TWI376454B - Wind turbine and de-icing method of wind turbine blade - Google Patents

Wind turbine and de-icing method of wind turbine blade Download PDF

Info

Publication number
TWI376454B
TWI376454B TW098128301A TW98128301A TWI376454B TW I376454 B TWI376454 B TW I376454B TW 098128301 A TW098128301 A TW 098128301A TW 98128301 A TW98128301 A TW 98128301A TW I376454 B TWI376454 B TW I376454B
Authority
TW
Taiwan
Prior art keywords
blade
state
deicing
blades
azimuth
Prior art date
Application number
TW098128301A
Other languages
Chinese (zh)
Other versions
TW201107595A (en
Inventor
Mitsuya Baba
Original Assignee
Mitsubishi Heavy Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd filed Critical Mitsubishi Heavy Ind Ltd
Priority to TW098128301A priority Critical patent/TWI376454B/en
Publication of TW201107595A publication Critical patent/TW201107595A/en
Application granted granted Critical
Publication of TWI376454B publication Critical patent/TWI376454B/en

Links

Classifications

    • Y02E10/722

Description

1376454 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種風車及風車葉片之除冰方法 【先前技術】 開發有各種各 為防止因冰之附著造成風車之性能降低 才^·之除冰方法。 美國專利公開第2006/0018752號公報 张揭不有於風車葉 片所設置之流路流動經以加熱器加熱之空氣而對風車葉 片除冰之方法,與檢測附著於風車葉片之冰之方法。溫度 δ己錄系統係用於冰之檢測。 又 /國專利第6890152號公報揭示有檢測風車葉片之冰附 二使風車葉片之至少一部分振動而從風車葉片振落冰之 万法。例如,設於風車葉片内。 笹μ α 早某片内之振動益生成音波而使風車 茱片振動。該音波之頻率為5〜5〇〇 Ηζ。 曰本特開2004-84527號公鉬福千古由 观A報揭不有風車之冰附著防止運 轉控制裝置。風車之轉+ I供〃 轉子八備奴角可嫒之葉片。冰附著防 止運轉控制裝置係於氣溫在驻— 、轧恤在特疋之閾值以下,溫度在特定 之閾值以上,風速在拉仝+ ω # -疋之閾值以下,且風車停止中允 轉待機中之時,輸出^ θ不使葉片之旋角減小至特定之旋 角。冰附著防止運轉控制裝置係、於輸出指示後於轉子之旋 轉速度達到特定之間值以上時’輸出連接於轉子之主軸制 動器之啟動指示。 [先行技術文獻] [專利文獻] 142755.doc 1376454 [專利文獻i]美國專利公開第2006/〇〇18752號、公報 [專利文獻2]美國專利第689〇152號公報 [專利文獻3]曰本特開2〇〇4_84527號公報 【發明内容】 ~ Τ'求门 冰之飛散之風車及風車葉片之除冰方法。 根據本發明之第!觀點之風車,係具備具有複數葉片之 轉子與除冰部。前述除冰部只對複數葉片中之方位角被勺 含於特定範圍之葉片造行除冰動作。前述特定範圍係包含 於9〇度以上、270度以下之範圍,且包含180度。 前述除冰部宜具傷獨立控制前述複數葉片之各自繞旋角 ,之旋=之旋角控制部。前述除冰動作中,前述旋角控制 部=於前述葉片施加前述葉片之繞旋心之旋轉振動。 動=宜為控制前述旋轉振動’以使前述旋轉振 助頸率為前述箪w 上之整數倍,、π翼方向之振動之共振頻率之1以 1::。除:部宜具備方位角檢測部。前述複數葉片包含第 、刖述方位角檢測部係檢測前述第1葉片之第i方位 角。前述旋角控制部於 弟1方位 圍時,料义.+一丨於别述第1方位角包含於前述特定範 叙㈣第1葉片施加前述第1葉片之繞旋角軸之旋韓 振動。前述第丨方彷&土4 疋月釉之紅轉 第1葉片之旋角保持-定前述特定範圍時,將前述 旋=::::,宜具備獨立地控制前述複數葉片之各自繞 之旋角控制部,與設於支持前述轉子之塔柱 142755.doc 1376454 之音響產生器。前述除冰動作中,前述旋角控制部係以良 好,態或旋角與良好狀態成18〇度相異之反轉狀態保持前 述葉片,前述音響產生器對於前述葉片輸出音波。 前述除冰部宜具備檢測前述複數葉片之各方位角之方位 角檢測部。前述複數葉片包含第!葉片。前述旋角控制邹 於前述第1葉片之第1方位角包含於前述特^範圍時,以戸 好狀態或旋角與良好狀態成18〇度相異之反轉狀態保㈣ 述弟1葉片,前述第1方位角未包含於前述特;t範圍時,以 平行狀態、良好狀態與平行狀態之間之狀態、或旋角 好狀態成1 80度相里之;5鐘灿$办τ '、艮 持前述第丨葉片。轉“與平行狀態之間之狀態保 =音響1生器於前述複數葉片之任—葉片之 未!:含於前述特定範圍之情形,宜不輸出音波。' 如述音波之頻率眘& 數倍。 之共振頻率之UX上之整 别述除冰部宜具備結冰檢測二 檢測部檢測到前述轉子 則’…部於前述結冰 作D 之、“之情形,執行前述除冰動 前述除冰部於前述結冰檢測部 之情形,宜停止前述除冰動作之執行。"w轉子之結冰 二::::::::::?:部。〜前述 除冰動作。 凊形,執行前述 述除冰部宜定期性執行前述除冰動作 142755.doc 1376454 根據本發明之第2觀點之風車葉片之除冰方法,係包含 只:風車之轉子所具備之複數葉片中之方位角被包含二 定範圍之葉片執行除冰動作。前述特定範圍係包含於度 以上、270度以下之範圍,且包含18〇度。 又 執行前述除冰動作係宜包含對於前述葉片施加前述葉片 之繞旋角轴之旋轉振動。 前述風車葉片之除冰方法H步包含:於前述轉子 之旋轉中檢測前述複數葉片中之第i葉片之第丨方位角,前 述第1方位角包含於前述特定範圍時對於前述第丨葉片施加 刚述第1葉片之繞旋角軸之旋轉振動,及前述第1方位角未 包含於前述特定範圍時將前述第i葉片之旋角保持於一 定。 ' 執行前述除冰動作,係宜包含一面以良好狀態或旋角與 良好狀態成180度相異之反轉狀態保持前述葉片,—面由 設於支持前述轉子之塔柱之音響產生器向前述葉片輸出音 波。 刖述風車葉片之除冰方法,宜進一步包含:於前述轉子 之旋轉中檢測前述複數葉片中之第1葉片之第1方位角,前 述第1方位角包含於前述特定範圍時以良好狀態或旋角與 良好狀態成1 80度相異之反轉狀態保持前述第1葉片,及前 述第1方位角未包含於前述特定範圍時以平行狀態良好 狀態與平行狀態之間之狀態、或旋角與良好狀態成18〇度 相異之反轉狀態與平行狀態之間之狀態保持前述第i葉 142755.doc 1376454 刖逑3 b產生益於前述複數葉片之任_葉片之 不包含於前述特定範圍之情形,宜不輪出音波。 句 前述除冰動作宜於前述轉子停止之狀態執行。 前述除冰動作宜於檢測到前述轉子之結冰之情形執一 前述風車葉片之除冰方法宜進一步包含未檢:轉 子之結冰之情形,停止前述除冰動作之執行。 、轉 前述除冰動作宜於檢測到特定之氣象條件 前述除冰動作宜定期性執行。 y執仃。 根據本發明,係提供—種進行財^之除冰時抑制冰 之飛散之風車及風車葉片之除冰方法。 / 【實施方式】 參照添附圖式’對本發明之實施形態之風車及風 之除冰方法進行以下說明。 ’、 (第1實施形態) 圖1係顯示本發明之第1實施形態之風車⑽。風車刚係 具備塔柱U、機搶12、轉子13。機搶12安裝於塔柱u之上 ^機搶以持料13可旋轉。因此,轉子13㈣機搶12 支持於塔柱11。轉子13之旋轉抽為水平或大致水平。轉子 13具備㈣14、葉片15AM5C。㈣14位於轉扣之旋轉 軸上。葉片15A〜15C於軸轂14之周圍以等間隔配置。此處 雖對轉子!3具備葉片之數量為3之情形進行了說明,但葉 片之數量亦可為2或4以上。葉片15A〜况之基端部安裝於 軸叙14。軸轂14具備旋角致動器ΐ6Α〜ΐ6。 一 C分別驅動葉一c繞旋角轴二^ 142755.doc 1376454 即,旋角致動器16A〜16C分別控制葉片15A〜15C之旋角。 轉子13受風後向圖丨之箭頭方向旋轉。風車1〇〇利用轉子 13之旋轉發電。轉子13旋轉後改變葉片15八〜15C之各方位 角。葉片15A位於軸轂14之正上方時,葉片15A之方位角 為〇度。若從葉片15A之方位角為〇度之狀態,轉子13向箭 頭方向旋轉90度,則葉片15A之方位角成為9〇度。若從葉 片15A之方位角為9〇度之狀態,轉子13向箭頭方向旋轉9〇 度,則葉片15A之方位角成為18〇度。葉片15八之方位角為 180度時,葉片15A位於軸轂14之正下方,從轉子丨^之旋轉 軸方向來看,葉片15A與塔柱u重合。若從葉片15八之方 位角為180度之狀態,轉子〗3向箭頭方向旋轉9〇度,則葉 片1SA之方位角成為wo度。若從葉片isa之方位角為27〇 度之狀態,轉子13向箭頭方向旋轉9〇度,則葉片15八之方 位角回到0度。葉片15B及15C之方位角亦與葉片之方 位角同樣地定義。 圖2係顯示葉片1从之旋角軸17八、邊緣方向52、葉片厚 方向53 '繞旋角抽旋轉振動及襟翼方向振動之關係。旋角 ㈣A、邊緣方向52及葉片厚方向㈣此垂直。邊緣方向 52係葉片15A之葉片弦方向。葉片厚方向53係葉片μ之 厚度方向.%旋角軸之旋轉振動係葉片! 5 A之繞旋角軸 17A之旋轉振動。襟翼方向振動係旋角軸17A與葉月厚方 向53所展開平面内之葉片15八之振動。對於葉月及μ 亦與葉片15A同樣,定義邊緣方向、葉片厚方向、繞旋角 軸之旋轉振動及襟翼方向振動。 142755.doc 1376454 > .…圖3,風車loo具備除冰部2〇〇。除冰部2〇〇具備方位 角檢測部21 '結冰檢測部22、控制部23 '旋角控制部邮 茱片15A〜15C。旋角控制部16具備旋角致動器16八〜 因於茶片15A〜15C分別對應設置旋角致動器16八〜16(:,故 旋角控制部16可獨立地控制葉片15A〜15C之各自繞旋角轴 17A〜17C之旋轉。 方位角檢測部21將表示葉片15A之方位角之方位角信號 φ 3°A、表不葉片158之方位角之方位角信號30B及表示葉片 15C之方位角之方位角信號3〇c向控制部23輸出。例如, 彳位角檢測部21具備檢測葉片15A之方位角之感測器、檢 測葉片15B之方位角之感測器及檢測葉片15(:之方位角之 感測器。或者,方位角檢測.部21具備檢測轉子13之特定部 位之方位角之感測器,與基於特定部位之方位角藉由運算 檢測葉片15A乃至l5c之各方位角之運算部。 結冰檢測部22例如基於葉片15A〜15C之圖像,檢測葉片 φ 15 A〜15C之結冰。結冰檢測部22亦可基於施加於葉片之荷 重、各葉片之荷重之不平衡' 或特定之風速及旋角之推定 輸出與實際輸出之乖離,檢測葉片15A〜15C之結冰。 控制部23將旋角控制信號4〇A輸出至旋角致動器! 6A, 將旋角控制信號4 0 B輸出至旋角致動器丨6 B,將旋角控制 信號40C輸出至旋角致動器16C。旋角致動器16八基於旋角 控制信號40A,改變葉片15A之旋角或㈣__定4以 動器16B基於旋角控制信號4〇B,改變葉片uB之旋角或保 持疋。旋角致動器16C基於旋角控制信號4〇c,改變葉 J42755.doc 片15C之旋角或保持—定 於控制部23,設定方位 r m 奋” L 之特定範圍Θ。如圖1所示特定 範圍Θ心α度以上、β2 y °α度係90度以上、180度以 下。β度係180度以上、27 卜 又以下。從而,方位角之特定 範圍e包含於9〇度以上、2 度以下之範圍,且包含180 度0 以下 明。 對第1實施形態之風車葉月 之除冰方法進行說 除冰部2〇0於結冰檢測部22檢測到葉片15A〜15C之任意 一個之結冰之情形,執行下述之動作。下述動作於轉子13 旋轉之狀態下執行。 除冰部200只對複數葉片15八至15〇:中之方㈣被包含於 特定範圍Θ之葉片執行除冰動作。此處,執行除冰動作包 3旋角控制。p 1 6對於該葉片施加該葉片之繞旋角軸之旋轉 振動。 以下,進行詳細說明。 控制部23基於方位角信號3〇A〜3〇(:監視葉片15A至i5c之 各方位角。 葉月15A之方位角包含於特定之範圍θ時,控制部23將圖 4所不之表示旋角速度ω之波形之旋角控制信號40A向旋角 致動器16Α輸出。根據圖4之波形,旋角速度ω交互重覆於 時間Τ/2之間穩定為叫,於時間τ/2之間穩定為-ω〇。旋角致 動器16Α基於表示圖4之波形之旋角控制信號4〇α,於葉片 15 Α施加繞旋角軸17Α之旋轉振動。藉此葉片15 Α振動,使 142755.doc 10 1376454 冰從葉片15A振落。 葉片15B之方位角包含於特定之範圍㊀時之動作及葉片 c之方位角包含於特定之範圍θ時之動作與葉片^八之 方㈣包含於特定之範圍9時之前述動作相同。1376454 VI. Description of the Invention: [Technical Field] The present invention relates to a method for deicing a windmill and a windmill blade. [Prior Art] Various types of windmills have been developed to prevent the performance of the windmill from being lowered due to the adhesion of ice. Ice method. U.S. Patent Publication No. 2006/0018752 discloses a method in which a flow path provided by a windmill blade flows through a heater-heated air to de-ice the windmill blade, and a method of detecting ice attached to the windmill blade. Temperature The δ recorded system is used for the detection of ice. Further, Japanese Patent No. 6,890,152 discloses a method of detecting the ice attachment of a wind turbine blade to vibrate at least a part of the wind turbine blade to shake off the ice from the wind turbine blade. For example, it is placed in a windmill blade.笹μ α The vibration in the early part of the film generates sound waves that cause the windmill to vibrate. The frequency of the sound wave is 5~5〇〇 Ηζ. Sakamoto opened the 2004-84527 public molybdenum Fuyue from the observation of the A report without the ice of the windmill to prevent the operation of the control device. The turn of the windmill + I supply 叶片 The rotor of the rotor eight horns can be smashed. The ice adhesion prevention operation control device is set such that the temperature is below the threshold of the temperature and the threshold of the rolling, the temperature is above a certain threshold, the wind speed is below the threshold of + ω # -疋, and the windmill is stopped during standby. At this time, the output ^ θ does not reduce the rotation angle of the blade to a specific rotation angle. The ice adhesion prevention operation control device outputs an activation instruction of the spindle brake connected to the rotor when the rotation speed of the rotor reaches a predetermined value or more after the output instruction. [PRIOR ART DOCUMENT] [Patent Document] 142755.doc 1376454 [Patent Document i] US Patent Publication No. 2006/〇〇18752, Japanese Patent Publication No. 689〇152 (Patent Document 3) JP-A-2-4527 [Invention] [ 发明 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 求 。 。 。 。 。 。 。 。 According to the invention! The windmill of the viewpoint has a rotor having a plurality of blades and a deicing portion. The foregoing de-icing section only performs a de-icing action on the blade in which the azimuth angle of the plurality of blades is scooped in a specific range. The foregoing specific range is included in the range of 9 degrees or more and 270 degrees or less, and includes 180 degrees. Preferably, the de-icing portion is adapted to independently control the respective rotation angles of the plurality of blades, and the rotation angle control portion. In the above-described deicing operation, the rotation angle control unit=rotates the rotation of the rotation center around the rotation of the blade in the blade. The motion = preferably is to control the aforementioned rotational vibration ' such that the rotational vibrating neck ratio is an integral multiple of the aforementioned 箪w, and the resonance frequency of the vibration in the π-wing direction is 1::. In addition: the department should have an azimuth detection department. The plurality of blades include a first and a second azimuth angle detecting unit for detecting an ith azimuth angle of the first blade. When the rotation angle control unit is in the azimuth of the first aspect, the first azimuth angle is included in the specific expression (4). The first blade applies the rotation vibration of the first blade to the rotation angle axis. When the rotation angle of the first blade is the same as the rotation angle of the first blade, the above-mentioned rotation =::::, it is preferable to independently control the respective plurality of blades. A rotation angle control unit and an acoustic generator provided in a column 142755.doc 1376454 supporting the rotor. In the above-described deicing operation, the rotation angle control unit holds the above-described blade in an inverted state in which the state or the rotation angle is different from the good state by 18 degrees, and the acoustic generator outputs the sound wave to the blade. Preferably, the deicing portion includes an azimuth detecting portion that detects the respective corners of the plurality of blades. The aforementioned plurality of blades contain the first! blade. The rotation angle control is in a state in which the first azimuth angle of the first blade is included in the above-mentioned range, and the inversion state is different from the good state by a degree of rotation of 18 degrees. (4) The first azimuth angle is not included in the above-mentioned special range; in the parallel state, the state between the good state and the parallel state, or the state of the good rotation angle is in the phase of 180 degrees; Hold the aforementioned third leaf. Turning the state between the state and the parallel state = sound 1 generator in the above-mentioned multiple blades - the blade is not!: In the case of the above specific range, the sound wave should not be output. ' As described in the frequency of the sound wave caution & The defrosting frequency of the UX on the UD is preferably provided with the icing detection. The second detecting unit detects that the rotor is in the case where the icing is performed as the icing, and the foregoing deicing operation is performed. In the case where the ice portion is in the above-described ice detecting portion, it is preferable to stop the execution of the aforementioned deicing operation. "w rotor icing 2::::::::::?: Department. ~ The aforementioned deicing action. The method of removing the ice from the wind turbine blade according to the second aspect of the present invention is to perform the above-described deicing operation. The method of removing the ice from the wind turbine blade according to the second aspect of the present invention includes only the plurality of blades of the rotor of the windmill. The azimuth is performed by a blade containing two ranges of deicing operations. The aforementioned specific range is included in the range of 270 degrees or less and includes 18 degrees. Further performing the aforementioned deicing operation preferably includes applying a rotational vibration of the aforementioned blade to the aforementioned blade to the aforementioned blade. The step H of the wind turbine blade de-icing method includes: detecting, in the rotation of the rotor, a second azimuth angle of the i-th blade of the plurality of blades, wherein the first azimuth angle is included in the specific range, and the first blade is applied to the second blade The rotational vibration of the first blade about the rotation angle axis and the first azimuth angle are not included in the specific range, and the rotation angle of the i-th blade is kept constant. ' Performing the aforementioned deicing operation, preferably includes maintaining the aforementioned blade in a reverse state in which the good state or the rotation angle is 180 degrees different from the good state, and the surface is provided by the acoustic generator provided on the column supporting the rotor to the foregoing The blade outputs sound waves. The method of deicing a wind turbine blade further includes: detecting a first azimuth angle of the first one of the plurality of blades during rotation of the rotor, wherein the first azimuth angle is in a good state or in a state of being included in the specific range The inverted state in which the angle is different from the good state at 180 degrees holds the first blade, and when the first azimuth angle is not included in the specific range, the state between the parallel state and the parallel state, or the rotation angle and The state in which the good state is 18 degrees and the state of the inverted state and the parallel state maintains the aforementioned i-th leaf 142755.doc 1376454 刖逑3 b which is beneficial to the above-mentioned plurality of blades is not included in the aforementioned specific range In the case, it is advisable not to turn out the sound waves. The foregoing deicing operation is preferably performed in a state where the aforementioned rotor is stopped. The deicing operation is suitable for detecting the icing of the rotor. The deicing method of the wind turbine blade further includes undetected: the icing of the rotor, and stopping the execution of the deicing operation. The above-mentioned deicing operation is suitable for detecting specific meteorological conditions. The aforementioned deicing operation should be performed periodically. Y stubborn. According to the present invention, there is provided a method for deicing a windmill and a windmill blade for suppressing the scattering of ice when performing deicing. [Embodiment] The windmill and wind deicing method according to the embodiment of the present invention will be described below with reference to the accompanying drawings. (First Embodiment) Fig. 1 shows a windmill (10) according to a first embodiment of the present invention. The windmill has a tower column U, a machine grab 12, and a rotor 13. The machine grabs 12 and is installed on the column u. The machine grabs the material 13 and can rotate. Therefore, the rotor 13 (four) machine grabs 12 to support the tower column 11. The rotation of the rotor 13 is drawn horizontally or substantially horizontally. The rotor 13 is provided with (four) 14 and blades 15AM5C. (4) 14 is located on the rotating shaft of the buckle. The blades 15A to 15C are arranged at equal intervals around the hub 14. Here is the rotor! 3 The case where the number of blades is 3 is explained, but the number of blades may be 2 or more. The base end portion of the blade 15A is attached to the shaft 14. The hub 14 is provided with a rotation angle actuator ΐ6Α~ΐ6. A C drives the leaf-c rotation angle axis respectively. 142755.doc 1376454 That is, the rotation angle actuators 16A to 16C control the rotation angles of the blades 15A to 15C, respectively. The rotor 13 is rotated in the direction of the arrow after the wind is received by the wind. The windmill 1 uses the rotation of the rotor 13 to generate electricity. After the rotor 13 rotates, the angles of the blades 15 to 15C are changed. When the blade 15A is located directly above the hub 14, the azimuth of the blade 15A is a twist. When the azimuth angle of the blade 15A is the state of the twist and the rotor 13 is rotated by 90 degrees in the direction of the arrow, the azimuth angle of the blade 15A becomes 9 degrees. When the azimuth angle of the blade 15A is 9 degrees, the rotor 13 is rotated by 9 degrees in the direction of the arrow, and the azimuth angle of the blade 15A is 18 degrees. When the azimuth angle of the blade 15 is 180 degrees, the blade 15A is located directly below the hub 14, and the blade 15A coincides with the column u as viewed from the direction of the rotation axis of the rotor. When the rotor angle of the blade 15 is 180 degrees and the rotor 3 is rotated by 9 degrees in the direction of the arrow, the azimuth angle of the blade 1SA becomes wo degrees. When the azimuth angle of the blade isa is 27 degrees, the rotor 13 is rotated by 9 degrees in the direction of the arrow, and the square angle of the blade 15 is returned to 0 degree. The azimuth angles of the blades 15B and 15C are also defined in the same manner as the azimuth angle of the blades. Fig. 2 is a view showing the relationship between the rotational vibration of the blade 1 from the rotational angle axis 17, the edge direction 52, the blade thickness direction 53' around the rotational angle, and the vibration in the flap direction. The rotation angle (4) A, the edge direction 52, and the blade thickness direction (4) are vertical. The edge direction 52 is the blade chord direction of the blade 15A. Blade thickness direction 53 series blade μ thickness direction. % rotation axis rotation vibration system blade! 5 A rotation of the rotation axis 17A. The flap direction vibration is caused by the vibration of the blade 15 in the plane in which the corner axis 17A and the leaf month thickness direction 53 are developed. For the leaf month and μ, as in the blade 15A, the edge direction, the blade thickness direction, the rotational vibration around the rotation axis, and the flap direction vibration are defined. 142755.doc 1376454 > .... Figure 3, the windmill loo has a de-icing section 2〇〇. The deicing unit 2 includes an azimuth angle detecting unit 21'the icing detecting unit 22, and a control unit 23' slewing angle control unit mailing sheets 15A to 15C. The rotation angle control unit 16 includes a rotation angle actuator 16 VIII. Since the tea pieces 15A to 15C are respectively provided with the rotation angle actuators 16 to 16 (:, the rotation angle control unit 16 can independently control the blades 15A to 15C. The respective azimuth angle detecting portions 21 rotate the azimuth angle signal φ 3°A indicating the azimuth angle of the blade 15A, the azimuth angle signal 30B indicating the azimuth angle of the blade 158, and the blade 15C. The azimuth azimuth signal 3〇c is output to the control unit 23. For example, the clamp angle detecting unit 21 includes a sensor that detects the azimuth of the blade 15A, a sensor that detects the azimuth of the blade 15B, and the detecting blade 15 ( The sensor of the azimuth angle, or the azimuth angle detecting portion 21 is provided with a sensor for detecting the azimuth angle of a specific portion of the rotor 13, and the position of the blade 15A or 15c is detected by calculation based on the azimuth angle of the specific portion. The icy detecting unit 22 detects the icing of the blades φ 15 A to 15C based on the images of the blades 15A to 15C, for example, and the icing detecting unit 22 may also apply the load applied to the blades and the load of each blade. Unbalanced or specific precession of wind speed and angle of rotation The output is separated from the actual output, and the freezing of the blades 15A to 15C is detected. The control unit 23 outputs the rotation angle control signal 4〇A to the rotation angle actuator! 6A, and outputs the rotation angle control signal 4 0 B to the rotation angle. The actuator 丨6 B outputs the rotation angle control signal 40C to the rotation angle actuator 16C. The rotation angle actuator 16 changes the rotation angle of the blade 15A based on the rotation angle control signal 40A or (4) __4 actuator 13B The rotation angle of the blade uB is changed or the enthalpy is maintained based on the rotation angle control signal 4〇B. The rotation angle actuator 16C changes the rotation angle or the hold of the leaf J42755.doc piece 15C based on the rotation angle control signal 4〇c. In the portion 23, the specific range of the orientation rm 奋 "L" is set. As shown in Fig. 1, the specific range is greater than or equal to α degrees, and β2 y ° is 90 degrees or more and 180 degrees or less. The β degree is 180 degrees or more, 27 卜. Further, the specific range e of the azimuth angle is included in the range of 9 degrees or more and 2 degrees or less, and includes 180 degrees 0 or less. The deicing unit 2 is described in the deicing method of the windmill leaf month according to the first embodiment. 〇0 is detected by the icing detecting unit 22 in the case where any one of the blades 15A to 15C is frozen. The following operation is performed in a state where the rotor 13 is rotated. The de-icing unit 200 performs only the eight-to-five 〇 of the plurality of blades 15: the middle (four) is subjected to the deicing operation by the blades included in the specific range 。. Here, execution is performed. The deicing operation package 3 is rotated. The rotational vibration of the blade around the rotation axis is applied to the blade. Hereinafter, the control unit 23 will be described in detail based on the azimuth signal 3〇A to 3〇(: monitoring blade When the azimuth angle of the leaf 15A is included in the specific range θ, the control unit 23 outputs the rotation angle control signal 40A indicating the waveform of the rotational angular velocity ω to the rotational angle actuator 16Α. . According to the waveform of Fig. 4, the angular velocity ω is alternately repeated between time Τ/2 and stabilized as -ω〇 between time τ/2. The rotation angle actuator 16A applies a rotational vibration about the rotation angle axis 17Α to the blade 15 Α based on the rotation angle control signal 4〇α indicating the waveform of Fig. 4 . By this, the blade 15 Α vibrates, causing the 142755.doc 10 1376454 ice to vibrate from the blade 15A. The action of the azimuth of the blade 15B at a specific range and the action of the azimuth of the blade c in a specific range θ are the same as those described above when the blade (four) is included in the specific range 9.

葉片15Α之方位角未包含於特定之範圍θ時控制部23將 表不疋之旋角之旋角控制信號40Α向旋角致動器16Α輸 出此處’一疋之旋角係平行狀態之旋角或接近於平行狀 態之狀態之旋角。《角致動器16Α基於表示一定之旋角之 旋角控制信號4GA,將葉片15Α之旋角保持一定。 葉片15Β之方位角未包含於特定之範圍㊀時之動作,及葉 片5C之方位角未包含於特定之範圍㊀時之動作,與葉片 15Α之方位角未包含於特定之範圍θ時之前述動作相同。 除冰部200於結冰檢測部22未檢測到葉片1 5Α〜丨5 c之結 冰之情形,停止前述動作之執行。 根據本貫鈿形態,只對方位角於度以上、2川度之範When the azimuth angle of the blade 15Α is not included in the specific range θ, the control unit 23 outputs the rotation angle control signal 40 of the rotation angle to the rotation angle actuator 16Α to output the rotation angle of the parallel state of the rotation angle of the blade. Or a rotation angle close to the state of the parallel state. The angular actuator 16A keeps the rotation angle of the blade 15Α constant based on the rotation angle control signal 4GA indicating a certain rotation angle. The action of the azimuth angle of the blade 15Β is not included in the specific range, and the action of the azimuth angle of the blade 5C is not included in the specific range, and the aforementioned action when the azimuth angle of the blade 15Α is not included in the specific range θ the same. The deicing unit 200 stops the execution of the above-described operation when the ice detecting unit 22 does not detect the freezing of the blades 15 5 Α 5 5 c. According to the form of the present, only the azimuth is above the degree, and the range of 2 degrees is

圍之葉片執饤除冰動作。從而,可抑制因除冰動作而從葉 片振落之冰廣範圍地飛散。特別係因對於位於比機搶^更 :位置之葉片不進行除冰動作’故可防止因除冰動作而從 葉片振落之冰造成機艙12破損。 此外’因未執行除冰動作m呆持平行狀⑽接近於 平行狀態之狀態’故可防止轉子13快速旋轉。從而.,各葉 片通過方位角之特定範圍θ所需時間變長,可使葉片較大 地振動。 結冰檢測部22未檢測到葉片15Α〜15C之結冰之情形停止 142755.doc 除冰動作之執行,藉此可防止葉片丨5 A〜丨5 c於無冰狀態下 無效地執行除冰動作。 此外’旋角致動器16A至16C,以施加於葉片15A〜15C之 旋轉振動之頻率為葉片15A〜15C之共振頻率之1以上之整 數倍之方式控制其旋轉振動,藉此可使葉片15八〜丨冗大幅 地震動。共振頻率亦可稱為固有振動數。葉片15A〜15C之 共振頻率係例如葉片15 A〜15C之扭轉振動之共振頻率或葉 片15A〜15C之襟翼方向之振動之共振頻率。 根據本貫施形態,可不設置如加熱器之除冰專用之裝置 而進行葉片15A〜15C之除冰。 根據本實施形態,藉由旋角致動器16A〜16C使葉片 15A〜15C繞旋角軸17A〜17C往復旋轉運動,對葉片 15 A〜15 C周期性施加衝擊(大的加速度)。藉由該衝擊從葉 片15A〜15C剝離冰。又’旋角速度ω之波形並非限定於如 圖4所示之矩形波形。只要可對葉片15Α〜15C施加充分大 之旋角加速度,則旋角致動器i 6A〜丨6C亦可以正弦波狀改 變旋角速度之方式’使葉片1 5 A〜1 5C繞旋角轴1 7A~ 1 7C往 復旋轉運動。 以下’對第1實施形態之變形例之風車葉片之除冰方法 進行說明。 除冰部200於結冰檢測部22檢測到葉片15A〜15C之結冰 之情形,執行下述動作。 控制部23於葉片15A之方位角於180度之位置停止轉子i 3 之狀態,將表示圖4之波形之旋角控制信號40 A向旋角致動 142755.doc 12 1376454 器16A輸出。旋角致動器16A基於表示圖4之波形之旋角控 制L號40A ’對葉片15A施加繞旋角軸17A之旋轉振動。藉 此葉片15A振動,冰從葉片15A振落。 除冰部200對葉片15B及15C亦與葉片15A之情形同樣地 進行除冰。 除冰部200於結冰檢測部22未檢測到葉片丨5A〜15C之結 冰之情形,停止前述動作之執行。 第1貫施形嘘之變形例之情形,亦以旋角致動器丨6 A至 16C施加於葉片15A〜15C之旋轉振動之頻率為葉片 15A〜15C之共振頻率之!以上之整數倍之方式控制其旋轉 振動’使葉片15A〜15C可較大地振動。 (第2實施形態) 圖5係顯不本發明之第2實施形態之風車11〇。風車i 1〇係 於第1實施形態之風車1〇〇加設音響產生器24者。音響產生 器24設於塔柱11。 參照圖6,風車11〇具備除冰部21〇。除冰部21〇係於除冰 部200加設音響產生器24者。 以下,對第2實施形態之風車葉片之除冰方法進行說 明。 除冰部210於結冰檢測部22檢測到葉片i5A〜15(:之結冰 之it形’執行下述之動作。下述之動作於轉子13旋轉之狀 態下執行。 除冰部210只對葉片15A至15C中方位角包含於特定之範 圍Θ之葉片執行除冰動作。此處執行除冰動作,係包含旋 142755.doc 角控制部16以良好狀態或旋角與良好狀態成18〇度相異之 反轉狀態保持該葉片,音響產生器24對於該葉片輸出音 波。 以下進行詳細說明。 控制部23基於方位角信號3〇A〜3〇c監視葉片i5A至i5c之 各方位角。控制部23使音響產生器24持續輸出音波。因音 響產生器24設於塔柱U,故音響產生器24對位於方位角 度之位置或其附近位置之葉片施加較強之振動能量, 但對位於遠離方位角18〇度之位置之葉片幾乎不施加振動 能量。 -葉片15A之方位角包含於特定之範圍㊀時,控制部Μ將表 不良好狀態或反轉狀態之旋角之旋角控制信號暢向旋角 =動器Μ輸出。旋角致動器似基於表示良好狀態或反 狀痛之旋肖之旋角控制信號4GA,保持葉片Μ於良好 狀態或反轉狀態。葉片15A受到來自音響產生器^之音波 =動’使冰從茶片15A振因葉片BA為良好狀態或 轉狀態’故葉片15A以較大面積承受音波。 葉片15B之方位角包含於特定之範圍e時之動作,及荦片 I5C之方位角包令於牲〜 > 枯 汉果乃 ^於特疋之知圍θ時之動作,與葉片i5A之 方位角包含於衫之範@θ時之前述動作相同。 葉二5k方位角未包含於特定之範圍Θ時控制部珊 出、不办Γ之旋角之旋角控制信號4〇Α向旋角致動器―輸 出。此處,一定之旋角係 狀態之狀態之旋肖w,或接近於平行 接k於平行狀態之狀態係平行狀態與 I42755.doc 1376454 良好狀態之間之狀態,或平杆#能& = u 凡十仃狀態與反轉狀態之間之狀 態。旋角致動器16A基於表示一宏々松& 、衣不疋之旋角之旋角控制信號 4〇A ’保持葉片15A於平杆壯能七植.匕 a _ 仃狀態或接近於平行狀態之狀 態。因葉片15 A為平行狀竑& & μ τ 狀態或接近於平行狀態之狀態,且 位於遠離方位角為1 8〇度之 乏位置,故茱片15Α不會藉由來自 音響產生器24之音波而振動。 葉月15Β之方位角未包含於特定之範圍㈣之動作,及葉 片况之方位角未包含於特定之範圍0時之動作與苹片、 15Α之方位角未包含於特定之範料之前述動作相同。 除冰部210於結冰檢測部22未檢測到葉片15Α〜15C之結 冰之情形,停止前述動作之執行。 根據本實施形態,只對位於 乃位角為180度之位置或其 附近之位置之葉片進行除冰動 ^ _ μ U此可抑制因除冰動 作而從葉片振落之冰大範圍 现欢特別係因不對位於比 機搶12更高位置之葉片執行除 ^ 仃陈冰動作,故可防止因除冰動 作而從葉片振落之冰造成機艙12破損。 此外’因未執行除冰動作之葉片保持在平行狀態或接近 於平行狀態之狀態,故可防止轉子13快速旋轉。因此,各 葉片通過方位角之特定範圍θ所需要之時 片較大地振動。 吏 因結冰檢測部2 2未檢測到葉片1 5 Α〜15 C之結冰之情形停 止除冰動作之執行,故可防止葉片15A〜15c於無冰狀態^ 效地執行除冰動作。 此外,藉由使音響產生器24輸出 别扣 < 曰波之頻率為葉片 142755.doc 1376454 15A〜15C之共振頻率之1以上之整數倍,可使葉片15A〜15c 較大地振動。葉片15A〜15C之共振頻率係例如葉片 15A〜15C之扭轉振動之共振頻率或葉片15A〜i5C之襟翼方 向之振動之共振頻率。 又,葉片15A至15C之任意一葉片之方位角均不包含於 特定之範圍Θ之情形,控制部23宜不使音響產生器24輪出 音波。該情形’可削減用於產生音波之能量。 以下,對第2實施形態之變形例之風車葉片之除冰方法 進行說明。 除冰部210於結冰檢測部22檢測到葉片15八〜15(:之結冰 之情形,執行下述之動作。 控制部23以葉片1 5 A之方位角為i 80度之位置停止轉子丄3 之狀態,將表示良好狀態或反轉狀態之旋角之旋角控制信 號40A向旋角致動器16A輸出,使音響發生器24輸出音 波。旋角致動器16A基於表示良好狀態或反轉狀態之旋角 之旋角控制信號40A,保持葉片15A於良好狀態或反轉狀 態。葉片15A承受來自音響產生器24之音波而振動,使冰 從葉片15A振落。 除冰。P 210對葉片! 5B及丨5C亦與葉片i 5 a之情形同樣地 進行除冰。 除冰部210於結冰檢測部22未檢測到葉片15人〜15(:之結 冰之情形,停止前述動作之執行。 第2實施形態之變形例之情形,亦藉由使音響產生器24 輸出之音波之頻率為葉片15A〜15C之共振頻率之丨以上之 I42755.doc 1376454 整數倍,而可使葉片15A〜15C較大地振動。 (第3實施形態) 係第1實施形 ^除冰部220 件檢測部25 參照圖7,本發明之第3實施形態之風車, 態之風車1〇〇之除冰部200置換為除冰部22〇者 係除冰部200之結冰檢測部22置換為氣象條 者0The leaves of the leaves are used to remove the ice. Therefore, it is possible to suppress the wide range of ice scattered from the blade due to the deicing operation. In particular, since the deicing operation is not performed on the blade located at the position of the machine, it is possible to prevent the cabin 12 from being damaged due to the ice that has been shaken by the blade due to the deicing operation. Further, since the deicing operation m is not performed in a state in which the parallel shape (10) is close to the parallel state, the rotor 13 can be prevented from rotating rapidly. Therefore, the time required for each blade to pass the specific range θ of the azimuth becomes long, and the blade can be largely vibrated. The icing detecting unit 22 does not detect the icing of the blades 15 Α 15 C C. The 142 755. doc deicing operation is performed, thereby preventing the blade 丨 5 A 丨 5 c from performing the deicing operation in an ice-free state. . Further, the 'rotational angle actuators 16A to 16C control the rotational vibration so that the rotational vibration applied to the blades 15A to 15C is an integral multiple of one or more of the resonance frequencies of the blades 15A to 15C, whereby the blade 15 can be made. Eight ~ 丨 cumbersome shocks. The resonant frequency can also be referred to as the natural vibration number. The resonance frequencies of the blades 15A to 15C are, for example, the resonance frequencies of the torsional vibrations of the blades 15 A to 15C or the resonance frequencies of the vibrations in the flap directions of the blades 15A to 15C. According to the present embodiment, the deicing of the blades 15A to 15C can be performed without providing a device dedicated to deicing of the heater. According to the present embodiment, the blades 15A to 15C are reciprocally rotated about the rotation angle axes 17A to 17C by the rotation angle actuators 16A to 16C, and the blades 15 A to 15 C are periodically subjected to an impact (large acceleration). The ice is peeled off from the blades 15A to 15C by the impact. Further, the waveform of the angular velocity ω is not limited to the rectangular waveform as shown in Fig. 4 . As long as a sufficiently large angular acceleration can be applied to the blades 15 Α 15 15C, the spheroidal actuators i 6A 丨 6C can also change the angular velocities in a sinusoidal manner to make the blades 1 5 A to 15 C around the rotational axis 1 7A~ 1 7C reciprocating rotary motion. Hereinafter, a method of deicing a wind turbine blade according to a modification of the first embodiment will be described. The deicing unit 200 detects the icing of the blades 15A to 15C at the icing detecting unit 22, and performs the following operation. The control unit 23 stops the state of the rotor i 3 at a position where the azimuth angle of the blade 15A is 180 degrees, and outputs the rotation angle control signal 40 A indicating the waveform of Fig. 4 to the rotation angle actuation 142755.doc 12 1376454. The rotation angle actuator 16A applies rotational vibration about the rotation angle shaft 17A to the blade 15A based on the rotation angle control L No. 40A' indicating the waveform of Fig. 4. By this, the blade 15A vibrates and the ice vibrates from the blade 15A. The deicing unit 200 performs deicing in the same manner as in the case of the blades 15A for the blades 15B and 15C. When the ice removing unit 22 does not detect the freezing of the blade turns 5A to 15C in the ice detecting unit 22, the execution of the above-described operation is stopped. In the case of the modification of the first embodiment, the frequency of the rotational vibration applied to the blades 15A to 15C by the rotation angle actuators A6 A to 16C is the resonance frequency of the blades 15A to 15C! The above-described integral multiples control the rotational vibration thereof to cause the blades 15A to 15C to vibrate largely. (Second Embodiment) Fig. 5 shows a wind turbine 11 according to a second embodiment of the present invention. The windmill i 1 is attached to the wind generator 1 of the first embodiment. The sound generator 24 is provided on the column 11. Referring to Fig. 6, the windmill 11A is provided with a de-icing portion 21A. The de-icing unit 21 is attached to the de-icing unit 200 to add an acoustic generator 24. Hereinafter, a method of deicing a wind turbine blade according to a second embodiment will be described. The deicing unit 210 detects the blades i5A to 15 in the icing detection unit 22 (the icing type of icing is performed as follows). The following operation is performed in a state where the rotor 13 is rotated. The deicing unit 210 is only The blade 15A to 15C includes a blade having azimuth angle in a specific range to perform a deicing operation. Here, the deicing operation is performed, and the rotation control unit 16 is included. The angle control portion 16 is 18 degrees in a good state or a rotation angle and a good state. In the opposite inversion state, the blade is held, and the acoustic generator 24 outputs sound waves to the blade. Hereinafter, the control unit 23 monitors the respective corners of the blades i5A to i5c based on the azimuth signals 3A to 3c. The portion 23 causes the sound generator 24 to continuously output sound waves. Since the sound generator 24 is disposed in the column U, the sound generator 24 applies strong vibration energy to the blades located at or near the azimuth angle, but is located away from the blade. The blade with azimuth angle of 18 degrees hardly applies vibration energy. - When the azimuth angle of the blade 15A is included in a specific range, the control unit Μ will control the rotation angle of the rotation angle of the surface in the inferior state or the reverse state. to The rotation angle = the actuator output. The rotation angle actuator is based on the rotation angle control signal 4GA indicating the good state or the reverse pain, keeping the blade in a good state or a reverse state. The blade 15A is received from the sound generator. ^Sound wave = move 'to make ice from the tea piece 15A because the blade BA is in a good state or in a rotating state', so the blade 15A is subjected to sound waves over a large area. The azimuth of the blade 15B is included in a specific range e, and The azimuth of the piece I5C is used to make the stalks of the stalks and the stalks of the stalks of the stalks of the stalks of the stalks of the stalks. When the azimuth angle is not included in the specific range, the control unit is out of the corner, and the rotation angle control signal of the rotation angle is 4〇Α to the rotation angle actuator-output. Here, the state of the rotation angle state is fixed. The state of the rotation w, or the state close to the parallel state of the parallel state, is the state between the parallel state and the good state of I42755.doc 1376454, or the flat bar #能& = u between the tenth state and the inverted state State. The angle actuator 16A is based on the representation of an Acer Pine & The rotation angle control signal 4〇A' of the rotation angle maintains the state of the blade 15A in the flat rod. The state of the 匕a _ 仃 state or the state close to the parallel state. Because the blade 15 A is parallel 竑&& μ τ The state is close to the state of the parallel state, and is located at a position away from the azimuth angle of 18 degrees, so that the cymbal 15 Α does not vibrate by the acoustic wave from the acoustic generator 24. The azimuth of the leaf is not included in the specific The action of the range (4) and the azimuth of the blade condition are not included in the specific range 0. The action is the same as the above-mentioned action in which the azimuth of the film and the 15Α azimuth is not included in the specific specification. When the ice removing unit 210 does not detect the freezing of the blades 15A to 15C in the freezing detecting unit 22, the execution of the above-described operation is stopped. According to the present embodiment, the deicing operation is performed only on the blade located at or near the position of the 180 degree position, thereby suppressing the large range of ice that is shaken from the blade due to the deicing operation. Because the blade is not operated on the blade located at a higher position than the machine 12, the damage of the nacelle 12 caused by the ice falling from the blade can be prevented. Further, since the blades in which the deicing operation is not performed are maintained in a parallel state or in a state close to the parallel state, the rotor 13 can be prevented from rotating rapidly. Therefore, the time required for each blade to pass through the specific range θ of the azimuth angle is largely vibrated.吏 Since the icing detection unit 2 2 does not detect the icing of the blades 1 5 Α 15 C, the execution of the deicing operation is stopped, so that the blades 15A to 15c can be prevented from performing the deicing operation in an ice-free state. Further, the blades 15A to 15c can be largely vibrated by causing the acoustic generator 24 to output an exclusive value of 1 or more of the resonance frequency of the blades 142755.doc 1376454 15A to 15C. The resonance frequencies of the blades 15A to 15C are, for example, the resonance frequency of the torsional vibration of the blades 15A to 15C or the resonance frequency of the vibration of the blades 15A to i5C in the flap direction. Further, the azimuth angle of any one of the blades 15A to 15C is not included in the specific range ,, and the control unit 23 should not cause the acoustic generator 24 to emit sound waves. This situation can reduce the energy used to generate sound waves. Hereinafter, a method of deicing a wind turbine blade according to a modification of the second embodiment will be described. The deicing unit 210 performs the following operation in the case where the ice detecting unit 22 detects the blade 15 to 15 (the ice is formed). The control unit 23 stops the rotor at a position where the azimuth angle of the blade 15 A is i 80 degrees. In the state of 丄3, the rotation angle control signal 40A indicating the rotation angle of the good state or the reverse state is output to the rotation angle actuator 16A, and the acoustic generator 24 outputs the sound wave. The rotation angle actuator 16A is based on indicating a good state or The rotation angle control signal 40A of the inversion state maintains the blade 15A in a good state or an inverted state. The blade 15A vibrates by the sound waves from the acoustic generator 24, causing the ice to vibrate from the blade 15A. Deicing. 5B and 丨5C are also de-iced in the same manner as in the case of the blade i 5 a. The de-icing unit 210 does not detect the blade 15 to 15 in the icing detecting unit 22 (the icing is stopped, the operation is stopped) In the case of the modification of the second embodiment, the blade 15A can also be obtained by making the frequency of the sound wave output from the acoustic generator 24 an integer multiple of I42755.doc 1376454 above the resonance frequency of the blades 15A to 15C. ~15C vibrates greatly. (Third embodiment In the wind turbine of the third embodiment of the present invention, the de-icing unit 200 of the windmill 1 of the present invention is replaced with the de-icing unit 22, except for the de-icing unit 22 The ice detecting unit 22 of the ice portion 200 is replaced by the weather bar.

除冰部220於氣象條件檢測扣檢❹丨特定之氣象條件 之情形’執行第!實施形態之除冰部之動作或第 形態之變形例 < 除冰部200之動作。此處,特 X 件係表示易發生結冰之氣象條件,例如包含氣溫在特^ 閾值以下,濕度在特定之閾值以上。 々 於第2實施形態之除冰部21〇,結冰檢測心亦可 氣象條件檢測部25。具備氣象條件檢測部25之除冰部 21〇 ’於氣象條件檢測部25檢測到特定之氣象條件之; 形,進行第2實施形態之除冰部21〇之動作或第2實: 之變形例之除冰部210之動作。 心 此外,既可定期性執行第1實施形態之除冰部200之動作 或第1貫㈣叙變形例之除冰部之㈣,亦可 執行第2實施形態之除冰部21。之動作或第2實施形態之織 形例之除冰部2 1 〇之動作。 又 對於前述各實施形態,亦可以控制部㈣ 15A〜15C之方位角變化檢測轉子13之旋轉速度,於料 之旋轉速度在特定之間值以下時執行除冰動作 加變更。 她 142755.doc •17· 1376454 以上’雖參照實施形態對本發明進行了說明,但本發明 亚非局限於前述實施形態者《既可對前述實施形態進行各 種各樣之變更,亦可使前述實施形態之間互相組合。 【圖式簡單說明】 本發明之前述目的、其他目的、效果及特徵,藉由添附 之圖式與實施形態之記述’進一步明確。 圖1係本發明之第1實施形態之風車之正面圖。 圖2係顯示葉片之旋角軸、邊緣方向、葉片厚方向、繞 旋角軸旋轉振動及襟翼方向振動之關係。 圖3係第1實施形態之除冰部之方塊圖。 圖4係顯示第i實施形態之除冰部之控制部向旋角致動器 輸出之旋角控制信號之波形之圖。 圖5係本發明之第2實施形態之風車之侧面圖。 圖6係第2實施形態之除冰部之方塊圖。 圖7係本發明之第3實施形態之除冰部之方塊圖。 【主要元件符號說明】 11 12 13 14 15A 〜15C 16The de-icing unit 220 performs the operation of the de-icing unit or the modification of the first embodiment in the case where the weather condition detection is checked for the specific weather condition. The operation of the de-icing unit 200 is performed. Here, the special X is a weather condition that is prone to icing, for example, the temperature is below the threshold and the humidity is above a certain threshold. In the de-icing unit 21A of the second embodiment, the icing detection center may be the weather condition detecting unit 25. The deicing unit 21' of the weather condition detecting unit 25 detects the specific weather condition in the weather condition detecting unit 25, and performs the operation of the deicing unit 21 or the second embodiment of the second embodiment. The action of the deicing unit 210. In addition, the deicing unit 21 of the second embodiment or the deicing unit of the first embodiment can be periodically executed, and the deicing unit 21 of the second embodiment can be executed. The operation or the operation of the deicing unit 2 1 of the knitting example of the second embodiment. Further, in each of the above embodiments, the rotational speed of the rotor 13 may be detected by the azimuth change of the control unit (4) 15A to 15C, and the deicing operation may be performed when the rotational speed of the material is equal to or lower than a specific value. 142755.doc •17·1376454 or more Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above-described embodiments, and various modifications may be made to the above-described embodiments, and the above-described embodiments may be implemented. Forms are combined with each other. BRIEF DESCRIPTION OF THE DRAWINGS The above-mentioned objects, other objects, advantages and features of the present invention will become more apparent from the description of the appended drawings and the description. Fig. 1 is a front view of a windmill according to a first embodiment of the present invention. Fig. 2 shows the relationship between the rotation angle axis, the edge direction, the blade thickness direction, the rotation angle axis rotation vibration, and the flap direction vibration of the blade. Fig. 3 is a block diagram of the deicing portion of the first embodiment. Fig. 4 is a view showing the waveform of a rotation angle control signal which is output from the control unit of the deicing unit of the i-th embodiment to the rotation angle actuator. Fig. 5 is a side view showing a wind turbine according to a second embodiment of the present invention. Fig. 6 is a block diagram of the deicing portion of the second embodiment. Fig. 7 is a block diagram showing a de-icing unit according to a third embodiment of the present invention. [Main component symbol description] 11 12 13 14 15A ~ 15C 16

16A 〜16C 17A 〜17C 塔柱 機搶 轉子 轴較 葉片 旋角控制部 旋角致動器 旋角軸 142755.doc -18- 137645416A ~ 16C 17A ~ 17C Tower Collet Rotor Axis Comparison Blade Rotation Control Section Rotary Angle Actuator Rotary Angle 142755.doc -18- 1376454

21 方位角檢測部 22 結冰檢測部 23 控制部 24 音響產生器 25 氣象條件檢測部 30A〜30C 方位角信號 40A-40C 旋角控制信號 52 邊緣方向 53 葉片厚方向 100 風車 110 風車 200 ' 210 、 220 除冰部21 azimuth detecting unit 22 freezing detecting unit 23 control unit 24 acoustic generator 25 weather condition detecting unit 30A to 30C azimuth signal 40A-40C rotation angle control signal 52 edge direction 53 blade thickness direction 100 windmill 110 windmill 200 ' 210 220 deicing department

142755.doc •19-142755.doc •19-

Claims (1)

υ/Ό4^4 七、申請專利範圍: 1 · 一種風車,其係具備: 具有複數葉片之轉子;及 除冰部; /述除冰部只對前述複數葉片中之方位角被包含於特 定範圍之葉片執行除冰動作; 則述特疋範圍係包含於90度以上、270度以下之範 圍’且包含180度。 2. 、。月求項1之風車’其中前述除冰部具備獨立控制前述 复數葉片之各自繞旋角軸之旋轉之旋角控制部; 3. :述,冰動作中,前述旋角控制部係對於前述葉片施 加刖述葉片之繞旋角軸之旋轉振動。 4. ^清求項2之風車,其^述旋角控制部係控制前述旋 振動’讀前述旋轉振動之料為前述“之襟翼方 。之振動之共振頻率之】以上之整數倍。 =求項2或3之風車前述除冰部具備方位角檢測 前述複數葉片包含第1葉片; =位角檢測部檢測前述&葉片之^方位角; =疋角㈣料於前述第1方位角包含於前述特定 之旋轉二於前述第1葉片施加前述第1葉月之繞旋角軸 之杈轉振動,於前述第〗方位角 B# . ^ - + ^ 月禾包含於前述特定範圍 時將别述第1葉片之旋角保持一定。 5. 如請求項1之風車,其中前述除冰部具備: 142755.doc 獨立地控制別述複數葉片之各自繞旋角軸之旋轉之旋 角控制部;及 設於支持前述轉子之塔桎之音響產生器; I t除冰動作中’兩述旋角控制部以良好狀態或旋角 ^良好狀態成180度相異之反轉狀態保持前述葉片,前 述曰響產生器對於前述葉片輸出音波。 如明求項5之風車,其中前述除冰部具備檢測前述複數 葉片之各方位角之方位角檢測部; 月'J述複數葉片包含第1葉片; 二則述旋角控制部係於前述第丨葉片之第丨方位角包含於 月J述特疋範圍時,以良好狀態或旋角與良好狀態成〗 度相異之反轉狀態保持前述第丨葉片,於前述第丨方位角 ^包含於前述特定範圍時,以平行狀態、良好狀態與平 仃狀態之間之狀態' 或旋角與良好狀態成180度相異之 反轉狀態與平行狀態之間之狀態保持前述第1葉片。 .如明求項5或6之風車,其中前述音響產生器於前述複數 :、 任葉片之方位角均未包含於前述特定範圍之情 形,不輸出音波》 求項5或6之風車,其中前述音波之頻率為前述葉片 之共振頻率之1以上之整數倍。 9·如凊求項1、2及5中任-項之風車,其中前述除冰部具 備結冰檢測部; 1、除冰部於前述結冰檢測部檢測到前述轉子之纟士水 月开v ’執行前述除冰動作。 142755.doc 10. 月求項9之風車’其令前述除冰部 未檢測丨… 〜冰檢测部 執行hu述轉子之結冰之情形,停止前述除冰動作之 11. 12. 13. 14. 15. 如請求項1。n r I i 、 2及5中任一項之風車,其中俞,+、^ 備氣象條件檢測部; ,、巾^除冰部具 則述除冰部於前述氣象條件檢測部檢 條件之情形,執行前述除冰動作。 心之氣象 如。月求項1、2及5中任一項之風車,其中 期性執行前述除冰動作。 〃中㈣除冰部定 :=;::::法’其係包含…車之轉子所 旻數某片中之方位角被包含於特定範 行除冰動作; 固之某片執 則述特定範圍係包含於9〇 圍,且包含180度。 270度以下之範 如請求項U之風車葉片之除冰方法,其 動作係包含對於針# 、 ,執行除冰 轉振動。、“茱片施加前述葉片之繞旋角軸之旋 如二項14之風車葉片之除冰方法,其進—步包含. 於刖述轉子之旋轉中檢測前述複數葉片中之第 3/ 之第1方位角; 矛乃甲之弟1茱片 前述第1方位备6 A 角包含於前述特定範圍時, 葉片施加前述笫1埜口 α ί於月IJ述弟1 '、片之繞旋角軸之旋轉振動; 刖述第1方位自土 Α人 角未包含於前述特定範圍時 葉片之旋角保持—定。 將引达弟1 142755.doc 16.如請求項13之風車華 〃片之除冰方法,其中前述執行除冰 動作係包含一面以良好抽能 (好狀態或奴角與良好狀態成ι8〇度 相異之反轉狀態保持前述葉H由設於支持前述轉 子之塔柱之音響產生器向前述葉片輸出音波。 17·如請求項16之風車葉片之除冰方法,其進-步包含: 於則述轉子之旋轉中檢測前述複數葉片中之第1葉片 之第1方位角; ' 刖述第1方位角包合私 月匕3於則述特定範圍時,以良好狀離 或旋角與良好狀態成i ^ 琅80度相異之反轉狀態保持前述 葉片; 如述第1方位角去入^ 士人 鸬未G s於刖述特定範圍時,以 態、良好狀態與平行肤能夕„ ^ t 心之間之狀態、或旋角與良好妝 態成1 80度相異之反轉壯 狀 前述第i葉片。 態與平行狀態之間之狀態保持 18. 如請求们⑷7以車^之 產生,於刚述複數葉片之任一葉片之方位角 心 前述特定範圍之情形,不輸出音波。 3於 19. 如請求項〗3、14及16 .^ _ 仕項之風車茱片之除冰方法, 其中别述除冰動作於俞H、絲2产 凌 卞於則述轉子停止之狀態下執行。 20. 如請求項13、14乃/ IP t任—項之風車^之除冰方法 其中則述除冰動作於檢測到前述轉子之 = 行。 又情形執 -如請求項20之風車葉片之除冰方法,其係進 未檢測到前述轉子之結冰之情形停止前述除冰動^於 142755.doc 1376454 行。 22. 如請求項13、14及16中任一項之風車葉片之除冰方法, 其中前述除冰動作於檢測到特定之氣象條件之情形執 行。 23. 如請求項13、14及16中任一項之風車葉片之除冰方法, 其中前述除冰動作定期性執行》υ/Ό4^4 VII. Patent application scope: 1 · A windmill comprising: a rotor having a plurality of blades; and a de-icing portion; / the de-icing portion is only included in a specific range for the azimuth angle of the plurality of blades The blade performs a deicing operation; the characteristic range is included in a range of 90 degrees or more and 270 degrees or less and includes 180 degrees. 2. ,. The windmill of the first aspect of the present invention, wherein the deicing portion has a rotation angle control portion that independently controls the rotation of each of the plurality of blades; wherein: in the ice operation, the rotation angle control portion is for the blade The rotational vibration of the blade about the axis of rotation is applied. 4. The wind turbine of claim 2, wherein the rotation angle control unit controls the rotation vibration to read the rotation vibration material as an integral multiple of the resonance frequency of the vibration of the "flap side". The wind turbine of the second or third aspect includes the azimuth angle detection. The plurality of blades include the first blade; the position angle detecting unit detects the azimuth angle of the &blade; and the corner angle (4) is included in the first azimuth angle. In the above-mentioned specific rotation, the first blade is subjected to the yaw vibration of the first leaf month, and the yaw azimuth B# . ^ - + ^ y y is included in the specific range. 1. The rotation angle of the blade is kept constant. 5. The windmill of claim 1, wherein the de-icing portion has: 142755.doc independently controlling a rotation angle control portion for rotating the respective rotation angle axes of the plurality of blades; In the I t deicing operation, the two rotation angle control portions maintain the aforementioned blades in a state of reversal in a good state or a rotation angle and a good state in a 180 degree state, the aforementioned squeaking Generator for the aforementioned blade The wind turbine according to claim 5, wherein the deicing portion includes an azimuth detecting portion for detecting a plurality of corners of the plurality of blades; and the plurality of blades of the moon includes a first blade; and wherein the rotation angle control portion is When the second azimuth angle of the second blade is included in the range of the monthly description, the first blade is maintained in a reverse state in which the good state or the rotation angle is different from the good state, and the azimuth angle is in the aforementioned azimuth angle ^ When it is included in the above-described specific range, the first blade is held in a state in which the state between the good state and the flat state is parallel, and the state between the inverted state and the parallel state is different from the good state by 180 degrees. The windmill of claim 5 or 6, wherein the acoustic generator is in the foregoing plural number: the azimuth angle of any blade is not included in the specific range, and the sound wave is not output. The frequency of the sound wave is an integer multiple of 1 or more of the resonance frequency of the blade. The wind turbine of any of items 1, 2, and 5, wherein the deicing portion includes an ice detecting portion; In the foregoing The ice detecting unit detects the gentleman's water opening v' of the rotor to perform the aforementioned deicing operation. 142755.doc 10. The windmill of the month 9 of the present invention, which causes the aforementioned deicing portion to be undetected... The ice detecting unit executes hu In the case of the icing of the rotor, the above-mentioned deicing operation is stopped. 11. 12. 13. 14. 15. As in claim 1, the windmill of any of nr I i , 2 and 5, wherein Yu, +, ^ The meteorological condition detecting unit; , the towel and the deicing unit, the deicing unit performs the above-described deicing operation in the case of the meteorological condition detecting unit. The weather is as follows: the monthly items 1, 2, and 5 A windmill that performs the aforementioned de-icing action in a medium-term manner. 〃中(4)De-icing section:=;::::法's system contains...the azimuth of a certain number of pieces of the car is included in a specific range of de-icing actions; It is included in 9 inches and contains 180 degrees. 270 degrees or less The method of deicing of the windmill blade of claim U, the action of which includes performing a de-icing vibration for the needle #. "The squeezing method applies the entanglement of the above-mentioned blade to the axis of rotation of the blade, such as the deicing method of the wind turbine blade of the second item 14, the step of which includes: detecting the third of the plurality of blades in the rotation of the rotor 1 azimuth; 1 矛 矛 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 叶片 叶片 叶片 叶片 叶片Rotating vibration; narration 1st orientation When the angle of the soil is not included in the above specific range, the rotation angle of the blade is maintained. The reference will be given to the younger brother. 1 142755.doc 16. De-icing of the windmill Huajing piece of claim 13 The method, wherein the performing the deicing operation comprises performing an inversion state in which a good pumping energy (a good state or a slave angle is in a state different from a good state), and maintaining the aforementioned leaf H is generated by an acoustic system provided in a column supporting the rotor The method of extracting sound waves from the blade according to claim 16, wherein the step of deicing the wind turbine blade of claim 16 further comprises: detecting a first azimuth angle of the first one of the plurality of blades in the rotation of the rotor; Narrative 1st azimuth inclusion private moon 匕 3 When the specific range is described, the blade is held in a reversal state in which the good angle or the rotation angle is different from the good state by i ^ 琅 80 degrees; as described in the first azimuth angle, the 士士人鸬不 G s在刖When the specific range is described, the state of the state, the state of goodness and the state of the parallel skin energy, or the angle between the rotation angle and the good makeup state of 1 80 degrees, the inversion of the aforementioned i-th blade. State and parallel The state between the states is maintained 18. If the requester (4) 7 is generated by the vehicle, the sound wave is not output in the case of the aforesaid specific range of the azimuth of any of the plurality of blades. 3, 19. , 14 and 16 .^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 14 is / IP t 任 - Item of the windmill ^ deicing method, wherein the deicing action is detected in the rotor = the second row. In other cases - such as the wind removal method of the windmill blade of claim 20, it is not Detecting the icing of the aforementioned rotor to stop the aforementioned deicing operation 142755.doc The method of deicing a wind turbine blade according to any one of claims 13, 14 and 16, wherein the foregoing deicing operation is performed in the case where a specific meteorological condition is detected. 23. If the claims 13 and 14 The method for deicing a windmill blade according to any one of the above, wherein the foregoing deicing operation is performed periodically 142755.doc142755.doc
TW098128301A 2009-08-21 2009-08-21 Wind turbine and de-icing method of wind turbine blade TWI376454B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098128301A TWI376454B (en) 2009-08-21 2009-08-21 Wind turbine and de-icing method of wind turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098128301A TWI376454B (en) 2009-08-21 2009-08-21 Wind turbine and de-icing method of wind turbine blade

Publications (2)

Publication Number Publication Date
TW201107595A TW201107595A (en) 2011-03-01
TWI376454B true TWI376454B (en) 2012-11-11

Family

ID=44835293

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098128301A TWI376454B (en) 2009-08-21 2009-08-21 Wind turbine and de-icing method of wind turbine blade

Country Status (1)

Country Link
TW (1) TWI376454B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213191A (en) * 2011-05-20 2011-10-12 叶卫 Device and method for preventing rotor blade of wind driven generator from freezing

Also Published As

Publication number Publication date
TW201107595A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
JP5383658B2 (en) Wind turbine and wind turbine blade deicing method
CA2785916C (en) Method for operating a wind energy installation
ES2895658T3 (en) Method and apparatus for inhibiting the formation of and/or removing ice from aircraft components
US9279412B2 (en) Flow control on a vertical axis wind turbine (VAWT)
JP5090023B2 (en) Eddy current generating cyclic propeller
CN102459891B (en) A wind power plant and a method of operating a wind power plant
Maldonado et al. Active control of flow separation and structural vibrations of wind turbine blades
EP2235366A2 (en) Active flow control device and method for affecting a fluid boundary layer of a wind turbine blade
US9447771B2 (en) Piezoelectric-based wind turbine
JP2004084527A (en) Ice adhesion preventive operation controlling device of windmill, and ice adhesion preventive operation controlling method
CN102220935A (en) Configurable winglet for wind turbine blades
TWI376454B (en) Wind turbine and de-icing method of wind turbine blade
WO2013026127A1 (en) Cross-wind-axis wind-turbine rotor vane
Overmeyer et al. Rotating testing of a low-power, non-thermal ultrasonic de-icing system for helicopter rotor blades
Overmeyer et al. Actuator bonding optimization and system control of a rotor blade ultrasonic deicing system
Rodgers et al. Hover testing of a 1/6 th Mach-scale CH-47 D blade with integral twist actuation
JP5688250B2 (en) Wind power generator and method of operating wind power generator
Koratkar et al. Testing and validation of a Froude-scaled helicopter rotor model with piezo-bimorph-actuated trailing edge flaps
JP4151940B2 (en) Vertical axis windmill
Zhu et al. Ultrasonic drive of small mechanical components on a tapered metal strip
Okoye et al. Experimental Flow Visualization Study of Flow Separation Control With High-Frequency Translational Surface Actuation
Bryant et al. Investgation of Wake Effects in Aeroelastic Flutter Vibration Energy Harvesting
Abdi et al. Unsteady surface pressure measurement on a pitching air foil
EP2404057A2 (en) Vertical axis wind turbine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees