TWI376017B - Method of forming and operating an assisted charge memory device - Google Patents

Method of forming and operating an assisted charge memory device Download PDF

Info

Publication number
TWI376017B
TWI376017B TW94143726A TW94143726A TWI376017B TW I376017 B TWI376017 B TW I376017B TW 94143726 A TW94143726 A TW 94143726A TW 94143726 A TW94143726 A TW 94143726A TW I376017 B TWI376017 B TW I376017B
Authority
TW
Taiwan
Prior art keywords
charge
memory
region
voltage
data
Prior art date
Application number
TW94143726A
Other languages
Chinese (zh)
Other versions
TW200723452A (en
Inventor
Ming Chang Kuo
Chao I Wu
Ming Hsiu Lee
Tzu Hsuan Hsu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/292,024 external-priority patent/US7474562B2/en
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW200723452A publication Critical patent/TW200723452A/en
Application granted granted Critical
Publication of TWI376017B publication Critical patent/TWI376017B/en

Links

Description

1376017 九、發明說明: 【相關申請案交互參考】 本申請案主張2004年12月7曰申請之美國臨時申請 ‘案60/633,415號之優先權,其標題為「輔助電荷式氮化物 . 陷拼記憶元件及其操作(Assisted Charged Nitride-Trap1376017 IX. Inventive Note: [Related References for Related Applications] This application claims the priority of US Provisional Application No. 60/633,415, filed December 7, 2004, entitled "Auxiliary Charged Nitride. Memory Element and Its Operation (Assisted Charged Nitride-Trap

Memory Device and its Operation.)」。 【發明所屬之技術領域】 非揮發性記憶體(N V Μ)指一種即使當移走電力供應時 藝亦能持續儲存資訊(如,資料)之半導體記憶體。NVM包括 遮罩唯讀記憶體(Mask ROM),可程式化唯讀記憶體 (PROM) ’可抹除可程式化唯讀記憶體(EPR〇M)及電子式可 抹除可程式化唯讀記憶體(EEPROM)。傳統上,:N VM係以 亦可儲存達長時間且可多次讀取、抹除及再程式化之資料 程式化。 【先前技術】 傳統之EPROM隧道氧化物(ΕΤ〇χ)及氮化物設陷唯讀 • 記憶體(NR0M)使用通道熱電子(CHE)注入,以將記憶單元 程式化至一咼臨限電壓(Vt)位準。藉由使用通道熱電子 (CHE)注入以迅速程式化一記憶單元時,因為che具有不 良之程式化效率而需要大程式化電流。結果,記憶單元程 式化速率係因其高功率消耗而受到限制。 另一範例係藉由熱電洞注入氮化物電子儲存(H〇t H〇1 eMemory Device and its Operation.)". TECHNICAL FIELD OF THE INVENTION Non-volatile memory (N V Μ) refers to a semiconductor memory that continuously stores information (eg, data) even when the power supply is removed. NVM includes masked read-only memory (Mask ROM), programmable read-only memory (PROM) 'erasable programmable read-only memory (EPR〇M) and electronic erasable programmable read-only Memory (EEPROM). Traditionally, the N VM has been programmed to store data that can be stored for long periods of time and that can be read, erased, and reprogrammed multiple times. [Prior Art] Traditional EPROM tunnel oxide (ΕΤ〇χ) and nitride trap read-only • Memory (NR0M) uses channel hot electron (CHE) injection to program memory cells to a threshold voltage ( Vt) level. By using channel hot electron (CHE) injection to quickly program a memory cell, a large stylized current is required because of the poor stylized efficiency of the che. As a result, the memory unit programming rate is limited due to its high power consumption. Another example is the injection of nitride electrons by thermoelectric holes (H〇t H〇1 e

Injection Nitride Electron storage ; PHINES)單元而程式 化,其使用頻帶對頻帶熱電洞(Band_t〇 Band腕臟; P930193 1376017 BTBHH)注入以將一 竹邊早7L程式化成一低臨限電壓(Vt)位 準。然而,BTBHH 4 . > _ n主入係極慢且需要較長程式化時間以程 _化°亥单70此限制單元程式化速率 ,從而使PHINES單 疋不具效率。Injection Nitride Electron storage ; PHINES) is a unitized program that uses a band-to-band thermoelectric hole (Band_t〇Band wrist; P930193 1376017 BTBHH) to inject a bamboo edge 7L into a low threshold voltage (Vt) level. . However, the BTBHH 4 . > _ n master entry system is extremely slow and requires a long stylization time to program the rate of the unit, which makes the PHINES single 疋 not efficient.

^為克服此等缺點,所提供之記憶單元在記憶元件(AC :己L體)之電何㈣層中具有—輔助電荷(ac)。輔助電荷改 ,用於AC 5己憶元件中之氮化物設陷記憶單元的總操作致 率及速率。To overcome these shortcomings, the memory unit provided has an auxiliary charge (ac) in the electrical (four) layer of the memory element (AC: L-body). Auxiliary charge change for the total operational rate and rate of nitride trapped memory cells in AC 5 memory elements.

【發明内容] / 权佳具體實施例在一電荷陷阱AC記憶元[Summary of the Invention] / Quanjia specific embodiment in a charge trap AC memory element

^中形成一輔助電荷記憶(AC記憶體)單元,其係用於儲存 貧料且執行記憶體操作。Ac記憶單元具有—p型基板,形 成在基板部份中的一源極區域及一汲極區域…通道係 插入在基板一部份中的源極及汲極區域間,且一第一介雷 層係形成在基板上之該通道上方。AC記憶體進一步包括二 :(即AC侧及資料側)電荷設陷層,其係形成在第 係形成在第:::】::成在電荷設陷層上且-控制閘極 夠以一夕v ―二電層方。此外,電荷設陷層之資料側能 限電早7^操作’其中該資料側可具有代表不同臨 限電;(:)位準之位準的各種程度的電荷。 為製備用於形成該番_ 源極區域或;及極區域中至Γ 接地電位係供應至 電位)係接签也處 至夕一區域。—操作電壓(如,偏壓 一#制源極區域或汲極區域中至少—區域,且 制電厂线供應至控·極。電荷係形成在AC記憶ί Ρ930193 1376017 側 :之電荷設陷層的至少-部份中。儲存該電荷之側 ^毁陷層的AC側,且恆具有一固定高臨限電壓 ,,遠電荷係用於AC記憶單元之輔助電荷。二 位 側 陷層之另一側係用於儲存資料及執行記憶 :碕設 F <資料 A C記憶單元之AC側係藉由在電荷設陷層陷 電荷而固定在-高臨限電壓(vt)位準。f料側係用=輔助 資料,其可根據記憶體操作而在任何臨限電壓位準。儲^ 體操作包括程式化、讀取及抹除。藉由在Ac側中使=憶 電荷固定在一高臨限電壓(Vt)位準,一陡(abrupt)電場=助 在於Ac側及資料側間。該陡電場增強用於AC記情元$存 AC記憶單元的程式化效率。Ac側之固定高臨限電壓牛之 位準限制在AC記憶體上之熱電子(HE)程式化操作 需的程式化電流。結果,電荷陷阱AC記憶單元達到低程 式化功率需求且因此具有更高程式化效率及更高速率。 本發明之AC記憶體的較佳具體實施例包括通道熱電 子(CHE AC 記憶體)、Fowler-Nordheim(FN AC 記憶體)及混 合AC記憶體。 為形成CHE AC記憶體,通道熱電子注入係使用在AC 記憶單元的一側(AC側)上,以使其增加到固定高臨限電壓 (Vt),同時保挤二側記憶單元的另一側(資料側)在低臨限電 壓(Vt)。 為形成FN AC記憶體,係使用正FN注入(+FN)或負 FN注入(-FN)以程式化整個電荷設陷層。FN注入係藉由在 P930193 7 丄场017 間極及基板間施加-正或負偏壓,以均勻地增加AC記伊 單元之整個電荷設陷層的臨限電壓(Vt)。為完成FNAcr己 =早兀的形成’頻帶對頻帶熱電洞(BTBHH)注人係用以將 二枓側降低到低臨限電壓,同時維持AC側中之輔助電荷An auxiliary charge memory (AC memory) unit is formed in ^ for storing lean material and performing memory operations. The Ac memory unit has a -p-type substrate formed in a source region and a drain region in the substrate portion. The channel is inserted between the source and the drain region in a portion of the substrate, and a first dielectric device A layer is formed over the channel on the substrate. The AC memory further includes two: (ie, the AC side and the data side) charge trapping layer, which is formed in the first system formed on the first:::::: on the charge trap layer and - the control gate is sufficient Xi v - two electric layer. In addition, the data side of the charge trapping layer can be electrically operated as long as the data side can have various degrees of charge representing different levels of potential; (:) level. In order to prepare for the formation of the source region or; and the region of the pole region to the ground potential is supplied to the potential), the system is also connected to the region. - Operating voltage (eg, at least one of the source region or the drain region of the bias voltage source), and the power plant line is supplied to the control electrode. The charge is formed on the side of the AC memory Ρ 930193 1376017: the charge trapping layer At least in part - the side of the charge is stored on the AC side of the destructive layer and has a fixed high threshold voltage, and the far charge is used for the auxiliary charge of the AC memory cell. One side is used to store data and perform memory: set F < data AC memory unit AC side is fixed at - high threshold voltage (vt) level by trapping charge in charge trapping layer. Use = auxiliary data, which can be at any threshold voltage level according to the memory operation. The memory operation includes stylization, reading and erasing. By making the = memory in the Ac side fixed at a high level The voltage limit (Vt) level, an abrupt electric field = help between the Ac side and the data side. The steep electric field enhances the stylized efficiency of the AC memory unit for the AC memory unit. The fixed side of the Ac side is high. The voltage-limited cow level limits the stylized current required for the hot metal (HE) stylization operation on the AC memory. As a result, the charge trap AC memory cell achieves a low programmed power requirement and thus has a higher stylized efficiency and higher rate. Preferred embodiments of the AC memory of the present invention include channel hot electrons (CHE AC memory), Fowler-Nordheim (FN AC memory) and mixed AC memory. To form CHE AC memory, the channel hot electron injection system is used on one side (AC side) of the AC memory unit to increase it to a fixed high threshold. Voltage (Vt) while preserving the other side of the two-sided memory cell (data side) at low threshold voltage (Vt). To form FN AC memory, use positive FN injection (+FN) or negative FN injection ( -FN) to program the entire charge trapping layer. The FN implant is uniformly applied to the entire charge trapping layer of the AC cell by applying a positive or negative bias between the P901193 7 field 017 and the substrate. Threshold voltage (Vt). To complete the formation of FNAcr = early ' 'band-to-band thermoelectric hole (BTBHH) injection system to reduce the second side to low threshold voltage while maintaining the auxiliary charge in the AC side

臨限電壓。在使用Βτ_以後,該資料側現已 衣備用於儲存資枓。該資料可能在任何臨限電壓位準。 為形成混口 AC#憶體,通道熱電子(CH印係被用來將 側帶至極高的臨限電壓⑽位準。接著在二側ac記憶 早7L的另-側(貝料側)使用頻帶對頻帶熱電洞助)注 入’以將資料侧降低到低臨限電壓⑽位準,其可為用於 儲存資料之任何臨限電壓(Vt)位準。 【實施方式】Threshold voltage. After using Βτ_, the data side is now available for storage. This information may be at any threshold voltage level. In order to form a mixed AC# memory, the channel hot electrons (CH-printing is used to bring the side to a very high threshold voltage (10) level. Then use the other side of the two sides ac memory 7L early (bean side) Band-to-band thermoelectric hole injection] is used to reduce the data side to a low threshold voltage (10) level, which can be any threshold voltage (Vt) level used to store data. [Embodiment]

詳盡參考圖式,其中類似之參考數字指整個圖式中之 類似元件’圖1顯示依據本發明之一 AC記憶單元1〇〇的 較佳具體實施例。AC記憶單元1〇〇具有一 p型基板1〇5, 基板105具有一源極區域110、一汲極區域115及一插入源 極11〇及汲極115區域間之通道120,其係在基板105 —部 份中。該單元亦包括一在基板1〇5上且在通道120上方之 第一介電層125,及一在第一介電層125上的二側電荷設 陷層130。在電荷設陷層130上有一第二介電層140,及在 第二介電層140上方之控制閘極145。本發明之較佳具體 實施例將氧化物用作第一及第二介電層,但可將其他介電 材料用作第一或第二介電層^該較佳具體實施例亦將氮化 石夕用作電荷設陷層,但可使用其他本地設陷材料(例如奈米 P930193 8 1376017 晶體)’以取代氮化矽或與之結合。 為形成CHEAC記憶單元,係以—接地電位(如,% 供應及極區域115,以Vs=4V之偏壓電位電壓供應源) 域110,並且以Vg=5V之偏壓電位電壓供應控制閉極^ 在AC側I%上使用一側通道熱電子(ch旬注入, 側135係增加到一高臨限電壓⑽位準,而資料側⑹ 持在-低臨限電壓(Vt)。一陡電場15〇區域係在沒極^ 及源極11〇區域間之通道120中的八〇側135和資料側 間產生,從而形成CHE AC記憶體i00。 一側通道熱電子(CHE)注入係用來在Ac側135中形 /輔助電荷155,其係藉由產生一從汲極區域115通過通 道120及第一氧化層ι25到AC側135之通路16〇。通= 提供輔助電荷155從汲極115到電荷設陷層13〇的AC 供J 135之傳導路徑。輔助電荷155係儲存在AC側〖Μ中, 多係恆保持在一固定高臨限電壓(vt)位準。該電荷設陷層 的另一側係資料側165,其保持在一低臨限電壓(Vt)且可具 濟任何臨限電壓位準,其係用來儲存資料及執行記憶體操 作。由於輔助電荷155固定在高臨限電壓(Vt)位準,記憶 弟元100的AC側135及資料側165間會存在一陡電場 0〇。陡電場150提升在記憶體操作期間資料側之程式化效 率及速率。該記憶體操作包括記憶單元1〇〇之資料側165 中資料的程式化、抹除及讀取。此外,AC側135中固定辅 劢電荷155的存在,限制熱電子(HE)程式化操作期間之程 式化電流’從而減少功率需求且使程式化更有效率。 ?93〇193 9 1376017 圖2A及2B係依據本發明另一較佳具體實施例之fn AC記憶體200的示意圖。圖2A及2B顯示使用與圖1所 示相同的記憶單元100結構形成FN AC記憶體200單元之 二步驟方法。為形成FN AC記憶體200單元,汲極ι15及 源極110區域二者係獲得供應一接地電位(如, Vd=Vs=〇v),而控制閘極145係以圖2A所示電位Vg=-20V 偏壓。負Fowler-Nordheim(-FN)注入之使用,係藉由在控 制閘極145及基板105間施加一負偏壓,以均勻地增加記 憶單元1〇〇之電荷設陷層130的臨限電壓(Vt)。此產生一 FN電荷180’其佔有FNAC記憶單元200之整個電荷設陷 層130。資料侧165係藉由使用一侧頻帶對頻帶熱電洞注 入以從資料側165抹除FN電荷180。同時,AC側135中 之FN電荷180係維持在圖2b所示之固定高臨限電壓(vt) 位準。 使用BTBHH注入前,係供應一接地電位(vs=0V)至源 極u〇區域,且供應Vd=4 5V偏壓電位電壓至汲極115區 域。控制閘極145偏壓電位係改變成圖2B所示的Vg=_8V。 頻帶對頻帶熱電洞(Β Τ Β Η Η)注入係用以抹除記憶單元的二 側電荷設陷層13〇之—侧165(如,資料側),同時維持另一 側135(AC側)在一固定高臨限電壓(vt)位準。 藉由使用該BTBHH注入,所產生之通路160係從汲 極115區域通過通道12〇及第一氧化層125到電荷設陷層 130~之資料側165。通路允許一電洞載體電荷17〇傳導 至貢料側165 ’且抹除由FN注入放置在該處之FN電荷 P930193 1376017 M〇°该抹除僅清除資料側165且保持AC側135固定在高 臨限電壓(vt)位準。由於輔助電荷155固定在一高臨限電 壓(Vt)位準’陡電場150會產生在記憶單元200的AC側 135及資料侧165之間,如圖2B中顯示。陡電場提升 . =記憶體操作期間之資料側165的程式化效率及速率。記 -憶體操作包括儲存在記憶單元100、200、300之資料侧165 中的資料之程式化、抹除及讀取。在AC側135中高臨限 電壓(Vt)位準處出現之輔助電荷155,限制熱電子(he)程式 _ 化操作期間之程式化電流。此減少程式化功率需求且使程 式化FN AC記憶體更有效率。 本發明另一較佳具體實施例使用正 F〇wler-N〇rdheim(+FN)注入,以形成圖2A顯示的FN Ac 5己憶單元2〇〇。正Fowler-Nordheim(+FN)注入之使用係藉 由在控制閘極145及基板105間施加一正偏壓電壓。+FN 注入均勻地增加記憶單元200之電荷設陷層13〇的臨限電 壓(Vt)位準。此技術產生一 FN電荷180,其佔有FNAC記 # 憶單元200之整個電荷設陷層13〇。上述用於_FN注入的 - BTBHH注入亦可用來抹除佔有+FN AC記憶單元200之資 . 料側165的FN電荷180。 為形成+FN AC記憶單元,係供應一偏壓電位電壓至汲 極115區域,且控制閘極145係改變成圖2B所示的不同控 制電壓。頻帶對頻帶熱電洞(BTBHH)注入係用以抹除記憶 單元的一側電荷設陷層之一側165(資料側),同時維持另一 側135(AC側)在高臨限電壓(vt)位準。陡電場丨5〇區域會 P930193 11 1376017 產生在沒極115及源極110區域間通道⑽中之…側135 和貧料们㈣,從而形成一 FNac記憶體細。 本㈣I較佳具财施例的混合 及3B顯示使用與圖1所 =: 形成混合AC記憶體單元之二 y驟過程。為形成混合AC記憶體單元, 之偏壓電位電壓係供應至源極u 獲得供應-接地電位(如,Vd, £域,没極115區域係 壓電位電壓至控制龍145,如圖3且^4— ^=^之偏 135上使用-侧通道熱電子(c ^。藉由在AC侧 一高臨限電壓㈣位準,同時^HAC侧135增加至 電壓(Vt)。 吁貝枓側165保持在一低臨限 伙源極110區域通過通道12〇 褙田座玍 135之-通請,而在AC側135第;=^^ 通路⑽提供供輔助155 H成—輔助電荷155。 元之電荷設陷層130的AC側^ & AC記憶體遍單 熱電子(CHE姓人後n 之傳導路徑。使用通道 極则域,以一接地電位二 域,且使控制閘極145改變成v 5 V)供應至源極⑽區 3B中顯示。參考圖3B 之偏壓電位’如圖 注入係用來抹除二側電荷設陷層員電洞陶 保持AC側135在一固定 = 則165,同時 區域會產生纽極115及㈣n^(Vt)位準。陡電場150 及源極U0區域間通道12〇中之Ac P930193 12 1376017 •側135和資料側165之間,從而形成一混合AC記憶單元 3〇〇。電荷設陷層130之資料側165保持在一低臨限電壓(vt) 位準並可具有任何臨限電壓,且係用來儲存一資料電荷。 由於AC侧135使輔助電荷155固定在一高臨限電壓 . (Vt)位準,陡電場15〇會產生在混合ac記憶單元3〇〇的 AC側135及資料側165之間’如圖3B中顯示。陡電場150 提升在記憶體操作期間之資料側165的程式化效率及速 率。記憶體操作包括儲存在混合AC記憶體300單元之資 • 料側I65中的資料電荷之程式化、抹除及讀取。在AC侧 U5中之輔助電荷155,限制熱電子(HE)程式化操作期間之 程式化電流。由於該電流受限制,此減少程式化功率需求 且使程式化更有效率。 圖4A係圖1-3之AC記憶單元1〇〇、200、300的示意 圖’其顯示用於程式化AC記憶單元1〇〇、200、300之熱 電子(HE)注入。AC記憶單元1〇〇、2〇〇、300之設定係使用 一接地電位(Vs=0V)供應至源極11()區域,一 vd=4V之偏 _ 壓電位電壓供應至汲極115區域,且用一 Vg=5V之偏壓電 ' 位電壓供應至控制閘極145。在程式化資料側165前,當 * AC兄憶單元100、200、300形成時,AC側135係設定成 一固定向臨限電壓(Vt)位準’其係用作電流限制區域。ac 側135係设定在一固定高臨限電壓(vt)位準。接著使用HE 左入以程式化AC記憶單元1〇〇、2〇〇、3〇〇。一陡電場15〇 係產生在資料側165和Ac側135之間,其協助程式化資 料側165。所產生之一通路ι6〇係從源極區域通過通道12〇 P930193 13 Ϊ376017 中之陡電場150及第一介電層125到電荷設陷層130的資 料側165。熱電子(HE)程式化造成一資料電荷175從源極 110區域通過通道120中之陡電場150、通過第一介電 125(如’氧化)層傳導,且係儲存在AC記憶單元1〇〇、20〇、DETAILED DESCRIPTION OF THE INVENTION Reference numerals are used to refer to like elements throughout the drawings. FIG. 1 shows a preferred embodiment of an AC memory unit 1A in accordance with the present invention. The AC memory unit 1A has a p-type substrate 1〇5, and the substrate 105 has a source region 110, a drain region 115, and a channel 120 interposed between the source 11 and the drain 115 region, which is attached to the substrate. 105 - part of it. The unit also includes a first dielectric layer 125 on the substrate 1 and above the channel 120, and a two-sided charge trap layer 130 on the first dielectric layer 125. A second dielectric layer 140 is disposed on the charge trap layer 130, and a control gate 145 is disposed over the second dielectric layer 140. Preferred embodiments of the present invention use an oxide as the first and second dielectric layers, but other dielectric materials can be used as the first or second dielectric layer. It is used as a charge trapping layer, but other local trapping materials (such as nano P930193 8 1376017 crystal) can be used instead of or in combination with tantalum nitride. In order to form the CHEAC memory cell, the voltage is supplied to the ground potential (for example, % supply and pole region 115, with Vs=4V bias potential voltage supply) domain 110, and with Vg=5V bias potential voltage supply control Closed-pole ^ Use one-channel hot electrons on the AC side I% (ch-injection, side 135 is increased to a high threshold voltage (10) level, and data side (6) is held at - low threshold voltage (Vt). The steep electric field 15〇 region is generated between the gossip side 135 and the data side in the channel 120 between the infinite electrode and the source 11〇 region, thereby forming a CHE AC memory i00. One side channel hot electron (CHE) injection system The shape/auxiliary charge 155 is used in the Ac side 135 by generating a path 16 from the drain region 115 through the channel 120 and the first oxide layer ι25 to the AC side 135. = = providing an auxiliary charge 155 from 汲The pole 115 is connected to the charge trapping layer 13A for the conduction path of J 135. The auxiliary charge 155 is stored in the AC side, and the multiple lines are constantly maintained at a fixed high threshold voltage (vt) level. The other side of the trap is the data side 165, which is maintained at a low threshold voltage (Vt) and can be used for any threshold voltage level. The data is stored and the memory operation is performed. Since the auxiliary charge 155 is fixed at the high threshold voltage (Vt) level, there is a steep electric field 0 AC between the AC side 135 and the data side 165 of the memory cell 100. The steep electric field 150 is raised at Stylized efficiency and rate on the data side during memory operation. The memory operation includes stylization, erasing, and reading of data in the data side 165 of the memory unit 1. In addition, the auxiliary side charge 155 is fixed in the AC side 135. Existence, limiting the stylized current during hot metal (HE) stylization operations' thereby reducing power requirements and making programming more efficient. 93 93 193 9 1376017 Figures 2A and 2B are another preferred embodiment of the present invention FIG. 2A and FIG. 2B show a two-step method of forming an FN AC memory 200 unit using the same memory cell 100 structure as that shown in FIG. 1. To form a FN AC memory 200 unit, a bungee Both the ι15 and source 110 regions are supplied with a ground potential (eg, Vd=Vs=〇v), while the control gate 145 is biased with the potential Vg=-20V as shown in Figure 2A. Negative Fowler-Nordheim (- FN) the use of injection by means of the control gate A negative bias voltage is applied between 145 and the substrate 105 to uniformly increase the threshold voltage (Vt) of the charge trap layer 130 of the memory cell 1. This generates an FN charge 180' which occupies the entire charge of the FNAC memory cell 200. The sinking layer 130. The data side 165 is used to erase the FN charge 180 from the data side 165 by using a side band to the band thermal hole injection. Meanwhile, the FN charge 180 in the AC side 135 is maintained at the fixed level shown in FIG. 2b. High threshold voltage (vt) level. Before the BTBHH injection, a ground potential (vs = 0 V) is supplied to the source u 〇 region, and a Vd = 4 5 V bias potential voltage is supplied to the drain 115 region. The control gate 145 bias potential is changed to Vg = _8V as shown in Fig. 2B. The band-to-band thermoelectric hole injection system is used to erase the side 165 (eg, data side) of the two-side charge trapping layer 13 of the memory cell while maintaining the other side 135 (AC side). At a fixed high threshold voltage (vt) level. By using the BTBHH implant, the resulting via 160 is routed from the drain 115 region through the via 12 and the first oxide layer 125 to the data side 165 of the charge trap layer 130. The via allows a hole carrier charge 17〇 to be conducted to the tributary side 165' and erases the FN charge placed there by the FN implant P930193 1376017 M〇° This erase only clears the data side 165 and keeps the AC side 135 fixed at high Threshold voltage (vt) level. Since the auxiliary charge 155 is fixed at a high threshold voltage (Vt) level, the steep electric field 150 is generated between the AC side 135 and the data side 165 of the memory unit 200, as shown in Fig. 2B. Steep electric field boost. = Stylized efficiency and rate of data side 165 during memory operation. The remember-memory operation includes stylization, erasing, and reading of data stored in the data side 165 of the memory unit 100, 200, 300. The auxiliary charge 155 appearing at the high threshold voltage (Vt) level in the AC side 135 limits the stylized current during the hot electron (he) program operation. This reduces the stylized power requirements and makes the programmed FN AC memory more efficient. Another preferred embodiment of the invention uses a positive F〇wler-N〇rdheim (+FN) implant to form the FN Ac 5 recall unit 2〇〇 shown in Figure 2A. The use of positive Fowler-Nordheim (+FN) implants is by applying a positive bias voltage between control gate 145 and substrate 105. The +FN implant uniformly increases the threshold voltage (Vt) level of the charge trap layer 13 of the memory cell 200. This technique produces an FN charge of 180 which occupies the entire charge trap layer 13 of the FNAC memory unit 200. The above -BTBHH injection for _FN injection can also be used to erase the FN charge 180 of the material side 165 of the +FN AC memory cell 200. To form a +FN AC memory cell, a bias potential voltage is supplied to the drain 115 region, and the control gate 145 is changed to a different control voltage as shown in Fig. 2B. Band-to-band thermal hole (BTBHH) injection is used to erase one side of the memory cell side 165 (data side) while maintaining the other side 135 (AC side) at a high threshold voltage (vt) Level. The steep electric field 丨5〇 region P930193 11 1376017 produces the ... side 135 and the poor material (4) in the channel (10) between the electrode 115 and the source 110 region, thereby forming a FNac memory thin. The mixing of the (4) I preferred financial example and the 3B display use the same as the one shown in Fig. 1 to form a mixed AC memory cell. In order to form a hybrid AC memory cell, the bias potential voltage is supplied to the source u to obtain a supply-ground potential (eg, Vd, £ domain, and the 115-pole voltage level to the control dragon 145, as shown in FIG. And ^4—^=^ on the 135 uses the -side channel hot electrons (c^. By a high threshold voltage (four) level on the AC side, and ^HAC side 135 increases to the voltage (Vt). Side 165 is maintained in a low threshold source 110 region through channel 12 〇褙田座玍135, and on AC side 135; =^^ path (10) is provided for auxiliary 155 H into auxiliary charge 155. The AC side of the charge trapping layer 130 and the AC memory pass through a single hot electron (the conduction path of the CHE surnamed n. The channel is used in the domain, with a ground potential two domain, and the control gate 145 is changed. V 5 V) is supplied to the source (10) zone 3B. Refer to Figure 3B for the bias potential 'as shown in the injection system to erase the two-sided charge trapping hole. The hole is kept on the AC side 135 at a fixed = Then 165, at the same time, the region will generate the pole 115 and (4) n^(Vt) level. The steep electric field 150 and the source U0 region between the channels 12〇Ac P930193 12 1376017 • side 135 and data side Between 165, thereby forming a hybrid AC memory cell 3. The data side 165 of the charge trapping layer 130 is maintained at a low threshold voltage (vt) level and can have any threshold voltage and is used to store a Data charge. Since the AC side 135 fixes the auxiliary charge 155 at a high threshold voltage (Vt) level, a steep electric field of 15 〇 is generated between the AC side 135 and the data side 165 of the hybrid ac memory unit 3' As shown in Figure 3B, the steep electric field 150 boosts the stylized efficiency and rate of the data side 165 during memory operation. The memory operation includes a program of data charges stored in the material side I65 of the mixed AC memory 300 unit. Auxiliary, erase and read. The auxiliary charge 155 in the AC side U5 limits the stylized current during the hot metal (HE) stylization operation. Since this current is limited, this reduces the stylized power requirements and makes the program more Figure 4A is a schematic diagram of the AC memory cells 1, 200, 300 of Figures 1-3 'showing the hot electron (HE) injection for the programmed AC memory cells 1 , 200, 300. AC memory Units 1〇〇, 2〇〇, 300 are set to use one connection The potential (Vs = 0V) is supplied to the source 11 () region, a bias of vd = 4V _ the piezoelectric voltage is supplied to the drain 115 region, and is supplied to the control gate with a bias voltage of Vg = 5V. The pole 145. Before the stylized data side 165, when the *AC brother recall unit 100, 200, 300 is formed, the AC side 135 is set to a fixed-direction threshold voltage (Vt) level which is used as the current limiting area. The ac side 135 is set at a fixed high threshold voltage (vt) level. Then use HE left to program the AC memory units 1〇〇, 2〇〇, 3〇〇. A steep electric field 15 is generated between the data side 165 and the Ac side 135, which assists in programming the data side 165. One of the paths ι6 is generated from the source region through the steep electric field 150 in the channel 12 〇 P930193 13 Ϊ 376017 and the first dielectric layer 125 to the data side 165 of the charge trap layer 130. Thermal electron (HE) stylization causes a data charge 175 to pass from the source 110 region through the steep electric field 150 in the channel 120, through the first dielectric 125 (e.g., 'oxidized) layer, and stored in the AC memory unit 1〇〇. 20 years old,

300的資料側165中,如圖4A中顯示。陡電場150提升 AC記憶單元1〇〇、200、300的程式化效率及速率。由於 AC侧135係固定在一高臨限電壓(vt)位準,其產生一電流 限制區域,其中HE程式化需求較少電流以程式化資料側 165 ’因此減少AC記憶單元100、2〇〇、3〇〇之功率消耗。 由於輔助電荷155限制AC記憶體之程式化電流,故不會 有與任何具體實施例相關之過度程式化問題,且在AC記 憶單元中提供緊密之程式化狀態分布。 圖4B係圖1-3的AC記憶單元1〇〇、2〇〇、3〇〇的示意 圖’其皆具有相同結構,且顯示用於抹除AC記憶單元 1〇〇、200、300之貪料側165的頻帶對頻帶熱電洞 注入。AC記憶單元1〇〇、2〇〇、3〇〇之設定係使用一接地電 位(如’ VS=〇V)供應至源極11〇區域,供應一 Vd=4.5V之 =位電壓至沒極115區域,且 偏壓電 控制料145。—大體切經通道12〇及第 資料側165門產^化)層的短通路丨60係在汲極115區域及 係藉由形成」通^通熱電洞(―入 之電荷設,3。二=== 入一從汲極115區试福噹不 ^ 16U 棺 戍傳導之電洞載體電荷170抹除資料側 Ρ930193 14 1376017 165 〇 圖5係圖1·3之ac記憶單元loo、200、3〇〇的示意 圖,其顯示針對所有AC記憶單元loo、200、300之具體 . 實施例在AC側135上以Vs進行之讀取操作。Ac記憶單 ; 元1〇〇、200、300之設定係使用一Vs爿.6V之偏壓電位電 壓供應至源極110區域,一接地電位(如,Vd=〇v)用於汲極 115區域,且一 Vg=3V之偏壓電位電壓用於控制閘極145。 一旦s己憶單元100、200、300已設定且適當地偏壓,資料 # 係備便於讀取且係儲存在AC記憶單元1〇〇、2〇〇、300的 資料側165令。讀取操作不影響已設定至固定高臨限電壓 (Vt)的輔助電荷155位準並且係保持在AC側135中。AC 側135中的輔助電荷155減少AC記憶單元或元件之讀取 干擾’其限制任何讀取操作錯誤。 用於較佳具體實施例之記憶體操作比一般電荷設陷記 憶單元(如,非AC記憶體)需要較少操作電流,因而增加 AC記憶體100、200、300的總效率。此外,AC記憶體的 φ 速率亦增加且較低電流減少用於操作的功率消耗。再者, 所有AC §己憶體具體實施例皆可以一多位準單元執 行記憶體操作,其中電荷設陷層之資料侧可具有代表已儲 存資料之臨限電壓(Vt)位準的各種程度。 圖6係一顯示比較一般電荷記憶單元與圖 AC記憶體200與混合AC記憶體300單元之程式化速率和 AC位準的實驗資料圖形6〇〇。圖形600以圖形比較 相對於Shot(其係定義為AVt sh〇t=〇」叩)顯示及比較各記 P930193 15 1376017 憶單元型式之不同AC位準。AVtCV)係用於記憶單元的程 式化及抹除狀態的資料側Vt差。一般電荷記憶單元結構電 壓偏壓係配置有設定成Vg_od=〇v之閘極過驅動電壓,設 定成Vg=2V之控制閘極電壓,及設定成Vd=4.75V之汲極 區域電壓。閘極過驅動(Vg_〇d)指閘極電壓及AC側臨限電 壓間的電壓差。一般電荷記憶單元不具有AC側。因此, AC位準=〇v表示記憶單元的AC侧及資料側間的臨限電壓 (Vt)差。一般電荷記憶單元之資料係由圖6中具有黑圓圈 ® 之實線在圖形600上顯示之底部資料曲線15(標示為IX)。The data side 165 of 300 is shown in Figure 4A. The steep electric field 150 increases the stylized efficiency and rate of the AC memory cells 1, 200, and 300. Since the AC side 135 is fixed at a high threshold voltage (vt) level, it produces a current limiting region in which the HE stylizes less current to program the data side 165 'and thus reduces the AC memory cells 100, 2〇〇 3, the power consumption. Since the auxiliary charge 155 limits the stylized current of the AC memory, there is no over-stylization problem associated with any particular embodiment and a tight stylized state distribution is provided in the AC memory unit. 4B is a schematic view of the AC memory cells 1 〇〇, 2 〇〇, 3 图 of FIGS. 1-3, which all have the same structure, and show the craving for erasing the AC memory cells 1 , 200 , 300 . The frequency band of side 165 is injected into the band thermowell. The setting of the AC memory unit 1〇〇, 2〇〇, 3〇〇 is supplied to the source 11〇 region using a ground potential (such as 'VS=〇V), and a Vd=4.5V=bit voltage is supplied to the pole. 115 area, and bias control material 145. - The short path of the general tangential channel 12〇 and the data side 165 gates of the layer 丨60 is in the area of the bungee 115 and the system is formed by the "through the charge" (3. === Into a bungee 115 area test Fu Dang ^ 16U 棺戍 conduction hole carrier charge 170 erase data side Ρ 930193 14 1376017 165 〇 Figure 5 Figure 1-3 ac memory unit loo, 200, 3 A schematic diagram of 〇〇, which is specific to all AC memory cells loo, 200, 300. The embodiment performs a read operation with Vs on the AC side 135. Ac memory list; the setting of the element 1 〇〇, 200, 300 A bias potential voltage of Vs 6.6V is supplied to the source 110 region, a ground potential (eg, Vd=〇v) is used for the drain 115 region, and a bias potential voltage of Vg=3V is used. Control gate 145. Once the suffix unit 100, 200, 300 has been set and properly biased, the data # is readily readable and stored on the data side 165 of the AC memory unit 1 〇〇, 2 〇〇, 300. The read operation does not affect the auxiliary charge 155 level that has been set to a fixed high threshold voltage (Vt) and remains in the AC side 135. The auxiliary in the AC side 135 The charge 155 reduces the read disturb of the AC memory cell or component 'which limits any read operation errors. The memory operation for the preferred embodiment requires less than a typical charge trap memory cell (eg, non-AC memory). Operating current, thus increasing the overall efficiency of the AC memory 100, 200, 300. In addition, the φ rate of the AC memory is also increased and the lower current is reduced for power consumption for operation. Furthermore, all AC § memories are implemented For example, the memory operation can be performed by a multi-level cell, wherein the data side of the charge trap layer can have various degrees representing the threshold voltage (Vt) level of the stored data. FIG. 6 shows a comparison of the general charge memory unit. The experimental data graph of the stylized rate and AC level of the AC memory 200 and the mixed AC memory 300 unit is 6. The graph 600 is graphically compared with Shot (which is defined as AVt sh〇t=〇)叩Display and compare each record P930193 15 1376017 Recall the different AC levels of the unit type. AVtCV) is used for the stylization of the memory unit and the data side Vt difference of the erased state. The general charge memory cell structure voltage bias system is provided with a gate overdrive voltage set to Vg_od = 〇v, a control gate voltage set to Vg = 2V, and a drain region voltage set to Vd = 4.75V. The gate overdrive (Vg_〇d) refers to the voltage difference between the gate voltage and the AC side threshold voltage. A typical charge memory unit does not have an AC side. Therefore, the AC level = 〇v indicates the threshold voltage (Vt) difference between the AC side and the data side of the memory unit. The data of the general charge memory unit is the bottom data curve 15 (labeled IX) displayed on the graph 600 by the solid line with the black circle ® in FIG.

由於出現在電荷設陷層130之AC側135中的輔助電 荷155’圖2的FNAC記憶體200單元具有一等於2.4V的 AC位準。閘極過驅動電壓係Vg_od=0V,控制閘極145電 塵Vg=4.4V且汲極115區域電壓vd=4.75V。FN AC記憶 體200單元係由圖6中具有空白圓圈之點線在圖形600上 顯示之中間資料曲線標示為21Χ)。比較之下,由於2.4V 的AC位準,正及負FN AC記憶體200單元比一般記憶單 鲁元快21倍,如圖6所示。 由於出現在電荷設陷層130之AC側135中的輔助電 荷155 ’圖3的混合AC記憶體300單元具有等於2.9V的 AC位準。閘極過驅動電壓係vg_od=〇v,控制閘極145電 壓Vg-4.9V且汲極115區域電壓ν(^=4.75ν。混合AC記憶 體300單元係由圖6中具有黑三角形之虛線在圖形6〇〇上 顯示之頂部資料曲線5(標示為32Χ)。比較之下,混合AC 記憶體300單元比—般電荷記憶單元快以倍,如圖6所示。 P930193 16 1376017 圖7係實驗資料之圖形700,其比較圖3之混合AC記 憶體300單元達到ι〇,〇〇〇程式化和抹除循環之臨限電壓(Vt) 對P/E(如,程式化/抹除)之比。混合AC記憶體3〇〇單元具 有3V之初始AC位準。AC位準係記憶單元3〇〇之AC側 135及資料彻j 165 f曰1的臨限電壓(Vt)差。在程式化操作期 間’源極no區域係以接地電位(如,Vs=〇v)供應,汲極 H5區域係以Vd=4.75V供應,並且—Vg=5v之偏壓電位 供應至控制閘極145。在抹除操作期間,源極UG區域係 供應接地電位(如,VS:0V),汲極出區域係以vdM5v 供應,並且vg=-8V之偏壓電位供應至控制閘極i45 係收集達到H)5〇_/E循環剩試,以顯示一臨限電壓( 窗口,其係圖3之混合AC記憶單元3〇〇在資料側165之 高及低臨限電壓V t狀態2 0及2 5間的區域。高臨限電壓狀 態係頂部資料曲線2G且由具有空白圓圈的點線顯示。低臨 限電壓狀態係底部資料曲線25且由圖7中圖形7〇〇上具 黑圓圈的實線顯示。結果,高臨限狀態2〇維持在4v之臨 限電厪,且低狀態、25維持在、約19V之臨限電壓。此保 臨限電壓窗口大體上在整個1M卿/E循環具有與圖w 合AC記憶單元300相同的大小。 圖8係顯示針對圖3之現合AC記憶單元的圖带 800,在如圖7所示圖形700之1〇,〇〇〇ρ/Ε備環後,並;; 室溫(RT)臨限電壓(Vt)漂移相對於應力時間之實驗資料^ 其在貢料側165上之效應。混合AC記憶單元3⑻圖 之H),_P/E循環完成後,錢極115區域上係配置有一 P930193 接地電位Vd=OV,且批生, _秒且臨限電壓窗:^=上Vg♦應力時間係 , 的貝枓係針對混合AC記憶體300 空白==電壓狀態係項部資料曲線3。且由具有 且由圄S ^。低臨限電壓狀態係底部資料曲線35 且由圖8中圖形80〇上 只 限電壓狀態說明圖3之圈的實線顯示。高及低臨 〇 成0 AC記憶體300的臨限電壓窗 為圖形顯不在賁料側 3〇及低35臨限電屢妝能„ “ 至/皿(RT)/不移其中问 沒有改變。此資料顯;1,000秒應力時間中幾乎 , 展σ AC記憶體300單元在遍及許 夕除操作上具有相當良好之資料保持。 輸圖9 _示針_ 3之混合AC記憶單元·的圖形 _,在如圖7所示圖形中之1〇,_p/E循環後,比較 臨限電壓(vt)偏移(如,漂移)相對於控制閘極m之應力時 間的貝驗貝料及其在;貝料側165上之效應。控制閘極145 係以Vg=-5V之偏壓電位受應力達到1〇〇〇秒的應力時間, 且觀察臨限窗口的資料。低臨限電壓狀態45係底部資 料曲線且係由具有黑圓圏的實線顯示,其在整個誦秒之 應力時間中大體上維持固定。高臨限電麼狀態4〇係頂部資 料曲線且係由具有空白圓_點線顯示,其顯示在1〇〇〇秒 之應力時間後在資料W65j^7〇〇mV之損耗。此顯示若 應力長時間存在,混合AC記憶體3〇〇單元係對控制閘極 145之應力敏感。 圖1〇係顯不針對圖3之混合ACb憶單元3〇〇的圖形 1〇〇〇,在如圖7所示圖形700之1〇 〇〇〇次程式和抹除循環 P930193 18 1376017 之臨限電壓⑽偏移相對於 極145係以Vg=5V之偏壓f貝料侧165上之效應。控制問 Vs=1 之偏壓電位電壓供應,且源極110區域 >之岸力時Η之偏屋電位電壓供應,其係保持達到i,000 私之應2時間。低臨限電壓狀態55係由具有黑 顯示之底部資料曲線,且顯示達咖秒之應力時間時= 料側165 1增加·mV。高臨限電壓狀態%係由具有空白 圓圈的點線顯示之頂部資料曲線,且在画秒之應力^The auxiliary charge 155' appearing in the AC side 135 of the charge trap layer 130. The FNAC memory 200 unit of Fig. 2 has an AC level equal to 2.4V. The gate overdrive voltage system Vg_od = 0V, the control gate 145 dust Vg = 4.4V and the drain 115 region voltage vd = 4.75V. The FN AC memory 200 unit is indicated by an intermediate data curve displayed on the graph 600 by a dotted line having a blank circle in Fig. 6 as 21 Χ). In comparison, due to the AC level of 2.4V, the positive and negative FN AC memory 200 units are 21 times faster than the general memory single unit, as shown in Figure 6. The hybrid AC memory 300 unit of Figure 3 due to the auxiliary charge 155 appearing in the AC side 135 of the charge trapping layer 130 has an AC level equal to 2.9V. The gate overdrive voltage system vg_od=〇v, the control gate 145 voltage Vg-4.9V and the drain 115 region voltage ν (^=4.75ν. The mixed AC memory 300 unit is represented by the dotted line with the black triangle in Fig. 6 Figure 6 shows the top data curve 5 (labeled 32Χ). In comparison, the mixed AC memory 300 unit is twice as fast as the general charge memory unit, as shown in Figure 6. P930193 16 1376017 Figure 7 is an experiment The data graph 700 compares the mixed AC memory 300 unit of FIG. 3 to the ι〇, 〇〇〇 stylized and erase cycle threshold voltage (Vt) for P/E (eg, stylized/erased) The mixed AC memory 3〇〇 unit has an initial AC level of 3V. The AC level is the difference between the AC side 135 of the memory unit 3 and the threshold voltage (Vt) of the data 杰 f 曰1. During the operation, the source no region is supplied with a ground potential (eg, Vs=〇v), the drain H5 region is supplied with Vd=4.75V, and the bias potential of −Vg=5v is supplied to the control gate 145. During the erase operation, the source UG region supplies the ground potential (eg, VS: 0V), the drain region is supplied with vdM5v, and the bias voltage is vg=-8V. Bit supply to control gate i45 is collected to achieve H) 5 〇 _ / E cycle remaining test to display a threshold voltage (window, which is the hybrid AC memory unit 3 of Figure 3 on the data side 165 high and low The threshold voltage V t state is between 2 0 and 25 5. The high threshold voltage state is the top data curve 2G and is displayed by the dotted line with a blank circle. The low threshold voltage state is the bottom data curve 25 and is shown in FIG. The solid line of the black circle on the graph 7〇〇 is displayed. As a result, the high threshold state 2〇 is maintained at the threshold of 4v, and the low state, 25 is maintained at a threshold voltage of about 19V. The window generally has the same size as the AC memory unit 300 throughout the 1M clear/E cycle. Figure 8 shows a tape 800 for the ready-to-use AC memory unit of Figure 3, as shown in Figure 7 1〇, 〇〇〇ρ/Ε后环,和;; room temperature (RT) threshold voltage (Vt) drift relative to stress time experimental data ^ its effect on the tributary side 165. Hybrid AC memory unit 3(8) Figure H), after the _P/E cycle is completed, there is a P930193 ground potential Vd=OV on the Qianji 115 area, and batch, _ seconds and Threshold voltage window: ^ = Vg ♦ stress on the time lines for the shell mixture Tu-based AC voltage memory state data 300 == blank entry portion 3 curved lines. And by and with 圄S ^. The low threshold voltage state is the bottom data curve 35 and is shown by the solid line indicating the voltage state of Figure 3 on the graph 80 on Figure 8. High and low 〇 0 0 AC memory 300 threshold voltage window for the graphic display is not on the side of the feed 3 〇 and low 35 limit power can make up „“ to / dish (RT) / do not move where to ask No change. This data shows that in the 1,000-second stress time, the σ AC memory 300 unit has a fairly good data retention throughout the operation. Figure 9 _ shows the pattern of the mixed AC memory unit of the pin _ 3, in the graph shown in Figure 7, after the _p/E cycle, compare the threshold voltage (vt) offset (eg, drift) Relative to the stress time of the control gate m, and its effect on the batting side 165. The control gate 145 is subjected to a stress time of 1 sec. with a bias potential of Vg = -5 V, and the data of the threshold window is observed. The low threshold voltage state 45 is the bottom data curve and is shown by the solid line with a black circle, which remains substantially constant throughout the stress time of the leap seconds. The high-limit current state 4 〇 system top material curve is displayed by a blank circle _ dotted line, which shows the loss in the data W65j^7〇〇mV after a stress time of 1 〇〇〇. This shows that if the stress is present for a long time, the mixed AC memory 3〇〇 unit is sensitive to the stress of the control gate 145. Figure 1 is a diagram showing the pattern of the mixed ACb memory cell 3〇〇 of Figure 3, in the case of the pattern 700 shown in Figure 7, and the erase cycle P930193 18 1376017 The voltage (10) offset is relative to the pole 145 with a bias on the billiard side 165 of Vg = 5V. The control asks the bias potential voltage supply of Vs=1, and the supply voltage of the partial potential of the source 110 region > is maintained at i,000 private for 2 hours. The low threshold voltage state 55 is based on the bottom data curve with black display and shows a stress time of up to 2 seconds = material side 165 1 increases · mV. The high threshold voltage state % is the top data curve displayed by the dotted line with a blank circle, and the stress in the second is ^

中大體上維持固^。結果,臨限電壓窗口在應力時間的開 始係較寬(如,較大的滿),且在應力時間的結尾較 較小的AVt)。 熟習此項技藝者應即瞭解可對上述各項具體實施例進 行是化而不致悖離其廣義之發明性概念。因此,應瞭解 本發明亚不限於本揭之特定具體實補,而係為涵蓋歸屬 如後載各請求項所定義之本發明精神及範圍内的修飾。 【圖式簡單說明】 當併同各隨附圖式而閱覽時,即可更佳瞭解本發明之 前揭摘要以及上文詳細說明。為達本發明之說明目的,各 圖式裏圖繪有現屬較佳之各具體實施例。然應瞭解本發明 並不限於所繪之精確排置方式及設備裝置。 在各圖式中: 圖1係顯示使用依據本發明一較佳具體實施例之一側 通道熱電子(CHE)注入形成一 AC記憶體之結構及範例性 方法的示意圖; P930193 19 圖2A係顯示依據本發明另一較佳具體實施例藉由以 FN電荷填充〆設陷層以形成一 Fowler_Nordheim(FN)AC記 憶體之範例性方法的示意圖’ 圖2B係顯示使用一側頻帶對頻帶熱電洞(BTBHH)供 抹除一部份設陷’用於完成Fowler-Nordheim(FN)AC記憶 體之形成(如圖2A顯示)的範例性方法的示意圖; 圖3A係顯示依據本發明另一較佳具體實施例使用在 AC記憶體之AC側處的一側通道熱電子(CHE),用於形成 混合AC記憶體之範例性方法的示意圖; 圖3B係顯示針對圖3A之資料側使用一側頻帶對頻帶 熱電洞(BTBHH)供抹除一混合AC記憶體的範例性方法的 示意圖; 圖4A係針對圖1-3之具體實施例使用AC記憶體之熱 電子(HE)程式化以在資料側處程式化操作之範例性方法的 示意圖; 圖4B係針對圖1-3之具體實施例使用AC記憶體之頻 ▼對頻帶熱電洞(BTBHH)抹除以在資料側處抹除操作之範 例性方法的示意圖; 圖5係一顯示針對圖1-3之具體實施例用於ac記憶 體(Vd在AC側)之資料側的讀取操作之範例性方法的示意 圖; ~ 圖6係顯示當與一般電荷記憶體結構比較時,示範圖 2之記憶體結構的FN AC記憶體及圖3之記憶體結構的混 合記憶體之程式化速率比較的實驗資料之圖形; P930193 20 1376017 圖7係顯示實驗資料之圖形,其顯示用於圖3之記憶 體結構的混合AC記憶單元在10,000P/E循環(如,程式化/ 抹除循環)期間於資料側處的高及低臨限電壓狀態之電壓 窗口; 圖8係顯示在針對圖3之記憶體結構的10K循環之混 合AC記憶體的資料側處漂移之室溫(RT)電壓的實驗資料 之圖形; 圖9係顯示實驗資料之圖形,其示範圖3之記憶體結 構在Vg=-5V處的Vg應力後之臨限電壓偏移;及 圖10係顯示圖3之記憶體結構的讀取干擾測驗後之臨 限電壓偏移的實驗資料之圖形。 【主要元件符號說明】 100 AC記憶單元 105 P型基板 110 源極區域 115 >及極區域 120 通道 125 第一介電層 130 二側電荷設陷層 135 AC側 140 第二介電層 145 控制閘極 150 陡電場 P930193 21 1376017 155 輔助電荷 160 通路 165 資料側 170 電洞載體電荷 175 資料電荷 180 FN電荷 200 FNAC記憶單元 300 混合AC記憶體In general, it is maintained. As a result, the threshold voltage window is wider at the beginning of the stress time (e.g., larger full) and has a smaller AVt at the end of the stress time. Those skilled in the art will appreciate that the above-described embodiments may be practiced without departing from the broad inventive concepts. Therefore, it is understood that the invention is not limited to the specific details of the invention, and is intended to cover the modifications and the scope of the invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The foregoing summary of the invention, as well as the detailed description For the purposes of illustrating the invention, various embodiments are shown in the drawings. It is to be understood that the invention is not limited to the precise arrangements and device arrangements depicted. In the drawings: FIG. 1 is a schematic diagram showing a structure and an exemplary method for forming an AC memory by side channel hot electron (CHE) implantation according to a preferred embodiment of the present invention; P930193 19 FIG. 2A shows A schematic diagram of an exemplary method for forming a Fowler_Nordheim (FN) AC memory by filling a germanium trap with FN charges in accordance with another preferred embodiment of the present invention. FIG. 2B shows the use of a sideband to band thermocouple ( BTBHH) is a schematic diagram of an exemplary method for erasing a portion of the trap for completing the formation of Fowler-Nordheim (FN) AC memory (as shown in Figure 2A); Figure 3A shows another preferred embodiment in accordance with the present invention. The embodiment uses a side channel hot electron (CHE) at the AC side of the AC memory, a schematic diagram of an exemplary method for forming a hybrid AC memory; Figure 3B shows the use of a sideband pair for the data side of Figure 3A. Schematic diagram of an exemplary method for erasing a mixed AC memory by a band thermoelectric hole (BTBHH); Figure 4A is a thermoelectric (HE) stylization using AC memory for the specific embodiment of Figures 1-3 to be at the data side Stylized exercise Schematic diagram of an exemplary method; FIG. 4B is a schematic diagram of an exemplary method of erasing a band thermoelectric hole (BTBHH) to erase operation at the data side using the frequency of the AC memory for the embodiment of FIGS. 1-3; Figure 5 is a schematic diagram showing an exemplary method for reading operations on the data side of an ac memory (Vd on the AC side) for the specific embodiment of Figures 1-3; ~ Figure 6 shows when compared to general charge memory When the structure is compared, a graph of experimental data comparing the stylized rate of the FN AC memory of the memory structure of FIG. 2 and the mixed memory of the memory structure of FIG. 3 is shown; P930193 20 1376017 FIG. 7 is a graph showing experimental data. It shows the voltage window of the high and low threshold voltage states at the data side during the 10,000 P/E cycle (eg, stylization/erase cycle) for the hybrid AC memory cell used in the memory structure of FIG. 3; A graph showing the experimental data of the room temperature (RT) voltage at the data side of the mixed AC memory of the 10K cycle of the memory structure of FIG. 3; FIG. 9 is a graph showing the experimental data, which is an example of FIG. Memory structure in Vg The threshold voltage shift after the Vg stress at -5 V; and Fig. 10 is a graph showing the experimental data of the threshold voltage shift after the read disturb test of the memory structure of Fig. 3. [Main component symbol description] 100 AC memory cell 105 P-type substrate 110 source region 115 > and polar region 120 channel 125 first dielectric layer 130 two-sided charge trap layer 135 AC side 140 second dielectric layer 145 control Gate 150 Steep electric field P930193 21 1376017 155 Auxiliary charge 160 Path 165 Data side 170 Hole carrier charge 175 Data charge 180 FN charge 200 FNAC memory unit 300 Mixed AC memory

P930193 22P930193 22

Claims (1)

1376017 101年08月03日核正替换頁 2012;8/3_la申復&修正 十、申請專利範圍: 1. 一種在一執行一記憶體操作的電荷陷阱記憶元件中形 成一辅助電荷記憶(AC記憶體)單元之方法,該單元包 含⑴一 P型基板,(ii)一在該基板之一部份中的源極區 域,(iii)一在該基板之一部分中的汲極區域,(iv)—通 道,其係插入該源極和汲極區域間且在該基板之一部 份中,(v)—在該基板上且在該通道上方的第一介電 層,(vi)—在該第一介電層上之二側電荷設陷層,(vii) # 一在該電荷設陷層上之第二介電層,及(viii) —在該第 二介電層上之控制閘極,該方法包含: (a) 供應一接地電位至該汲極區域; (b) 供應一偏壓電位電壓至該源極區域; (c) 供應一控制電壓至該控制閘極;及 (d) 在該二側電荷設陷層之至少一部份中形成一 電荷,其中該二側電荷設陷層之一側(AC側)係恆具有 一高臨限電壓(Vt)位準,該電荷係用於該AC記憶單元 春 之該輔助電荷,且該另一側(資料側)係用於記憶體操 作; 其中當該記憶體操作為一抹除操作時,步驟(a)進 一步包含供應一接地電位至該源極區域,步驟(b)進一 步包含供應一偏壓電位電壓至該汲極區域,且步驟(d) 藉由形成一從該汲極區域通過該通道之通路,供一電 洞载體電荷自該汲極區域傳導至該資料侧,以使用頻 帶對頻帶熱電洞(BTBHH)注入用於抹除該二側電荷設 094143726 1013295655-0 23 1376017 _, 101年08月03日按正替換頁 2012/8/3_la申復&修正 陷層之該資料側。 2. 如請求項1之方法,.其中當該記憶體操作為一讀取操 作,且: 步驟⑻進一步包含供應一接地電位至該汲極區 域,且 步驟(b)進一步包含供應一偏壓電位電壓至該源 極區域,該方法進一步包含: (e)從該二側電荷設陷層之該資料側讀取該資料。 3. 如請求項2之方法,其中該AC記憶體的該二側電荷設 陷層之記憶體操作係多位準單元,並且該資料側可具 有一用於該臨限電壓(Vt)位準之電荷位準的各種程 度。 4. 如請求項1之方法,其中步驟(d)在該AC側上使用一種 一側通道熱電子(CHE)以增加至該高臨限電壓(Vt)位 準,該資料側係在一低臨限電壓(Vt),其中一陡電場 區域係在該汲極區域及源極區域間之該通道中的該 AC側和該資料側間產生,從而形成一 CHE AC記憶 體。 5. 如請求項1之方法,其中: 步驟(a)進一步包含供應一接地電位至該源極區域 及汲極區域* 步驟(c)進一步包含供應一偏壓電位電壓至該控制 閘極, 步驟⑷藉由在該控制閘極及該基板間施加一負 094143726 1013295655-0 24 丄j/ου丄/ 101年08月03日修正替換頁 β = f二勻地增加在該電荷設陷層中形成該電荷之一 技限電壓(Vt)、 上 # 以使用—負 Fowler-Nordheim(-FN)注 +電荷係形成在該整個電荷設陷層中, 加由^驟(b)係藉由從該汲極區域移走該接地電位且 八心牛偏壓電位電壓至該汲極區域而重複, v驟(c)係藉由將該控制電壓改變成一不同控制電 壓而重複,且1376017 August 3, 101, Nuclear Replacement Page 2012; 8/3_la Application & Amendment 10, Patent Application Range: 1. An auxiliary charge memory (AC) formed in a charge trap memory element that performs a memory operation A method of a memory cell comprising: (1) a P-type substrate, (ii) a source region in a portion of the substrate, (iii) a drain region in a portion of the substrate, (iv a channel inserted between the source and drain regions and in a portion of the substrate, (v) - a first dielectric layer on the substrate and above the channel, (vi) - at a two-sided charge trapping layer on the first dielectric layer, (vii) # a second dielectric layer on the charge trapping layer, and (viii) a control gate on the second dielectric layer The method comprises: (a) supplying a ground potential to the drain region; (b) supplying a bias potential voltage to the source region; (c) supplying a control voltage to the control gate; and d) forming a charge in at least a portion of the two-sided charge trapping layer, wherein one side of the two-sided charge trapping layer (AC side) has a high threshold voltage (Vt) level, the charge is used for the auxiliary charge of the AC memory unit, and the other side (data side) is used for memory operation; The memory gymnastics as a erase operation, the step (a) further comprises supplying a ground potential to the source region, and the step (b) further comprises supplying a bias potential voltage to the drain region, and the step (d) Forming a path from the drain region through the channel for a hole carrier charge to be conducted from the drain region to the data side for injecting a band-to-band thermoelectric hole (BTBHH) for erasing the two sides The charge is set to 094143726 1013295655-0 23 1376017 _, on August 3, 101, according to the replacement page 2012/8/3_la, the application side of the correction trap. 2. The method of claim 1, wherein the memory gymnastics is a read operation, and: step (8) further comprises supplying a ground potential to the drain region, and step (b) further comprises supplying a bias potential And the voltage is applied to the source region, the method further comprising: (e) reading the data from the data side of the two-sided charge trapping layer. 3. The method of claim 2, wherein the memory operation of the two-sided charge trapping layer of the AC memory is a multi-level cell, and the data side can have a threshold voltage (Vt) level The various levels of charge levels. 4. The method of claim 1, wherein step (d) uses a one-way channel hot electron (CHE) on the AC side to increase to the high threshold voltage (Vt) level, the data side being at a low level A threshold voltage (Vt), wherein a steep electric field region is generated between the AC side and the data side in the channel between the drain region and the source region, thereby forming a CHE AC memory. 5. The method of claim 1, wherein: step (a) further comprises supplying a ground potential to the source region and the drain region * step (c) further comprising supplying a bias potential voltage to the control gate, Step (4) by uniformly applying a negative 094143726 1013295655-0 24 丄j/ου丄/August 03, 101 correction replacement page β = f between the control gate and the substrate in the charge trapping layer Forming one of the charge limits voltage (Vt), upper # to use - negative Fowler-Nordheim (-FN) injection + charge system is formed in the entire charge trap layer, plus by (b) by The drain region is removed by the ground potential and the eight-hearted bias voltage is repeated to the drain region, and the step (c) is repeated by changing the control voltage to a different control voltage, and 步驟(d)使用一頻帶對頻帶熱電洞(BTBHH)注入 用於抹除該二側電荷設陷層之該資料側,同時維持該 ▲侧在一高臨限電壓(Vt)位準,其中一陡電場區域係 在°亥,及極及源極區域間之該通道中的該AC側和該資 料側間產生,從而形成―FN Ac記憶體。 6.如請求項1之方法,其中: 步驟(a)進一步包含供應一接地電位至該源極區域 及没極區域,Step (d) injecting a band-to-band thermoelectric hole (BTBHH) for erasing the data side of the two-sided charge trap while maintaining the ▲ side at a high threshold voltage (Vt) level, one of which The steep electric field region is generated between the AC side and the data side in the channel between the pole and the source region, thereby forming a "FN Ac memory." 6. The method of claim 1, wherein: step (a) further comprises supplying a ground potential to the source region and the gate region, 步驟(c)進—步包含供應一偏壓電位電壓至該控制 閘極, 步驟(d)藉由在該控制閘極及該基板間施加一正 偏壓以均勻地增加在該電荷設陷層中形成該電荷之一 Ss 限電厘(Vt),以使用一正 F〇wier_Nordheim(+FN)注 入,該電荷係形成在該二側電荷設陷層中, 步驟(b)係藉由從該汲極區域移走該接地電位且 供應一偏壓電位電壓至該汲極區域而重複, 步驟(c)係藉由將該控制電壓改變成一不同控制電 094143726 ··· ··. ♦ 1013295655-0 25 1376017 101年08月03日梭正替换百 2012/8/3_la申復&修正 壓而重複,及 步驟(d)使用一頻帶對頻帶熱電洞(BTBHH)注入 用於抹除該記憶單元之該二側電荷設陷層之該資料 侧,同時維持該AC側在一尚臨限電壓(vt)位準,其中 一陡電場區域係在該汲極及源極區域間之該通道中的 該AC側和該資料側間產生,從而形成一 FN ac記憔 體。 ·‘ 7.如請求項1之方法,其中: 步驟(a)進一步包含供應一接地電位至該汲極區 · 域, 步驟(b)進一步包含供應一偏壓電位電壓至該源 極區域, β 、 步驟(d)藉由在該電荷設陷層之一側中形成該電 何以使用一側通道熱電子(C Η E)注入來增加至一高臨 限電壓’該電荷係形成在該電荷設陷層之該AC侧中, 步驟(a)係藉由移走該接地電位且供應一偏壓電位 電壓至該汲極區域而重複, 讀 步驟(b)係藉由從該源極移走該偏壓電位且供應 一接地電位至該源極而重複, 步驟(c)係藉由將該控制電壓改變成一不同控制電 壓而重複,及 步驟⑷使用頻帶對頻帶熱電洞(BTBHH)注入,用 於抹除該AC記憶單元之該二侧電荷設陷層之資料 側,同時維持該AC側在一固定高臨限電壓(Vt)位準, 094143726 26 1013295655-0 137-6017 101年08月03日梭正替換頁 2012/8/3_la申復&修正 其中·一陡電場區域係在該沒極及源極區域間之該通道 中的該AC側和該資料側間產生,從而形成一混合AC ' 記憶體。 . 8.如請求項1之方法,其中當該記憶體操作為一程式化操 作’且: 步驟(a)進一步包含供應一接地電位至該源極區 域, 步驟(b)進一步包含供應一偏壓電位電壓至該汲 _ 極區域,且 步驟(d)藉由形成一從該源極區域通過該通道之 通路供電子自該源極區域傳導至該資料側,以使用熱 電子(HE)注入來程式化該二側電荷設陷層之該資料 側,其中一陡電場區域係在該汲極及源極區域間之該 通道中的該AC側和該資料側間產生。步驟(d)藉由形 成一從該汲極區域通過該通道之通路,供一電洞載體 電荷自該汲極區域傳導至該資料側,以使用頻帶對頻 • 帶熱電洞(BTBHH)注入用於抹除該二側電荷設陷層之 該資料侧。 9. 如請求項1之方法,其中該電荷設陷層係一氮化物電荷 設陷層。 10. —種在一執行一記憶體操作的電荷陷阱記憶元件中形 成一輔助電荷記憶(AC記憶體)單元之方法,該單元包 含⑴一 P型基板,(H)—在該基板之一部份中的源極區 域,(iii)一在該基板之一部分中之汲極區域,(iv)—插 1013295655-0 0941437.26 .· · · . ^ 27 1376017 101年08月03日按正替换頁 2012/8/3_la申復&修正 入該源極和汲極區域間且在該基板一部份中的通道, (v)—在該基板上且在該通道上方的第一介電層,(vi) 一在該第一介電層上之二側電荷設陷層,(vii)—在該 電荷設陷層上之第二介電層,及(viii) —在該第二介電 層上之控制閘極,該方法包含: (a) 供應一接地電位至該源極區域; (b) 供應一偏壓電位電壓至該汲極區域; (c) 供應一控制電壓至該控制閘極;及 (d)在該二側電荷設陷層之至少一部份中形成一電荷,其中 該二侧電荷設陷層之一側(AC侧)恆具有一高臨限電壓 (Vt)位準,該電荷係用於該AC記憶單元之該輔助電 荷,且該另一側(資料侧)係用於記憶體操作; 其中當該記憶體操作為一抹除操作,步驟(a)進一 步包含供應一接地電位至該汲極區域,步驟(b)進一步 包含供應一偏壓電位電壓至該源極區域,及步驟(d)藉 由形成一從該源極區域通過該通道之通路,供一電洞 載體電荷自該源極區域傳導至該資料側,以使用頻帶 對頻帶熱電洞(Β Τ Β Η Η)注入供抹除該二側電荷設陷層 之該資料側。 11.如請求項10之方法,其中當該記憶體操作為一讀取操 作,且: 步驟⑻進一步包含供應一接地電位至該源極區 域,及 步驟(b)進一步包含供應一偏壓電位電壓至該汲 094143726 1013295655-0 28 1376017 101年.08月03日修正替换頁 2012/8/3_la申復&修正 極區域,該方法進一步包含: (e)自該二側電荷設陷層之該資料側讀取該資料。 • 12.如請求項10之方法,其中該AC記憶體之該二側電荷 . 設陷層的記憶體操作係多位準單元,在資料側中可具 有一用於該臨限電壓(Vt)位準之電荷位準的各種程 度。 13.如請求項10之方法,其中: 步驟(a)進一步包含供應一接地電位至該源極區域 ® 及沒極區域, - 步驟(c)進一步包含供應一偏壓電位電壓至該控制 閘極, 步驟(d)藉由在該控制閘極及該基板間施加一負 偏壓以均勻地增加在該電荷設陷層中形成該電荷之一 臨限電壓(Vt),以使用一負Fowler-Nordheim(-FN)注 入’該電荷係形成在該整個電荷設陷層中’ 步驟(b)係藉由從該源極移走該接地電位且供應 ® 一偏壓電位電壓至該源極區域而重複, 步驟(c)係藉由將該控制電壓改變成一不同控制電 壓而重複,及 步驟(d)使用一頻帶對頻帶熱電洞(BTBHH)注入 供抹除該二側電荷設陷層之該資料側,同時維持該AC 側在一高臨限電壓(Vt)位準,其中一陡電場區域係在 該汲極及源極區域間之該通道中的該AC側和該資料 側間產生,從而形成一 FN AC記憶體。 0941437.26 加13295655-0 29 1376017 101年08月03日按正替换頁 2012/8/3」5*申復&修正 14. 如請求項1〇之方法,其中: 步驟(a)進一步包含供應一接地電位至該源極區域 及沒極區域, ‘ 步驟(C)進一步包含供應一偏壓電位電壓至該控制 · 閘極, 步驟(d)藉由在該控制閘極及該基板間施加一正 偏壓以均勻地增加在該電荷設陷層中形成該電荷之一 臥限電壓(Vt),以使用—正Fowler-Nordheim(-FN)注 入,遠電荷係形成在該二側電荷設陷層中, Φ 步驟(b)係藉由從該源極移走該接地電位且供應 一偏壓電位電壓至該源極區域而重複, 步驟(c)係藉由將該控制電壓改變成一不同控制電 壓而重複,及 步驟⑷使用一頻帶對頻帶熱電洞(BTBHH)注入 供抹除该記憶單元之該二側電荷設陷層之該資料側’ 同時維持该AC側在一高臨限電壓(Vt)位準,其中一陡 電%區域係在該&極及源極區賴之該通道巾的該 # A C側和該資料側間產生,從而形成 一 FNAC記憶體。 15. 如請求項10之方法,其中: 步驟⑷進一步包含供應一接地電位至該源極區 域, 步驟(b)進一步包含供應一偏壓電位電壓至該汲 極區域, 步驟⑷藉由在該電荷設陷層之一侧中形成該電 094143726 30 1013295655-0 1376017 101年.08月oh日修正替换頁 20J2/8/3_r申復&修正 荷,以使用一側通道熱電子(CHE)注入來增加至一高臨 限電壓,該電荷係形成在該電荷設陷層之該AC側中, 步鱗(a)係藉由移走該接地電位且供應—偏壓電位 電壓至該源極區域而重複, V驟0>)係II由從該没極區域移走該偏壓電位且 供應一接地電位5 ▲>· ,至该汲極區域而重複, 壓而重複藉由將該控制電壓改變成一不同控制電 抹除SC帶對頻帶熱電洞_HH)注入供 側,同時維持\早元之該二側電荷設陷層之該資料 其中一陡/曰忒/AC側在一固定高臨限電壓(Vt)位準, 中的該AI%區域係在該汲極及源極區域間之該通道 記憶體。側和該資料_產生’從而形成一混合AC 如請求項1〇 、 操作, 方法,其中當該記憶體操作為一程式化 Ή- I 域 步驟(a);隹_ji., ^匕含供應一接地電位至該及極區 極區战,且)進步包含供應一偏壓電位電壓至該源 通路供電d)藉由形成一從該汲極區域通過該通道之 電子(CH子自該汲極區域傳導至該資料側,以使用熱 侧,其中E)庄入來程式化該二側電荷設陷層之該資料 、一陡電場區域係在該汲極及源極區域間之該 〇^^3726 101329565.5-0* 31 1376017 101年08月03日按正替換頁 2012/8/3_la申復&修正 通道中的該AC側和該資料側間產生。Step (c) further comprising supplying a bias potential voltage to the control gate, and step (d) uniformly increasing the charge trap by applying a positive bias between the control gate and the substrate One of the charges, Ss, is formed in the layer, and is charged with a positive F〇wier_Nordheim (+FN), which is formed in the two-sided charge trap layer, and step (b) is performed by The drain region is removed from the ground potential and supplied with a bias potential voltage to the drain region, and step (c) is performed by changing the control voltage to a different control voltage 094143726 ·····. ♦ 1013295655 -0 25 1376017 On August 3, 101, Shuttle was replacing the 2012/8/3_la application and correction; and step (d) using a band-to-band thermoelectric hole (BTBHH) injection to erase the memory. The data side of the two side charge trapping layers of the cell while maintaining the AC side at a threshold voltage (vt) level, wherein a steep electric field region is in the channel between the drain and source regions The AC side and the data side are generated to form an FN ac body. 7. The method of claim 1, wherein: step (a) further comprises supplying a ground potential to the drain region, the step (b) further comprising supplying a bias potential voltage to the source region, β, step (d) is increased to a high threshold voltage by forming a charge in one side of the charge trap layer using a side channel hot electron (C Η E) injection. In the AC side of the trapping layer, step (a) is repeated by removing the ground potential and supplying a bias potential voltage to the drain region, and reading step (b) is performed by shifting from the source. Taking the bias potential and supplying a ground potential to the source for repetition, step (c) is repeated by changing the control voltage to a different control voltage, and step (4) is using a band-to-band thermoelectric hole (BTBHH) injection For erasing the data side of the two side charge trapping layers of the AC memory unit while maintaining the AC side at a fixed high threshold voltage (Vt) level, 094143726 26 1013295655-0 137-6017 101 years 08 On the 03th of the month, the shuttle is replacing the page 2012/8/3_la Shen Fu & A steep electric field region is created between the AC side and the data side in the channel between the gate and source regions to form a hybrid AC 'memory. 8. The method of claim 1, wherein the memory gymnastics acts as a stylized operation and: step (a) further comprises supplying a ground potential to the source region, and step (b) further comprises supplying a bias voltage a bit voltage is applied to the 汲-polar region, and step (d) conducts electrons from the source region to the data side by forming a path from the source region through the channel to use hot electron (HE) implantation. The data side of the two-sided charge trapping layer is programmed, wherein a steep electric field region is generated between the AC side and the data side in the channel between the drain and source regions. Step (d), by forming a path from the drain region through the channel, for a hole carrier charge to be conducted from the drain region to the data side for use in band-frequency-band thermal tunnel (BTBHH) injection The data side of the two side charge trap layers is erased. 9. The method of claim 1, wherein the charge trapping layer is a nitride charge trapping layer. 10. A method of forming an auxiliary charge memory (AC memory) cell in a charge trap memory element that performs a memory operation, the cell comprising (1) a P-type substrate, (H) - in one of the substrates The source region in the portion, (iii) a drain region in a portion of the substrate, (iv) - insert 1013295655-0 0941437.26 .· · · · ^ 27 1376017 101 August 101, according to the replacement page 2012 /8/3_laclaim & corrects the channel between the source and drain regions and in a portion of the substrate, (v) - the first dielectric layer on the substrate and above the channel, Vi) a two-sided charge trapping layer on the first dielectric layer, (vii) - a second dielectric layer on the charge trapping layer, and (viii) - on the second dielectric layer Controlling the gate, the method comprising: (a) supplying a ground potential to the source region; (b) supplying a bias potential voltage to the drain region; (c) supplying a control voltage to the control gate And (d) forming a charge in at least a portion of the two-sided charge trapping layer, wherein one side of the two-sided charge trapping layer AC side) has a high threshold voltage (Vt) level, the charge is used for the auxiliary charge of the AC memory unit, and the other side (data side) is used for memory operation; wherein when the memory Gymnastics as a wiping operation, step (a) further comprises supplying a ground potential to the drain region, step (b) further comprising supplying a bias potential voltage to the source region, and step (d) by forming a From the source region through the path of the channel, a hole carrier charge is conducted from the source region to the data side, and the band thermoelectric hole (Β Β Η Η Η) is injected to erase the two side charges The data side of the trapping layer. 11. The method of claim 10, wherein the memory gymnastics is a read operation, and: the step (8) further comprises supplying a ground potential to the source region, and the step (b) further comprises supplying a bias potential voltage To the 汲094143726 1013295655-0 28 1376017 101. August 03 revision replacement page 2012/8/3_la application & correction pole region, the method further comprises: (e) from the two side charge trapping layer The data side reads the data. 12. The method of claim 10, wherein the two-sided charge of the AC memory. The memory operation of the trap layer is a multi-level cell, and the data side may have a threshold voltage (Vt) The various levels of charge level. 13. The method of claim 10, wherein: step (a) further comprises supplying a ground potential to the source region and the non-polar region, - step (c) further comprising supplying a bias potential voltage to the control gate a step (d), by applying a negative bias between the control gate and the substrate to uniformly increase a threshold voltage (Vt) of the charge in the charge trap layer to use a negative Fowler - Nordheim (-FN) implant 'the charge is formed in the entire charge trap" step (b) by removing the ground potential from the source and supplying a bias voltage to the source Repeating in the region, step (c) is repeated by changing the control voltage to a different control voltage, and step (d) is using a band-to-band thermoelectric hole (BTBHH) implant to erase the two-sided charge trapping layer The data side maintains the AC side at a high threshold voltage (Vt) level, wherein a steep electric field region is generated between the AC side and the data side in the channel between the drain and source regions Thereby forming an FN AC memory. 0941437.26 plus 13295655-0 29 1376017 on August 3, 101, according to the replacement page 2012/8/3" 5* Shen Fu & Amendment 14. The method of claim 1 wherein: step (a) further includes supply one Grounding potential to the source region and the non-polar region, 'Step (C) further comprises supplying a bias potential voltage to the control gate, step (d) by applying a voltage between the control gate and the substrate Positive biasing to uniformly increase a threshold voltage (Vt) of the charge formed in the charge trap layer to use - Fowler-Nordheim (-FN) implant, the far charge is formed on the two side charge traps In the layer, Φ step (b) is repeated by removing the ground potential from the source and supplying a bias potential voltage to the source region, and step (c) is to change the control voltage into a different one. Controlling the voltage and repeating, and step (4) uses a band-to-band thermoelectric hole (BTBHH) to be applied to erase the data side of the two-sided charge trapping layer of the memory cell while maintaining the AC side at a high threshold voltage ( Vt) level, one of the steep electric % regions is at the & pole and source The region between Lai # A C side and the data side of the napkin generating channel, thereby forming a FNAC memory. 15. The method of claim 10, wherein: step (4) further comprises supplying a ground potential to the source region, and step (b) further comprises supplying a bias potential voltage to the drain region, step (4) by The electric charge is formed in one side of the charge trapping layer. 094143726 30 1013295655-0 1376017 101. 08. oh oh day correction replacement page 20J2/8/3_r Shen & correction charge to use one side channel hot electron (CHE) injection To increase to a high threshold voltage, the charge is formed in the AC side of the charge trapping layer, the step scale (a) is by removing the ground potential and supplying a bias potential voltage to the source Repeatedly, the region V is shifted from the non-polar region by the bias potential and supplies a ground potential 5 ▲ > · to the drain region and repeats, pressing and repeating The control voltage is changed to a different control to erase the SC band-to-band thermoelectric hole _HH) injected into the supply side while maintaining the data of the two-side charge trapping layer of the early element, one of the steep/曰忒/AC sides is fixed at a fixed The high threshold voltage (Vt) level, the AI% region in the bungee and The channel between the memory region. The side and the data _produced to form a hybrid AC such as the request item 1 操作, operation, method, wherein when the memory gymnastics is used as a stylized Ή-I domain step (a); 隹_ji., ^ 匕 contains supply one Ground potential to the polar region, and) progress includes supplying a bias potential voltage to the source path to supply d) by forming an electron from the drain region through the channel (CH from the drain The region is conducted to the data side to use the hot side, wherein E) is programmed to program the data of the two-sided charge trapping layer, and a steep electric field region is between the drain and source regions. 3726 101329565.5-0* 31 1376017 On August 3, 101, according to the replacement page 2012/8/3_la, the application of the AC side and the data side in the correction channel is generated. 094143726 1013295655-0 32094143726 1013295655-0 32
TW94143726A 2005-12-01 2005-12-09 Method of forming and operating an assisted charge memory device TWI376017B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/292,024 US7474562B2 (en) 2004-12-07 2005-12-01 Method of forming and operating an assisted charge memory device

Publications (2)

Publication Number Publication Date
TW200723452A TW200723452A (en) 2007-06-16
TWI376017B true TWI376017B (en) 2012-11-01

Family

ID=48087800

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94143726A TWI376017B (en) 2005-12-01 2005-12-09 Method of forming and operating an assisted charge memory device

Country Status (1)

Country Link
TW (1) TWI376017B (en)

Also Published As

Publication number Publication date
TW200723452A (en) 2007-06-16

Similar Documents

Publication Publication Date Title
TWI360818B (en) Nonvolatile memory and method of making same
TW540055B (en) Usage of word voltage assistance in twin MONOS cell during program and erase
JP2541087B2 (en) Data erasing method for nonvolatile semiconductor memory device
US6614693B1 (en) Combination erase waveform to reduce oxide trapping centers generation rate of flash EEPROM
US7474562B2 (en) Method of forming and operating an assisted charge memory device
CN101794788B (en) Program and erase methods with substrate transient hot carrier injections in a non-volatile memory
JP3869891B2 (en) Floating gate memory cell programming method
TW200534476A (en) Integrated code and data flash memory
US20100091572A1 (en) 2t nor-type non-volatile memoryt cell array and method of processing data of 2t nor-type non-volatile memory
WO2006049143A1 (en) Nonvolatile semiconductor storage device and method for writing therein
US6005809A (en) Program and erase method for a split gate flash EEPROM
JP2993358B2 (en) Operating method of nonvolatile semiconductor memory device
US6580642B1 (en) Method of erasing nonvolatile tunneling injector memory cell
US6122201A (en) Clipped sine wave channel erase method to reduce oxide trapping charge generation rate of flash EEPROM
US5838618A (en) Bi-modal erase method for eliminating cycling-induced flash EEPROM cell write/erase threshold closure
TWI300568B (en) Method and apparatus for sensing in charge trapping non-volatile memory
JP2003092370A (en) Method of erasing in non-volatile memory device
US5862078A (en) Mixed mode erase method to improve flash eeprom write/erase threshold closure
US8295094B2 (en) Method of operating non-volatile memory cell
US6049486A (en) Triple mode erase scheme for improving flash EEPROM cell threshold voltage (VT) cycling closure effect
TWI376017B (en) Method of forming and operating an assisted charge memory device
WO2006071453A2 (en) Programming method for nanocrystal memory device
TWI320968B (en) Double-side-bias methods of programming and erasing a virtual ground array memory
US5949717A (en) Method to improve flash EEPROM cell write/erase threshold voltage closure
TW548834B (en) Non-volatile memory cell and its operation method