TWI376116B - De-glitch circuit - Google Patents

De-glitch circuit Download PDF

Info

Publication number
TWI376116B
TWI376116B TW98109174A TW98109174A TWI376116B TW I376116 B TWI376116 B TW I376116B TW 98109174 A TW98109174 A TW 98109174A TW 98109174 A TW98109174 A TW 98109174A TW I376116 B TWI376116 B TW I376116B
Authority
TW
Taiwan
Prior art keywords
signal
switch
logic
output
circuit
Prior art date
Application number
TW98109174A
Other languages
Chinese (zh)
Other versions
TW201036361A (en
Inventor
Ting Chun Huang
Kuan Yu Chen
Yuan Hsun Chang
Original Assignee
Faraday Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faraday Tech Corp filed Critical Faraday Tech Corp
Priority to TW98109174A priority Critical patent/TWI376116B/en
Publication of TW201036361A publication Critical patent/TW201036361A/en
Application granted granted Critical
Publication of TWI376116B publication Critical patent/TWI376116B/en

Links

Landscapes

  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Description

1376116 _—_ P200809002-TW 29792twf.doc/n 98109174 (無劃線)修正替換頁 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種消除電路,且特別是有關於一種 脈衝干擾消除電路。 【先前技術】 在高速有線傳輸系統中,例如通用串列匯流排 (universal serial bus,USB)、PCI-E 或序列先進技術附件1376116 ___ P200809002-TW 29792twf.doc/n 98109174 (without scribe line) correction replacement page VI, invention description: [Technical field] The invention relates to a cancellation circuit, and in particular to a pulse interference Eliminate the circuit. [Prior Art] In high-speed wired transmission systems, such as universal serial bus (USB), PCI-E or serial advanced technology accessories

(serial advanced technology attachment,SATA),其接收 端通常會透過一個高速的比較器,來判斷收到的資料信號 是有效資料還是雜訊。若資料信號的差動振幅大於參考電 壓而被比較器判斷為“資料”,則比較器可以輸出“〇,,來表示 此時的資料紐是有效資料。反之,若:賴信號的差動: 幅小於參考電壓而被比較器判斷為“雜訊,’,則比較器輸x “1”以表示此時的資料信號是雜訊。 圃1兩為知脈衡干擾波形產生示意圖。請參照圖工, 在理想狀況T,發送端所傳遞的絲信賴(f料信 $ Dm的上升時間和下降時間均視為零,使得在資料 ‘ 大於參考編被比較器判斷‘ 在實際高速傳輸的條件‘出。然而 號(差動信號對Dp與Dm)的上糊 於零,且當傳輸線越長時, 吁門”,、法趨近 ^會越雜钱。當㈣錢 輯0轉態為賴丨)而發生電解位切 3 98109174(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 料信號Dp/Dm在上升緣與下降緣的差值(即切換過程中的 差動振幅)會暫時性的小於參考電壓,因此在比較器的實際 輸出波形SReal在資料信號Dp/Dm作電壓準位切換期間會產 生脈衝干擾(glitch)。此現象會造成傳輸系統接收資料錯 誤。 因此,通常這種高速比較器的輸出,都要經過一個脈 衝干擾消除電路(De-Glitch circuit),以消去不想要的脈衝 干擾。最常見的脈衝干擾消除電路如圖2A所示,圖2A為 習知脈衝干擾消除電路的系統示意圖。請參照圖2A,脈衝 干擾消除電路200是利用延遲電路(Delay) 201先造成脈 衝干擾的時間延遲,再邏輯電路和比較器的原始輸出 信號做邏輯運算(在此以及閘202為例),來達到脈衝干 擾消除的目的。 圖B為圖2A的彳§號波形示意圖。請參照圖及圖 2B ’比較杰的輸出信號Sq會和延遲信號 =邏觀算後,及請所輸出的波形衝干 == 的脈衝干擾的寬度有限,當脈衝干2太寬: 再怎麼作延遲,都無法完全錯開輸 信號Sqd’因此無法消去所有可能會 出現的脈斜擾。其:為延遲電路的延遲時間會隨製程飄 ϊ致件/p顧SSCG耐)岐遲會有長有短, 導致U去喊寬_干肢歧加纽。當 作速度越快’及傳輸的線路越長時,資料錢於上升灯 1376116 98109174 (無射線)修正替換頁 P200809002-TW 29792twf.doc/n 降的時間在週期内佔的比例就會越高,因而產生更寬的脈 衝干擾’使得脈衝干擾消除電路2〇〇已經不敷使用。 另一種較常見的作法是使用峰值偵測器(Peak Detector)如圖3A所示。圖3A為習知峰值偵測器的電路 示意圖。圖3B為圖3A的信號波形示意圖。請參照圖3八 及圖3B,峰值偵測器300的原理是利用二級體D1及D2 的單向性,當資料信號Dp/Dm大於二級體D1及D2的導通 電塵時1對輪出電容C充電,使得電容c的龍準位會 • 上升。當雜錢Dp/Dm進行電壓準位切換的時候,由於 一’’及體D1及D2是單向導通,不會往輸入端放電,只會經 由微^的放電電流IL放電。因此只要資料信號Ο〆%有資 料,就可以將輸出〇ut的電壓維持在電壓Va之上。 >。田i料彳5號1)/〇111沒資料時,會經由放電電流1]1將輸 出信號Out㈣壓拉到,,〇,,,達到判斷資料信號〇瓜有資 料的目的。而峰值债測器3〇〇存在有兩個缺點,其一為此 =路,輸延遲(Pn)pagatk)nDday)與輸人的信號(亦即 • 資料#號Dp/Dm)的振幅相關’當信號的振幅越小時,經過 —極體D1及D2對電容的充電電流越小,輸出由,,〇,,變,,i” 祕輸延,越長,亦即輸出信號Qut的電壓由低電壓準 位充電至冋電壓準位的時間拉長。相對的,當輸出的信號 振幅越大時’輸出信號由”1”變,,〇,,的傳輸延遲也越長,亦 即輸出^& Out的電壓由高電壓準位放電至低電壓準位的時 間拉長°因此’峰值谓測器300沒辦法有效的掌控傳輸延 5 1376116 P200809002-TW 29792twf.doc/n 98109174(無劃線)修正替換頁 其一為般在實作上無法使用理想的二級體,若用 MOS电b日體當作一級體的單向性的話,仍會有微小的反向 電流,而反向電流會造成直流轉態點無法精率掌控。在一 般高,傳齡統中,騎有直流㈣點和交流轉‘點的規 格二若想使用峰值偵測器300來避免脈衝干擾的問題,會 使得直流㈣點和交流轉態點在設計上就更加困難。而 且’傳輸系統都會有傳輪延遲的規格,使用峰值偵測器3〇〇 亚無法準確掌控此傳輪延遲的時間。因此,峰值偵測器3㈨ 2能達職除脈衝谓’但是會影_傳輸純的其他 規格的設計,以致於應用上仍有較多限制。 【發明内容】 明提供—種脈衝干擾消除電路,可以消除資料信 〜在作電壓準位轉換時’由比較器所產生的脈衝干擾。 ^發明提出-種脈衝干㈣除電路,其包括多個信號 。這些信號傳送單元彼此串聯以形成—信號傳送 =串列,且健傳送單元串列㈣—個信號傳送單元接 $位信號。信號傳送單元包括第—開關、第—延遲電路 開關。第一開關的第一端麵接至信號傳送單元串列 送單元。第—延遲電路的輸人端麵接至 端&。第—開_接於第—延遲電路的輸出 為^壓之間。當數位信號為第—邏輯時,第一開關 笛—通’第二開關為導通。當數位信號為第二邏輯時, 弟—開關為導通,第二開關為不導通。 在本發明之-實施例中,上述之第一延遲電路包括第 P200809002-TW 29792twf.doc/n 98109174(無劃線)修正替換頁 電阻及_ 。第-電阻的第一端柄接第一開關的第 二端°第-電容_於第—電阻的第二端與第二電壓之間。 在本發明之-實施例中,上述之每一個信號傳送單元 都更包括-緩衝g ’其輸人端㈣第_延遲電路的輸出 端’而緩補的輸出_接至錢傳送單元串财 級信號傳送單元。 在本發明之-實施例中,上述之每一個信號傳送單元 都更包括第-反相器、第三開關、第二延遲電路、第四開 關及第二反相器。第—反相器的輸人端祕第—延遲電路 的輸出端。第二開關的第—端祕第—反相器的輪出端。 第二延遲電路的輸入端耦接至第三開關的第二端。第 關搞接於第二延遲電路的輸出端與_第三電壓之間。第二 反相器的輸人端_接第二延遲電路的輸出端,而第二反: ,的輸出雜接至錢傳送單元㈣巾的下__級信號傳送 單兀。當數位信號為第—邏輯時,第三開關為不導通 四開關為導通。當數位信號為第二邏輯時,第三開關 通,第四開關為不導通。 在本發明之-實施例中,上述之第二延遲電路包括 二,阻及第二電容。第二電阻的第—端祕第三開關的第 -端。第二電容輕接於第二電阻的第二端與第二電壓之間。 基於上述’本發明之脈衝干擾消除電路,在數Η 為第-邏輯時,讓這些信號傳送單㈣步輸出第_邏^ 且在數位錄$第二賴時,魏些錢傳料元依 出數位信號。藉此,當數位信號產生脈衝干擾(亦即數位: 1376116 P200809002-TW 29792twf.doc/n ----_______ , 98109174(無劃線)修正替換頁 號為第-邏輯)時’會由於多個信號傳送單元而被 运,且,數位信號回制第二邏輯時,脈衝干擾會因為信 號傳送單元同步輸出而被消除。 ° 為讓本發明之上述特徵和優點能更明顯易懂,下 舉實施例,並配合所關式作詳細綱如下。 、 【實施方式】 一 ° ^發明一實施例的脈衝干擾消除電路的系統 j圖。=照圖4A’脈衝干擾消除電路4〇〇具有信號傳 达早兀U〜41〇-X。信號傳送單元410—1〜410 X彼此串 傳送單元串列,並且信號傳送單元串列中^ =^則5_送單元4G1J接收數健號s卿,其中數位 H S:lgl =如為南速傳輸系統下比較器的輸出信號。當數 口号儿d*1轉態為第一邏輯時,信號傳送單 ^"40—X @步_第一邏輯1數位信號s邮轉離為 =邏=,信號傳送單元少410—x會依序逐級傳遞 SDJ。而信號傳送單元串列中崎後一個信號傳 ,早兀41〇—X的輸出端則作為脈衝干擾消除電路400的給 出端以提供輪出信號Sout。 ^ ㈣圖^為圖4A中數位信號S〇igi及輸出信號S⑽的波 ^照圖4A及圖4B,當數位號、由第二邏輯(例 準^ 改變至第一邏輯(例如為邏輯峨 410J^l0~x 。之’备數位號SDigi改變至邏輯低電遷準位時, 遽傳运早70 4ω-χ會同時輸出邏輯低電>1準位,以至於 981〇9口4(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 數位號sDigi波形中的下降緣時間Τ4ι與輸出信號s〇ut波 形中的下降緣幾乎相同。 依據尚速傳輸系統下比較器的運作原理,假設比較器 在時間T42〜T43發生脈衝干擾PL1,在此假設脈衝干擾 PL1為邏輯高電壓準位,亦即在時間T42〜T43中數位信號 SDigi改變為邏輯高電壓準位,而信號傳送單元 410_1〜410_X會依序傳遞數位信號SDigi,使得的脈衝干擾 PL1在輸出信號s〇ut中應該於時間T43〜T44出現(如虛線 所示脈衝干擾PL2)。然而’在時間Τ43時,數位信號SDigi 又改變回邏輯低電壓準位,使得信號傳送單元 41〇_1〜41〇—X會同步輸出邏輯低電壓準位。因此,在時間 T42〜T43中,信號傳送單元41〇一1〜4ΐ〇_χ會一個一個傳遞 脈衝干擾PL1的邏輯高電壓準位,而在時間T43時,信號 傳送單元410_1~410—X會同步輸出邏輯低電壓準位,使得 脈衝干擾PL1在傳遞的途中被消除,而輸出信號s〇ut仍保 持輸出邏輯低電壓準位。 其中’期間TD為信號傳送單元串列41〇_1〜41〇 X的 信號延遲的時間長度。若要調整期間Td可以透過調整信號 傳送單元的數量,或調整各信號傳送單元延遲的時間。並 且’當期間TD大於一個位元的傳送時間(bit time)的時候, 則不論脈衝干擾PL1的寬度有多大,皆會在數位信號回復 輸出邏輯低電壓準位時’由於信號傳送單元41〇_1〜41〇 X 的同步輸出邏輯低電壓準位而被消除。 接下來則詳述信號傳送單元如何實現,以使本發明實 98109174(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 施例再加具體。以下以信號傳送單元410一1為例,信號傳 送單元410_2〜410一X則以此類推。圖5為圖4A的信號傳 送单元410_1的電路示意圖。s青參照圖5,在信號傳送單 元410一1中,其包括第一開關SW1、第一延遲電^及第二 開關SW2。於本實施例中,第一延遲電路包括第一電阻 R1與第一電谷C1。第一電阻R1的第一端作為第一延遲電 路的輸入端以耗接第一開關SW1的第二端。第一電容ci 耦接於第一電阻R1的第二端與第二電壓(在此以接地電 壓為例)之間。在其他實施例中,可以利用在信號路徑上 的寄生電阻與寄生電容來分別實現第一電阻R1與第一電 容C1,因而可以省去實體電阻與實體電容。 山開關SW1的第一端為信號傳送單元41〇J的輸入 h用來輕接至仏號傳送單元串列中的前一級信號傳送單 兀。由於信號傳送單元410一 1是信號傳送單元串列的第一 個信號傳送單元’因此開關SW1的第-端用來接收數位信 號sDigi。.開關SW1的第二端輕接電阻R1的第一端。開關 SW2輕接於電阻R1的第二端與第—㈣(在此以接地電 壓為=)之間。於本實施例中,電阻R1的第二端為信號 傳运单it__l的輸出端,用以減至錢傳送單元串列 中的下-級信料送單元(在此為錢傳料元2)。 所屬領域具有通常技藝者可以任何方式實現上述開 ,SW1與SW2°例如,可以利用傳輸閘來實現開關SW1, 、利型金氧半導體(NMOS)電晶體來實現開關SW2。(serial advanced technology attachment, SATA), the receiver usually uses a high-speed comparator to determine whether the received data signal is valid or noise. If the differential amplitude of the data signal is greater than the reference voltage and is judged as "data" by the comparator, the comparator may output "〇," to indicate that the data key at this time is valid data. Conversely, if: the differential of the signal: When the amplitude is smaller than the reference voltage and the comparator determines "noise,", the comparator loses x "1" to indicate that the data signal at this time is noise.圃1 is a schematic diagram of the interference waveform generated by the knowing pulse. Please refer to the drawing worker. In the ideal condition T, the wire trust transmitted by the transmitting end (f the rise time and fall time of the material letter $ Dm are regarded as zero, so that the data 'is larger than the reference code is judged by the comparator' in the actual high-speed transmission The condition 'out. However, the number (differential signal to Dp and Dm) is past zero, and when the transmission line is longer, the door is called, and the method is closer to ^ will be more miscellaneous. When (4) money series 0 transition Electrolytic cuts occur for Lai 丨 3 98109174 (without scribe line) Correction replacement page P200809002-TW 29792twf.doc/n The difference between the rising edge and the falling edge of the material signal Dp/Dm (ie the differential amplitude during switching) It will be temporarily less than the reference voltage, so the actual output waveform of the comparator, SReal, will produce glitch during the voltage level switching of the data signal Dp/Dm. This phenomenon will cause the transmission system to receive data errors. Usually, the output of such a high speed comparator is subjected to a De-Glitch circuit to eliminate unwanted pulse interference. The most common pulse interference cancellation circuit is shown in Figure 2A, and Figure 2A is a conventional Pulse interference cancellation Referring to FIG. 2A, the pulse interference cancellation circuit 200 uses a delay circuit 201 to cause a time delay of the pulse interference, and then the logic circuit and the original output signal of the comparator perform a logic operation (here and the gate). 202 is an example) to achieve the purpose of pulse interference cancellation. Figure B is a schematic diagram of the waveform of Fig. 2A. Please refer to the figure and Figure 2B. 'Compared with the output signal Sq and the delayed signal = after the logic calculation, and please The output waveform is dry == The pulse interference width is limited. When the pulse dry 2 is too wide: no matter how delayed, the input signal Sqd' cannot be completely staggered. Therefore, all possible pulse skew disturbances cannot be eliminated. The delay time of the delay circuit will be delayed with the process, and the SSCG resistance will be long and short, which will cause the U to shout wide _ dry limbs. The faster the speed, the longer the transmission line When the data is raised in the rising light 1376116 98109174 (no ray) correction replacement page P200809002-TW 29792twf.doc / n the time of the fall will be higher in the cycle, thus producing a wider pulse interference 'making the pulse The interference cancellation circuit 2 is no longer sufficient. Another common practice is to use a Peak Detector as shown in Figure 3A. Figure 3A is a schematic circuit diagram of a conventional peak detector. Figure 3B is a diagram 3A signal waveform diagram. Referring to FIG. 3B and FIG. 3B, the principle of the peak detector 300 is to utilize the unidirectionality of the two-stage bodies D1 and D2, when the data signal Dp/Dm is larger than the lead of the second-order bodies D1 and D2. When the dust is energized, 1 charge the capacitor C, so that the dragon level of the capacitor c will rise. When the miscellaneous Dp/Dm is switched on the voltage level, since the one's and the bodies D1 and D2 are unidirectionally conductive, they will not discharge to the input terminal, and will only be discharged by the discharge current IL of the micrometer. Therefore, as long as the data signal Ο〆% is available, the voltage of the output 〇ut can be maintained above the voltage Va. >. When there is no data on the 5th 1)/〇111 of the field, the output signal Out(4) will be pulled to the (B) by the discharge current 1]1 to achieve the purpose of judging the data signal. The peak debt detector 3〇〇 has two shortcomings, one of which is = path, the transmission delay (Pn) pagatk) nDday) is related to the amplitude of the input signal (ie, the data #Dp/Dm). When the amplitude of the signal is small, the charging current of the capacitor through the polar bodies D1 and D2 is smaller, and the output is delayed by, and the longer, that is, the voltage of the output signal Qut is low. The time during which the voltage level is charged to the 冋 voltage level is elongated. In contrast, when the amplitude of the output signal is larger, the output signal is changed by 1", and the transmission delay is longer, that is, the output ^&amp The voltage of Out is extended from the high voltage level to the low voltage level. Therefore, the peak detector 300 has no way to effectively control the transmission delay. 5 1376116 P200809002-TW 29792twf.doc/n 98109174 (without line) Correction of the replacement page is generally not practical to use the ideal secondary body. If the MOS electric b body is used as the unidirectionality of the primary body, there will still be a slight reverse current, and the reverse current will The DC transition point cannot be controlled by precision. In the general high, the age, the ride has DC (four) points. If you want to use the peak detector 300 to avoid the pulse interference problem, it will make the DC (four) point and the AC transition point more difficult to design. And the transmission system will have the specifications of the transmission delay. The use of the peak detector 3 can not accurately control the delay of this transmission. Therefore, the peak detector 3 (9) 2 can meet the pulse of the 'but the shadow _ transmission pure other specifications of the design, so that the application There are still many restrictions. [Invention] The invention provides a pulse interference cancellation circuit, which can eliminate the data signal ~ the pulse interference generated by the comparator when performing voltage level conversion. ^Inventive Proposed - Kind of Pulse Dry (4) In addition to the circuit, it includes a plurality of signals. These signal transmission units are connected in series to each other to form a signal transmission = serial, and a transmission transmission unit serial (four) - a signal transmission unit is connected to a $bit signal. The signal transmission unit includes a first switch, a - a delay circuit switch. The first end face of the first switch is connected to the signal transmitting unit string feeding unit. The input end face of the first delay circuit is connected to the terminal & The output of the first delay circuit is between the voltages. When the digital signal is the first logic, the first switch flute-passes the second switch to be turned on. When the digital signal is the second logic, the brother-switch is turned on. The second switch is non-conducting. In the embodiment of the present invention, the first delay circuit includes P200809002-TW 29792twf.doc/n 98109174 (without scribe line) to correct the replacement page resistance and _. The first end of the first switch is connected to the second end of the first switch, and the second capacitor is between the second end of the first resistor and the second voltage. In the embodiment of the present invention, each of the signal transmitting units further includes - Buffer g 'the input end of the input terminal of the _ delay circuit of the input terminal (4) and the buffered output _ is connected to the money transfer unit string-level signal transmission unit. In an embodiment of the invention, each of the signal transmitting units further includes a first-inverter, a third switch, a second delay circuit, a fourth switch, and a second inverter. The input end of the first-inverter is the output of the delay circuit. The first end of the second switch - the wheel end of the inverter. The input end of the second delay circuit is coupled to the second end of the third switch. The first switch is connected between the output of the second delay circuit and the third voltage. The input end of the second inverter is connected to the output end of the second delay circuit, and the output of the second reverse: is mixed to the lower __ level signal transmission unit of the money transfer unit (four). When the digital signal is the first logic, the third switch is non-conductive. The four switches are conductive. When the digital signal is the second logic, the third switch is turned on, and the fourth switch is not turned on. In an embodiment of the invention, the second delay circuit comprises two resistors and a second capacitor. The first end of the third switch of the second resistor is the first end. The second capacitor is lightly connected between the second end of the second resistor and the second voltage. Based on the above-mentioned pulse interference cancellation circuit of the present invention, when the number is 第-logic, let these signals transmit a single (four) step output _ logic ^ and when the number is recorded at the second lag, Digital signal. In this way, when the digital signal generates pulse interference (that is, the digit: 1376116 P200809002-TW 29792twf.doc/n ----_______, 98109174 (without line) corrects the replacement page number as the first logic) When the signal transmission unit is shipped, and the digital signal is returned to the second logic, the pulse interference is eliminated due to the synchronous output of the signal transmission unit. In order to make the above features and advantages of the present invention more comprehensible, the following embodiments, as well as the related aspects, are set forth below. [Embodiment] A system diagram of a pulse interference canceling circuit of an embodiment of the invention is shown. = The pulse interference cancellation circuit 4A of Fig. 4A has a signal transmission early U~41〇-X. The signal transmitting units 410-1~410X serially transmit the serial strings of the units, and the signal transmitting unit string is ^^^5_the sending unit 4G1J receives the number sqing, wherein the digit HS: lgl = if it is a south speed transmission The output signal of the comparator under the system. When the number of slogans d*1 is changed to the first logic, the signal transmission unit ^"40-X @step_first logic 1 digit signal s zip to = logic =, the signal transmission unit is 410-x less The SDJ is passed in order. The signal transmission unit is arranged in the middle of a signal transmission in the middle of the array, and the output of the early detection signal is used as the output end of the pulse interference cancellation circuit 400 to provide the round-out signal Sout. ^ (4) Figure 2 is the waveform of the digital signal S〇igi and the output signal S(10) in Figure 4A. Figure 4A and Figure 4B, when the digit number is changed by the second logic (for example, the first logic (for example, logic 峨410J) ^l0~x. When the 'sequence number number SDigi changes to the logic low level, the 遽 运 70 70 70 ω χ χ 输出 输出 输出 输出 输出 输出 输出 输出 逻辑 逻辑 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Marking) Correction Replacement Page P200809002-TW 29792twf.doc/n The falling edge time in the sDigi waveform Τ4ι is almost the same as the falling edge in the output signal s〇ut waveform. According to the operating principle of the comparator under the speed transfer system, It is assumed that the comparator generates a pulse interference PL1 at times T42 to T43, and assumes that the pulse interference PL1 is at a logic high voltage level, that is, the digital signal SDigi changes to a logic high voltage level at times T42 to T43, and the signal transmission unit 410_1 ~410_X will pass the digital signal SDigi in sequence, so that the pulse interference PL1 should appear in the output signal s〇ut at time T43~T44 (as indicated by the dotted line, the pulse interferes with PL2). However, at time Τ43, the digital signal SDigi Change back to the logic low voltage level so that The signal transmission units 41〇_1 to 41〇-X will synchronously output the logic low voltage level. Therefore, in the time T42 to T43, the signal transmission unit 41〇1~4ΐ〇_χ will transmit the pulse interference PL1 one by one. The logic high voltage level, and at time T43, the signal transmitting units 410_1~410-X synchronously output the logic low voltage level, so that the pulse interference PL1 is eliminated on the way of transmission, and the output signal s〇ut remains output. Logic low voltage level, where 'period TD is the length of time delay of the signal transmission unit string 41〇_1~41〇X. If the period Td is to be adjusted, the number of signal transmission units can be adjusted, or each signal transmission can be adjusted. The time of the unit delay. And when the period TD is greater than the bit time of one bit, regardless of the width of the pulse interference PL1, the digital signal will return to the output logic low voltage level. The synchronous output logic low voltage level of the transfer units 41〇_1~41〇X is eliminated. Next, how the signal transfer unit is implemented is described in detail so that the present invention is 98109174 (without scribe line) The correction replacement page P200809002-TW 29792twf.doc/n is further specific. The signal transmission unit 410-1 is taken as an example, and the signal transmission units 410_2~410-X are deduced by analogy. Fig. 5 is the signal transmission of Fig. 4A. A circuit diagram of the unit 410_1. Referring to FIG. 5, in the signal transmission unit 410-1, it includes a first switch SW1, a first delay circuit, and a second switch SW2. In this embodiment, the first delay circuit includes a first resistor R1 and a first valley C1. The first end of the first resistor R1 serves as an input terminal of the first delay circuit to consume the second end of the first switch SW1. The first capacitor ci is coupled between the second end of the first resistor R1 and the second voltage (here, the ground voltage is taken as an example). In other embodiments, the parasitic resistance and parasitic capacitance on the signal path can be utilized to implement the first resistor R1 and the first capacitor C1, respectively, thereby eliminating physical and physical capacitance. The first end of the mountain switch SW1 is the input h of the signal transmission unit 41〇J for light connection to the previous stage signal transmission unit in the serial transmission unit string. Since the signal transmitting unit 410-1 is the first signal transmitting unit of the signal transmitting unit string, the first end of the switch SW1 is used to receive the digital signal sDigi. The second end of the switch SW1 is lightly connected to the first end of the resistor R1. The switch SW2 is lightly connected between the second end of the resistor R1 and the first (fourth) (here, the ground voltage is =). In the present embodiment, the second end of the resistor R1 is the output end of the signal transport unit it__l for reduction to the lower-level mail feed unit (here, the money transfer unit 2) in the money transfer unit string. One of ordinary skill in the art can implement the above-described opening in any manner, SW1 and SW2. For example, the switch SW1 can be implemented by using a transfer gate to implement the switch SW1, and a gold-oxide semiconductor (NMOS) transistor.

叫參照圖4B與圖5。於信號傳送單元410 2〜410 X 1376116 98109174(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 中,當數位信號SDigi為邏輯低電壓準位時(例如時間 T41〜T42),第一開關SW1為不導通,且第二開關撕曰2 為導通,致使信號傳送單元410—1〜410一X會同步輪出接地 電壓(視同邏輯低電壓準位)。當數位信號8叫為邏輯高 電壓準位時(例如時間T42〜T43),第一開關SW1為導通^ • 且第二開關SW2為不導通,使得數位信號SDigi對電容C1 進行充電,並利用RC電路的充電效應造成為邏輯高電壓 準位的數位仏號SDigi的傳輸延遲。傳輸延遲的時間可以藉 • 由改變電阻R1的電阻值及電容C1的電容值來調整。當^ 位乜號SDigi再度回復至邏輯低電壓準位時(例如時間 T43〜T44),彳s號傳送單元41〇_1〜410—X的電路運作會與 時間T41〜T42相同,信號傳送單元χ會同時輸 出邏輯低電壓準位。 圖5所示電路僅為信號傳送單元的其中一個實施例。 所屬領域具有通常技藝者可以將圖5所示實施例加以變 化。例如,圖6為圖4Α的信號傳送單元410J的另一電 馨路示意圖。在此僅以信號傳送單元41〇_1為說明例,其於 #號傳送單元410_2〜41〇—χ可以此類推。請參照圖5及圖 6,其不同之處於緩衝器6〇1,而其他相似功能的元件使用 相似的符號,在此不再贅述之。於圖6所示實施例中,電 阻R1的第二端並不是信號傳送單元的輸出端。緩 衝器601的輸入端耦接電阻R1的第二端,其輸出端做為 信號傳送單元410_1的輪出端以耦接至信號傳送單元串列 中的下一級信號傳送單元(在此為信號傳送單元41〇_2)。圖 11 1376116 98109174(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 6實施例的電路運作與圖5實施例相同,而增加緩衝器6〇1 可以增加信號傳送單元410—1的傳輸延遲的時間。 除圖6所不信號傳送單元外,所屬領域具有通常技藝 者可以其它方式改變將圖5所示實施例。例如,圖7為圖 4A的信號傳送單元410一 1的再一電路示意圖。在此僅以信 號傳送單元410_1為說明例,其於信號傳送單元 410一2〜410—X可以此類推。請參照圖5及圖7,二者相似 功能的元件使用相似的符號,在此不再贅述之。與圖5不 同之處在於,圖7所示實施例的信號傳送單元更包 括第一反相器701、第三開關SW3、第二延遲電路.、第四 開關SW4及第二反相器7〇2。於本實施例中,第二延遲電 路包括第二電阻R2與第二電容C2。第二電阻R2的第一 端耦接第三開關SW3的第二端。第二電容C2耦接於第二 電阻R2的第二端與第二電壓(在此以接地電壓為例)之 間。在其他實施例中,可以利用在信號路徑上的寄生電阻 與寄生電容來分別實現第二電阻R2與第二電容C2,因而 可以省去實體電阻與實體電容。 於圖7所示實施财,第-電阻R1的第二端並不是 信號傳送單兀41〇_1的輸出端。反相器7〇1的輸入端輕接 電阻R1的第二端,其輸出端搞接開關SW3的第一端。電 阻R2的第一端麵接開關期的第二端。電容C1耦接於 電阻R2的第二端與接地電壓之間。開關SW4麵接於電阻 R2的第=端與第三電壓(在此以系統電壓Vcc為例)之 間。反相S 702的輸入端_接電阻R2的第二端,其輸出 12 1376116 98109174(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 端為#號傳送單元410一1的輸出端,用以麵接至信號傳送 單元串列中的下一級信號傳送單元(在此為信號傳送單元 410—2)。 請參照圖4B與圖7,當數位信號sDigi為邏輯低電壓 準位時(例如時間T41〜T42),開關SWi及SW3為不導 通,且開關SW2友SW4為導通,致使電容C1會經由開 關SW2進行放電,而系統電壓Vcc會經由開關SW4對電 容C2進行充電。同時,反相器7〇1會經由開關SW2接收 鲁 接地電壓(視同邏輯低電壓準位)而輸出邏輯高電壓準位, 而反相器702則會經由開關SW4接收系統電壓Vcc(視同 邏輯高電壓準位)而輸出邏輯低電壓準位。因此,信號傳 送單元410一1〜410—X會同時輸出邏輯低電壓準位。 當數位信號S D j g j轉態為邏輯高電壓準位時(例如時間 T42〜T43 ) ’開關SW1及SW3為導通,且開關㈣及 為不導通,使得數位信號sDigi會經由開關SW1與電阻R1 對電容Cl進行充電。此時反相器701仍輸出邏輯高電壓 # $位’而反相器702則由於電容C2維持其輸入端為邏輯 、 高電壓準位而輪出邏輯低電壓準位。當電容C1的電壓準 - 位充電至足以讓反相器701轉換輸出的電壓準位時,反相 器701會轉換輸出邏輯低電壓準位。在反姆7〇1的輸出 轉換為邏輯低電壓準位後,電容C2的電荷開始經由電阻 R2與開關SW3放電至反相器701的輸出端。 當電容C2的電壓準位放電至足以讓反相器7〇2轉換 輸出的電壓準位時,反相器7〇2會轉換輸出邏輯高電壓準 13 1376116 P200809002-TW 29792twf.doc/n |~98109n7^劃線)修正替 位。由於上述電容C1的充電、電容C2的放 701及搬的電壓準位的轉換而造成信號傳送單元4101 ^傳輸延遲_。因此,域傳輸延遲咖可以藉由改變 電阻R1及R2的電阻值及電容α及C2的電容值來調整。 當數位信號SDigi再度回復至邏輯低電屢準位 時間T43〜T44),錢傳料元,】〜彻χ的電路運作 會與時間Τ41〜Τ42相同’使得信號傳送單元41〇卜指χ 同步輸出邏輯低電壓準位。 — ~ 此外,在圖7的實施例中,開關SW1及SW3可以利 用傳輸閘來完成,而_ SW2可以利用為NM〇s電晶體 來完成,以及開關S W4可以為P型金氧半導體(pM 電晶體來完成。並且’電阻R1及R2可以為電路的寄生電 阻,而電容C1及C2可以為導線對地的寄生電容。 依據上述,以下再提一實施例以說明。圖8A為本發 明另一實施例的脈衝干擾消除電路的系統示意圖。請參照 圖8A’在本實施例中,脈衝干擾消除電路800以三個信號 傳送單tl 810_1〜810—3彼此串聯而形成信號傳送單元串列 為例。另外,本實施例是利用在信號路徑與元件的寄生電 阻與寄生電谷來實現第一延遲電路與第二延遲電路,因而 省去實體電阻與實體電容。 在信號傳送單元810J中,第一開關(在此為傳輸閘 T1)的輸入端接收數位信號SDigr傳輸閘T1的正控制端及 負控制端分別接收數位信號SDigi及信號SDigiB,其中信號 s〇igiB為數位信號sDigi的反相信號。第二開關(在此^ 1376116 P200809002-TW 29792twf.doc/n ----— 98109174(無劃線)修正替換頁 NMOS電晶體Ml)受控於信號sDigiB。其中,t晶體M1的 閘極接收信號sDigiB,其源極耦接接地電壓,其汲極耦接傳 輸閘T1的輸出端。反相器801的輸入端耦接傳輸閘T1的 輸出端。第三開關(在此為傳輸閘T2)的輸入端耦接反相器 8〇1的輸出端。傳輸閘Τ2的正控制端及負控制端分別接收 數位信號sDigi及信號sDigiB。第四開關(在此為PM〇s電晶 體M2)党控於數位信號sDigi。其中,電晶體M2的閘極接 收數位彳5被S〇igi,其源極輕接系統電壓VCC,其没極耗接 傳輸閘T2的輸出端。反相器8〇2的輸入端耦接傳輸閘T2 的輸出端’其輸出端則為信號傳送單元Woj的輸出端, 用以耦接至信號傳送單元串列中下一級信號傳送單元 810—2的第一開關(未繪示)。信號傳送單元81〇_2及81〇 3 的電路結構與信號傳送單元810_1相似,故不再贅述。 圖8B為圖8A中數位信號及輸出信號的波形圖。請參 照圖8A及圖8B,在時間T81時,數位信號80旧轉態為邏 輯低電壓準位,傳輸閘T1及T2為不導通,且電晶體M1 • 及為導通,致使信號路徑PATH1的寄生電容(未繪示) 會經由電晶體Ml進行放電,而系統電壓Vcc會經由電晶 體M2對信號路徑PATH2的寄生電容(未繪示)進行充電。 同時,反相器801會經由電晶體Ml接收接地電壓(視同 邏輯低電壓準位)而輸出邏輯高電壓準位,而反相器8〇2 則會經由電晶體M2接收系統電壓Vcc (視同邏輯高電壓 準仇)而輸出邏輯低電壓準位。因此,信號傳送單元810_1 • 的輪出信號S1、信號傳送單元81〇_2的輸出信號S2及信 15 P200809002-TW 29792twf.doc/n 98109174 (無劃線)修正替換頁 號傳达單元810一3的輸出信號s〇ut會同步轉態為邏輯低 壓準位。 在時間T82時’數位信號sDigi轉態為邏輯高電壓準 位’傳輸閘T1及T3為導通,且電晶體M1及M2為不導 通,使得數位信號SDigi會經由傳輸閘T1與信號路徑 ^ATHl的寄生電阻(未繪示)對信號路徑pATH1的寄生電 容(未繪示)進行充電。此時反相器8〇1仍輸出邏輯高電壓 準位’而反相器802則由於信號路徑PATH2的寄生電容(未 繪不)維持其輸入端為邏輯高電壓準位而輸出邏輯低電壓 準位。因此,在時間T82時,信號傳送單元 的輸出信號SI、S2與Sout依然維持在邏輯低電壓準位。 當信號路徑PATH1的寄生電容(未繪示)的電壓準位 充電至足以讓反相器8〇1轉換其輸出電壓準位時,反相器 801的輸出會轉換至邏輯低準位。在反相器綱的輸 出轉換為邏輯低糕準位後,錢職pATH2的寄生電 容(未繪不)的電荷開始經由信號路徑pATH2的寄生電阻 (未繪示)與傳輸閘T2放電至反相器8〇1的輸出端。當信號 路徑PATH2的寄生電容(未繪示)的電塵準位放電至足以讓 反相器802轉換其輸㈣電鮮位時,反相器觀會轉換 其輸出至邏輯高糕準位。由於上述信號路徑ρΑτΗΐ寄 生電谷(未繪示)的充電、信號路徑ΡΑΤΗ2的寄生電容(未 繪的放.電f及反相器8〇1及802的電壓準位的轉換而造 成k號傳送單元810_1的傳輸延遲時間丁⑴^也就是說, 當數位信號SDigi從邏雜電鮮轉㈣邏輯高電愿準位 1376116 P200809002-TW 29792twf.d〇c/n ________ 時,由於信號傳送單元81(L1 號S1延遲一個期間τ才# ,使得其輸出信 同理可推,應地射、至邏輯高電鱗位。 壓準位的輸出信號81後,則同樣延遲一個=為邏,電 輸出信號S2轉態為邏輯高準位。^號其 810」接收到為邏輯高電壓準位的輸出信號 =Referring to FIG. 4B and FIG. In the signal transmission unit 410 2~410 X 1376116 98109174 (without line) correction replacement page P200809002-TW 29792twf.doc/n, when the digital signal SDigi is at a logic low voltage level (for example, time T41~T42), the first The switch SW1 is non-conducting, and the second switch tearing 2 is turned on, so that the signal transmitting units 410-1~410-X will synchronously turn off the grounding voltage (which is regarded as the logic low voltage level). When the digital signal 8 is called a logic high voltage level (for example, time T42~T43), the first switch SW1 is turned on and the second switch SW2 is non-conducting, so that the digital signal SDigi charges the capacitor C1 and uses the RC. The charging effect of the circuit causes the transmission delay of the digital nickname SDigi, which is a logic high voltage level. The transmission delay time can be adjusted by changing the resistance value of the resistor R1 and the capacitance value of the capacitor C1. When the bit number SDigi returns to the logic low voltage level again (for example, time T43~T44), the circuit operation of the 彳s number transmitting unit 41〇_1~410_X is the same as the time T41~T42, and the signal transmitting unit逻辑 Outputs a logic low voltage level at the same time. The circuit shown in Figure 5 is only one of the embodiments of the signal transfer unit. The embodiment shown in Figure 5 can be varied by one of ordinary skill in the art. For example, Fig. 6 is a schematic view of another circuit of the signal transmitting unit 410J of Fig. 4A. Here, only the signal transmission unit 41〇_1 is taken as an illustrative example, and it can be deduced by the ## transmission unit 410_2~41〇. Referring to FIG. 5 and FIG. 6, the difference is in the buffer 6〇1, and other similar functional elements use similar symbols, and are not described herein again. In the embodiment shown in Figure 6, the second end of resistor R1 is not the output of the signal transfer unit. The input end of the buffer 601 is coupled to the second end of the resistor R1, and the output end thereof is used as the round-out end of the signal transmitting unit 410_1 to be coupled to the next-stage signal transmitting unit in the string of signal transmitting units (here is signal transmission) Unit 41〇_2). Figure 11 1376116 98109174 (without scribe line) correction replacement page P200809002-TW 29792twf.doc/n 6 The circuit operation of the embodiment is the same as the embodiment of FIG. 5, and the addition of the buffer 〇1 can increase the transmission of the signal transmission unit 410-1 Delayed time. The embodiment shown in Fig. 5 can be modified in other ways than those of ordinary skill in the art, in addition to the signal transfer unit of Fig. 6. For example, Fig. 7 is a schematic diagram of still another circuit of the signal transmitting unit 410-1 of Fig. 4A. Here, only the signal transfer unit 410_1 is taken as an example, which can be deduced by the signal transfer unit 410-2~410-X. Referring to FIG. 5 and FIG. 7, similar components are used for similar functions, and will not be described again. The difference from FIG. 5 is that the signal transmission unit of the embodiment shown in FIG. 7 further includes a first inverter 701, a third switch SW3, a second delay circuit, a fourth switch SW4, and a second inverter 7〇. 2. In this embodiment, the second delay circuit includes a second resistor R2 and a second capacitor C2. The first end of the second resistor R2 is coupled to the second end of the third switch SW3. The second capacitor C2 is coupled between the second end of the second resistor R2 and the second voltage (here, the ground voltage is taken as an example). In other embodiments, the parasitic resistance and parasitic capacitance on the signal path can be utilized to implement the second resistor R2 and the second capacitor C2, respectively, thereby eliminating physical and physical capacitance. As shown in Fig. 7, the second end of the first-resistor R1 is not the output terminal of the signal transmission unit 41〇_1. The input end of the inverter 7〇1 is lightly connected to the second end of the resistor R1, and the output end thereof is connected to the first end of the switch SW3. The first end of the resistor R2 is connected to the second end of the switching period. The capacitor C1 is coupled between the second end of the resistor R2 and the ground voltage. The switch SW4 is connected between the = terminal of the resistor R2 and the third voltage (here, the system voltage Vcc is taken as an example). The input terminal of the inverting S 702 is connected to the second end of the resistor R2, and the output thereof is 12 1376116 98109174 (without a line). The replacement page P200809002-TW 29792twf.doc/n is the output of the ## transmission unit 410-1. The next level signal transmission unit (here, the signal transmission unit 410-2) is used to be connected to the signal transmission unit string. Referring to FIG. 4B and FIG. 7 , when the digital signal sDigi is at a logic low voltage level (for example, time T41 to T42), the switches SWi and SW3 are non-conductive, and the switch SW2 is SW4, so that the capacitor C1 is via the switch SW2. The discharge is performed, and the system voltage Vcc charges the capacitor C2 via the switch SW4. At the same time, the inverter 7〇1 receives the Lu ground voltage (which is regarded as the logic low voltage level) via the switch SW2 and outputs a logic high voltage level, and the inverter 702 receives the system voltage Vcc via the switch SW4 (considered Logic high voltage level) and output logic low voltage level. Therefore, the signal transmitting units 410-1 to 410-X simultaneously output logic low voltage levels. When the digital signal SD jgj transitions to the logic high voltage level (for example, time T42~T43) 'the switches SW1 and SW3 are turned on, and the switch (4) is non-conducting, so that the digital signal sDigi will be connected to the capacitor via the switch SW1 and the resistor R1. Cl is charged. At this time, the inverter 701 still outputs a logic high voltage #$ bit' and the inverter 702 rotates the logic low voltage level because the capacitor C2 maintains its input terminal at a logic high voltage level. When the voltage of the capacitor C1 is charged to a voltage level sufficient for the inverter 701 to switch the output, the inverter 701 converts the output logic low voltage level. After the output of the inverse 〇1〇1 is converted to the logic low voltage level, the charge of the capacitor C2 begins to discharge to the output of the inverter 701 via the resistor R2 and the switch SW3. When the voltage level of the capacitor C2 is discharged to a voltage level sufficient for the inverter 7〇2 to convert the output, the inverter 7〇2 will convert the output logic high voltage level 13 1376116 P200809002-TW 29792twf.doc/n |~ 98109n7^ underline) Correction of the substitution. The signal transmission unit 4101 transmits a delay_ due to the charging of the capacitor C1, the discharge of the capacitor C2, and the shifting of the voltage level. Therefore, the domain transmission delay can be adjusted by changing the resistance values of the resistors R1 and R2 and the capacitance values of the capacitors α and C2. When the digital signal SDigi reverts to the logic low power leveling time T43~T44), the money transmission element, the full circuit operation will be the same as the time Τ41~Τ42, so that the signal transmission unit 41 χ χ 同步 synchronous output Logic low voltage level. In addition, in the embodiment of FIG. 7, the switches SW1 and SW3 can be completed by using a transfer gate, and the _SW2 can be implemented by using a NM〇s transistor, and the switch S W4 can be a P-type metal oxide semiconductor (pM). The transistor is completed. And 'the resistors R1 and R2 can be the parasitic resistance of the circuit, and the capacitors C1 and C2 can be the parasitic capacitance of the wire to the ground. According to the above, an embodiment will be further described below. FIG. 8A is another embodiment of the present invention. A schematic diagram of a system of a pulse interference cancellation circuit according to an embodiment. Referring to FIG. 8A', in the present embodiment, the pulse interference cancellation circuit 800 is connected in series with three signal transmission units tl 810_1 810 810 - 3 to form a signal transmission unit string. In addition, in this embodiment, the first delay circuit and the second delay circuit are implemented by using the parasitic resistance and the parasitic electric valley of the signal path and the component, thereby eliminating the physical resistance and the physical capacitance. In the signal transmission unit 810J, The input terminal of a switch (here, the transmission gate T1) receives the digital signal. The positive control terminal and the negative control terminal of the transmission gate T1 receive the digital signal SDigi and the signal SDigiB, respectively. s〇igiB is the inverted signal of the digital signal sDigi. The second switch (here ^ 1376116 P200809002-TW 29792twf.doc/n ----- 98109174 (without scribe line) correction replacement page NMOS transistor Ml) is controlled by The signal sDigiB, wherein the gate of the t crystal M1 receives the signal sDigiB, the source of which is coupled to the ground voltage, the drain of which is coupled to the output of the transmission gate T1. The input of the inverter 801 is coupled to the output of the transmission gate T1. The input end of the third switch (here, the transmission gate T2) is coupled to the output end of the inverter 8〇 1. The positive control terminal and the negative control terminal of the transmission gate 2 receive the digital signal sDigi and the signal sDigiB, respectively. (here, PM〇s transistor M2) is controlled by the digital signal sDigi. Among them, the gate of the transistor M2 receives the digit 彳5 by S〇igi, and its source is connected to the system voltage VCC, which is inexhaustly transmitted. The output terminal of the gate T2. The input end of the inverter 8〇2 is coupled to the output end of the transmission gate T2, and the output end thereof is the output end of the signal transmission unit Woj for coupling to the next stage of the signal transmission unit string. The first switch (not shown) of the signal transmission unit 810-2. The signal transmission unit 81 〇_2 and 81 The circuit structure of 3 is similar to that of the signal transmission unit 810_1, and therefore will not be described again. Fig. 8B is a waveform diagram of the digital signal and the output signal of Fig. 8A. Referring to Fig. 8A and Fig. 8B, at time T81, the digital signal 80 is old. For the logic low voltage level, the transmission gates T1 and T2 are non-conducting, and the transistors M1 and are turned on, so that the parasitic capacitance (not shown) of the signal path PATH1 is discharged through the transistor M1, and the system voltage Vcc will be The parasitic capacitance (not shown) of the signal path PATH2 is charged via the transistor M2. At the same time, the inverter 801 receives the ground voltage (which is regarded as the logic low voltage level) via the transistor M1 and outputs a logic high voltage level, and the inverter 8〇2 receives the system voltage Vcc via the transistor M2. The same logic high voltage revenge) and output logic low voltage level. Therefore, the rounding signal S1 of the signal transmitting unit 810_1 •, the output signal S2 of the signal transmitting unit 81〇_2, and the letter 15 P200809002-TW 29792twf.doc/n 98109174 (without a line) correct the replacement page number transmitting unit 810 The output signal s〇ut of 3 will be synchronously converted to the logic low voltage level. At time T82, 'the digital signal sDigi transitions to the logic high voltage level', the transmission gates T1 and T3 are turned on, and the transistors M1 and M2 are non-conducting, so that the digital signal SDigi will pass through the transmission gate T1 and the signal path ^ATH1. A parasitic resistance (not shown) charges the parasitic capacitance (not shown) of the signal path pATH1. At this time, the inverter 8〇1 still outputs a logic high voltage level' and the inverter 802 outputs a logic low voltage level due to the parasitic capacitance of the signal path PATH2 (not shown) maintaining its input terminal at a logic high voltage level. Bit. Therefore, at time T82, the output signals SI, S2, and Sout of the signal transfer unit remain at the logic low voltage level. When the voltage level of the parasitic capacitance (not shown) of the signal path PATH1 is charged enough to cause the inverter 8〇1 to switch its output voltage level, the output of the inverter 801 is switched to the logic low level. After the output of the inverter is converted to a logic low level, the parasitic capacitance of the PATH2 (not shown) begins to be discharged to the reverse phase via the parasitic resistance (not shown) of the signal path pATH2 and the transfer gate T2. The output of the 8〇1. When the electrostatic dust level of the parasitic capacitance (not shown) of the signal path PATH2 is discharged enough to allow the inverter 802 to switch its output (four), the inverter will convert its output to the logic level. Due to the charging of the signal path ρΑτΗΐ parasitic electric valley (not shown), the parasitic capacitance of the signal path ΡΑΤΗ2 (the unillustrated discharge, the electric f, and the voltage level of the inverters 8〇1 and 802 are converted to cause the k transmission The transmission delay time of the unit 810_1 is (1). That is to say, when the digital signal SDigi is switched from the logic (4) logic high power level 1376116 P200809002-TW 29792twf.d〇c/n ________, due to the signal transmission unit 81 ( L1 No. S1 is delayed by a period of τ only #, so that its output signal can be pushed in the same way, and should be grounded to the logic high electric scale. After the output signal 81 of the pressure level, the same delay is given to one = logic, electrical output signal S2 transitions to a logic high level. ^ 810" receives an output signal that is at a logic high voltage level =

作,信號傳送單元的輸出錢_應該會= 出信號S2延遲-個期間Td3才轉態為邏輯高電壓準位。妙' 而,由於數位信號SDigi於時間T83轉態為邏輯低電^ 位’使得信號傳送單元810_3預計於期間τ〇3結束後輪出 的邏輯高電壓準位’因數位信號SDigi轉態為邏輯低電壓準 位所造成的同步輸出而被消除,讓信號傳送單元81〇—3的 輸出信號Sout維持在邏輯低電壓準位。For example, the output of the signal transmission unit should be = the signal S2 is delayed - the period Td3 is converted to the logic high voltage level. However, since the digital signal SDigi transitions to a logic low level at time T83, the signal transmission unit 810_3 expects the logic high voltage level to turn out after the end of the period τ 〇 3 'signal bit signal SDigi transition to logic The synchronous output caused by the low voltage level is eliminated, and the output signal Sout of the signal transfer unit 81〇3 is maintained at the logic low voltage level.

另外’;&要消除的脈衝干擾PL 1為邏輯低電壓準位, 則可以依據圖7實施例的電路加以變更其連接關係及電路 運作來達成。圖9為圖4A的信號傳送單元410j的又一 電路示意圖。請參照圖7及圖9’其最大的不同之處在於 本實施例的開關SW2及SW4。在本實施例中,開關sw2 輕接於電阻R1的第二端及系統電厪Vcc之間,開關SW4 耦接於電阻R2的第二端及接地電壓之間。 當數位信號為邏輯高電壓準位時,開關SW1及SW3 為不導通,且開關SW2及SW4為導通,致使反相器701 會接收系統電壓Vcc (視同邏輯高電壓準位)而輸出邏輯 低電壓準位,而反相器會接收接地電壓(視同邏輯低 17 1376116 98109174(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 電壓準位)而輸出邏輯高電壓準位。並且,系統電壓Vcc 會對電容Cl進行充電。 當數位信號為邏輯低電壓準位時,開關SW1及SW3 為導通,且開關SW2及SW4為不導通,使得電容C1會 ,過電阻R1進行放電。此時由於電容C1的電壓仍在邏輯 同书壓準位’使得反相器7〇1會輸出邏輯低電壓準位,而 反相器702則仍輸出邏輯高電壓準位。當電容C1的電壓 準位放電至足以讓反相器7〇1轉換輸出的電壓準位時,反In addition, the pulse interference PL 1 to be eliminated is a logic low voltage level, which can be achieved by changing the connection relationship and circuit operation according to the circuit of the embodiment of Fig. 7. Figure 9 is a further circuit diagram of the signal transfer unit 410j of Figure 4A. Referring to Fig. 7 and Fig. 9', the biggest difference lies in the switches SW2 and SW4 of this embodiment. In this embodiment, the switch sw2 is connected between the second end of the resistor R1 and the system power Vcc, and the switch SW4 is coupled between the second end of the resistor R2 and the ground voltage. When the digital signal is at the logic high voltage level, the switches SW1 and SW3 are non-conducting, and the switches SW2 and SW4 are turned on, so that the inverter 701 receives the system voltage Vcc (which is regarded as the logic high voltage level) and the output logic is low. The voltage level, and the inverter will receive the ground voltage (as the logic low 17 1376116 98109174 (without line) correction replacement page P200809002-TW 29792twf.doc / n voltage level) and output logic high voltage level. Also, the system voltage Vcc charges the capacitor C1. When the digital signal is at the logic low voltage level, the switches SW1 and SW3 are turned on, and the switches SW2 and SW4 are not turned on, so that the capacitor C1 and the over resistor R1 are discharged. At this time, since the voltage of the capacitor C1 is still at the logic level, the inverter 7〇1 outputs a logic low voltage level, and the inverter 702 still outputs a logic high voltage level. When the voltage level of the capacitor C1 is discharged to a voltage level sufficient for the inverter 7〇1 to convert the output,

相器701會轉換輸出邏輯高電壓準位。此時,電容c2 開始進行充電。 當電容C2 0電鮮位充電至足以讓反相胃7〇2轉才 輸出的電壓準位時,反相器搬會轉換輸出邏輯低電壓2 位。而信號傳送單元的傳輸延遲時間會由於 容C1的放電、電容C2的充電以及反相器加及搬的^ 壓準位的轉換而造成。而傳輸延遲㈣可以藉由改變抑 及R2的電阻值及電容C1及C2的電容值來調整。Phaser 701 converts the output logic high voltage level. At this point, capacitor c2 begins to charge. When the capacitor C2 0 is charged to a voltage level sufficient to allow the reverse phase stomach to turn 7〇2, the inverter will convert the output logic low voltage by 2 bits. The transmission delay time of the signal transmission unit is caused by the discharge of the capacitor C1, the charging of the capacitor C2, and the conversion of the inverter. The transmission delay (4) can be adjusted by changing the resistance value of R2 and the capacitance values of capacitors C1 and C2.

巧的,在其他實關t,可將反相11或齡 =電源以精準電流源來替代。藉此,可減少傳遞延制 ,動,以讓高速傳輸系統的電路設計更加二。’ ίΓϊίίΓΐ電辟位時’讓這些信號傳送單元依序 遲叙亚在數絲相復到邏輯低電屢準位時。 P200809002-TW 29792twf.doc/n 邏輯低電鮮位’則將電路修改以使脈衝干 擾杨电路的運作與上述相反,同樣可消除脈衝干擾衝 雖然本發明已以實施例揭露如上,然其並非用以 本發明’任何所屬技術領域中具有通常知識者,在 =發明之精神和範_,#可作些許之更動與潤飾,故本 發明之保護範圍當視制之㈣專利㈣所界 。 【圖式簡單說明】 匈+ 圖1為習知脈衝干擾波形產生示意圖。 圖2A為習知脈衝干擾消除電路的系統示意圖 圖2B為圖2A的信號波形示意圖。 圖3A為習知峰值偵測器的電路示意圖。 圖3B為圖3A的信號波形示意圖。 圖4A為本發明一實施例的脈衝干擾消除 示意圖。 吩w示,死 圖4B為圖4A中數位信號及輸出信號的波形圖。 圖5為圖4八的信號傳送單元410_1的電路示意圖。 圖6為圖4A的信號傳送單元斗川-丄的另一電路示音 圖。 心、 圖7為圖4Α的信號傳送單元41〇j的再一電路示意 Η 8A為本發明另一實施例的脈衝干擾消除電路 統示意圖。 ” 圖8Β為圖8Α中數位信號及輸出信號的波形圖。 圖9為圖4Α的信號傳送單元41〇j的又一電路示意 1376116 P200809002-TW 29792twf.doc/n -------- 98109m(無劃線)修正替換頁 【主要元件符號說明】 200、400、800 :脈衝干擾消除電路 202 :及閘 300 :峰值偵測器 410—1〜410—X ' 81〇_1〜81〇」:信號傳送單元 601 :緩衝器 701、702、801、802 :反相器 C、Cl、C2 :電容 Dl、D2 :二級體 IL :電流 Va :電壓 PL1、PL2 :脈衝千擾 Td、TD丨、TD2、TD3 :期間 Rl、R2 :電阻 SW卜 SW2、SW3、SW4 :開關 Sideal、SReai、Sdg .波形Coincidentally, in other real-time t, the inverting 11 or age = power supply can be replaced by a precision current source. Thereby, the transmission extension and movement can be reduced to make the circuit design of the high-speed transmission system more complicated. ’ ί Γϊ Γΐ Γΐ Γΐ ’ 让 让 让 让 让 让 让 让 让 让 让 让 让 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些 这些P200809002-TW 29792twf.doc/n Logic low-powered bit' then modify the circuit so that the operation of the pulse-interfering yang circuit is opposite to the above, and the pulse-interference can be eliminated as well. Although the present invention has been disclosed in the above embodiments, it is not used. In the present invention, any one of ordinary skill in the art, in the spirit and scope of the invention, may make some changes and refinements, so the scope of protection of the present invention is defined by the (4) patent (4). [Simple diagram of the diagram] Hungary + Figure 1 is a schematic diagram of the generation of pulse interference waveforms. 2A is a schematic diagram of a system of a conventional pulse interference cancellation circuit. FIG. 2B is a schematic diagram of a signal waveform of FIG. 2A. 3A is a circuit diagram of a conventional peak detector. FIG. 3B is a schematic diagram of the signal waveform of FIG. 3A. 4A is a schematic diagram of pulse interference cancellation according to an embodiment of the present invention. Illustrated, dead Figure 4B is a waveform diagram of the digital signal and the output signal in Figure 4A. FIG. 5 is a circuit diagram of the signal transfer unit 410_1 of FIG. Fig. 6 is another circuit diagram of the signal transmission unit Doukawa-丄 of Fig. 4A. FIG. 7 is still another circuit diagram of the signal transmission unit 41〇j of FIG. 4A. FIG. 8A is a schematic diagram of a pulse interference cancellation circuit according to another embodiment of the present invention. Figure 8 is a waveform diagram of the digital signal and the output signal in Figure 8. Figure 9 is another circuit diagram of the signal transmission unit 41〇j of Figure 411376116 P200809002-TW 29792twf.doc/n -------- 98109m (without line) correction replacement page [main component symbol description] 200, 400, 800: pulse interference cancellation circuit 202: and gate 300: peak detector 410-1~410-X '81〇_1~81〇 ”: Signal transmission unit 601: Buffers 701, 702, 801, 802: Inverters C, Cl, C2: Capacitors D1, D2: Secondary body IL: Current Va: Voltages PL1, PL2: Pulse interference Td, TD丨, TD2, TD3: period Rl, R2: resistance SW BU2, SW3, SW4: switch Sideal, SReai, Sdg. Waveform

Sq、SqD、Out、SDigi、SDigiB、Sout、Dp/Dm、SI、S2 : 信號 T4卜 T42、T43、T44、T81、T82、T83 :時間 ΊΠ、T2 :傳輸閘 Ml、M2 :電晶體 Vcc :糸統電壓 20Sq, SqD, Out, SDigi, SDigiB, Sout, Dp/Dm, SI, S2: Signal T4, T42, T43, T44, T81, T82, T83: Time ΊΠ, T2: Transmission gate Ml, M2: Transistor Vcc:糸 system voltage 20

Claims (1)

1376116 1376116 98109丨74(無劃線)修正替換頁 P200809002-TW 29792twf.doc/n 七、申請專利範圍·· I一種脈衝干擾消除電路,包括: ^個健傳送單元,該些信號傳送單元彼此串聯以形 號傳送單元串列’而該信號傳送單元串列的第一個 i中ί單元接收—數位錢,其中該些信號傳送單元的 包括·· 列中的;第-_ ’其第—端減至該錢傳送單元串 邏輯時W級㈣傳送單元,其中當該數健號為-第一 輯時導通,當該數位信號為-第二邏 第二端;延遲電路,其輸人端_至該第—開關的 一笛 第一開關,耦接於該第一延遲電路的輪屮破ώ 第-間’其中當該數位信號為該第-邏輯時; ㈡:;:通’當該數位信號為該第二邏輯時】第ί 及第—電阻’其第一端輕接該第-開關的第二端;以 壓q第—電容’轉接於該第一電阻的第二端與-第二電 其中㈣2賴取_讀消除電路, 禾冤阻為寄生電阻。 21 1376116 P200809002-TW 29792twf.d〇c/n 4. 如申明專她第2項所述之脈衝 其中該第-電容為寄生電容。 ㈣電路’ 5. 如申Μ專利範n第丨摘述之脈衝干擾 其中每-該些信號傳送單元更包括一緩衝 輪 接該Ϊ:延?電路的輪出端,而該緩衝器的輸出S = 忒托號傳送早兀串列中的下一級信號傳送單元。 6. 如申μ專利範圍第1項所述之脈衝干 其中每:該些信號傳送單元更包括: 錄電路, 第相°。其輸入端麵接該第一延遲電路的輪出 9 二第三開關’其第_端減該第—反相器的 其中當該數位信號為該第一邏輯時,該第三 通,當該數位信號為該第二邏輯時,該第三開關為導=導 端-第-延遲電路’其輸人端補至該第三開關的第丄 —二第輕接於該第二延遲電路的輸出端與 二電壓之d ’,、中當魏位信號為該第—邏輯時, 開關^通,當該數位信號為該第二邏輯時 為不導通;以及 禾四開關 * 反ΪΓ ’其輸入端輕接該第二延遲電路的輪出 端,而該第二反相器的輸出端輕接至該信號傳送單元t 中的下一級信號傳送單元。 平π串列 7. 如申請專郷_ 6項所収 其中該第三延遲電路包括: 22 1376116 P200809002-TW 29792twf.doc/n 98109174(無劃線)修正替換頁 第龟阻其弟一端搞接該第三開關的第二端;以 及 一第二電容,耦接於該第二電阻的第二端與該第二電 壓之間。 .如申請專利範圍第7項所述之脈衝干擾消除電路 其中該第二電阻為寄生電阻。1376116 1376116 98109丨74 (without line) correction replacement page P200809002-TW 29792twf.doc/n VII. Patent scope ·· I A pulse interference cancellation circuit, including: ^ a transmission unit, these signal transmission units are connected in series The serial number of the transmission unit is serialized and the first unit of the signal transmission unit is received by the unit, wherein the signal transmission unit includes the ... column; the -_ 'the first end thereof The W-level (four) transfer unit is reduced to the money transfer unit string logic, wherein when the number is - the first series is turned on, when the digital signal is - the second logical second end; the delay circuit, the input end _ a first switch to the first switch of the first switch, coupled to the rim of the first delay circuit, wherein the digital signal is the first logic; (2):;: through 'when the digital When the signal is the second logic, the first and the first resistors are lightly connected to the second end of the first switch; and the second capacitor is coupled to the second end of the first resistor. The second power is that (4) 2 depends on the _ read cancellation circuit, and the 冤 resistor is parasitic resistance. 21 1376116 P200809002-TW 29792twf.d〇c/n 4. As stated in the pulse described in her second item, where the _th capacitor is a parasitic capacitance. (4) Circuits' 5. The pulse interferences as recited in the application of the patent specification n each of the signal transmission units further include a buffer wheel that connects the wheel: the output of the circuit and the output of the buffer = The 忒托号 transmits the next level of signal transmission unit in the early 兀 string. 6. The pulse drying method as described in claim 1 of the patent scope of the invention, wherein each of the signal transmission units further comprises: a recording circuit, a phase. The input end face is connected to the first delay circuit of the wheel 9 and the second switch 'the _th terminal minus the first-inverter, wherein when the digital signal is the first logic, the third pass When the digital signal is the second logic, the third switch is a derivative=lead-first-delay circuit, and its input terminal is supplemented to the third-second of the third switch, and the output of the second delay circuit is lightly connected to the second delay circuit. The terminal and the second voltage d ', the middle and the Wei position signal are the first logic, the switch is turned on, when the digital signal is the second logic, the current is non-conducting; and the fourth switch * the reverse ΪΓ 'the input end thereof The rounding end of the second delay circuit is lightly connected, and the output end of the second inverter is lightly connected to the next stage signal transmitting unit in the signal transmitting unit t. Flat π series 7. If the application is specifically _ 6 received, the third delay circuit includes: 22 1376116 P200809002-TW 29792twf.doc/n 98109174 (without line) correction replacement page a second end of the third switch; and a second capacitor coupled between the second end of the second resistor and the second voltage. The pulse interference cancellation circuit of claim 7, wherein the second resistance is a parasitic resistance. 如申咕專利範圍第7項所述之脈衝干擾消除電路 其中該第二電容為寄生電容。 1〇·如申请專利範圍第7項所述之脈衝干擾消除Ί 路,其中該第二電壓為一接地電壓。 11.如申凊專利範圍第6項所述之脈衝干擾消除電 路’其中該第一電壓及該第三電壓分別為一接地電壓及一 系統電壓。 12·如申請專利範圍第6項所述之脈衝干擾消除電 路,其中該第一及該第三開關皆為一傳輸閘。A pulse interference cancellation circuit as described in claim 7 wherein the second capacitance is a parasitic capacitance. 1) The pulse interference cancellation circuit of claim 7, wherein the second voltage is a ground voltage. 11. The pulse interference cancellation circuit of claim 6, wherein the first voltage and the third voltage are a ground voltage and a system voltage, respectively. 12. The pulse interference cancellation circuit of claim 6, wherein the first and the third switches are each a transmission gate. 13.如申請專利範圍第6項所述之脈衝干擾消除電 路,其中該第二及該第四開關分別為一 N型金氧半導體 (NMOS)電晶體及一 p型金氧半導艨(pM〇s)電晶體。 如申請專利範圍第1項所述之脈衝干擾消除電 路,其中該第一邏輯及該第二邏輯分別為一邏輯高準位及 一邏輯低準位。 2313. The pulse interference cancellation circuit of claim 6, wherein the second and fourth switches are an N-type metal oxide semiconductor (NMOS) transistor and a p-type gold-oxygen semiconductor (pM). 〇s) transistor. The pulse interference cancellation circuit of claim 1, wherein the first logic and the second logic are a logic high level and a logic low level, respectively. twenty three
TW98109174A 2009-03-20 2009-03-20 De-glitch circuit TWI376116B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98109174A TWI376116B (en) 2009-03-20 2009-03-20 De-glitch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98109174A TWI376116B (en) 2009-03-20 2009-03-20 De-glitch circuit

Publications (2)

Publication Number Publication Date
TW201036361A TW201036361A (en) 2010-10-01
TWI376116B true TWI376116B (en) 2012-11-01

Family

ID=44856210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98109174A TWI376116B (en) 2009-03-20 2009-03-20 De-glitch circuit

Country Status (1)

Country Link
TW (1) TWI376116B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666873B (en) * 2018-01-12 2019-07-21 立積電子股份有限公司 Integrated circuit and transmission circuit thereof

Also Published As

Publication number Publication date
TW201036361A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
US8089388B2 (en) Folding analog-to-digital converter
US8261619B2 (en) Time to digital converting circuit and pressure sensing device using the same
JP5600237B2 (en) Integrated circuit
US8008946B2 (en) Semiconductor integrated circuit
KR101502759B1 (en) Data transmitting device, data receiving device and data transmitting method
TW594787B (en) Methods and apparatus for adaptively adjusting a data receiver
CN101924540B (en) Differential time domain comparator circuit
CN101741373B (en) Low voltage differential signal driver adaptive to various IO power supplies
US20190131997A1 (en) Bootstrapped high-speed successive approximation analog to digital converter
US20150155875A1 (en) Lvds driver
US7292073B2 (en) Transmission line driver circuit
TWI376116B (en) De-glitch circuit
US7830181B1 (en) Deglitch circuit
US20160056832A1 (en) Digital-to-analog converter (dac), method for operating a dac and transceiver circuit
TW200840231A (en) Circuit to reduce duty cycle distortion
WO2019067150A1 (en) Transmitter with power supply rejection
CN114564068B (en) Adaptive current generation circuit and method applied to high-speed ADC input buffer
Tamura et al. Partial response detection technique for driver power reduction in high speed memory-to-processor communications
TWI707547B (en) Analog to digital converter device and noise shaping digital slope analog to digital converter circuitry
Lavania et al. An ultra low power encoder for 5 bit flash ADC
US6154066A (en) Apparatus and method for interfacing integrated circuits having incompatible I/O signal levels
WO1998038739A1 (en) Cmos integrated circuit
KR100824489B1 (en) Controlled frequency signals
CN113050744A (en) High-precision input signal receiving circuit for high-voltage gate driving chip
TW200529560A (en) Short pulse rejection circuit