TWI376727B - A laser-irradiated thin film having variable thickness on a substrate, a method for processing the same and a device comparsing the same - Google Patents

A laser-irradiated thin film having variable thickness on a substrate, a method for processing the same and a device comparsing the same Download PDF

Info

Publication number
TWI376727B
TWI376727B TW93129120A TW93129120A TWI376727B TW I376727 B TWI376727 B TW I376727B TW 93129120 A TW93129120 A TW 93129120A TW 93129120 A TW93129120 A TW 93129120A TW I376727 B TWI376727 B TW I376727B
Authority
TW
Taiwan
Prior art keywords
film
region
laser
laser beam
crystal
Prior art date
Application number
TW93129120A
Other languages
Chinese (zh)
Inventor
James S Im
Original Assignee
Univ Columbia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Columbia filed Critical Univ Columbia
Priority to TW93129120A priority Critical patent/TWI376727B/en
Application granted granted Critical
Publication of TWI376727B publication Critical patent/TWI376727B/en

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

137,6727 v- --.-'^r^ ^ν·Γ^ -V-· ^ ,rv 游、:聲:明_明: 【發明所屬之技術領域】 本發明係有關於用於處理薄膜物質的方法及系統,更 . 特定地係有關於藉由使用雷射照射來由非晶型或多晶型薄 膜形成結晶薄膜的方法及系統。詳言之,本發明係有關於 製造集成的薄膜電晶體的系統及方法。137,6727 v- --.-'^r^ ^ν·Γ^ -V-· ^ , rv 游,:声:明_明: [Technical Field of the Invention] The present invention relates to the treatment of a film The method and system of matter, and more particularly relates to a method and system for forming a crystalline film from an amorphous or polycrystalline film by using laser irradiation. In particular, the present invention relates to systems and methods for making integrated thin film transistors.

【先前技術】 在最近幾年,用於結晶或改善一非晶型或多晶型半導 體薄膜的結晶的不同技術被加以研究。此技術被使用在許 多裝置’如影像感應器及主動陣列液晶顯示(AMLCD)裝 置,的製造上。在後者的例子中,一矩形的薄膜電晶體(TFT) 被製造在一適當的透明基材上,且每一電晶體都用作為一 像素控制器。 半導體薄膜係使用激分子雷射退火(ELA),在此退火 中,該薄膜的一個區域被一激分子雷射所照射用以部分地 熔化孩薄膜,然後被結晶。該處理典型地使用一長且窄的 光束形狀,其連續地前進在該基材表面之上,使得該_ 说夠在一單一次掃描過該表面時照射到整個半導體薄膜 =A產生均質(h〇m〇gene〇us )小晶粒的多結晶薄膜;然而, 該万法通常會遭遇到微結構的不均勻性問題,這是因為脈 衝與脈衝之間的能量密度波度及/或不均勾的光束強度輪 靡所造成的结果。 使用一激分子雷射的循序侧向固化(SLS)是—中被用 來形成具有大且均勻晶粒之高品質多晶型薄膜的方法。一 大阳fe化的多晶型薄膜可表現出強化的切換特性,因為在 電子 >瓦方向上之晶粒邊界數量的減少可提供較高的電子移 動性。S L S系統及處理亦提供受控制的晶粒邊界位置。描 述SLS系统及處理之授予Dr. james lm的美國專利第 6,322,625及第6,368,945號及美國專利申請案第 09/3 90,535及〇9/3 90,537號等案的揭示内容藉由此參照而[Prior Art] In recent years, different techniques for crystallizing or improving the crystallization of an amorphous or polycrystalline semiconductor film have been studied. This technology is used in the manufacture of many devices such as image sensors and active array liquid crystal display (AMLCD) devices. In the latter example, a rectangular thin film transistor (TFT) is fabricated on a suitable transparent substrate, and each transistor is used as a pixel controller. The semiconductor thin film uses laser laser annealing (ELA) in which a region of the thin film is irradiated with a laser of a molecular laser to partially melt the thin film and then crystallized. This process typically uses a long and narrow beam shape that continuously advances over the surface of the substrate such that it is sufficient to illuminate the entire semiconductor film as a single scan over the surface = A produces homogeneity (h) 〇m〇gene〇us) a small grained polycrystalline film; however, this method typically suffers from microstructural inhomogeneities due to energy density waviness and/or unevenness between pulses and pulses. The result of the hook beam intensity rim. Sequential lateral solidification (SLS) using a laser strike is a method used to form high quality polycrystalline films having large and uniform grains. A polycrystalline film can exhibit enhanced switching characteristics because a reduction in the number of grain boundaries in the electron > tile direction provides higher electron mobility. The S L S system and processing also provides controlled grain boundary locations. The disclosures of the U.S. Patent Nos. 6,322,625 and 6,368,945 to the disclosure of the S.S.S.S.S.S.S.S.S.S. and

被併於本文中,且這些專利案都被讓渡給本案的申請人》 在一 SLS處理中,一最初的非晶型(或小晶粒多結晶 型)矽薄膜被一非常窄的雷射小光束(beamiet)所照射。該小 光束是藉由讓一雷射光束通過一槽化的罩幕而形成的,其 被投射到該矽薄膜的表面上》該小光束將該非晶型薄膜熔 化,然後再结晶以形成一或多個結晶體。該等結晶體主要 是從被照射的區域的邊緣朝向中心生長。在一最初的小光 束已將 導向該 位置。 在前 長 薄膜的一該側向生長小於前一小光束的側向生長In this article, and these patents were transferred to the applicant of the case. In an SLS process, an initial amorphous (or small-grain polycrystalline) tantalum film was subjected to a very narrow laser. Illuminated by a small beam (beamiet). The small beam is formed by passing a laser beam through a grooved mask that is projected onto the surface of the tantalum film. The small beam melts the amorphous film and then recrystallizes to form an Multiple crystals. The crystals grow mainly from the edge of the irradiated area toward the center. At an initial small beam of light has been directed to that position. One of the lateral growth of the front film is less than the lateral growth of the previous small beam

在該最近被照射的薄膜位置處,結晶體晶粒從形 步驟中之多晶型物質的結晶晶種側向地生長。此 的結果為’沿著小光束前進的方向上的結晶體的 高。長形的結晶體晶粒被平行於長軸之晶粒邊界 ,長的晶粒軸大致上垂直於該窄的小光束的長度 6圖,其顯示依據此方法之結晶體生長的—個例& 多晶型物質被用來製造電子元件睡, 电于7C件時,對於載體輸 阻是會受阻障物的組合的影響,一阻障物為一載 1376727At the position of the most recently irradiated film, the crystal grains grow laterally from the crystal seed of the polymorph material in the step. The result of this is 'the height of the crystal along the direction in which the small beam travels. The elongated crystal grains are parallel to the grain boundaries of the long axis, and the long grain axis is substantially perpendicular to the length of the narrow beam. Figure 6 shows the growth of the crystal according to this method. Crystalline materials are used to make electronic components to sleep. When electricity is used in 7C parts, the carrier resistance is affected by the combination of barriers. A barrier is a load of 1376727.

在它受一給定的電位的影響下而移動時所必需跨越的障 礙。與移動於與長的晶粒軸方向比較起來,由於當該載體 移動垂直於該多晶型物質的長的晶粒軸的方向時或當一載 體移動跨越一大數目的小晶粒時,被載體跨越之結晶邊界 數目增加,所以載體將會遭遇較大的阻力。因此,被製造 在多晶型薄膜上的元件,如TFT,的性能將視結晶體的品 質及該TFT通道之結晶體相對於長的晶粒軸的方向而定。The obstacle that must be overcome when it is moved by a given potential. Compared with moving in the direction of the long grain axis, when the carrier moves perpendicular to the direction of the long grain axis of the polymorphic substance or when a carrier moves across a large number of small grains, The number of crystalline boundaries across the carrier increases, so the carrier will experience greater resistance. Therefore, the performance of an element such as a TFT fabricated on a polycrystalline film depends on the quality of the crystal and the direction of the crystal of the TFT channel with respect to the long crystal grain axis.

利用多晶型薄膜的元件通常不需要整個薄膜具有相同 的系統性能及/或移動方向。例如,TFT的行及列驅動器(集 成區(integration area))的移動性要求會比控制器區域或像 素區域大許多。在符合集成區高移動性之高移動性要求所 必要的條件下來處理整個薄膜表面,如集成區及像素區, 將會是沒有效率且不符經濟效益的,因為在該薄膜之低效 能區域所花費之過多的照射及處理時間對於系統效能是沒 有幫助的。Components utilizing polycrystalline films typically do not require the entire film to have the same system performance and/or direction of movement. For example, the row and column drivers (integration area) of a TFT may have a much larger mobility requirement than a controller area or a pixel area. Processing the entire film surface, such as the integrated area and the pixel area, under conditions necessary to meet the high mobility requirements of the high mobility of the integrated area, would be inefficient and uneconomical because of the expense in the low performance area of the film. Excessive illumination and processing time are not helpful for system performance.

【發明内容】 本發明認知到不同厚度的薄膜具有不同的薄膜特性。 詳言之,對於被相同地處理的薄膜而言,一较厚的薄膜比 一較薄的薄膜表現出一較高的載體移動性。這在所有方向 的固化處理中,如CW-雷射掃描,循序雷射固化及區域熔 化精製等,都被觀察到,且對於已用激分子雷射,固態雷 射或連續波雷射作為雷射源處理過的薄膜而言亦是如此。 本發明提供一種結晶薄膜其包含一第一結晶區,該第 7SUMMARY OF THE INVENTION The present invention recognizes that films of different thicknesses have different film properties. In particular, for a film that is treated identically, a thicker film exhibits a higher carrier mobility than a thinner film. This is observed in all directions of curing, such as CW-laser scanning, sequential laser curing, and regional melting refining, and for lasers that have been used, solid-state lasers or continuous-wave lasers are used as lightning. The same is true for the film treated with the source. The present invention provides a crystalline film comprising a first crystallization zone, the seventh

13767271376727

孓月曰修正替換頁I 100.10.4^8 一結晶區具有一第一薄膜厚度其在一結 以提供一第一結晶晶粒結構。該薄膜進 晶區5該弟二結晶區具有·一弟二薄膜厚 中被處理用以提供一第二結晶晶粒結構 膜厚度不相同且被加以選擇用以提供具 度與方向之結晶區域。典型地,厚度較 菁晶體生長方向上長度較長的結晶體。 具有較寬的晶粒。該薄膜適合使用在一 作為在一薄膜電晶體(TFT)中的主動通i 幹導體材質或一金屬。 在本發明的一態樣中,一種處理€ 從一脈衝化的雷射光束產生一第一雷射 光束圖案具有一強度其足以至少部分地 薄膜的一第一區域的至少一部分;(b)從 束產生一第二雷射光束圖案,該雷射光 其足以至少部分地溶化該將被結晶的薄 至少一部分,其中該薄膜的該第一區域 該薄膜的該第二區域包含一第二厚度且 是不相同的;(c)用第一組圖案化的小光 該薄膜的該第一區域用以形成一具有第 結晶區;及(d)用第二組圖案化的小光束 第二區域用以形成一具有第二晶粒結構 雷射光束圖案包括一 ”組”圖案化的小光 的小光束包括一或多個雷射小光束。 晶處理中被處理用 一步包含一第二結 度其在一結晶處理 。該第一及第二薄 有被選定的結晶程 大的區域可包含在 較厚的薄膜通常亦 積體電路裝置中或 [。該薄膜可以是一 !膜的方法包括(a) 光束圖案,該雷射 熔化一將被結晶的 —脈衝化的雷射光 束圖案具有一強度 膜的一第二區域的 包含一第一厚度及 該第一及第二厚度 束(b e a m 1 e t)來照射 一晶粒結構的第一 來照射該薄膜的該 的第二結晶區。該 束,及該組圖案化 1376727孓月曰 Revision Replacement Page I 100.10.4^8 A crystalline region has a first film thickness which is in a junction to provide a first crystalline grain structure. The film seeding zone 5 is processed in a film thickness region to provide a second crystal grain structure having a film thickness that is different and selected to provide a crystalline region of the degree and direction. Typically, the crystal is longer in thickness than the growth direction of the cyanine crystal. Has a wider grain. The film is suitably used as a material or a metal as an active conductive material in a thin film transistor (TFT). In one aspect of the invention, a process is to produce a first laser beam pattern from a pulsed laser beam having at least a portion of a first region of strength sufficient to at least partially film; (b) Generating a second laser beam pattern sufficient to at least partially dissolve at least a portion of the thin to be crystallized, wherein the first region of the film comprises a second thickness and Not identical; (c) using the first set of patterned small light, the first region of the film to form a first crystalline region; and (d) using the second set of patterned small beam second regions The small beam used to form a laser beam pattern having a second grain structure comprising a "set" of patterned small beams includes one or more laser beamlets. The crystal treatment is processed in a step comprising a second resolution which is treated in a crystallization process. The first and second thin regions having a selected crystallizing range may be included in a thicker film or an integrated circuit device. The film may be a film method comprising: (a) a beam pattern that melts a crystallized pulsed laser beam pattern having a second region of a strength film comprising a first thickness and First and second thickness beams (beams) illuminate the first portion of a grain structure to illuminate the second crystalline region of the film. The bundle, and the group of patterns 1376727

在本發明的一或多個實施例中,該方法進一步 在步驟(c)之後,將該第一雷射光束圖案重新定位在 上用以照亮(illuminate)該薄膜的第一區域的一 分,及如在步驟(c)般地照射該薄膜的該第一區域, 定位及照射步鄉發生至少一次;及在步驟(d)之後, 二雷射光束圖案重新定位在該薄膜上用以照亮該薄 二區域的一第二部分’及如在步驟(d)般地照射該薄 第二區域,該重新定位及照射步驟發生至少一次。 在本發明的一或多個實施例中,照射條件是從 .序側向固化(SLS),激分子雷射退火(ELA)及均勻晶 結晶(U G S )的照射條件中被選取的。複數個雷射光 被用來產生複數個雷射光束圖案。該等雷射光束源 來照射該薄膜的同一或不同的區域。 包含’ 該薄嫉 第二部 該重#ί 將該第 膜的第 膜的該 適合猶 粒結構 束源可 可被用In one or more embodiments of the invention, the method further repositions the first laser beam pattern on the first region for illuminating the first region of the film after step (c) And illuminating the first region of the film as in step (c), positioning and illuminating at least once; and after step (d), re-positioning the two laser beam patterns on the film for The second portion of the thin second region is illuminated and the thin second region is illuminated as in step (d), the repositioning and illumination steps occurring at least once. In one or more embodiments of the invention, the illumination conditions are selected from the conditions of sequential lateral solidification (SLS), laser exponential annealing (ELA), and uniform crystal crystallization (U G S ). A plurality of laser beams are used to generate a plurality of laser beam patterns. The laser beam sources illuminate the same or different regions of the film. Including the thin portion, the second portion, the weight #ί, the first membrane of the first membrane, the suitable hemispherical structure, the beam source can be used

【實施方式】 一使用雷射誘發的結晶生長技術來結晶化的薄 質部分地與該被處理的薄膜的厚度有關。此觀察被 具有不同能量束特性的雷射光束以一具能量及時間 方式將薄膜的不同區域結晶化並提供該被製造的元 的薄膜效能特性。雷射誘發的結晶典塑地是使用可 膜吸收的能量波長的雷射來照射。該了射源可以是 統的雷射源,其包括但不侷限於,激分子雷射,連 射及固態雷射。該照射光束脈衝亦可被其它能夠產 熔化薄膜之短能量脈衝的能量源所產生。此等習知 膜的品 效率的 件所需 被該薄 任何傳 續波雷 生適合 的能量[Embodiment] A thin film crystallized using a laser induced crystal growth technique is partially related to the thickness of the film to be processed. This observation is performed by laser beams having different energy beam characteristics to crystallize different regions of the film in an energy and time manner and to provide film performance characteristics of the fabricated element. Laser-induced crystals are illuminated by a laser using a wavelength of energy absorbed by the film. The source may be a laser source including, but not limited to, a laser, a laser, a solid laser, and a solid laser. The illumination beam pulse can also be generated by other sources of energy capable of producing short energy pulses of the molten film. These conventional membranes are required for the efficiency of the film to be suitable for any of the thinning waves.

9 1376727 源可以是一脈衝化的固態雷射’一被劈開來的連續波雷 射’ 一脈衝化電子束及一脈衝化的離子束等等。9 1376727 The source may be a pulsed solid-state laser 'a continuous wave of light that has been split', a pulsed electron beam, a pulsed ion beam, and so on.

雖然被類似地處理,但不同厚度的薄膜會具有不同的 薄膜特性。厚的薄膜表現出的電子移動性通常會比被類似 地處理的薄膜要來得南。在本文中所用之’,厚”及,,薄,,等用 月是相對性的’因此相對上比一第二比較性薄膜厚的任何 薄膜都將會表現出改善的薄膜特性。一薄膜可位在一基材 上1可在它們之間具有一或多層中間層。該薄膜可具有一 介於100埃(A)至10000埃之間的厚度,只要薄膜的至少某 些區域可被部分地或完全地溶化穿透其只個厚度即可。雖 然本發明適合可接受雷射誘發結晶之所有厚度的薄膜,但” 厚的”薄膜典型地其範圍可在約500埃(50nm)至約1 0000 埃(1微米)之間,更典型地是從約500埃(50 nm)至約5000 埃(500nm);且”薄的”薄膜典型地其範圍可在约1〇〇埃 (50nm)至約2000埃(200 nm)之間,更典型地是從約200-500 埃(20-50nm)之間。Although treated similarly, films of different thicknesses will have different film properties. Thick films exhibit electron mobility that is generally greater than that of similarly processed films. As used herein, 'thickness' and, thin, and the like are relative' so that any film that is relatively thicker than a second comparative film will exhibit improved film properties. Positioned on a substrate 1 may have one or more intermediate layers between them. The film may have a thickness of between 100 angstroms (A) and 10,000 angstroms, as long as at least some regions of the film may be partially or It is sufficient to completely melt through only one of its thicknesses. While the present invention is suitable for films of all thicknesses that can accept laser induced crystallization, "thick" films typically range from about 500 angstroms (50 nm) to about 1 0000. Between angstroms (1 micron), more typically from about 500 angstroms (50 nm) to about 5000 angstroms (500 nm); and "thin" films typically range from about 1 angstrom (50 nm) to about Between 2000 angstroms (200 nm), more typically between about 200-500 angstroms (20-50 nm).

在一或多個實施例中,該薄膜可以是一金屬或一半導 體薄膜。舉例性的金屬包括銘,銅,錄,欽,金及4目。舉 例性的半導體薄膜包括傳統的半導體材質,如矽,鍺,矽-鍺。使用其它的元素或半導體材料來作為該半導體薄膜亦 是可以的。一位在該半導體薄膜底下的中間層被用來作為 一熱絕緣層以保獲該基材不被加熱或作為一阻障層以防止 雜質擴散到該薄膜中,該中間層可以是由氧化矽’氮化矽 及/或氧化物’氮化物或許多其它物質的混合物所製成的。 10 1376727 雖然厚的薄膜顯示出較高的電子移動性,但該薄膜的 處理通常是較貴的且耗時間。例如,較高的能量密度可能 被需要,用以完全地熔穿該薄膜的厚度。因為較高的能量 密度典型地是將雷射光束集中成一較小的光束形狀(截面 積)來達成,所以一次只能處理較小的薄膜表面區域,使得 樣本產出率會被降低。In one or more embodiments, the film can be a metal or a half conductor film. Exemplary metals include Ming, Tong, Lu, Qin, Jin and 4 mesh. Exemplary semiconductor films include conventional semiconductor materials such as germanium, germanium, and germanium. It is also possible to use other elements or semiconductor materials as the semiconductor film. An intermediate layer under the semiconductor film is used as a thermal insulating layer to ensure that the substrate is not heated or acts as a barrier layer to prevent impurities from diffusing into the film. The intermediate layer may be made of yttrium oxide. Made of a mixture of 'tantalum nitride and/or oxide' nitride or many other substances. 10 1376727 Although thick films exhibit high electron mobility, the handling of such films is generally more expensive and time consuming. For example, a higher energy density may be required to completely penetrate the thickness of the film. Since higher energy densities are typically achieved by concentrating the laser beams into a smaller beam shape (cross-sectional area), only a smaller surface area of the film can be processed at a time, resulting in a lower sample yield.

因此,根據本發明的一或多個實施例,一具有不同高 度(薄膜厚度)之將被結晶的半導體薄膜被提供。在該薄膜 上需要有較高的電子移動性來讓元件功能最佳化的區域 中’該半導體薄膜層是”厚的”。在該薄膜上較低的電子移 動性對於元件的效能而言即為適當的區域中,一,’薄的”膜 層會被沉積。因此,厚的薄膜只位在該基材上要求高速或 高電子移動性的區域中,且該等厚的薄膜區域係使用一較 慢的,能量強度更大的結晶處理來加以處理。其餘的表面 (其典型地為大部分的表面)為一薄的膜層,其係使用一低 成本,低能量的結晶處理來加以快速地處理。Therefore, according to one or more embodiments of the present invention, a semiconductor film to be crystallized having different heights (film thickness) is provided. The semiconductor film layer is "thick" in the region where high electron mobility is required on the film to optimize the function of the device. The lower electron mobility on the film is in the proper region for the performance of the component, and a 'thin' film layer is deposited. Therefore, a thick film is only required to be on the substrate at a high speed or In areas of high electron mobility, the thick film regions are treated with a slower, more intense crystallization process. The remaining surfaces (typically the majority of the surface) are thin. The film layer is processed quickly using a low cost, low energy crystallization process.

第1圖為第1圖為一薄膜物件1〇〇的剖面圖,該薄膜 物件具有複數個依據本發明的一或多個實施的薄膜厚度區 域。一薄膜110被沉積到—基材120上。該薄膜11〇具有 不同薄膜厚度的區域。該薄膜的區域125具有_ u的薄膜 厚度,其大於區域130的厚度t2。舉例而言,u是在 5〇-2 0〇nm的範圍内,而t2則是在20_50nm的範圍内。此 外,區域1 2 5及1 3 0的多晶型晶粒結構是不相同的。該晶 粒結構可以是多晶型的或具有大的單一結晶子領域 11 1376727BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view of a film article 1 具有 having a plurality of film thickness regions in accordance with one or more embodiments of the present invention. A film 110 is deposited onto the substrate 120. The film 11 has regions of different film thicknesses. The region 125 of the film has a film thickness of _ u which is greater than the thickness t2 of the region 130. For example, u is in the range of 5〇-2 0〇nm, and t2 is in the range of 20_50nm. Further, the polymorphic grain structure of the regions 1 2 5 and 1 30 is different. The crystal structure may be polymorphic or have a large single crystal sub-domain 11 1376727

(subdomain)。區域125比區域130有較少的結晶體邊界或(subdomain). Region 125 has fewer crystal boundaries than region 130 or

單位面積内有較少的缺陷,且區域125具有較高的電子移 動性。雖然該等區域的實際的電子移動性會隨著该薄膜的 组成物及所使用之側向結晶技術而改變,但厚的區域1 2 5 典型地具有一電子移動性其範圍係大於cm2/V-s或約 300_4〇〇cm2/V-s且區域13〇啟型地具有一範園係小於 3 00cm2/V-s的電子移動性。在本發明的一或多個實施例 中’區域125為一高電子移動元件,如一 TFT集成區,的 主動通道區,及區域13〇為一低電子移動性元件’如一像 素控制元件,的主動通道。在一或多個實施例中’該等結 晶區域的單一結晶子領域大到足以容納一電子元件,如 TFT ’的主動通道。There are fewer defects per unit area and the region 125 has a higher electron mobility. While the actual electron mobility of these regions will vary with the composition of the film and the lateral crystallization technique used, the thick region 1 25 typically has an electron mobility that is greater than cm2/Vs. Or about 300_4〇〇cm2/Vs and the region 13 has an electron mobility of less than 300 cm2/Vs. In one or more embodiments of the present invention, the 'region 125 is a high electronic moving component, such as a TFT integrated region, the active channel region, and the region 13 is a low electron mobility component such as a pixel control component. aisle. In one or more embodiments, the single crystalline subfield of the crystalline regions is large enough to accommodate an electronic component, such as the active channel of the TFT'.

改善的結晶體特性可被觀察到,不論所用的特定結晶 處理為何。該等薄膜可被側向地或橫向地結晶,或薄膜可 使用自發性成核(spontaneous nucleation)來結晶化。本文 中所用之”侧向結晶體生長,,或”側向結晶’,等用詞係指一種 生長技術,其中一薄膜的區域被熔化至薄膜/基材界面且結 晶是發生在側向地移動橫跨整個基材表面的結晶前線 (crystallization front)上。橫向結晶體生長”或”橫向結晶” 等用詞係指一種生長技術,其中一薄膜的區域被部分熔 化’如未熔化到整個厚度,且結晶是發生在跨越該薄膜的 厚度的結晶前線(crystallization front)上,即,在橫越上述 的側向結晶方向的方向上。自發性成核為結晶體的生長係 統計上地分散在該被熔化的區域上且每一個晶核都生長直 12 1376727Improved crystal properties can be observed regardless of the particular crystallization treatment used. The films may be crystallized laterally or laterally, or the film may be crystallized using spontaneous nucleation. As used herein, "lateral crystal growth," or "lateral crystallization", and the like, refers to a growth technique in which a region of a film is melted to the film/substrate interface and crystallization occurs laterally. Across the crystallization front of the entire substrate surface. The term "transverse crystal growth" or "transverse crystal" refers to a growth technique in which a region of a film is partially melted 'if not melted to the entire thickness, and crystallization is a crystal front that occurs across the thickness of the film (crystallization front) Above, that is, in the direction traversing the above-mentioned lateral crystallographic direction. The spontaneous nucleation is a crystal growth system which is dispersed on the melted region and each crystal nucleus grows straight 12 1376727

到其與其它生長中的結晶體相遇為止。舉例性的結晶技術 包括激分子雷射退火(ELA),循序側向固化(SLS),及均勻 晶粒結褚(UGS)結晶。Until it meets other growing crystals. Exemplary crystallization techniques include laser laser annealing (ELA), sequential lateral solidification (SLS), and uniform grain crusting (UGS) crystallization.

參照第2 A圖,該EL A處理使用一長且窄的光束150 來照射該薄膜。在一 ELA中,一直線形且均質的激分子雷 射光束被產生且掃描整個薄膜表面。例如,該ELA光束的 中央部分的寬度160可達1公分(典型地約0.4mm)且長度 170可達約70公分(典型地約400mm),使得該光束可在單 一掃描中照射到整個半導體薄膜180。該激分子雷射光可 被非常有效率地被吸收到一超薄的非晶型矽表面層中且被 會加熱到底下的基材。在雷射脈衝持續期間(約 20-50ns) 及強度(350-4 OOmJ/cm2)内,該非晶型矽層被快速地加熱及 被熔化;然而,該能量劑量被控制使得該薄膜不會被完全 熔化至該基材。當該熔化物冷卻時,其會結晶成為一多晶 型結構。直線光束曝光為一 90%至95%重疊率之多次射擊 技術。沙薄膜的特性與被施加的雷射光的劑量穩定性及均 勻性有關。直線式光束曝光典型地會產生具有〖〇〇至 15 0cm2/V-s的電子移動性。 參照第2 B圖,其顯示可被用於循序側向固化及/或均 勻晶粒結構結晶之設備200。設備200具有一雷射源220。 雷射源220可包括一雷射(未示出)以及光學鏡片,包括鏡 子及透鏡’其形塑出一雷射光束240(以虛線示出)並將其 導引朝向一基材260,基材260是被一桌台270所支樓。 該雷射光束240通過一被罩幕固持件290所固持的一罩幕 13 1376727 年月日修AMf1fl〇 10,ί-θ- 280。被該雷射源220所產生的雷射光束240提供一範圍在 10 mJ/cm2至1 mJ/cm2的光束強度,範圍在2〇至3〇〇ns的 脈衝持續時間,及範圍在10Hz至300Hz的脈衝反複率。Referring to Figure 2A, the EL A process uses a long and narrow beam of light 150 to illuminate the film. In an ELA, a linear and homogeneous excited molecular laser beam is generated and scanned across the surface of the film. For example, the central portion of the ELA beam has a width 160 of up to 1 cm (typically about 0.4 mm) and a length 170 of up to about 70 cm (typically about 400 mm) so that the beam can illuminate the entire semiconductor film in a single scan. 180. The laser light of the excimer can be absorbed very efficiently into an ultra-thin amorphous crucible surface layer and heated to the underlying substrate. The amorphous germanium layer is rapidly heated and melted during the duration of the laser pulse (about 20-50 ns) and intensity (350-4 00 mJ/cm 2 ); however, the energy dose is controlled so that the film is not Completely melted to the substrate. As the melt cools, it crystallizes into a polycrystalline structure. Linear beam exposure is a multiple shot technique with a 90% to 95% overlap rate. The properties of the sand film are related to the dose stability and uniformity of the applied laser light. Linear beam exposure typically produces electron mobility with 〇〇 to 150 cm2/V-s. Referring to Figure 2B, there is shown an apparatus 200 that can be used for sequential lateral solidification and/or uniform grain structure crystallization. Device 200 has a laser source 220. The laser source 220 can include a laser (not shown) and an optical lens, including a mirror and a lens that shapes a laser beam 240 (shown in phantom) and directs it toward a substrate 260. The material 260 is a building supported by a table 270. The laser beam 240 is passed through a mask 13 held by the mask holder 290. The AMf1fl〇 10, ί-θ-280 is repaired. The laser beam 240 produced by the laser source 220 provides a beam intensity ranging from 10 mJ/cm 2 to 1 mJ/cm 2 , a pulse duration ranging from 2 〇 to 3 〇〇 ns, and a range from 10 Hz to 300 Hz. Pulse repetition rate.

目前市面上可獲得的雷射可以有上述的輸出,如可從設在 美國佛羅里達州Ft. Lauderdale市的Lambda Physik公司所 生產的Lambda Steel 1 000。在通過該罩幕28〇之後,該雷 射光束240穿過投影透鏡295(示意地示出)。投影透鏡295 將該雷射光束的尺寸縮小,並同時提高到達該基材260上 想定的位置265的光學能量強度.在影像大小上而言,反 放大率(demagnification)典型地是在是介於縮小3倍至7 倍的級數之間’最好是縮小5倍。對於縮小5倍而言,到 達到該表面的位置265上的罩幕280的影像比該罩幕的總 面積小25倍’其相對應地提高了該雷射光束240在位置 265處的能量密度。Lasers currently available on the market may have the above output, such as Lambda Steel 1 000, which is available from Lambda Physik, Inc., Ft. Lauderdale, Florida, USA. After passing through the mask 28, the laser beam 240 passes through a projection lens 295 (shown schematically). Projection lens 295 reduces the size of the laser beam and simultaneously increases the optical energy intensity at a desired location 265 on the substrate 260. In terms of image size, demagnification is typically between Reducing between 3 and 7 times the number of stages is best done by a factor of five. For a reduction of 5 times, the image of the mask 280 at the location 265 to the surface is 25 times smaller than the total area of the mask. This correspondingly increases the energy density of the laser beam 240 at location 265. .

桌台270為一精準的x_y桌台其可精確地將該基材 260定位在該雷射光束240底下。桌台27〇亦可以沿著z 抽移動,使它自己可上下移動以便於將該雷射光束240產 生在位置265上的該罩幕280的影像聚焦或反聚焦。在本 發明的該方法的其它實施例中,該桌台270最好亦可轉動。 在均勻晶粒結構(UGS)結晶中,一均勻結晶結構的薄 膜係藉由將一雷射光束遮罩(masking)使得該雷射光束之 不均勻的邊緣區不會照射到該薄膜而獲得的。該罩幕可相 當大’例如’其可以是1公分X 0 5公分;然而,它應比該 雷射光束的尺寸小,使得在該雷射光束中的邊緣不規則會 14 1376727 fmiTable 270 is a precision x_y table that accurately positions the substrate 260 underneath the laser beam 240. The table 27 can also be moved along z so that it can be moved up and down to facilitate focusing or defocusing the image of the mask 280 that produces the laser beam 240 at location 265. In other embodiments of the method of the invention, the table 270 is preferably also rotatable. In uniform grain structure (UGS) crystallization, a film of uniform crystal structure is obtained by masking a laser beam such that uneven edge regions of the laser beam are not irradiated to the film. . The mask may be relatively large, e.g., it may be 1 cm x 0 5 cm; however, it should be smaller than the size of the laser beam such that the edge irregularities in the laser beam will be 14 1376727 fmi

被擋住。該雷射光束提供足夠的能量來部分地或完全地該 薄陌之被照射的區域。USG結晶提供一半導體薄膜,其具 有一邊緣區及一不同大小之均勻微粒化複晶的中央區。在 該雷射照射能量超過完全熔解的門檻值的情形中,邊緣區 表現出大型的側向生長的結晶體。在該雷射照射能量低於 完全熔解的門檻值的情形中,晶粒大小會從被照射區域的 邊緣快速地減缩。詳細的細節可參考2002年八月19曰提 申,名稱為”Process and System for Laser Crystallization Processing of Semiconductor film Regions on a Substrate to Minimize Edge Area, and Structure of Such Semiconductor Film Regions”的美國專利申請案第 60/405,084號,該案内容藉由此參照被併於本文中。Blocked. The laser beam provides sufficient energy to partially or completely illuminate the area of the thin mob. The USG crystal provides a semiconductor film having an edge region and a central region of uniform micronized polycrystals of different sizes. In the case where the laser irradiation energy exceeds the threshold value of the complete melting, the edge region exhibits a large laterally grown crystal. In the case where the laser irradiation energy is lower than the threshold value of the complete melting, the grain size is rapidly reduced from the edge of the irradiated region. For a detailed description, refer to the US Patent Application No. "Process and System for Laser Crystallization Processing of Semiconductor film Regions on a Substrate to Minimize Edge Area, and Structure of Such Semiconductor Film Regions" 60/405,084, the contents of which is incorporated herein by reference.

循序側向固化是一特別有用的側向結晶技術,因為它 能夠進行晶粒邊界位置受控制的結晶並提供極端大尺寸的 結晶晶粒。循序側向固化透過介於由一激分子雷射所射擊 之循序的脈衝之間小規模的轉換來產生大型晶粒化的半導 體結構,如矽結構。本發明係特別參照循序侧向固化及珍 薄膜來加以說明;然而,應被解的是,本發明亦可很方便 地用其它側向結晶技術或其它物質來實施。 第3圖顯示一罩幕310其具有複數個狹缝320及穿插 其間的狹缝間距340。該罩幕可用一石英材質來製成且包 括一金屬或介電塗層,其係利用傳統的技術來蝕刻以形成 一具有任何形狀或尺寸的特徵的罩幕。該等罩幕特徵的長 度被選擇用以與將被製造在該基材表面上的元件的尺寸相 15Sequential lateral solidification is a particularly useful lateral crystallization technique because it enables controlled crystallization of grain boundary locations and provides extremely large crystalline grains. Sequential lateral solidification produces a large grained semiconductor structure, such as a tantalum structure, by small-scale conversion between successive pulses struck by a laser of a laser. The invention has been described with particular reference to sequential lateral curing and filming; however, it should be understood that the invention may be conveniently practiced with other lateral crystallization techniques or other materials. Figure 3 shows a mask 310 having a plurality of slits 320 and a slit spacing 340 interposed therebetween. The mask can be made of a quartz material and includes a metal or dielectric coating that is etched using conventional techniques to form a mask having features of any shape or size. The length of the mask features is selected to correspond to the dimensions of the components to be fabricated on the surface of the substrate.

1376727 頁 同。该等罩幕特徵的寬度360亦可改變。在某些實施分 ^ ^'被選定為小到足以·避免在該溶融區内的小晶 核同時又大到足以讓每一激分子脈衝的側向結晶生 大化。舉例而言,該罩幕特徵可具有一介於约25至 微米的長度及一介於約2至5微米的寬度。 一非晶型矽薄膜樣本被處理成為一單晶或多晶型 膜’其係藉由產生一預定能量密度之複數激分子雷 衝’受控制地調製該等激分子雷射脈衝的能量密度, 調製的雷射脈衝均質化’將經過均質化之調製過的雷 衝的一些部分加以遮罩成為圖案化的小光束,用該圖 的小光束來照射一非晶型矽薄膜樣本來將被該等小光 射到的部分熔化,及受控制地將該樣本相對於該圖案 小光束轉移藉以將該非晶型矽薄膜樣本處理成為一單 晶粒邊界受控制的多晶型矽薄膜,來實施的。 在循序例向固化處理的一或多個實施例中,可產 度長形的結晶體晶粒,其係被平行於該長的晶粒軸的 邊界分隔開。該方法係參照第4圖至第6圖來加以說 弟4圖顯示結晶之前的區域400。一被導引到矩 域460的雷射脈衝造成該發晶型矽熔化《結晶在區域 的固態邊界開始並持續向内朝向中心線4 8 0進展。該 體生長的距離(其亦被稱為側向生長長度)為非晶型矽 厚度,基材溫度’能量東特性,缓衝層材質,罩幕組 等的一個函數。5 〇nm厚的薄膜的一典型的側向生長長 為1.2微米。在每一脈衝之後,該基材(或罩幕)被移 J中, 粒成 長最 1000 矽薄 射脈 將被 射脈 案化 束照 化的 晶或 生極 晶粒 明。 形區 460 結晶 薄膜 態等 度約 位一 16 1376727 曰修正替換頁1376727 pages Same as. The width 360 of the mask features can also vary. In some implementations, ^^' was chosen to be small enough to avoid small crystal nuclei in the melting zone while being large enough to allow lateral crystallisation of each excimer pulse to be magnified. For example, the mask feature can have a length of between about 25 and microns and a width of between about 2 and 5 microns. An amorphous tantalum film sample is processed into a single crystal or polycrystalline film 'which is controlled to modulate the energy density of the laser pulses by generating a predetermined energy density of the complex molecular lightning impulses, Modulated laser pulse homogenization 'masks some portions of the homogenized modulated lightning impulse into a patterned small beam, and the small beam of the image is used to illuminate an amorphous tantalum film sample to be The partial melting of the small light, and the controlled transfer of the sample relative to the pattern beam by the processing of the amorphous germanium film sample into a single grain boundary controlled polycrystalline germanium film. . In one or more embodiments of the sequential curing process, elongated crystal grains can be produced which are separated by boundaries parallel to the long grain axis. This method is described with reference to Figs. 4 to 6 to show a region 400 before crystallization. A laser pulse directed into the field 460 causes the crystallized crucible to melt. "Crystal begins at the solid boundary of the region and continues inward toward the centerline 480. The distance the body grows (also referred to as the lateral growth length) is a function of the amorphous 矽 thickness, substrate temperature 'energy east' characteristics, buffer layer material, mask set, and the like. A typical lateral growth of a 5 〇 nm thick film is 1.2 microns long. After each pulse, the substrate (or mask) is moved, and the grain is grown to a maximum of 1000 矽 thin veins that will be crystallized by the crystallized or crystal grains. Shape 460 crystalline film state isocratic approximate position 1 16 1376727 曰Revision replacement page

不大於該侧向生長長度的距離。為了要改善所得到的結晶 體的品質,該養本被前進一段比該側向結晶生長長度小許 多的距離,如不大於該側向結晶生長長度的一半。一後續 的脈衝然後被導引至該新的區域。藉由將該等狹缝460的 影像移位一小段的距離,由前述步驟所產生的結晶體即作 為相鄰物質之後續結晶的種晶結晶體。藉由重復狹缝影像 的前進及射擊短脈衝的處理,該結晶體可在該等狹缝運動 的方向上取向附生地(epitaxially)生長。Not more than the distance of the lateral growth length. In order to improve the quality of the resulting crystal, the nutrient is advanced by a distance that is much less than the lateral crystal growth length, such as not more than half the length of the lateral crystal growth. A subsequent pulse is then directed to the new region. By shifting the image of the slits 460 by a small distance, the crystals produced by the above steps are used as seed crystals for subsequent crystallization of adjacent substances. By repeating the advancement of the slit image and the processing of the short shots, the crystals can be epitaxially grown in the direction of the slit motion.

第5圖顯示在數個脈衝之後的區域440»如圖所示地, 已被處理過的區域500已形成長形的結晶體,其生長在大 致上垂直於該狹縫的長度的方向上。大致上垂直係指大多 數由結晶體逄界5 2 0所形成的線可延伸而與以虛線所示的 中心線480相交。Figure 5 shows the area 440» after a number of pulses. As shown, the treated area 500 has formed an elongated crystal that grows in a direction generally perpendicular to the length of the slit. Substantially perpendicular means that most of the lines formed by the crystalline boundary 520 are extendable to intersect the centerline 480 indicated by the dashed line.

第6圖顯示在第5圖之後又有數個額外的脈衝的情 形。結晶體從一多晶型區持續生長在狹縫運動的方向上。 該等狹缝最好是以大致相同的距離持續前進。每一狹缝前 進直到它到達一由前一狹縫形成的多晶型區的邊緣為止。 該循序側向固化處理需要許多微轉移且會增加處理時 間,但這些微轉移可產生具有極長形的低缺陷晶粒的薄 膜。在一或多個實施例中,此處理被用來處理該半導體薄 膜的厚區域。使用此處理獲得之多晶型晶粒典型地是高電 子移動性,如3 00-400cm2/V-s。這些極長形的晶粒非常適 合在一 AMLCD裝置上的積體電路區。 根據上述之循序側向固化處理的方法,整個薄膜都使 17 1376727Figure 6 shows the situation with several additional pulses after Figure 5. The crystals continue to grow from a polymorphic zone in the direction of the slit motion. Preferably, the slits continue to advance at substantially the same distance. Each slit advances until it reaches the edge of a polymorphic region formed by the previous slit. This sequential lateral solidification process requires a lot of micro-transfer and increases the processing time, but these micro-transfers can produce a film having extremely long, low-defective grains. In one or more embodiments, this process is used to process thick regions of the semiconductor film. The polycrystalline grains obtained using this treatment are typically high electron mobility, such as 300-400 cm2/V-s. These very elongated die are well suited to the integrated circuit area on an AMLCD device. According to the above-mentioned sequential lateral curing treatment method, the entire film is made 17 1376727

曰替換頁I曰Replace page I

用複數脈衝來加以結晶。此方法在下文中被稱為一 n次射 擊(n-shot)處理,η代表完成結晶所需之雷射脈衝(“射擊,’) 的次數。η 次射擊(n-shot)的進一步細節可在名稱 為 ’’Crystallization Processing of Semiconductor Film Regions on a Substrate and Devices Made Therewith” 的美 國專利第 6,322,625 號及名稱為 System for Providing a Continuous Motion Sequential Lateral Solidification” 的美 國專利第6,368,945號中找到,這兩個專利案的内容藉由 此參照被併於本文中》Crystallization is carried out using a plurality of pulses. This method is hereinafter referred to as an n-shot process, and η represents the number of laser pulses ("shoots,") required to complete the crystallization. Further details of the n-shot can be The two patents are found in U.S. Patent No. 6,322,625, entitled "Crystallization Processing of Semiconductor Film Regions on a Substrate and Devices Made Therewith", and U.S. Patent No. 6,368,945, entitled "System for Providing a Continuous Motion Sequential Lateral Solidification". The content of the case is hereby incorporated by reference.

在一或多個實施例中,該半導體薄膜的區域係使用一 可循序的側向固化處理來加以處理,該可循序的側向固化 處理所產生的結晶體晶粒比前述之’’η次射擊”方法所產生 結晶體晶粒短。因此該等薄膜區域的電子移動性較低;然 而該薄膜被快速地處理且以一最少的次數掃過該薄膜基 材,藉以讓它成為一成本效益的處理技術。這些被結晶化 的區域非常適合半導體薄膜被用來製造一AMLCD裝置上 的像素控制元件的區域。 該處理使用一罩幕,如第3圖中所示的罩幕,其中罩 幕線320具有約4微米的寬度,且每一罩幕線被約2微米 的間距3 4 0隔開來。該樣本被一第一雷射脈衝照射。如第 7A圖所示的,該雷射脈衝將該樣本上的區域71〇,711, 7 12熔化,每一被熔化的區域約4微米寬7 2 0且被約2微 米的間距7 2 1隔開來。此第一雷射脈衝誘發在被照射區域 710,711,712中的結晶體生長,其是從熔融邊界730開 18 1376727 始並前進至熔融區中,使得多晶型矽74Ο形成在該等被照 射的區域内,如第7B圖所示。In one or more embodiments, the region of the semiconductor film is treated using a sequential side-cure process that produces crystal grains that are more than the aforementioned 'n shots. The crystal grains produced by the method are short. Therefore, the electron mobility of the film regions is low; however, the film is quickly processed and scanned through the film substrate in a minimum number of times, thereby making it a cost-effective process. Techniques. These crystallized regions are well suited for areas where a semiconductor film is used to fabricate pixel control elements on an AMLCD device. This process uses a mask, such as the mask shown in Figure 3, where the mask line 320 Having a width of about 4 microns, and each mask line is separated by a spacing of 3 4 0. The sample is illuminated by a first laser pulse. As shown in Figure 7A, the laser pulse will The areas 71 〇, 711, 7 12 on the sample melt, each of the melted areas being about 4 microns wide by 720 and separated by a spacing of 7 2 1 of about 2 microns. This first laser pulse is induced Illuminated area 710, 711, 712 The crystal growth begins with the melting boundary 730 opening 18 1376727 and proceeds into the melting zone such that polymorphs 74 are formed in the illuminated regions, as shown in Figure 7B.

該樣本然後被轉移約該寬度360與間距340的總和的 —半(或更多)的距離,且該薄膜被一第二激分子雷射所照 射。該第二照射熔化其餘的非晶型區域742其位在最近結 晶的區域740與最出結晶體種晶區域745之間。如第7C 圖所示,形成該中央區段745的結晶體結構在被熔化的區 域742固化時向外生長,使得一均勻的長形晶粒多晶型矽 區域被形成。 根據上述的循序側向固化方法,整個罩幕區域只使用 兩個雷射脈衝及被結晶化。此方法在本文中被稱為,,兩次射 擊”處理,其表示出只需要兩個雷射脈衝(“射擊’,)即可完成 結晶化的事實。兩次射擊處理的進一步細節可在名稱The sample is then transferred about a half (or more) distance from the sum of the width 360 and the spacing 340, and the film is illuminated by a second laser strike. The second illumination melts the remaining amorphous region 742 between the most recently crystallized region 740 and the most crystalline crystal seed region 745. As shown in Fig. 7C, the crystal structure forming the central portion 745 grows outward when the melted region 742 is solidified, so that a uniform elongated crystal polymorph type 矽 region is formed. According to the sequential lateral solidification method described above, only two laser pulses are used and crystallized. This method is referred to herein as a two shot "processing" which shows the fact that only two laser pulses ("shots") are required to complete the crystallization. Further details of the two shots can be found in the name

為” Methods for Producing Uniform Large-Grained and Grain Boundary Location Manipulated Polycrystalline Thin Film Semiconductors Using Sequential Lateral 3〇1丨£^卜&1丨011”之公開的國際申請案第冒〇〇1/18854號中找 到,該案的内容藉由此參照被併於本文中。 根據本發明的一或多個實施例,一種用來產生一具有 高電子移動性的厚的薄膜區及低電子移動性的薄的薄膜區 之物件的方法被提供。一舉例性的處理在第8圖的流程圖 8 00中被提出。 在步驟8 10中,一具有至少兩種厚度的薄膜被沉積在 一基材上,其中每一基薄膜厚度都是要提供具有不同薄膜 19 1376727The International Application for the Method for Producing Uniform Large-Grained and Grain Boundary Location Manipulated Polycrystalline Thin Film Semiconductors Using Sequential Lateral 3〇1丨£^卜&1丨011 is found in No. 1/18854 The content of the case is hereby incorporated by reference. In accordance with one or more embodiments of the present invention, a method for producing a thick film region having high electron mobility and a thin film region of low electron mobility is provided. An exemplary process is presented in flowchart 800 of Figure 8. In step 810, a film having at least two thicknesses is deposited on a substrate, wherein each base film thickness is to be provided with a different film 19 1376727

特性的結晶區。在一或多個實施例中,感興趣的薄膜特性 是移動性;然而其它的薄膜特性,如結晶體方向,結晶體 的大小,及晶粒缺陷等,亦可被考量。當然,該薄膜可具 有多於兩種的薄膜厚度區域用以提供多於兩種的薄膜特Characteristic crystalline region. In one or more embodiments, the film properties of interest are mobility; however, other film properties, such as crystal orientation, crystal size, and grain defects, may also be considered. Of course, the film can have more than two film thickness regions to provide more than two film properties.

同的薄薄膜厚度區域β例如’像素控制元件是位在薄膜 度較薄的區域,而集成元件則位薄膜厚度較厚的區域。 厚度的薄膜的製造在此技藝中是習知的。例如 -*il? Xin XJv 丄 *.k- . > 不同The same thin film thickness region β such as 'the pixel control element is located in a thin film region, and the integrated component is a region where the film thickness is thick. The manufacture of thin film thicknesses is well known in the art. For example -*il? Xin XJv 丄 *.k- . > different

π門汗/又冲狀叫发遺在此技蟄中是習知的。例如 一薄膜可被均勻地沉積在整個基材上,之後該薄膜的各 段被去除掉,如被蝕刻或研磨掉’用以形成較厚及較薄 薄膜厚度區域。在某些舉例性的實施例中,該薄膜被回 刻以露出底下的基材,&一半導體的第二層被沉積在該 露的基材及既存的半導體層上用以形成—不同厚度的層 或者,該薄膜被姓刻用以去除掉一些,但非全部,在薄 H區上的半導體材料。在其它舉例性的實施例中,微 π浐t:被用來將薄膜表面形成圖案’其後接著選擇性 '二除掉在該被圖案化的基材的外露 在步驟820中,兩如上 ^ 度,光東均勻性^田射光束狀況(光束形狀,光束能量 導體薄膜的厚 )及罩幕設計被加以選擇用以處理該 鍵且厚的或速μ 照射的級數對於本發明而言並非 處理。如將在下薄膜區域都可被先處理,4它們可被同 那册在下文中 被用來產生照射到心-說明的’ 一或多個雷射光束源 射光束源產生的表面上之雷射光束圖帛。一由 田咐光束可被分割或轉向用以產生間接It is customary to use π门汗/冲冲叫发发 in this technique. For example, a film can be deposited uniformly throughout the substrate, after which the segments of the film are removed, such as etched or ground away, to form thicker and thinner film thickness regions. In certain exemplary embodiments, the film is etched back to expose the underlying substrate, & a second layer of semiconductor is deposited over the exposed substrate and the existing semiconductor layer to form - different thicknesses Or, the film is engraved to remove some, but not all, of the semiconductor material on the thin H region. In other exemplary embodiments, micro π浐t: is used to pattern the surface of the film 'subsequently' selectively removed by the removal of the patterned substrate in step 820, both as above ^ Degree, optical east uniformity ^ field beam condition (beam shape, beam energy conductor film thickness) and mask design are selected to process the key and the thickness of the thick or velocity μ illumination is not for the present invention deal with. If the lower film area is to be treated first, 4 they can be used in the same book below to generate a laser beam that is illuminated onto the surface generated by the one or more laser beam source beam sources. Figure 帛. A field beam can be split or turned to produce indirect

20 鏡片H.每一間接雷射光束都可使用罩幕及/或雷射光學 束。’塑’用以提供具有所想要的特性之圖案化的小光 在步驟8 3 0中,哕,,戶认,,丄 獲得— ^厚的半導體薄膜區域被照射用以 結晶區。根攄太益》nB /j* b 域在一 琢本發明的一或多個實施例,該區 晶區:循序側向固化、此,,射擊處理中被照射。該第一結 到謗厚括:冑厚的”薄膜區域,使得該薄膜被結晶化達 的薄膜的缚膜區域的邊緣。邊緣溶化的結果為在厚的及薄 張力被〈間的界面會有物質流;然而,快速再結晶及表面 罩射到認為可限制物質流。或者整個厚的薄膜區域可被被 區域之間!^成非叩型的邊界介於該”厚的,,及,,薄的,,薄膜 在步驟8 3 5,原沾=¾ „址& 果没/ 厚的薄膜處理是否已完成會被決定。如 -新0“該處理會回到步驟830以處理該厚的薄膜區域的 成,日: 果厚的薄膜區域被結晶的話’則該步驟完 且處理前進至下—個步驟。 在步驟 840 ,兩At * 田射光束狀況(光束形狀,光束能量密 :束均勻性等等)及罩幕設計被加以選擇用以處理該半 薄的區域。照射的級數對於本發明而言並非關 此步驟可在該厚的薄膜被處理之 施。如在厚的薄膜m & 使成期間被實 源可…實施的―樣,一或多個雷射光束 你f被用來·遂斗8S JU· X丨,. -射到孩薄膜表面上之雷射光束圖案。一 束源產生的雷射光束可被分 接的雷j用以屋生間 ,每一間接雷射光束都可使用罩幕及/或雷射 21 137672720 Lens H. A mask and/or laser beam can be used for each indirect laser beam. 'Plastic' is used to provide patterned small light having the desired characteristics. In step 830, 哕, 户,, 丄, ^, a thick semiconductor film region is irradiated for the crystallization region. The root zone "nB /j* b domain" In one or more embodiments of the invention, the zone of crystallography: sequential lateral solidification, and, in the firing process, is illuminated. The first junction to the crucible includes: a thick "film region" such that the film is crystallized to the edge of the film-bonding region of the film. The result of the edge melting is that the interface between the thick and the thin tension is Material flow; however, rapid recrystallization and surface hooding are thought to limit the flow of material. Or the entire thick film area can be separated by the area between the areas of the "thickness", and, Thin, film in step 8 3 5, the original dip = 3⁄4 „ address & no / thick film processing is completed will be determined. If - new 0 "this process will return to step 830 to handle the thick Formation of the film area, day: If the thick film area is crystallized, then the step is completed and the process proceeds to the next step. At step 840, two At* field beam conditions (beam shape, beam energy density: beam uniformity, etc.) and mask design are selected to process the semi-thin regions. The number of stages of illumination is not a critical step for the present invention to be treated in the thick film. For example, in the thick film m & during the process of being implemented by the real source, one or more laser beams are used for you. · 8S JU · X丨,. - Shoot on the surface of the child's film Laser beam pattern. A laser beam from a source can be used to separate the lightning beam for use in the housing, and each indirect laser beam can be used with a mask and/or laser. 21 1376727

光學鏡片來形塑,用以提供具有所想要的特性之圖 小光束》 在步驟850中,該’,薄的,,半導體薄膜區域被照 獲得一第二結晶區。根據本發明的一或多個實施例 域在一循序側向固化兩此射擊處理中被照射。ELA 結晶亦可被用來提供一均勻晶粒結構的結晶區域。 在步驟855,厚的薄膜處理是否已完成會被決 果没有,該處理會回到步驟85〇以處理該厚的薄膜 一新的部分。如果已艽成的話,則該處理前進至步写 該方法的變化可在本發明的範圍内被完成。例 在該薄膜的第一及第二結晶方法可以是相同或是 的。在本發明的一或多個實施例中,要求較高的電 性的厚薄膜區域可使用能夠產生長形的,晶粒邊界 控制的晶粒結構的技術,如S L S,來處理,薄的薄 可使用一較便宜的技術,如UGS結晶,來處理〃在 的一或多個實施例中,該,,厚的”及/或”薄的,,區域的 被處理。其餘未被處理的區域則維持在被沉積時的 態,如非晶型或小晶粒化的多晶型狀態。該,,厚的, 薄的”區域之已處理及未處理的區域的大小及位置 以選擇用以對應到元件將位在該薄膜上的位置。 舉例而言,即使用使用相同的結晶技術,用於 第二照射的罩幕可以是相同的亦可以是不同的》當 相同的時’則照射條件典型地可改變,例如上文所述 次”步驟及兩步驟處理可被用在兩個薄膜厚度區域j; 案化的 射用以 ,該區 及UGS 定。如 區域的 % 860 ° 如,用 不相同 子移動 位置受 膜區域 本發明 一部分 結晶狀 ’及/或” 可被加 第一及 罩幕是 的,” η .。在某 22 1376727The optical lens is shaped to provide a pattern of desired characteristics. In the step 850, the thin, semiconductor film region is illuminated to obtain a second crystalline region. In accordance with one or more embodiments of the present invention, the fields are illuminated in a sequential lateral curing process. ELA crystallization can also be used to provide a crystalline region of uniform grain structure. At step 855, if the thick film processing has been completed, it will be rejected, and the process will return to step 85 to process a new portion of the thick film. If it has been completed, then the process proceeds to step by step. Variations of the method can be accomplished within the scope of the present invention. For example, the first and second crystallization methods of the film may be the same or. In one or more embodiments of the present invention, thick film regions requiring higher electrical properties can be processed using techniques capable of producing elongated, grain boundary controlled grain structures, such as SLS, which are thin and thin. A less expensive technique, such as UGS crystallization, can be used to treat one or more embodiments of the crucible, which, thick, and/or thin, are treated. The remaining untreated regions are maintained in the state of being deposited, such as amorphous or small grained polymorphic states. The size and position of the processed, untreated regions of the thick, thin "area" are selected to correspond to the position at which the component will be positioned on the film. For example, using the same crystallization technique, The masks used for the second illumination may be the same or different. When the same time, the illumination conditions are typically changeable. For example, the above-mentioned "second" step and two-step processing can be used for two films. Thickness area j; cased shot, the area and UGS. For example, % 860 ° of the area, for example, moving the position of the film area with a different sub-portion, a part of the crystal form 'and/or ' can be added first and the mask is, η . At some 22 1376727

些實施例中,第一次及第二次照射使用的是不同的罩幕。 例如,罩幕特徵的方向可改變,使得結晶體的生長是在該 薄膜的不同方向上前進。罩幕方向可藉由轉動該罩幕或其 上放置了該樣本的基材桌台或藉由使用不同的罩幕而被改 變。In some embodiments, the first and second illuminations use different masks. For example, the orientation of the mask features can be varied such that the growth of the crystals advances in different directions of the film. The mask direction can be changed by rotating the mask or the substrate table on which the sample is placed or by using a different mask.

在某些實施例中,雷射特徵,如雷射光束的形狀及能 量密度,可被改變使得該薄膜的不同區域被具有不同能量 束特性,如光束能量輪靡(密度),光束形狀,光束脈衝持 續時間等,的雷射光束(即,圖案化的小光束)照射》被輸 送至該薄膜的雷射光束的能量束特性可透過光學元件,如 透鏡,均勻器,衰減器,及反放大光學鏡片等以及一罩幕 的组態及方向,來加以控制及調製。被輸送的雷射光束的 能量束特性因而可為了將被照射的薄膜部分的特定處理要 求來進行調整。藉由依據將被照射的薄膜部分的特定處理 要求來調製雷射光束的能量束特性,雷射源的輸出能量可 被更有效率地應用在結晶製造處理上,而這將可導致薄膜 處梨間的縮短或降低處理所需的能量。因此,雷射光束可 被控制及調製,使得該薄膜上具有不同的處理要求的不同 區域可被具有不同能量束特性的雷射光束照射。例如,該 非晶型薄膜層的”薄的”部分可接受具有特定的能量束特性 的雷射光束照射,而該薄膜之”厚的”部分則可接受具有不 同能量束特性的雷射光束照射。 具有不同能量束特性的雷射光束可藉由利用具有單一 光學路徑或具有複數個光學路徑之系統來產生及輸送至該 23 1376727 非晶型的矽薄膜。在本文中使用之光學路徑一詞係指當一 雷射光束從一雷射光束源移動至一薄膜樣本時,該雷射光 束的軌道。因此,光學路徑延伸通過舉例性系統的照明及 投射兩個部分。每一光學路徑具有至少一光學元件其可操 控一沿著該光學路徑被導引之雷射光束的能量束特性。In some embodiments, laser features, such as the shape and energy density of the laser beam, can be varied such that different regions of the film are characterized by different energy beams, such as beam energy rim (density), beam shape, beam. The laser beam characteristics of the laser beam delivered to the film by the pulse duration, etc., can be transmitted through optical components such as lenses, homogenizers, attenuators, and inverse amplification. Optical lenses and the like, as well as the configuration and orientation of a mask, are controlled and modulated. The energy beam characteristics of the delivered laser beam can thus be adjusted for the particular processing requirements of the portion of the film being illuminated. By modulating the energy beam characteristics of the laser beam in accordance with the specific processing requirements of the portion of the film to be illuminated, the output energy of the laser source can be more efficiently applied to the crystallization manufacturing process, which can result in a pear at the film. Shorten or reduce the energy required for processing. Thus, the laser beam can be controlled and modulated such that different regions of the film having different processing requirements can be illuminated by laser beams having different energy beam characteristics. For example, the "thin" portion of the amorphous film layer can be illuminated by a laser beam having a particular energy beam characteristic, while the "thick" portion of the film can be exposed to a laser beam having a different energy beam characteristic. Laser beams having different energy beam characteristics can be generated and delivered to the 23 1376727 amorphous germanium film by utilizing a system having a single optical path or having multiple optical paths. The term optical path as used herein refers to the orbit of a laser beam as it is moved from a laser beam source to a film sample. Thus, the optical path extends through both the illumination and projection portions of the exemplary system. Each optical path has at least one optical element that is operable to control the energy beam characteristics of a laser beam that is directed along the optical path.

在具有單一光學路徑的系統中,一或多個光學元件及 罩幕(如果有的話)可在該光學路徑中被調整,插入或替 換,用以提供具有不同能量束特性的雷射光束。此外,該 基材相對於射入的雷射光束的方向亦可被調整,用以有效 率地產生具有不同能量束特性的雷射光束。例如,該系統 可包括一可透過一罩幕固持件來轉動之罩幕。該罩幕被保 持在一第一位置用以實施該矽薄膜的一第一部分的照射處 理,然後該罩幕被轉動到一第二位置,如轉動9 0度,用以 進行該矽薄膜的一第二部分的照射處理。該系統亦可包括 兩個被固持在一罩幕固持件上之具有不同罩幕形狀的罩 幕。為了要照射該矽薄膜的一第一部分,第一罩幕透過該 罩幕固持件而被對準該雷射光束光學路徑。為了要照射該 矽薄膜的一第二部分,第二罩幕透過該罩幕固持件,如該 罩幕固持件可以是一可轉動的碟形托架,而被對準該雷射 光束光學路徑。以此方式,具有不同能量束特性的雷射光 束可因而被產生及被輸送至在同一光學路徑上之非晶型矽 薄膜。其它的前技系統包括一可調整之反放大 (demagnification)的光學元件。為了要產生具有不同能量 束特性的雷射光束,該可調整之反放大的光學元件在照射 24 1376727 該非晶型矽薄膜的一個部分的期間被設定為一第一放大 率,然後在照射該非晶型矽薄膜的另一個部分的期間被設 定為一不同的放大率。In systems having a single optical path, one or more optical components and masks, if any, can be adjusted, inserted or replaced in the optical path to provide laser beams having different energy beam characteristics. In addition, the orientation of the substrate relative to the incident laser beam can also be adjusted to efficiently produce laser beams having different energy beam characteristics. For example, the system can include a mask that can be rotated through a mask holder. The mask is held in a first position for performing a first portion of the enamel film, and then the mask is rotated to a second position, such as 90 degrees, for performing a film of the ruthenium film The second part of the irradiation process. The system can also include two shrouds having different mask shapes that are held on a mask holder. In order to illuminate a first portion of the enamel film, the first mask is aligned with the laser beam optical path through the mask holder. In order to illuminate a second portion of the enamel film, the second mask passes through the mask holder, such as the hood holder can be a rotatable dish-shaped bracket that is aligned with the optical path of the laser beam . In this way, laser beams having different energy beam characteristics can thus be generated and delivered to the amorphous germanium film on the same optical path. Other front-end systems include an adjustable demagnification optical component. In order to generate a laser beam having different energy beam characteristics, the adjustable inversely amplified optical element is set to a first magnification during illumination of a portion of the amorphous germanium film of 24 1376727, and then irradiated the amorphous The period of the other portion of the ruthenium film is set to a different magnification.

沿著一單一光學路徑產生具有不同能量束特性的雷射 光束會造成結晶處理時間變長,因為輸送照射能量至該非 晶型矽薄膜會被中斷來進行能量束特性的調製。在此例子 中,一具有單一光學路徑的系統可能不會是有利的,因為 光學元件,罩幕組態或方向,或基材方向等等的改變以方 便該雷射光束的能量束特性的調整會巨幅地降低該被輸送 的雷射能量的工作循環(duty cycle)。在一或多個實施例中 及為了要產生具有不同能量束特性的雷射光束同時保有一 可接受的之照射工作循環,用來照射薄膜樣本的系統可包 括複數個光學路徑。如在第9圖中所示的,在某些實施例 中,該系統可包括兩個用來控制及調製雷射光東的光學路 徑,每一光學路徑都包括必要的光學元件,如光束均勻器, 反放大光學鏡片,鏡子,透鏡等,及(非必要地)一罩幕, 用以調製雷射光束的能量束特性並將雷射光束導引至該薄 膜的某些部分,使得結晶化可被促進。因此,該雙(或多) 光學路徑系統可被用來產生具有不同能量束特性的雷射光 束,這些脈衝被用來照射(即,熔化)及將該薄膜樣本的不 同區域結晶。因此,具有第一組能量束的第一雷射光束透 過一第一光學路徑被產生及輸送。該薄膜之一被選定的部 分使用一第一結晶化處理以該第一雷射光束來照射,用以 獲得一第一結晶區域。然後,該第二雷射光束脈充被重新 25 1376727 id?fJ皆換頁 . -— 導引到一第二光學路徑上用以產生具有第二组能量束的第 二雷射光束。該薄膜之一被選定的部分使用一第二結晶化 處理以該第二雷射光束來照射’用以獲得一第二結晶區 域。該等结晶區域可對應該薄膜之具有不同薄膜厚度的區 • 域。該等結晶區域可以是多晶型或具有大的單一結晶領域 (domain) 0Producing a laser beam having different energy beam characteristics along a single optical path causes the crystallization processing time to become longer because the irradiation of the irradiation energy to the amorphous wafer is interrupted to modulate the energy beam characteristics. In this example, a system with a single optical path may not be advantageous because of changes in optical components, mask configuration or orientation, or substrate orientation, etc. to facilitate adjustment of the energy beam characteristics of the laser beam. The duty cycle of the delivered laser energy is greatly reduced. In one or more embodiments and in order to produce a laser beam having different energy beam characteristics while maintaining an acceptable illumination duty cycle, the system for illuminating the film sample can include a plurality of optical paths. As shown in FIG. 9, in some embodiments, the system can include two optical paths for controlling and modulating the laser light, each optical path including the necessary optical components, such as a beam homogenizer. , an anti-amplifying optical lens, mirror, lens, etc., and (optionally) a mask for modulating the energy beam characteristics of the laser beam and directing the laser beam to portions of the film to enable crystallization Was promoted. Thus, the dual (or multiple) optical path system can be used to generate laser beams having different energy beam characteristics that are used to illuminate (i.e., melt) and crystallize different regions of the film sample. Thus, the first laser beam having the first set of energy beams is generated and delivered through a first optical path. A selected portion of the film is irradiated with the first laser beam using a first crystallization process to obtain a first crystalline region. Then, the second laser beam is re-read by 25 1376727 id?fJ. - - is directed to a second optical path for generating a second laser beam having a second set of energy beams. A selected portion of the film is irradiated with the second laser beam using a second crystallization treatment to obtain a second crystallization region. These crystalline regions correspond to regions of the film having different film thicknesses. The crystalline regions may be polymorphic or have a large single crystal domain (domain) 0

一具有可產生並輸送具有不同能量束特性的雷射光束 的雙光學路徑的舉例性設備被示於第9圖中。參照第9圖, 系統900包括一雷射源220,一衰減器910,一望遠鏡920, 一均勻器930’ 一聚光透鏡940及一光束轉向元件950。由 該雷射源220所產生的雷射光束240經由該衰減器910, 望遠鏡920,均勻器930 ’及聚光透鏡94〇被導引到該光束 轉向元件950。衰減器910(其可與一脈衝持績時間延長器 一起被操作)可以是一可變衰減器,如具有1〇到i的動態 範圍,其能夠調整該被產生的雷射光束24〇的能量密度。An exemplary apparatus having dual optical paths that can generate and deliver laser beams having different energy beam characteristics is shown in FIG. Referring to Figure 9, system 900 includes a laser source 220, an attenuator 910, a telescope 920, a homogenizer 930', a concentrating lens 940, and a beam steering element 950. The laser beam 240 generated by the laser source 220 is directed to the beam steering element 950 via the attenuator 910, the telescope 920, the homogenizer 930', and the collecting lens 94'. The attenuator 910 (which can be operated with a pulsed time extender) can be a variable attenuator, such as having a dynamic range of 1 〇 to i, which is capable of adjusting the energy of the generated laser beam 24 〇 density.

望遠鏡920可被用來有效率地將雷射光束24〇的光束輪 改造成適應該均勻n 930的孔徑。該均勻器93〇可用兩 透鏡阵列(每光束軸兩個透鏡陣)來構成,其可產生具 均勻勺说1¾度輪麻的雷射光束24〇。聚光透鏡94〇 將雷射^東240聚焦到—下游的光學元件上。 光束轉向元件950處,射進來的雷射光束24〇 導引在兩條射出表&止 . _ 去的先束路徑中的一條上,每一條射出 的光東路徑都朝向安裝在該晶圓操作桌台270上的該基 26〇。第-光學路徑包括一鏡子%。,一可變焦向場(fie] 26 1376727The telescope 920 can be used to efficiently transform the beam wheel of the laser beam 24 成 to accommodate the uniform n 930 aperture. The homogenizer 93 can be constructed with a two lens array (two lens arrays per beam axis) which produces a laser beam 24 具 with a uniform scoring of 13⁄4 degrees. The concentrating lens 94 聚焦 focuses the laser ^ Dong 240 onto the downstream optical element. At the beam steering element 950, the incoming laser beam 24 is guided on one of the two beam paths & _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The base 26 on the table 270 is operated. The first optical path includes a mirror %. , a zoomable field (fie) 26 1376727

年月joiua 曰修正替換頁 ,墓< 8 ~ 鏡片970a,一罩幕280a及一投影鏡片295a,而第二光學 路徑包括’ 一可變焦向場(fle〖d)鏡片970b,一罩幕280b 及一投影鏡片295b。罩幕28〇a及28〇b典型地被安裝在罩 幕桌台(未示出)上,遠桌台可相對於射入的雷射光束240 精確地定位該等罩幕。沿著兩條不同的光學路徑前進的雷 射光束240將會通過具有不同的光學特性的光學元件。例 如,在一實施例中,第一光學路徑上的罩幕2 80a具有與第 二光學路徑上的罩幕280b不同的罩幕組態。因此,經由第 一光學路徑被導引到基材260的區域265a上之雷射光束 240a具有的能量束特性將不同於經由第二光學路徑導引 到基材260的區域265b上雷射光束240b所具有的能量束 特性。區域265a’ 265b具有不同的薄膜厚度。 在某些實施例中,該光束轉向元件950可具有兩個模 式:一透射或穿通模式及一反射或重新導向模式^當在穿 通模式下操作時,進入到該光束轉向元件950中的雷射光 束240會完全穿過該光束轉向元件950到達一第一光學路 徑》而當在一重新導向模式下操作時,則進入到該光束轉 向元件95 0中的雷射光束240會完全被一反射面重新導向 到一第二光學路徑上。The year's joiua 曰 correction replacement page, the tomb < 8 ~ lens 970a, a mask 280a and a projection lens 295a, and the second optical path includes 'a zoomable field (fle) lens 970b, a mask 280b And a projection lens 295b. The masks 28A and 28B are typically mounted on a shade table (not shown) that accurately positions the mask relative to the incoming laser beam 240. The laser beam 240 traveling along two different optical paths will pass through optical elements having different optical properties. For example, in one embodiment, the mask 202a on the first optical path has a different mask configuration than the mask 280b on the second optical path. Thus, the laser beam 240a directed onto the region 265a of the substrate 260 via the first optical path will have an energy beam characteristic that is different from the laser beam 240b directed onto the region 265b of the substrate 260 via the second optical path. The energy beam characteristics. Region 265a' 265b has a different film thickness. In some embodiments, the beam steering element 950 can have two modes: a transmissive or feedthrough mode and a reflective or redirected mode. When operating in the through mode, the laser entering the beam steering element 950 The beam 240 will pass completely through the beam steering element 950 to a first optical path. When operating in a redirect mode, the laser beam 240 entering the beam steering element 95 0 will be completely reflected. Redirected to a second optical path.

該晶圓操作桌台270能夠相對射入的雷射光束24〇a, 240b將基材精確地定位。如上文中提及的,該薄膜(如, 非晶型矽)以一受控制的方式被沉積在該基材260的—表 面上。藉由使用兩條分開來的光學路徑,系統900能夠具 有不同能量東特性的雷射光束240a,240b至位在該基材 27 1376727 ΙοΛη曰柯換頁The wafer handling table 270 is capable of accurately positioning the substrate relative to the incoming laser beam 24A, 240b. As mentioned above, the film (e.g., amorphous germanium) is deposited on the surface of the substrate 260 in a controlled manner. By using two separate optical paths, system 900 can have laser beams 240a, 240b having different energy east characteristics in place on the substrate 27 1376727 ΙοΛη曰柯

260上之該薄膜的不同部分。例如,雷射光束240可經由 該光束轉向元件950被導引到該第一光學路徑,使得具有 第一能量束特性的雷射光束240a被產生及導引到該薄膜 的特定區域上。雷射光束240然後可經由該光束轉向元件 9 5 0被導引到該第二光學路徑,使得具有第二能量束特性 的雷射光束24 Ob被產生及導引到該薄膜的不同區域上。因 此,藉由(透過電腦)協調雷射光束240的產生,光束轉向 元件950的操作及基材260的定位,即可幫助輸送(具有不 同能量束特性的)雷射光束240a及240b到達該薄膜的不同 部分。Different parts of the film on 260. For example, a laser beam 240 can be directed to the first optical path via the beam steering element 950 such that a laser beam 240a having a first energy beam characteristic is generated and directed onto a particular region of the film. The laser beam 240 can then be directed to the second optical path via the beam steering element 905 such that a laser beam 24 Ob having a second energy beam characteristic is generated and directed onto different regions of the film. Thus, by coordinating the generation of the laser beam 240 (via a computer), the operation of the beam steering element 950 and the positioning of the substrate 260, it is possible to assist in the delivery of laser beams 240a and 240b (having different energy beam characteristics) to the film. Different parts.

在其它舉例性的實施例中,複數個雷射源及複數個光 學路徑,如上文中所述者,可被使用。每一雷射源產生一 雷射光束其可沿著一相應的光學路徑被導引用以產生一具 有特定光束特性的雷射光束。該雷射光束然後經由該光學 路徑被導引到該薄膜的一區域。例如,一來自該雷射源的 雷射光束可沿著該第一光學路徑被導引,使得一具有第一 光束特性的雷射光束被產生且被輸送到該薄膜的某些部分 上,而一來自第二雷射源的雷射光束可沿著該第二光學路 徑被導引,使得一具有第二光束特性的雷射光束被產生且 被輸送到該薄膜的其餘部分上。這被示意地示於第1〇圖 中,其中兩個雷射源被顯示為1010a及1010b。如在此技 藝中被瞭解的,光學路徑1 030a,1 030b的光學元件可被不 同地安排且可包括本文中提及之光束均勻器,反放大鏡 片,鏡子,透鏡等等光學元件中的全部或一部。由雷射源 28 1376727In other exemplary embodiments, a plurality of laser sources and a plurality of optical paths, as described above, may be used. Each laser source produces a laser beam that is directed along a respective optical path to produce a laser beam having a particular beam characteristic. The laser beam is then directed through the optical path to a region of the film. For example, a laser beam from the laser source can be directed along the first optical path such that a laser beam having a first beam characteristic is generated and delivered to portions of the film, A laser beam from the second source of laser light can be directed along the second optical path such that a laser beam having a second beam characteristic is generated and delivered to the remainder of the film. This is shown schematically in Figure 1, where two laser sources are shown as 1010a and 1010b. As is known in the art, the optical elements of optical paths 1 030a, 1 030b can be arranged differently and can include all of the optical elements mentioned herein, such as beam homogenizers, inverse magnifiers, mirrors, lenses, and the like. Or one. By laser source 28 1376727

1010a產生的雷射光束沿著光學路徑1030a移動(因而產生 具有某些能量束特性的雷射光束且被輸送至該薄膜的”薄 的”區域1020a上。由雷射源l〇l〇b產生的雷射光束沿著光 學路徑 1030b移動(因而產生具有某些能量束特性的雷射 光束且被輸送至該薄膜的”厚的”區域1 020b上。在某些實 施例中,被輸送至”薄的’’區域1020a上的雷射光束的能量 束特性不同於被輸送至”厚的”區域1 020b上的雷射光束的 能量束特性。在第1 0圖所示的系統的某些實施例中,該薄 膜的”薄的”區域 1020a的處理是在該薄膜的”厚的”區域 1020b的處理之前或之後進行的。然而,在第10圖所示的 系統的某些實施例中,該薄膜的”薄的”區域1 020a的處理 是與該薄膜的”厚的”區域l〇20b的處理同時進行的。The laser beam generated by 1010a moves along optical path 1030a (thus producing a laser beam having certain energy beam characteristics and being delivered to the "thin" region 1020a of the film. Produced by laser source l〇l〇b The laser beam travels along optical path 1030b (thus producing a laser beam having certain energy beam characteristics and being delivered to the "thick" region 1 020b of the film. In some embodiments, it is delivered to" The energy beam characteristics of the laser beam on the thin ''area 1020a' are different from the energy beam characteristics of the laser beam delivered to the "thick" area 1 020b. Some implementations of the system shown in Figure 10. In one example, the treatment of the "thin" region 1020a of the film is performed before or after processing of the "thick" region 1020b of the film. However, in certain embodiments of the system illustrated in Figure 10, The treatment of the "thin" region 1 020a of the film is performed simultaneously with the processing of the "thick" region l 20b of the film.

在某些實施例中,複數個雷射系統(其每一系統都使用 複數個光學路徑)可被使用。在這些實施例中,不同的雷射 系統可由一或多個雷射源構成。在這些實施例中,不同的 雷射系統可被用來處理該薄膜的不同區域。例如,由一第 一雷射系統的雷射源及由一第二雷射系統的雷射源產生的 雷射光東可沿著兩個不同的光學路徑被導引,用以處理該 薄膜的一”厚的”區域。由該第一雷射系統產生的雷射光束 可根據該被產生的雷射光束是否要被分束而經由一光束轉 向器或一分束器被導引到相應的光學路徑。該第二雷射系 統的雷射光束可用相同的方式被處理及操作。被導引到” 薄的”區域上的雷射光束可具有相同或不同的能量束特 性。同樣地,被導引到”薄的”區域上的雷射光束可具有相 29 1376727 同或不同的能量束特性。具有兩個獨立的雷射系統12i〇a 及1210b及相應的分束器1230a’1230b的舉例性實施例被 示於第11圖中。由雷射系統1210a,121 Ob所產生的雷射 光束1220a,1220b分別通過分束器1230a,1230b。分束In some embodiments, a plurality of laser systems, each of which uses a plurality of optical paths, can be used. In these embodiments, different laser systems may be constructed from one or more laser sources. In these embodiments, different laser systems can be used to process different regions of the film. For example, a laser source from a laser source of a first laser system and a laser source from a second laser system can be directed along two different optical paths for processing one of the films "Thick" area. The laser beam produced by the first laser system can be directed to a respective optical path via a beam director or a beam splitter depending on whether the generated laser beam is to be split. The laser beam of the second laser system can be processed and operated in the same manner. The laser beams directed onto the "thin" area may have the same or different energy beam characteristics. Similarly, a laser beam directed onto a "thin" region may have the same or different energy beam characteristics of phase 29 1376727. An exemplary embodiment having two separate laser systems 12i〇a and 1210b and corresponding beam splitters 1230a'1230b is shown in FIG. Laser beams 1220a, 1220b produced by laser systems 1210a, 121 Ob pass through beam splitters 1230a, 1230b, respectively. Beam splitting

器l230a將雷射光束122〇a的一部分導引到光學路狡 1240a上並將雷射光束1220a的其餘部分導引到光學路徑 12 40a上,使得這兩個能量束(其可具有相同或不同的能量 束特性)可同時照射該薄膜之”薄的”區域1 2 5 0的不同部分 上。相同地,分束器丨23 Ob將雷射光束1220b的一部分導 引到光學路徑1260a上並將雷射光束1 220b的其餘部分導 引到光學路徑1 260b上,使得這兩個能量束(其可具有相同 或不同的能量束特性)可同時照射該薄膜之”厚的,,區城 1280的不同部分上。The device l230a directs a portion of the laser beam 122A to the optical path 1240a and directs the remainder of the laser beam 1220a onto the optical path 12 40a such that the two energy beams (which may be the same or different) The energy beam characteristics can simultaneously illuminate different portions of the "thin" region of the film 1 250. Similarly, beam splitter Ob 23 Ob directs a portion of laser beam 1220b onto optical path 1260a and directs the remainder of laser beam 1 220b onto optical path 1 260b such that the two energy beams The same or different energy beam characteristics can be used to simultaneously illuminate the "thick" portion of the film, on different portions of the zone 1280.

在其它的實施例中,分束器可如光束轉向元件般地操 作,其可在一透射或穿通模式及一反射或重新導向模式。 當在穿通模式下操作時’進入到該光束轉向元件中的雷射 束會完全穿過該光束轉向元件到達一第一光學路徑。而當 在一重新導向模式下操作時’則進入到該光束轉向元件中 的雷射束會完全被一反射面重新導向到一第二光學路徑 進一步的細節被提供在與本案同時提申且共同繫屬中 名稱為”System And Methods For Inducing Crystallization of Thin Films Using Multiple Optical Paths”的暫時申請案 中及與本案同時提申且共同繫屬中名稱為’’System and 30 1376727In other embodiments, the beam splitter can operate as a beam steering element, either in a transmissive or feedthrough mode and in a reflective or redirected mode. When operating in the feedthrough mode, the laser beam entering the beam steering element will completely pass through the beam steering element to a first optical path. And when operating in a redirect mode, the laser beam entering the beam steering element will be completely redirected by a reflective surface to a second optical path. Further details are provided in conjunction with the present case. In the provisional application titled "System And Methods For Inducing Crystallization of Thin Films Using Multiple Optical Paths", and in conjunction with this case, the common name is ''System and 30 1376727'

Methods For Processing Thin Films”的暫時申請案中,這朗 個申請案的内容藉由此參照而被併於本文中。 用本發明製造的半導體裝置不僅僅是一元件,如TFT 或MOS電晶體,還可以是液晶顯示裝置(Tft-LCD),EL(電 子發光)顯示裝置’ EC(電子鉻)顯示裝置,主動陣列有機發 光二極體(OLED) ’靜態隨機存取記憶體(SRAM)裝置,= 維積體電路(3-D 1C)’耿應器,印表機,及光閥等等, 每 一者都包括一由絕緣的閘極電晶體構成的半導體電 % t微 處理,訊號處理電路’高頻電路,等等)。 雖然包含了本發明的教導的不同實施例已在本文 甲'破 詳細的顯示及描述’但熟習此技藝者可以很容易地完成勺 含本發明的教導之其它不同的實施例。 【圖式簡單說明】 中配 中相 的目 申請 複數 分予 實施 本發明之不同的目的,特徵’及好處可參照下文 合了附圖之本發明的詳細說明而被更完整地瞭解,其 同的編號代表相同的元件。下面的附圖只是為了舉例 的而已,其並不是要限制本發明,本發明的範圍是由 專利範圍來界定。 第1圖為一結晶薄膜的剖面圖,該結晶薄膜具有 個依據本發明的一或多個實施的薄膜厚度區域。 第2A圖顯示依據本發明的一或多個實施例之激 雷射退火的處理; 第2B圖顯示一用來實施依據本發明的一或多個 31 1376727In the provisional application of Methods For Processing Thin Films, the contents of this application are hereby incorporated by reference. The semiconductor device made by the present invention is not only a component such as a TFT or MOS transistor. It may also be a liquid crystal display device (Tft-LCD), an EL (electroluminescence) display device 'EC (electronic chrome) display device, an active array organic light emitting diode (OLED) 'static random access memory (SRAM) device, = Integral circuit (3-D 1C) 'resonator, printer, and light valve, etc., each of which includes a semiconductor device consisting of an insulated gate transistor, micro-processing, signal processing circuit' High frequency circuits, etc.) Although various embodiments incorporating the teachings of the present invention have been shown and described in detail herein, it will be readily apparent to those skilled in the art BRIEF DESCRIPTION OF THE DRAWINGS [Brief Description of the Drawings] The objective application of the intermediate phase is divided into different purposes for the implementation of the present invention. The features and benefits can be referred to the detailed description of the present invention in conjunction with the accompanying drawings. The same reference numerals are used to refer to the same elements. The following drawings are for illustrative purposes only and are not intended to limit the scope of the invention. The scope of the invention is defined by the scope of the patent. A cross-sectional view of a film having a film thickness region in accordance with one or more embodiments of the present invention. Figure 2A shows a laser ablation process in accordance with one or more embodiments of the present invention; One for implementing one or more 31 1376727 in accordance with the present invention

Mg換頁 例之循序側向固化的舉例性系統的示意圖。 第3圖顯示一使用在依據本發明的一或多個實施例之 循序側向固化中的罩幕。 第4圖顯示在依據本發明的一或多個實施例之循序側 向固化處理中的一個步驟。 第5圖顯示在依據本發明的一或多個實施例之循序側 向固化處理t的一個步驟。A schematic of an exemplary system for sequential lateral solidification of a Mg page change. Figure 3 shows a mask used in sequential lateral curing in accordance with one or more embodiments of the present invention. Figure 4 shows a step in a sequential lateral curing process in accordance with one or more embodiments of the present invention. Figure 5 shows a step in a sequential lateral curing process t in accordance with one or more embodiments of the present invention.

第6圖顯示在依據本發明的一或多個實施例之循序側 向固化處理中的一個步驟。 第7A至7C圖顯示依據本發明的一或多個實施例之一 循序側向固化處理。 第8圖為依據本發明的一處理的舉例性實施例的流程 圖,其中該薄膜的不同厚度區域被處理。 第9圖為使用在本發明的一或多個實施例中之一具有 單一雷射的兩個光學路徑的設備的示意圖。Figure 6 shows a step in a sequential lateral curing process in accordance with one or more embodiments of the present invention. Figures 7A through 7C show sequential lateral curing processes in accordance with one or more embodiments of the present invention. Figure 8 is a flow diagram of an exemplary embodiment of a process in accordance with the present invention in which different thickness regions of the film are processed. Figure 9 is a schematic illustration of an apparatus for using two optical paths having a single laser in one or more embodiments of the present invention.

第10圖為使用在本發明的一或多個實施例中之一具 有兩個雷射系統及兩個光學路徑的一設備的示意圖。 第 11圖為使用在本發明的一或多個實施例中之一具 有兩個雷射系統,每一雷射系統具有兩個光學路徑的一設 備的示意圖。 【主要元件符號說明】 100 薄膜物件 110 薄膜 120 基材 1 25,1 30 區域 32 1376727Figure 10 is a schematic illustration of an apparatus having two laser systems and two optical paths using one of the one or more embodiments of the present invention. Figure 11 is a schematic illustration of an apparatus having two laser systems, each having two optical paths, in one or more embodiments of the present invention. [Main component symbol description] 100 film object 110 film 120 substrate 1 25,1 30 area 32 1376727

正f換頁 150 光束 160 寬度 170 長度 180 半導體薄膜 200 設備 220 雷射源 240 雷射光束 260 基材 270 桌台 280 罩幕 290 罩幕固持件 295 投影透鏡 265 想定的位置 3 10 罩幕 320 狹缝 340 狹缝間距 360 寬度 400 區域 460 矩形區域 480 中心線 500 已處理過的區域 520 結晶體邊界 710,711,712 被照射區域 721 間距 730 熔融邊界 740 多晶型矽 742 非晶型區域 745 中央區段 900 系統 910,910a,910b 衰減器 920,920a,920b 望遠鏡 930,930a,930b 均勻器 940,940a,940b 聚光透鏡 950 光束轉向元件 960 鏡子 970a,970可變焦距場鏡片 280a、 280b 罩幕 295a,295b 投影鏡片 240a、 240b 、 1220a 、 1220b 雷射光束 1000 系統 1010a ,1010b 雷射源 1020a 、1250 薄區域 1020b 、1 280 厚區域 1 030a 、1 030b ' 1240a' 1240b、1260a、1260b 光學路 1210a,1210b 雷射系統 1 230a ,1230b 分束器Positive f-page 150 Beam 160 Width 170 Length 180 Semiconductor film 200 Equipment 220 Laser source 240 Laser beam 260 Substrate 270 Table 280 Mask 290 Mask holder 295 Projection lens 265 Location 3 3 Mask 320 Slit 340 Slit spacing 360 Width 400 Area 460 Rectangular area 480 Center line 500 Processed area 520 Crystal boundary 710, 711, 712 Irradiated area 721 Pitch 730 Melting boundary 740 Polymorph 矽 742 Amorphous area 745 Central section 900 System 910, 910a , 910b attenuator 920, 920a, 920b telescope 930, 930a, 930b homogenizer 940, 940a, 940b concentrating lens 950 beam steering element 960 mirror 970a, 970 variable focus field lens 280a, 280b mask 295a, 295b projection lens 240a, 240b, 1220a, 1220b laser beam 1000 system 1010a, 1010b laser source 1020a, 1250 thin area 1020b, 1 280 thick area 1 030a, 1 030b ' 1240a' 1240b, 1260a, 1260b optical path 1210a, 1210b laser system 1 230a, 1230b Beam splitter

3333

Claims (1)

1376727 Mo曰f正,換頁丨 申範痛 1. 一種處理薄膜的方法,該方法至少包含以下步驟·· (a) 從一脈衝化的雷射光束產生一第一雷射光束圖案, 該第一雷射光束圖案的強度係足以至少部分地熔化一將被 結晶化的薄膜的一第一區域的至少一部分;1376727 Mo曰f正, PAGE 丨申范痛 1. A method of processing a film, the method comprising at least the following steps: (a) generating a first laser beam pattern from a pulsed laser beam, the first The intensity of the laser beam pattern is sufficient to at least partially melt at least a portion of a first region of the film to be crystallized; (b) 從一脈衝化的雷射光束產生一第二雷射光束圖案, 該第二雷射光束圖案的強度係足以至少部分地熔化該將被 結晶化的薄膜的一第二區域的至少一部分,其中該薄膜的 該第一區域包含一第一厚度,且該薄膜的該第二區域包含 一第二厚度,且該第一厚度及該第二厚度是不相同的; (c) 用該第一組光束圖案照射該薄膜的該第一區域,以 形成具有一第一晶粒結構的一第一結晶區;及 (d) 用該第二組光束圖案照射該薄膜的該第二區域,以 形成具有·一弟二晶粒結構的一弟二結晶區。(b) generating a second laser beam pattern from a pulsed laser beam, the second laser beam pattern having an intensity sufficient to at least partially melt at least a portion of a second region of the film to be crystallized The first region of the film includes a first thickness, and the second region of the film includes a second thickness, and the first thickness and the second thickness are different; (c) using the first a set of beam patterns illuminating the first region of the film to form a first crystalline region having a first grain structure; and (d) illuminating the second region of the film with the second set of beam patterns to Forming a two-crystal region with a two-grain structure. 2.如申請專利範圍第1項所述之方法,其中該薄膜包含 一半導體材料。2. The method of claim 1, wherein the film comprises a semiconductor material. 3 ·如申請專利範圍第1項所述之方法,其中該薄膜包含 一金屬。 4.如申請專利範圍第1項所述之方法,其中該第一雷射 光束圖案及該第二雷射光束圖案係使用一單一雷射光束源 34 1376727 來產生的。 5.如申諳專利範圍第1項所述之方法,其中該第一雷射 光束圖案及該第二雷射光束圖案係使用複數個雷射光束源 來產生的。3. The method of claim 1, wherein the film comprises a metal. 4. The method of claim 1, wherein the first laser beam pattern and the second laser beam pattern are generated using a single laser beam source 34 1376727. 5. The method of claim 1, wherein the first laser beam pattern and the second laser beam pattern are generated using a plurality of laser beam sources. 6.如申請專利範圍第1項所述之方法,其中該第一雷射 光束圖案包含一组圖案化的小光束(beamlets)。6. The method of claim 1, wherein the first laser beam pattern comprises a set of patterned beamlets. 7.如申請專利範圍第1項所述之方法,其中該第二雷射 光束圖案包含一組圖案化的小光束。 8.如申請專利範圍第1項所述之方法,其中照射該薄膜 的該第一區域及該第二區域的步驟是同時間發生的。7. The method of claim 1, wherein the second laser beam pattern comprises a set of patterned small beams. 8. The method of claim 1, wherein the step of illuminating the first region and the second region of the film occurs simultaneously. 9.如申請專利範圍第1項所述之方法,其中照射該薄 膜的該第一區域及該第二區域的步驟是循序發生的。9. The method of claim 1, wherein the step of illuminating the first region and the second region of the film occurs sequentially. 1 0.如申請專利範圍第1項所述之方法,其中更包含以 下步驟: 在步驟(c)之後,重新定位該薄膜上的該第一雷射光束 圖案,以照亮(illuminate)該薄膜的該第一區域之一第二部 分,及如在步驟(c)般地照射該薄膜的該第一區域,該重新 35 1376727_ I铋ίο日f正,1 定位及照射步驟發生至少一次;及 在步驟(d)之後,重新定位在該薄膜上之該第二雷射光 束圖案,以照亮該薄膜的該第二區域之一第二部分,及如 在步驟(d)般地照射該薄膜的該第二區域,該重新定位及照 射步驟發生至少一次。The method of claim 1, further comprising the step of: repositioning the first laser beam pattern on the film after step (c) to illuminate the film a second portion of the first region, and the first region that illuminates the film as in step (c), the re-35 1376727_I铋ίο日正, 1 positioning and illumination step occurs at least once; and After step (d), repositioning the second laser beam pattern on the film to illuminate a second portion of the second region of the film and illuminating the film as in step (d) The second region, the repositioning and illumination steps occur at least once. 11.如申諳專利範圍第10項所述之方法,其中重新定位 是藉由移動罩幕、薄膜或兩者而發生。11. The method of claim 10, wherein the repositioning occurs by moving a mask, a film, or both. 1 2.如申諳專利範圍第1 0項所述之方法,其中該被重新 定位的雷射光束,可照射該薄膜之與先前被照射到的部分相 重疊的一部分。1 2. The method of claim 10, wherein the repositioned laser beam illuminates a portion of the film that overlaps a previously illuminated portion. 1 3 ·如申請專利範圍第1 2項所述之方法,其中該被重新 定位的雷射光束,係距離先前被定位雷射光東一段小於該被 結晶物質之侧向結晶生長的距離。 14.如申請專利範圍第1項所述之方法,其中該雷射照 射該第一區域及該第二區域的步驟,包含一循序側向固化處 理(S L S) ° 36 1 5.如申請專利範圍第1項所述之方法,其中該第一區 域的薄膜厚度大於該第二區域的薄膜厚度。 1 6 ·如申請專利範圍第1 射光束圖案係使用依據一第 形塑的一雷射光束而產生的, 使用依據一第二罩幕及一第 光束而產生的β $所述之方法,其中該第一雷 ~罩幕及一第一組雷射特徵而 及其中該第二雷射光束圖案係 ''組雷射特徵而形塑的一雷射The method of claim 12, wherein the repositioned laser beam is at a distance from the previously positioned laser beam that is less than the lateral crystal growth of the crystalline material. 14. The method of claim 1, wherein the step of irradiating the first region and the second region by the laser comprises a sequential lateral solidification treatment (SLS) ° 36 1 5. The method of claim 1, wherein the film thickness of the first region is greater than the film thickness of the second region. 1 6 · The patented range 1st beam pattern is generated using a laser beam according to a first shape, using a method according to a second mask and a first beam of β $, wherein a laser that is shaped by the first Ray-mask and a first set of laser features and the second laser beam pattern is a set of laser features 1 7.如申請專利範圍第i 6項 貞所述之方法,其中使用一單 一雷射光束源,且該雷射光爽祜述 叫70果被·導引通過該第一组雷射光學 銃片以照射該第一薄膜區域,及被導引通過該第二组雷射光 學鏡片以照射該第二薄膜區域。 18. 如申請專利範圍第16項所述之方法,其中使用了複 數個雷射光束源,且一第一雷射光束源被導引通過該第一组 雷射光學鏡片以照射該第一薄膜區域,及—第二雷射光束源 被導?丨通過該第二組雷射光學鏡片以照射該第二薄膜區域。 19. 如申凊專利範圍第16項所述之方法’其中用於該第 —雷射光束圖案及該第二雷射光束圖案的該等罩幕是不同 的。 20·如申請專利範圍第1 6項所述之方法,其中被形塑之 这吊—雷射光束圖案及該第二雷射光束圖案的該等強度是 37 1376727 年月日修 i 替換頁 iftfl. ίο, 14-β~ 不相同的。 21.如申請專利範圍第4項所述之方法,其中該雷射光 束源是由連續波雷射,固態雷射,及激分子雷射中選取。 22.如申諳專利範圍第5項所述之方法,其中該雷射光 束源是由連續波雷射,固態雷射,及激分子雷射中選取。1 7. The method of claim i, wherein a single source of laser beam is used, and the laser light is said to be guided through the first set of laser optical sheets. Illuminating the first film region and being guided through the second set of laser optics to illuminate the second film region. 18. The method of claim 16, wherein a plurality of laser beam sources are used, and a first laser beam source is directed through the first set of laser optics to illuminate the first film The area, and - the second laser beam source is guided?丨 passing the second set of laser optics to illuminate the second film area. 19. The method of claim 16, wherein the masks for the first laser beam pattern and the second laser beam pattern are different. 20. The method of claim 16, wherein the shape of the hoist-laser beam pattern and the second laser beam pattern are 37 176 727 月 修 i replacement page iftfl . ίο, 14-β~ is not the same. 21. The method of claim 4, wherein the source of the laser beam is selected from the group consisting of a continuous wave laser, a solid state laser, and an excimer laser. 22. The method of claim 5, wherein the source of the laser beam is selected from the group consisting of a continuous wave laser, a solid state laser, and an excimer laser. 2 3 .如申請專利範圍第1項所述之方法,其中照射該第 一薄膜區域及該第二薄膜區域的照射條件是從適合用於循 序雷射固化、激分子雷射退火及均勻晶粒結構結晶等處理的 至少一者的照射條件中選取。 24. 如申請專利範圍第23項所述之方法,其中該第一照 射薄膜區域條件係適合循序雷射固化處理,且該第二薄膜區 域照射條件係適合均勻晶粒結構結晶處理。 25. —種基材上的薄膜,其至少包含: —第一結晶區域,該第一結晶區域具有一第一薄膜厚度 及一結晶晶粒結構1該結晶晶粒結構具有由 一第一組晶粒邊 界來界定的極度長形結晶體晶粒,該第一組晶粒邊界實質上 平行於該等晶粒的長軸;及 一第二結晶區域,該第二結晶區域具有一第二薄膜厚度 38 1376727The method of claim 1, wherein the irradiation conditions of the first film region and the second film region are suitable for use in sequential laser curing, laser laser annealing, and uniform grain size. The irradiation conditions of at least one of the treatments such as structural crystallization are selected. 24. The method of claim 23, wherein the first illuminating film region condition is suitable for sequential laser curing treatment, and the second film region illuminating condition is suitable for uniform grain structure crystallization treatment. 25. A film on a substrate comprising: - a first crystalline region having a first film thickness and a crystalline grain structure 1 having a first crystal grain An extremely elongated crystalline grain defined by a grain boundary, the first set of grain boundaries being substantially parallel to a major axis of the grains; and a second crystalline zone having a second film thickness 38 1376727 質 均 及 ο e 晶來該 之 構 結 粒 粒 晶 晶 結 en該 g , ο m 者 晶 結 一 與 構 结 粒 晶 晶 結 多 粒 晶 、 第 粒該 晶中 體其 晶 , 結轴 形長 長的 的粒 定晶 界等 界於厚 邊行膜 粒平薄 晶 上二 组 質第 一 實該 第界於 一 邊大 由粒度 有晶厚 具组膜 構一薄 結第一 該 第 該 中 其 的 件 元 子 電 度納 第 該 與 域 區 晶 結 的 道 通 主 容擁 以域 足區 到一 大第 有該 具中 域其 區及 晶 結 寸 尺 有 擁 内 積 面 位 單 於 或 界 邊 體 晶 結 的 少 為 域 區 。 二陷 第缺 該的 較少 有較 利 專 請 申或 i及 26域 區 .晶 第 該 第 結 1 0 第件 該構 中一 其的 , 置 膜裝 薄子 之 電 述一 所 含 項包 25域 區 圍 BB 範結 J. .1 為 件 構 該 中 其 摸 〇 薄道 之通 述動 所主 項 -6 的 2¾ ^月 第晶 圍電 範膜 利薄 專或 請管 申極 i 二 271 於 用 28.如申請專利範圍第25項所述之薄膜,其中該薄膜 該第一結晶區域的電子移動性大於該薄膜的該第二結晶 域的電子移動性。The mass is uniform and the crystal is crystallized to form the g crystal, and the crystal is crystallized and crystallized, and the first crystal is crystallized, and the axis is long. The long grain boundary is equal to the thick side of the film. The grain is flat and the second layer is on the first layer. The first boundary is on the one side. The grain size has a crystal thickness and the film is a thin junction. The elemental energy of the elemental phase is the same as that of the domain area. The domain of the zone is the main zone of the zone. The zone has a zone with a central zone and a crystallographic dimension. The domain of the body crystal is less than the domain area. The second trap is lacking, and there is a lesser interest in the application or the i and 26 domain areas. The crystal is the first knot. The first piece of the structure is included in the structure. The domain area BB Fan J. .1 is the main structure of the -6 其 23 23 23 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 请 请 请 请 请 请 请 271 271 271 271 271 The film of claim 25, wherein the first crystal region of the film has an electron mobility greater than an electron mobility of the second crystal domain of the film. 29.如申請專利範圍第25項所述之薄膜,其中該薄膜y 該第一结晶區域包含用於一高移動性薄膜電晶體的一主费 通道。 39 1376717 替換頁 30.如申請專利範圍第29項所述之薄膜,其中該薄膜的 该第二結晶區域包含用於一低移動,〖生薄膜電晶體的一主動 通道。 31.如申請專利範圍第25項所述之薄膜’其中該第一結 晶晶粒結構及該第二結晶晶粒結構中的至少一者包含一長 形的、晶粒邊界位置受控制的晶粒結構。29. The film of claim 25, wherein the film y the first crystalline region comprises a primary channel for a highly mobile thin film transistor. 39. The film of claim 29, wherein the second crystalline region of the film comprises an active channel for a low mobility, a thin film transistor. The film of claim 25, wherein at least one of the first crystal grain structure and the second crystal grain structure comprises an elongated grain boundary controlled grain size structure. 32.如申請專利範圍第25項所述之薄膜,其中該薄膜包 含一半導體材料。 33.如申請專利範圍第25項所述之薄膜,其中該薄膜包 括一金屬。 34·如申請專利範圍第25項所述之薄膜,其中該第一薄 膜厚度是在50nm至500nm的範園内。 35.如中請專利範園第25項所述之薄膜,其中該第二薄 膜厚度是在約20nm至約200nm的知*圍内。 3 6.如申請專利範圍第2 5項所述之薄膜’其中該第一結 晶區域及(或)該第二結晶區域包含一單晶子區域’該單晶子 區域具有大刻足以容納一薄膜電晶體的一主動通道的一尺 40 1376727 寸。 3 7.如申請專利範圍第25項所述之薄膜,其中該第二結 晶區域包含由一第一组晶粒邊界來界定的長形結晶體晶 粒,該第一組晶粒邊界實質上平行於該等晶粒的長軸。The film of claim 25, wherein the film comprises a semiconductor material. The film of claim 25, wherein the film comprises a metal. The film of claim 25, wherein the first film thickness is in the range of 50 nm to 500 nm. 35. The film of claim 25, wherein the second film thickness is within a range of from about 20 nm to about 200 nm. 3. The film of claim 25, wherein the first crystalline region and/or the second crystalline region comprises a single crystal sub-region having a large enough diameter to accommodate a film One inch of the active channel of the transistor is 40 1376727 inches. 3. The film of claim 25, wherein the second crystalline region comprises elongated crystalline grains defined by a first set of grain boundaries, the first set of grain boundaries being substantially parallel to The long axis of the grains. 3 8.如申諳專利範圍第25項所述之薄膜,其中該第二結 晶區域包含由一第一組晶粒邊界與一第二組晶粒邊界來界 定的長形結晶體晶粒,該第一組晶粒邊界實質上平行於該等 晶粒的長轴’該第二組晶粒邊界實質上垂直於該等晶粒的該 等長軸,而界定出長形結晶體的縱列。 3 9.如申諳專利範圍第25項所述之薄膜,其中該第二結 晶區域包含一均質(homogeneous )小晶粒多結晶晶粒結構。3. The film of claim 25, wherein the second crystalline region comprises elongated crystalline grains defined by a first set of grain boundaries and a second set of grain boundaries, the first A set of grain boundaries are substantially parallel to the major axes of the grains. The second set of grain boundaries are substantially perpendicular to the major axes of the grains to define a column of elongated crystals. The film of claim 25, wherein the second crystal region comprises a homogeneous small crystal grain polycrystalline grain structure. 4 0.如申諳專利範圍第25項所述之薄膜,其中該第一結 晶區域的該等長形晶粒,更進一步包含一第二晶粒組,該第 二晶粒組的邊界實質上垂直於該等晶粒的該等長軸,而界定 出長形結晶體的縱列。 4 1 ·如申諳專利範圍第40項所述之薄膜,其中該第二結 晶區域包含由一第一組晶粒邊界界定出的長形結晶體晶 粒,該第一組晶粒邊界實質上平行於該等晶粒的長軸。 41 1376727 LWft換頁丨 42.如申諳專利範圍第40項所述之薄膜,其中該第二結 晶區域包含一均質(h 〇 m 〇 g e n e 〇 u s )小晶粒多結晶晶粒結構。The film of claim 25, wherein the elongated crystal grains of the first crystalline region further comprise a second crystal grain group, the boundary of the second crystal grain group being substantially A column of elongated crystals is defined perpendicular to the major axes of the grains. The film of claim 40, wherein the second crystalline region comprises elongated crystalline grains defined by a first set of grain boundaries, the first set of grain boundaries being substantially parallel On the long axis of the grains. The film of claim 40, wherein the second crystal region comprises a homogeneous (h 〇 m 〇 g e n e 〇 u s ) small crystal polycrystalline grain structure. 43 ·如申請專利範圍第40項所述之薄膜,其中該第二結 晶區域包含由一第一組晶粒邊界與一第二組晶粒的邊界界 定出的長形結晶體晶粒,該第一組晶粒邊界實質上平行於該 等晶粒的長軸,該第二组晶粒的邊界實質上垂直於該等晶粒 的該等長軸,而界定出長形結晶體的縱列。 44. 一種裝置,其至少包含: 複數個薄膜電晶體(TFT),每一 TFT都具有一薄膜主動 通道; 其中至少一第一 TFT主動通道具有一第一厚度且至少 一第二TFT主動通道具有一大於該第一厚度的第二厚度, 該第一 TFT主動通道具有由一第一組晶粒邊界界定出的極 度長形結晶體晶粒,該第一组晶粒邊界實質上平行於該等晶 粒的長軸,該第二TFT主動通道具有一均質(homogeneous) 小晶粒多結晶晶粒結構與一結晶晶粒結構之一者,該結晶晶 粒結構具有由一第一組晶粒邊界來界定的長形結晶體晶 粒,該第一组晶粒邊界實質上平行於該等晶粒的長軸,且該 第二主動通道的電子移動性大於該第一主動通道的電子移 動性。 42 1376727 年月日修替換頁 JfliLlO.1 g._ 45. 如申請專利範圍第44項所述之裝置,其中該第一 TFT主動通道包含一用於集成區TFT的主動通道。 46. 如申諳專利範圍第44項所述之裝置,其中該第二 TFT主動通道包含一用於像素區TFT的主動通道。43. The film of claim 40, wherein the second crystalline region comprises elongated crystalline grains defined by a first set of grain boundaries and a second set of grain boundaries, the first The set of grain boundaries are substantially parallel to the major axes of the grains, and the boundaries of the second set of grains are substantially perpendicular to the major axes of the grains to define a column of elongated crystals. 44. A device comprising: at least: a plurality of thin film transistors (TFTs) each having a thin film active channel; wherein at least one first TFT active channel has a first thickness and at least one second TFT active channel has a second thickness of the first TFT active channel having an extremely elongated crystal grain defined by a first set of grain boundaries, the first group of grain boundaries being substantially parallel to the crystal a long axis of the particle, the second TFT active channel having a homogeneous small grain polycrystalline grain structure and a crystalline grain structure having a first set of grain boundaries Defining the elongated crystal grains, the first set of grain boundaries are substantially parallel to the long axes of the grains, and the electron mobility of the second active channel is greater than the electron mobility of the first active channel. The apparatus of claim 44, wherein the first TFT active channel includes an active channel for the integrated region TFT. 46. The device of claim 44, wherein the second TFT active channel comprises an active channel for the pixel region TFT. 4 7.如申請專利範圍第44項所述之裝置,其中該薄膜包 含一半導體材料。4. The device of claim 44, wherein the film comprises a semiconductor material. 48.如申請專利範圍第44項所述之裝置,其中該第一結 晶區域及該第二結晶區域包含一單晶子區域,該單晶子區域 具有大到足以容納一 TFT的一主動通道的一尺寸。48. The device of claim 44, wherein the first crystalline region and the second crystalline region comprise a single crystal sub-region having an active channel large enough to accommodate a TFT. One size. 4343
TW93129120A 2004-09-24 2004-09-24 A laser-irradiated thin film having variable thickness on a substrate, a method for processing the same and a device comparsing the same TWI376727B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93129120A TWI376727B (en) 2004-09-24 2004-09-24 A laser-irradiated thin film having variable thickness on a substrate, a method for processing the same and a device comparsing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93129120A TWI376727B (en) 2004-09-24 2004-09-24 A laser-irradiated thin film having variable thickness on a substrate, a method for processing the same and a device comparsing the same

Publications (1)

Publication Number Publication Date
TWI376727B true TWI376727B (en) 2012-11-11

Family

ID=48087817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93129120A TWI376727B (en) 2004-09-24 2004-09-24 A laser-irradiated thin film having variable thickness on a substrate, a method for processing the same and a device comparsing the same

Country Status (1)

Country Link
TW (1) TWI376727B (en)

Similar Documents

Publication Publication Date Title
US8715412B2 (en) Laser-irradiated thin films having variable thickness
US8034698B2 (en) Systems and methods for inducing crystallization of thin films using multiple optical paths
US8598588B2 (en) Systems and methods for processing a film, and thin films
US7259081B2 (en) Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity, and a structure of such film regions
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
US7645337B2 (en) Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US6495405B2 (en) Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
TW200405105A (en) Process and system for laser crystallization processing of film regions on a substrate to minimize edge areas, and structure of such film regions
TW200524006A (en) Single scan irradiation for crystallization of thin films
EP1812958A1 (en) Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US20020102821A1 (en) Mask pattern design to improve quality uniformity in lateral laser crystallized poly-Si films
JP2004153232A (en) Method for manufacturing semiconductor element and semiconductor element manufactured by the method
JP2006196539A (en) Method and device for manufacturing polycrystalline semiconductor thin film
TWI376727B (en) A laser-irradiated thin film having variable thickness on a substrate, a method for processing the same and a device comparsing the same
JP2004281771A (en) Crystal growth method and crystal growth device for semiconductor thin film and manufacturing method for thin film transistor
KR100619197B1 (en) Crystal growth apparatus and crystal growth method for semiconductor thin film
JP2003257861A (en) Semiconductor element and method for manufacturing the same
JP2007242803A (en) Method of manufacturing semiconductor thin film, and manufacturing equipment of semiconductor thin film
JP2005116911A (en) Thin film semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees