974 而對前述第1及第2發送資料進行解拌處理。 21. —種無線通訊系統,係於具有多個扇區且包含針對各前 述扇區之第1及第2通訊部之基地台裝置與終端裝置之 間進行無線通訊者,其特徵在於: 前述終端裝置包含有: 處理部,係使用第1攪拌碼,而對每一前述扇區各 有不同之第1及第2發送資料進行攪拌處理者;及 發送部,係將前述業經攪拌處理之第1及第2發送 資料各發送至前述基地台裝置者, 前述基地台裝置之第1及第2通訊部各接收前述第 1及第2發送資料,使用前述第1攪拌碼,對前述第1 及第2發送資料各進行解拌處理。1376974 VII. Patent Application Range: 1. A wireless communication system is a wireless communication between a first and a second base station device having one or more cells or sectors and a terminal device, and is characterized by Each of the first and second base station apparatuses includes: a processing unit that uses a specific phase when each of the first or second transmission data different from each of the cells or the sector is transmitted to the terminal device The first and second stirring codes of the difference are each subjected to agitation processing for each of the first and second transmission materials; and the transmitting unit transmits the first and second transmission materials that have been subjected to the agitation processing to the foregoing In the terminal device, the terminal device includes a receiving unit that receives the first and second transmission data, and performs demixing processing on the first and second transmission data using the first and second stirring codes. . 2. The wireless communication system according to claim 1, wherein the transmitting unit of the first base station device transmits phase difference information indicating the phase difference to the terminal device, and the receiving portion of the terminal device is based on the phase The difference information is used to create the second stirring code. 3. The wireless communication system of claim 2, wherein the first base station device includes a phase difference information generating portion that outputs the phase difference information previously stored to the transmitting portion. 4. The wireless communication system according to claim 2, wherein the first base station device includes an output unit for outputting the phase difference information to the output unit of the second 41 1376974 base station device, and processing of the second base station device The part creates the second stirring code based on the phase difference information. 5. The wireless communication system according to claim 2, wherein the second base station device includes an output unit that outputs information of the second cell for creating the second stirring code to the first base station device, The first base station apparatus includes a phase difference information creating unit that creates the phase difference information based on the first cell information for creating the second stirring code and the second cell information. 6. The wireless communication system according to claim 1, wherein the j-th base station device includes an output unit that outputs the first cell information and the phase difference information indicating the phase difference to the second base. And the processing unit of the first base station device is configured to create the second cell information based on the first cell information, and the processing unit of the second base station device is based on the first The cell information and the phase difference information are used to generate the second agitation code, and the transmission unit of the first base station device transmits the second cell information and the phase difference information to the terminal device, and the terminal device The receiving unit creates the second search code based on the first cell information and the phase difference information based on the first cell information. 7. The wireless communication system of claim 1, wherein the second base unit includes a second cell information output to an output unit of the first base station device, wherein the first base station device includes a phase difference information creation unit that creates phase difference information indicating the phase difference based on the second cell information and the first cell information, and the processing unit of the first base station device is configured as the first cell Information, the first agitation code is created based on the first cell information, and the processing unit of the second base station device creates the second cell information, and the second agitation code is created based on the second cell information, and the first The transmitting unit of the base station device transmits the first cell information and the phase difference information to the terminal device, and the receiving unit of the terminal device generates a first agitation code based on the first cell information, and the first cell information is generated according to the first cell information. And the phase difference information, the second stirring code is created. 8. The wireless communication system according to claim 6, wherein the first cell information includes a first cell number identifying the cell or sector, a first terminal number identifying the terminal device, and a first identification slot. Slot number. 9. The wireless communication system of claim 7, wherein the first and second cell information includes first and second cell numbers identifying each of the cells or sectors, and first and second identifying each of the terminal devices. 2 Terminal number, and the first and second slot numbers of each identification slot. 10. The wireless communication system of claim 8, wherein the first cell number, the first terminal number, and the first slot number are dedicated to the transmission of the first and second materials by 43 1376974. The first cell number, the first terminal number, and the first slot number. 11. The wireless communication system of claim 9, wherein the first and second cell numbers, the first and second terminal numbers, and the first and second slot numbers are used to transmit the foregoing The unique cell number, terminal number and slot number for the 1st and 2nd data. 12. The wireless communication system of claim 1, wherein the first base station device has a scheduler for generating pre-coded information, and the scheduler transmits the pre-coded information to the second base station device Each of the transmitting units of the first and second base station apparatuses weights the first and second transmission materials based on the preamble coding information, and transmits the first and second transmission materials to the terminal device. 13. A wireless communication method for wireless communication systems for wireless communication between a first and a second base station device having one or more cells or sectors and a terminal device, wherein The first and second base station apparatuses are configured to transmit a first phase difference between each of the cells or the sectors to the terminal device, and use a specific phase difference. The first and second agitation codes are respectively subjected to agitation processing on the first and second transmission materials, and the first and second transmission materials subjected to the agitation processing are transmitted to the terminal device, and the terminal device receives the first 1 and the second transmission data, the first and second transmission materials 44 1376974 are subjected to a demixing process using the first and second stirring codes. 14. A base station apparatus for wirelessly communicating with a terminal device together with other base station apparatus having one or more cells or sectors, characterized by: having one or more of said cells or said sector And a processing unit that uses the first or second agitation code having a specific phase difference when transmitting the first or second transmission data different from each of the cells or the sectors to the terminal device. Each of the first or second transmission materials is subjected to agitation processing; and the transmitting unit transmits the first or second transmission data subjected to the agitation processing to the terminal device. 15. A terminal device for wirelessly communicating with first and second base station devices each having one or more cells or sectors, comprising: a receiving unit, each of said receiving units 1 and the second base station apparatus receives the first and second transmission data different for each of the cells or the sectors, and the reception has performed the agitation processing using the first and second stirring codes having the specific phase difference. The first and second transmission data are subjected to a demixing process for each of the first and second transmission data using the first and second stirring codes. 16. A wireless communication system for wirelessly communicating between first and second base station devices having one or more cells or sectors and a terminal device, characterized in that: 45 1376974 said terminal device includes The processing unit is configured to perform agitation processing on the first and second transmission data different for each of the cells or the sectors using the first agitation code; and the transmitting unit is the first one to be agitated. And the second transmission data is transmitted to each of the first and second base station apparatuses, wherein each of the first and second base station apparatuses includes a receiving unit, and the receiving unit uses the first stirring code, and each of the first pair And the second transmission data is used for the demixing process. 17. A wireless communication method for wireless communication systems for wireless communication between a first and a second base station device having one or more cells or sectors and a terminal device, wherein The terminal device is configured to perform agitation processing on the first and second transmission data different for each of the cells or the sectors by using a first agitation code, and to transmit the first and second transmissions of the agitation process. Each of the data is transmitted to the first and second base station apparatuses, and the first and second base station apparatuses use the first stirring code to perform a demixing process on the first and second transmission data. 18. A base station apparatus for wirelessly communicating with a terminal device together with other base station devices each having one or more cells or sectors, characterized by: having one or more cells or sectors And a receiving unit that performs a stirring process on the first and second transmission data of each of the cells or the sectors of 46 1376974 using a first stirring code, and receives the agitating process 1 or 2nd transmission data, the first or the second transmission data is subjected to a demixing process using the first stirring code. 19. A terminal device for wirelessly communicating with first and second base station devices each having one or more cells or sectors, comprising: a processing unit that uses a first agitation code; And agitating the first and second transmission data for each of the cells or the sectors; and transmitting the first and second transmission materials that are subjected to the agitation processing to the first and The second base station device. 20. A wireless communication system for wireless communication between a base station device having a plurality of sectors and including first and second communication units for each of the sectors, and a terminal device, wherein: Each of the first and second communication units includes: a processing unit that uses the first and second transmission data having different phase differences when each of the first and second transmission data that are different in each of the sectors is transmitted to the terminal device a second agitation code, wherein each of the first and second transmission materials is agitated; and the transmission unit transmits the first and second transmission materials that have been subjected to the agitation processing to the terminal device, the terminal device The receiving unit includes the first and second transmission data, and the first and second transmission data are subjected to a demixing process using the first and second stirring codes, 47 1376974. 21. A wireless communication system for wireless communication between a base station device having a plurality of sectors and including first and second communication units for each of said sectors, and a terminal device, wherein: said terminal The apparatus includes: a processing unit that performs agitation processing for each of the first and second transmission data different for each of the sectors using a first agitation code; and a transmission unit that is the first one of the agitation processing And the second transmission data is transmitted to the base station device, and the first and second communication units of the base station device receive the first and second transmission materials, and use the first agitation code to the first and the second 2 Send the data for each unmixing process.
TW98122139A 2009-06-29 2009-06-29 Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system TWI376974B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98122139A TWI376974B (en) 2009-06-29 2009-06-29 Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98122139A TWI376974B (en) 2009-06-29 2009-06-29 Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system

Publications (2)

Publication Number Publication Date
TW201101913A TW201101913A (en) 2011-01-01
TWI376974B true TWI376974B (en) 2012-11-11

Family

ID=44837161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122139A TWI376974B (en) 2009-06-29 2009-06-29 Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system

Country Status (1)

Country Link
TW (1) TWI376974B (en)

Also Published As

Publication number Publication date
TW201101913A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
EP2445286B1 (en) Wireless communication system, base station device, terminal device, and wireless communication method in wireless communication system
CN102355293B (en) Method and device for sending measurement reference signal
CN107710654A (en) Radio communication device
CN101989868B (en) Multi-cell cooperative transmission method, central controller and user equipment
CN103460771B (en) Communication system, base station apparatus, termination and communication means
JP5445585B2 (en) Wireless communication system, base station device, terminal device, and wireless communication method in wireless communication system
KR20130091280A (en) Method and apparatus for data transmission in network supporting comp
CN102820914A (en) Wireless telecommunication system, transmitter and receiver
CN108259071B (en) A kind of method and apparatus in the UE for being used for multi-antenna transmission, base station
CN104038979B (en) For identifying the system and method for Femto cell
TWI376974B (en) Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system
JP5704275B2 (en) Wireless communication system, base station device, terminal device, and wireless communication method in wireless communication system
JP5720766B2 (en) Wireless communication system, base station device, terminal device, and wireless communication method in wireless communication system
CN110138524A (en) A kind of transfer control method, terminal device and the network equipment
EP3734882B1 (en) Information feedback method and device, computer storage medium
JP2006135881A (en) Multi-carrier communication device and cell selection method
TWI383608B (en) Radio communication system, base station apparatus, terminal apparatus, and radio communication method in radio communication system
JP5605471B2 (en) Wireless communication system, base station device, terminal device, and wireless communication method in wireless communication system
CN104617992B (en) Wireless communication system, base station apparatus, terminal installation and wireless communications method
JP4546220B2 (en) Multi-antenna communication apparatus and cell selection method
EP2439978A1 (en) Method and apparatus for signal transmission and reception

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees