TWI375073B - Control unit and liquid crystal display and displaying method thereof - Google Patents

Control unit and liquid crystal display and displaying method thereof Download PDF

Info

Publication number
TWI375073B
TWI375073B TW97151878A TW97151878A TWI375073B TW I375073 B TWI375073 B TW I375073B TW 97151878 A TW97151878 A TW 97151878A TW 97151878 A TW97151878 A TW 97151878A TW I375073 B TWI375073 B TW I375073B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
substrate
crystal display
electric field
control unit
Prior art date
Application number
TW97151878A
Other languages
Chinese (zh)
Other versions
TW201024846A (en
Inventor
Jin Jei Wu
Li Yuan Kuo
Cheng Sz Wu
Yuan Hsin Cheng
Original Assignee
Chimei Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp filed Critical Chimei Innolux Corp
Priority to TW97151878A priority Critical patent/TWI375073B/en
Publication of TW201024846A publication Critical patent/TW201024846A/en
Application granted granted Critical
Publication of TWI375073B publication Critical patent/TWI375073B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

1375073 P080099ALZ1TW 28326twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種控制單元、液晶顯示器及顯示方 法,且特別是有關於一種用以控制一光學補償彎曲型液晶 屬的控制單元以及使用此控制單元的液晶顯示器及其顯示 方法。 TO ........ 【先前技術】 液aa顯示裔因具有向晝質、南空間利用效率、低消耗 功率、無輻射等優越特性之液晶顯示器已逐漸成為市場之 主流。 一般而言,液晶顯示器根據所使用的液晶種類、驅動 方式與光源配置位置等的不同而區分成許多種類,其中, 光學補償彎曲型(Optically Compensated Bend,以下稱 〇CB)液晶顯示器具有快速的反應速度,且當播放動晝或 電影等快速變化之連續畫面時,其具有流暢的晝面表現。 然而,O C B液晶顯示面板中的光學補償彎曲型液晶分子需 經由展曲態(Splay state)轉換到彎曲態(Bend state)後,才 月&提供快速反應之工作表現。詳細的說,隨著跨在液晶分 子間的電壓變化’ 0CB液晶分子會有不同的排列狀態。在 不施加電壓時,0CB液晶分子呈現展曲態。隨著跨在液晶 分子間的電壓的増加,0CB液晶分子會由展曲態轉換到彎 曲怨。而跨在液晶分子間的電壓下降時,〇CB液晶分子在 由彎曲態轉變回展曲態的過程中,會先轉換成扭曲態 1375073 P080099ALZ1TW 28326twf.doc/n (Twisted state )。 圖1A是習知之〇CB液晶顯示面板中的〇cb液晶分 子為展曲態之示意圖,圖1B是習知之〇CB液晶顯示面板 中的OCB液晶分子為彎曲態之示意圖。圖ic是習知之 OCB液晶顯示面板中的OCB液晶分子為扭曲態之示意 圖。請共同參照圖1A與圖1B,習知的OCB液晶顯示面 板100具有OCB液晶分子130,其配置於對向基板 (opposite substrate) 110 與主動元件陣列基板(active component array substrate) 120 之間。其中,對向基板 ιι〇 具有一共用電極(common electrode) 112,而主動元件降列 基板120具有多個晝素電極122 (在此僅繪示一個)。如 圖1A示,當未施加電壓到共用電極112與晝素電極122 上時,OCB液晶分子130因未受到外加之電場作用,而以 展曲態方式排列。如圖1B示,對共用電極112與晝素電 極122分別施加電壓會造成垂直於對向基板110及主動元 件陣列基板 120 的轉態電場(transition electric field) E1。 因受到轉態電場El的影響,OCB液晶分子130會漸漸轉 變為彎曲態。值得注意的是,為提昇OCB液晶分子的轉 態速度,習知技術大致提出了以下兩種方法。 第一種方法是在OCB液晶層中加入聚合物(未繪 示)。當OCB液晶分子130處於彎曲態時,對聚合物照 射紫外光以使其形成高分子網(polymer network),產生高預 傾角配向’如此可保持OCB液晶分子130排列在彎曲態。 此種方式雖然簡單,但卻會造成OCB液晶顯示面板1〇〇 1375073 P080099ALZ1TW 28326twf.doc/n 的漏光現象。由於高傾角與高分子的影響,會使得顯示器的 相位不足造絲度補,而高分子則會造疏概對比度降 低0 第二種方法是在低電壓時持續以一維持賴施加在全 素電極122上,使0CB液晶分子13〇只停留在介於彎曲 態及展曲態之間的扭曲態,如圖lc所示。與上述之第一 種方法相比較’此方法軸可以克服傳統GCB液晶顯示 面板1G0不夠·^的問題’且還可保有快速應答的光學特 性,但是會有操作電屢及灰階顯示範圍被限制的缺點。圖 1D為習知QCB液晶分子穿透率與電壓的_圖。其中, 〇CB液晶分子的穿透率已歸—化⑽福丨娜。請同時參 f圖1B、圖1C及圖1D,由於彎曲態(如圖1B示)與扭曲 ^如圖1C示)的0CB液晶分子穿透率與電壓的關係曲線 ^下凹現象,使得0CB液晶顯示面板1〇〇的亮度在此電 壓區間内會分別出現先暗後亮(低電壓到高電壓,如Von 曲線所示)或是先亮後暗(高電壓到低電壓,如Voff曲線 戶^示)的灰階反轉”現象。因此習知技藝者在設計〇CB液 >顯示面板1〇〇時會避免使用此區段作為操作電壓的設 ^於是OCB液晶顯示面板1〇〇的操作電壓及灰階顯示 範圍都受到限制。 【發明内容】 本發明提供—種控制單元,其用以控制一 OCB液晶 層。 1375073 P080099AL21TW 28326twf.doc/n 表現 本發明提供-種液晶崎,其具有輪楊的畫面 晶顯晶顯示器的顯示方法,其可增加液 本發明&出一種用以於舍丨 元,此控㈣包括-的控制單 基板、-絕緣層、一共用電極以及;第: =有面’而晝素電極配置於。第:基‘ 具有一第二表面,其中叫乐一丞攸 配置於第表面朝向第—表面,且絕緣層 門甘 、,、用電極配置於絕緣層及第二表面之 :’八中各個畫素電極與共用電極間 场’而絕緣層位於條狀電 弟―方向的電 之條肤雷朽η目+ 电征汉,、用電極之間,且任二相鄰 方極間具有—第二方向的電場’此第二方向與第— 元以示器’其包括一上述之控制單 與缉緣層之間1,、中液晶層配置於控制單元的第一基板 中停控制單元及液晶顯示器的—實施例中,其 仏狀電極的間距相等,且間距為8微米。 中條titit控制單元及液晶顯示器的一實施例中,其 保狀電極的寬度為4微米。 中停狀控制單凡及液晶顯示器的一實施例中,其 条机電極的厚度為0.1微米。 在本發明之控制單元及液晶顯示器的-實施例中’其 P080099AL21TW 28326twf.doc/n 中液晶層為OCB液晶層》 在本發明之控制單元及液晶顯示器的一實施例中,更 包括二偏^,其中-偏光㈣置在第—基板相對遠離第 二基板的一第三表面,而另一偏光片配置在第二基板相對 遠離第「基板的-第四表面,且兩片偏光片的吸收轴 (absorption axis)互相垂直。此外,液晶顯示器更包括一第 -配向膜以及-第二配向膜’其中第二配向膜覆蓋條狀電 極及絕緣層’而第-配向膜配置覆蓋第—基板的第一表面 及晝素電極,且第-配向膜及第二配向膜的配向方向相 同,而第一配向膜的配向方向與吸收軸各夾—角度,此角 度為45纟。另〃卜’條狀電極的長度方向與第—配向膜的配 向方向平行》 在本發明之控制單元及液晶顯示器的一實施例中,更 包括一背光模組,且控制單元配置於背光模組上。 本發明再提出一種液晶顯示器的顯示方法,其至少包 括下列步驟·提供-液晶顯示II,其中液晶顯示器包括一 主動7L件P翔基板、—控制基板以及配置於主動元件陣列 基板及控制基板之液晶層,主動元㈣列基板具有 夕個旦素電極,控制基板具有—共用電極以及多個條狀電 ,,且條狀電極位於液晶層與共用電極之間;對液晶顯示 器鼽加一電壓,使晝素電極及共用電極之間產生一第一電 場:以使液晶層之多個〇CB液晶分子由展曲態轉換為弯 曲態’其中第—電場的電場方向垂直控制基板的一表面; 減少電壓,使QCB液晶分子由f絲轉換為扭曲態;以 1375073 P080099ALZlTW28326twf.doc/n •.及使任兩相鄰的條狀電極之間分別產生一第二電場,其中 •第二電場的電場方向平行控制基板的表面,以使⑽、 晶分子維持在扭曲態。 在本發明之液晶顯示器的顯示方法的一實施例中,苴 巾餘兩相鄰的條狀電極之間分職生第二電場的方法^ 括1加大於等於〇.2伏特的電壓差於任兩相鄰的條狀電極 之間。 φ ,發明利用條狀電極的設置,使液晶顯示器的第—基 板及第二基板之間會有一平行於第二基板的第二表面的^ 行電場。施加於共用電極及晝素電極的電壓差減少時 用此平行電場可以使0CB液晶分子維持在扭曲態,以改 善穿透率與施加電壓的關係曲線的下凹 器ί有較佳之操作電壓及灰階顯示範圍,進而改二 示器的顯示晝面流暢度。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 • 舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖2為本發明-實施例的液晶顯示器的示意圖。請來 考圖2,本實施例之控制單元1〇〇〇可用以控制一 〇cb液 晶層’此控制單元1000包括一第—基板11〇〇、多個晝素 電極謂(圖2中僅示意地繪示一個)、—第二基板 二絕緣層剛、-共用電極1500以及多個條狀電極議。 弟-基板1100具有第一表面1110,而畫素電極·配置 1375073 P080099ALZ1TW 28326twf.doc/n ’ · 於第一表面1110。第二基板1300具有一第二表面1310, • 且絕緣層1400配置於第二表面1310 ’其中第二表面1310 朝向第一表面1110。共用電極1500配置於絕緣層1400及 第二表面1310之間’而絕緣層1400位於條狀電極1600 及共用電極1500之間。本實施例之控制單元1〇〇〇可用以 控制OCB液晶層的OCB液晶分子,當控制單元1〇〇〇的 第一基板1100其上方的晝素電極1200和第二基板1300 魯 上的共用電極1500之間的電壓差變小使〇CB液晶分子從 彎曲態欲回復至展曲態時’任兩相鄰之條狀電極16〇〇之間 的微小電壓差可使〇CB液晶分子維持在扭曲態而不易回到 展曲態,使OCB液晶分子可在扭曲態到彎曲態之間操作。 承上述’第一基板11〇〇及畫素電極12〇〇構成一主動 疋件陣列基板2100,而第二基板13〇〇、絕緣層14〇〇、共 用電極1500以及條狀電極1600構成一控制基板22〇〇。此 外,控制基板2200更可具有彩色濾光層,並且任意兩相鄰 的條狀電極1600的間距可以相等或是根據晝素電極12〇〇 的圖形設計成不相等。以相等間距為例’此間距為8微米, 且每一條狀電極1600的寬度為4微米以及條狀電極厚度為 〇·1微米。上述之條狀電極1600的間距、寬度及厚度可依 知實際需求選擇,並不以此規格為限。 圖3為應用圖2之控制單元的液晶顯示器的示意圖。 睛參考圖3,本實施例之液晶顯示器3000包括上述之控制 單元1000(標示於圖2)以及一液晶層2000,其中液晶層 2〇〇〇配置於主動元件陣列基板21〇〇以及控制基板22〇〇之 12 1375073 P080099ALZ1TW 28326twf.doc/n 間,且液晶層2000為OCB液晶層。 圖4為圖3之兩個偏光片的吸收軸及第一配向膜與第 二配向膜的配向方向示意圖。為了方便說明,圖4為將圖 3的結構旋轉180度,即主動元件陣列基板21〇〇在上,控 制基板2200在下。請同時參考圖3及圖4,控制單元1〇〇〇 更包括二片偏光片1700a、1700b,其中偏光片1700a配置 於第一基板1100相對遠離第二基板1300的一第三表面 1120’而偏光片1700b配置於第二基板1300相對遠離第一 基板1100的一第四表面1320。偏光片1700a具有一吸收 軸A1,而偏光片l7〇〇b具有一吸收軸A2,且吸收軸A1 與吸收轴A2互相垂直。此外,控制單元1〇〇〇更包括一第 一配向膜1800a以及一第二配向膜18〇〇b,其中第一配向 膜1800a覆蓋晝素電極12〇〇,而第二配向膜1800b覆蓋絕 緣層1400及條狀電極1600。第一配向膜i8〇〇a的配向方 向D1與第二配向膜1800b的配向方向D2相同,且第一配 向膜1800a的配向方向D1與吸收軸A1及吸收軸A2各夾 一角度而&可為45度,當&為45度時(9 2 . · .· 為-45度或135度。另外,條狀電極16〇〇的長度方向與第 一配向膜1800a的配向方向D1平行。 圖5A〜圖5C為圖2之控制單元的控制基板的製作流 程圖。首先如圖5A示,提供第二基板1300,並且在第二 基板1300的第二表面131〇上形成共用電極15〇〇。然後如 圖5B不’在共用電極1500上形成絕緣層1400,之後在絕 緣層1400上形成條狀電極1600。之後如圖5C示,在絕緣 13 1375073 P080099ALZ1TW 28326twf.doc/n • 層140〇上形成第二配向膜1800b,且第二配向膜1800b覆 • 盍條狀電極1600。此外,可在第二基板1300的第四表面 1320配置偏光片170〇b。 請繼續參考圖3,液晶顯示器3000更包括一背光模組 2300,且控制單元1000配置於背光模組2300上。背光模 組2300用以提供光線。 • 當施加不同的電壓於液晶顯示器3000時,液晶層2000 φ 内的多個0CB液晶分子會依據晝素電極1200與共用電柽 1500之間所產生的電場的大小而呈展曲態、扭曲態以及彎 曲態。以下將對液晶顯示器3000的顯示方法詳細說明。 圖6為本實施例之液晶顯示器的顯示方法的步驟示意 圖。圖7為本實施例之液晶顯示器的〇CB液晶分子於不 同電壓差下各種狀態的示意圖。其中,圖7是以與圖3相 同的剖面方向示意OCB液晶分子的排列狀態。請同時參 考圖6及圖7,如步驟S110,提供一上述之液晶顯示器 3000。當未施加電壓於液晶顯示器3〇〇〇時,晝素電極12〇〇 # 與共用電極丨500之間無電場,此時液晶層.2000内的〇cb 液晶分子呈展曲態C1,背光模組2300提供的光線依序通 過偏光片1700a、液晶層2000和偏光片n〇〇b使得液晶顯 不免態的畫面。 - 接著如步驟S120,對液晶顯示器3000施加電壓,如 圖7中繪示的實線箭頭表示昇壓v+,使晝素電極Η⑼與 共用電極1500之間產生一垂直電場E2,此垂直電場E2 的電場方向垂直於第二基板1300的第二表面131〇。受到 14 12] 1375073 P080099ALZ1TW 28326twf.d〇c/n .-垂直電場E2的影響,〇CB液晶分子從展曲態Cl逐漸轉 •.為彎曲態C2,甚至為垂直配向態(Vertical alignment state ) C3。當OCB液晶分子維持彎曲態C2時,背光模組23〇〇 提供的光線可根據垂直電場E2的大小決定液晶顯示器 3000的穿透率。 ”之後如步驟S130,減少施加於液晶顯示器3000的電 壓,如圖7中繪示的虛線箭頭表示降壓v_,〇CB液晶分 • 子會從彎曲態C2逐漸轉換為扭曲態C4。接著如步驟 S140,使任兩相鄰的條狀電極16〇〇之間分別產生一平行 電場E3 此平行電場E:3的電場方向實質上平行於第二 基板1300的第二表自131〇,以使〇CB液晶分子會維持扭 曲態C4。上述之使任兩相鄰的條狀電極16〇〇之間分別產 生平行電場E3的方法可以是施加大於等於〇2伏特的電壓 差於兩相鄰的條狀電極16〇〇間。 詳細的說,在0CB液晶分子從f曲態C2轉換為扭曲 L C4後’若持續減少施力口於液晶顯示器獅㈣電壓,〇cb ,曰曰刀子還疋會從扭曲態C4轉換為展曲態c卜不過由於 2狀電極觸所產生的平行電場E3,OCB液晶分子的 L將更加A暢’尤其是反應在液晶顯示器3_的穿 變化上。1375073 P080099ALZ1TW 28326twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a control unit, a liquid crystal display and a display method, and more particularly to a method for controlling an optically compensated curved liquid crystal Control unit and liquid crystal display using the same and display method thereof. TO ........ [Prior Art] Liquid aa shows that liquid crystal displays with superior characteristics such as enamel, south space utilization efficiency, low power consumption, and no radiation have gradually become the mainstream in the market. In general, liquid crystal displays are classified into many types depending on the type of liquid crystal used, the driving method, and the position where the light source is disposed, and the optically compensated curved (hereinafter referred to as 〇CB) liquid crystal display has a rapid response. Speed, and when playing a continuous picture of fast changes such as movies or movies, it has a smooth face. However, the optically compensated curved liquid crystal molecules in the O C B liquid crystal display panel need to be converted to the Bend state via the Splay state, and then provide a fast response performance. In detail, as the voltage across the liquid crystal molecules changes, the 0CB liquid crystal molecules will have different alignment states. When no voltage is applied, the 0CB liquid crystal molecules exhibit a curved state. As the voltage across the liquid crystal molecules increases, the 0CB liquid crystal molecules will switch from a curved state to a curved one. When the voltage across the liquid crystal molecules decreases, the 〇CB liquid crystal molecules will first transform into a twisted state during the transition from the curved state to the curved state. 1375073 P080099ALZ1TW 28326twf.doc/n (Twisted state). 1A is a schematic view showing a 〇cb liquid crystal molecule in a conventional CB liquid crystal display panel in a curved state, and FIG. 1B is a schematic view showing a OCB liquid crystal molecule in a conventional 〇CB liquid crystal display panel in a curved state. Figure ic is a schematic diagram of the OCB liquid crystal molecules in the conventional OCB liquid crystal display panel in a twisted state. Referring to FIG. 1A and FIG. 1B together, the conventional OCB liquid crystal display panel 100 has OCB liquid crystal molecules 130 disposed between an opposite substrate 110 and an active component array substrate 120. The opposite substrate ιι has a common electrode 112, and the active device lowering substrate 120 has a plurality of halogen electrodes 122 (only one is shown here). As shown in Fig. 1A, when no voltage is applied to the common electrode 112 and the halogen electrode 122, the OCB liquid crystal molecules 130 are arranged in a curved state because they are not subjected to an applied electric field. As shown in FIG. 1B, applying a voltage to the common electrode 112 and the halogen electrode 122 respectively causes a transition electric field E1 perpendicular to the opposite substrate 110 and the active device array substrate 120. Due to the influence of the transitional electric field E1, the OCB liquid crystal molecules 130 gradually turn into a curved state. It is worth noting that in order to improve the transition speed of OCB liquid crystal molecules, the following two methods are generally proposed in the prior art. The first method is to add a polymer (not shown) to the OCB liquid crystal layer. When the OCB liquid crystal molecules 130 are in a bent state, the polymer is irradiated with ultraviolet light to form a polymer network, resulting in a high pretilt alignment so that the OCB liquid crystal molecules 130 are aligned in a curved state. Although this method is simple, it will cause light leakage of the OCB liquid crystal display panel 1 〇〇 1375073 P080099ALZ1TW 28326twf.doc/n. Due to the high tilt angle and the influence of the polymer, the phase of the display is insufficient to make up the silk, and the polymer will reduce the contrast by 0. The second method is to continue to apply to the vegan electrode at a low voltage. At 122, the 0CB liquid crystal molecule 13〇 is only held in a twisted state between the curved state and the curved state, as shown in FIG. Compared with the first method described above, 'this method axis can overcome the problem that the conventional GCB liquid crystal display panel 1G0 is not enough ^ and can also maintain the optical characteristics of fast response, but there are operating power and gray scale display range is limited. Shortcomings. Figure 1D is a graph of the transmittance and voltage of a conventional QCB liquid crystal. Among them, the penetration rate of 〇CB liquid crystal molecules has been reduced to (10) Fusina. Please refer to FIG. 1B, FIG. 1C and FIG. 1D simultaneously, because of the relationship between the transmittance and voltage of the 0CB liquid crystal molecules in the curved state (as shown in FIG. 1B) and the distortion (as shown in FIG. 1C), the 0CB liquid crystal is made. The brightness of the display panel 1 会 will appear dark and then bright (low voltage to high voltage, as shown by the Von curve) or light and dark (high voltage to low voltage, such as Voff curve household) in this voltage range. The grayscale inversion phenomenon of the display). Therefore, the conventional artisan avoids the use of this section as the operating voltage when designing the 〇CB fluid> display panel 1〇〇, which is the operation of the OCB liquid crystal display panel 1〇〇. The voltage and gray scale display range are all limited. SUMMARY OF THE INVENTION The present invention provides a control unit for controlling an OCB liquid crystal layer. 1375073 P080099AL21TW 28326twf.doc/n The present invention provides a liquid crystal chip with a wheel Yang's picture crystal display display method, which can increase the liquid of the present invention & a kind of control single substrate, the control (four) includes - control single substrate, - insulating layer, a common electrode and; Faceted 'and halogen electrode configuration The first base has a second surface, wherein the first surface is disposed on the first surface facing the first surface, and the insulating layer is disposed on the insulating layer and the second surface: The field between the pixel electrode and the common electrode' and the insulating layer is located in the strip-shaped electric brother--the direction of the electric stripe 雷 + + + + + + + + + + + + + + + + + + + + + + + + + + + The electric field in the two directions 'the second direction and the first element are displayed between the control unit and the edge layer 1 , and the liquid crystal layer is disposed in the first substrate of the control unit to stop the control unit and the liquid crystal In the embodiment of the display, the pitch of the electrodes is equal and the pitch is 8 micrometers. In an embodiment of the middle titit control unit and the liquid crystal display, the width of the conformal electrode is 4 micrometers. In an embodiment of the liquid crystal display, the thickness of the strip electrode is 0.1 micrometer. In the control unit of the present invention and the liquid crystal display - the liquid crystal layer of the P080099AL21TW 28326twf.doc/n is an OCB liquid crystal layer. Control of the invention In an embodiment of the present invention, the liquid crystal display further includes a second bias, wherein the polarized light is disposed on a third surface of the first substrate opposite to the second substrate, and the other polarizer is disposed on the second substrate relatively farther away from the first surface. a fourth surface of the substrate, and an absorption axis of the two polarizers is perpendicular to each other. Further, the liquid crystal display further includes a first alignment film and a second alignment film, wherein the second alignment film covers the strip electrodes and The first alignment surface of the first substrate and the halogen electrode are disposed on the first alignment film, and the alignment directions of the first alignment film and the second alignment film are the same, and the alignment direction of the first alignment film and the absorption axis are respectively sandwiched. - Angle, this angle is 45 纟. In addition, in the embodiment of the control unit and the liquid crystal display of the present invention, the control unit and the liquid crystal display further include a backlight module, and the control unit is disposed in the backlight module. on. The present invention further provides a display method for a liquid crystal display, which comprises at least the following steps: providing a liquid crystal display II, wherein the liquid crystal display comprises an active 7L piece P substrate, a control substrate, and a liquid crystal disposed on the active device array substrate and the control substrate The layer, the active element (four) column substrate has a singular electrode, the control substrate has a common electrode and a plurality of strips of electricity, and the strip electrode is located between the liquid crystal layer and the common electrode; adding a voltage to the liquid crystal display A first electric field is generated between the halogen electrode and the common electrode: a plurality of 〇CB liquid crystal molecules of the liquid crystal layer are converted from a curved state to a curved state, wherein an electric field direction of the first electric field vertically controls a surface of the substrate; , the QCB liquid crystal molecules are converted from the f filaments into a twisted state; a first electric field is generated between each of the two adjacent strip electrodes by 1375573 P080099ALZl TW28326twf.doc/n and respectively, wherein the electric field direction of the second electric field is parallel The surface of the substrate is controlled so that the (10), crystal molecules are maintained in a twisted state. In an embodiment of the display method of the liquid crystal display of the present invention, the method of dividing the second electric field between the two adjacent strip electrodes of the wipes comprises adding a voltage difference greater than or equal to 0.2 volts. Between two adjacent strip electrodes. φ, the invention utilizes the arrangement of the strip electrodes such that there is an electric field parallel to the second surface of the second substrate between the first substrate and the second substrate of the liquid crystal display. When the voltage difference applied to the common electrode and the halogen electrode is reduced, the parallel electric field can maintain the 0CB liquid crystal molecules in a twisted state, so as to improve the relationship between the transmittance and the applied voltage, the lower concave device has a better operating voltage and gray. The display range of the order, and then the display surface smoothness of the display. The above described features and advantages of the invention will be apparent from the description of the appended claims. Embodiments Fig. 2 is a schematic view of a liquid crystal display according to an embodiment of the present invention. Referring to FIG. 2, the control unit 1 of this embodiment can be used to control a cb liquid crystal layer. The control unit 1000 includes a first substrate 11 and a plurality of halogen electrodes (only FIG. 2 is schematically illustrated). One), a second substrate, two insulating layers, a common electrode 1500, and a plurality of strip electrodes are shown. The substrate 1100 has a first surface 1110 and the pixel electrode 1337073 P080099ALZ1TW 28326twf.doc/n ' is on the first surface 1110. The second substrate 1300 has a second surface 1310, and the insulating layer 1400 is disposed on the second surface 1310' wherein the second surface 1310 faces the first surface 1110. The common electrode 1500 is disposed between the insulating layer 1400 and the second surface 1310, and the insulating layer 1400 is located between the strip electrode 1600 and the common electrode 1500. The control unit 1 of this embodiment can be used to control the OCB liquid crystal molecules of the OCB liquid crystal layer, when the first substrate 1100 of the control unit 1 is connected to the common electrode of the halogen electrode 1200 and the second substrate 1300 The voltage difference between 1500 becomes smaller, so that the 电压CB liquid crystal molecules return from the curved state to the curved state, and the slight voltage difference between any two adjacent strip electrodes 16〇〇 can keep the 〇CB liquid crystal molecules in distortion. The state is not easy to return to the stretch state, so that the OCB liquid crystal molecules can operate between the twisted state and the curved state. The first substrate 11 and the pixel electrode 12 are formed as an active element array substrate 2100, and the second substrate 13, the insulating layer 14, the common electrode 1500, and the strip electrode 1600 constitute a control. The substrate 22 is. In addition, the control substrate 2200 may further have a color filter layer, and the spacing between any two adjacent strip electrodes 1600 may be equal or may be unequal according to the pattern of the pixel electrodes 12A. Taking an equal pitch as an example, the pitch is 8 μm, and each strip electrode 1600 has a width of 4 μm and a strip electrode thickness of 〇·1 μm. The pitch, width and thickness of the above strip electrodes 1600 can be selected according to actual needs, and are not limited to this specification. 3 is a schematic diagram of a liquid crystal display to which the control unit of FIG. 2 is applied. Referring to FIG. 3, the liquid crystal display 3000 of the present embodiment includes the above-mentioned control unit 1000 (shown in FIG. 2) and a liquid crystal layer 2000, wherein the liquid crystal layer 2 is disposed on the active device array substrate 21 and the control substrate 22 〇〇 12 1375073 P080099ALZ1TW 28326twf.doc / n, and the liquid crystal layer 2000 is an OCB liquid crystal layer. Figure 4 is a schematic view showing the absorption axis of the two polarizers of Figure 3 and the alignment direction of the first alignment film and the second alignment film. For convenience of explanation, Fig. 4 is a view in which the structure of Fig. 3 is rotated by 180 degrees, that is, the active device array substrate 21 is placed on top, and the control substrate 2200 is placed on the lower side. Referring to FIG. 3 and FIG. 4 simultaneously, the control unit 1 further includes two polarizers 1700a and 1700b, wherein the polarizer 1700a is disposed on the first substrate 1100 and is polarized away from a third surface 1120' of the second substrate 1300. The sheet 1700b is disposed on the second substrate 1300 opposite to a fourth surface 1320 of the first substrate 1100. The polarizer 1700a has an absorption axis A1, and the polarizer 17b has an absorption axis A2, and the absorption axis A1 and the absorption axis A2 are perpendicular to each other. In addition, the control unit 1 further includes a first alignment film 1800a and a second alignment film 18〇〇b, wherein the first alignment film 1800a covers the halogen electrode 12〇〇, and the second alignment film 1800b covers the insulation layer. 1400 and strip electrode 1600. The alignment direction D1 of the first alignment film i8〇〇a is the same as the alignment direction D2 of the second alignment film 1800b, and the alignment direction D1 of the first alignment film 1800a is at an angle to the absorption axis A1 and the absorption axis A2. It is 45 degrees, when & is 45 degrees (9 2 . . . is -45 degrees or 135 degrees. In addition, the longitudinal direction of the strip electrode 16A is parallel to the alignment direction D1 of the first alignment film 1800a. 5A to 5C are flowcharts showing the fabrication of the control substrate of the control unit of Fig. 2. First, as shown in Fig. 5A, a second substrate 1300 is provided, and a common electrode 15A is formed on the second surface 131A of the second substrate 1300. Then, as shown in FIG. 5B, the insulating layer 1400 is not formed on the common electrode 1500, and then the strip electrode 1600 is formed on the insulating layer 1400. Thereafter, as shown in FIG. 5C, the insulating layer 13 1375073 P080099ALZ1TW 28326twf.doc/n • layer 140 is formed. The second alignment film 1800b and the second alignment film 1800b cover the strip electrode 1600. Further, the polarizer 170〇b may be disposed on the fourth surface 1320 of the second substrate 1300. Referring to FIG. 3, the liquid crystal display 3000 is further A backlight module 2300 is included, and the control unit 1000 is provided The backlight module 2300 is used to provide light. • When different voltages are applied to the liquid crystal display 3000, a plurality of 0CB liquid crystal molecules in the liquid crystal layer 2000 φ are based on the halogen electrode 1200 and the common power 1500. The display method of the liquid crystal display 3000 will be described in detail below with respect to the magnitude of the electric field generated. Fig. 6 is a schematic diagram showing the steps of the display method of the liquid crystal display of the embodiment. A schematic diagram of various states of 〇CB liquid crystal molecules of the liquid crystal display of the present embodiment under different voltage differences. FIG. 7 is an alignment state of OCB liquid crystal molecules in the same cross-sectional direction as that of FIG. 3. Please refer to FIG. 6 and FIG. 7. In step S110, a liquid crystal display 3000 is provided. When no voltage is applied to the liquid crystal display 3, there is no electric field between the halogen electrode 12〇〇# and the common electrode 丨500, and the liquid crystal layer is 2000. The 〇cb liquid crystal molecules in the inner surface exhibit a curved state C1, and the light provided by the backlight module 2300 sequentially passes through the polarizer 1700a, the liquid crystal layer 2000, and the polarizer n〇〇b, so that the liquid crystal is invisible. Then, as shown in step S120, a voltage is applied to the liquid crystal display 3000. The solid arrow shown in FIG. 7 indicates the boosting v+, and a vertical electric field E2 is generated between the pixel electrode (9) and the common electrode 1500. The electric field direction of the electric field E2 is perpendicular to the second surface 131A of the second substrate 1300. Due to the influence of the vertical electric field E2, the 〇CB liquid crystal molecules gradually change from the splayed state Cl to the second surface 131〇 of the second substrate 1300. • is a curved state C2, even a vertical alignment state C3. When the OCB liquid crystal molecules maintain the curved state C2, the light provided by the backlight module 23A can determine the transmittance of the liquid crystal display 3000 according to the magnitude of the vertical electric field E2. Then, as step S130, the voltage applied to the liquid crystal display 3000 is reduced, and the dotted arrow shown in FIG. 7 indicates the step-down v_, and the 〇CB liquid crystal is gradually converted from the curved state C2 to the twisted state C4. S140, respectively, generating a parallel electric field E3 between any two adjacent strip electrodes 16? The electric field direction of the parallel electric field E:3 is substantially parallel to the second table of the second substrate 1300 from 131〇, so that 〇 The CB liquid crystal molecules maintain the twisted state C4. The above method of generating a parallel electric field E3 between any two adjacent strip electrodes 16〇〇 may be to apply a voltage difference of 大于2 volts or more to two adjacent strips. In detail, after the 0CB liquid crystal molecules are converted from the f-curvature C2 to the distorted L C4, if the voltage of the lion (four) is continuously reduced, the 曰曰cb, the 曰曰 knife will still be distorted. The state C4 is converted into the splayed state c. However, due to the parallel electric field E3 generated by the 2-shaped electrode contact, the L of the OCB liquid crystal molecule will be more A', especially in the change of the liquid crystal display 3_.

^為本發明—實關巾qCB液晶分子的穿透率盘施 •力^晝素電極及共用電極的電壓差的關係圖。其中,OCB 的雷的牙透率已經歸一化’而Vt表示施加於條狀電極 、電[差°請同時參考圖7及圖8,如曲線S1,未施加電 15 1375073 P0S0099ALZ1TW 28326twf.doc/n 壓差於條狀電極16GG時(Vt = G v),與f知的液晶顯 板100相同,其0CB液晶分子13〇的穿透率在電壓接近之 ,特的時财明顯的下凹現象,此—下凹魏表示此時 OCB液晶分子有扭曲態與展曲態的轉換發生。 請繼續參考圖7及圖8,當施加微小電壓差於條狀電 二—1600時(Vt = 〇.5、μ、i 2、i 5 v,其中曲線幻對庫 Vt=0.5、曲線S3對應Vt=1〇、曲線%對應vt=i 〇以及曲 線S5對應Vt=1.5)’下凹現象有明顯地改善’且當施加於 條狀電極1600的微小電壓等於1〇、! 2或i 5伏特時穿 透率,電壓的關係曲線如曲線S3、S4、S5明顯變得緩和。 尤其7^在微小電壓為1.5伏特時,穿透率與電壓的關係曲 線S5最為和緩。詳細而言,當施加於共用電極15⑻以及 旦素電極1200之間的電壓差逐漸減少時,利用任兩相鄰之 條狀電極1600之間所分別產生的平行電場E3,可以使 〇CB液晶分子維持在扭曲態C4。由圖8可知液晶顯示 器3000的操作電壓的範圍增加,且液晶顯示器3〇〇〇可用 的灰階顯示範圍也隨著增加。於是液晶顯示器3〇〇〇所消耗 的功率將因為操作電壓的下降而減少,並且穿透率和亮度 將可獲得提昇。除了可以減少背光亮度的需求和能量損耗 外也可因為較大的灰階顯示範圍而增進顯示晝面的品 質。此外,由於OCB液晶分子從扭曲態C4轉變為彎曲態 C2所需的時間也較從展曲態C1轉變為彎曲態C2的時間 所以可以加快液晶顯示器3000的反應速度,進而增加 液晶顯示器3〇〇〇的晝面流暢度。 16 1375073 P080099ALZ l TW 28326twf doc/n 顯一 述’於本發明之控制單元以及液晶顯示界及发 生垂直電場,魏加電缝於配置在 極’使任兩相鄰的條狀電極之間分別平^ 而电 平行電場可在施加於丑用泰描盥查十仃電%,而此 少時使OCB洛曰^ 素電極之間的電壓差減 一!!吏《°液3日77子仍能轉在扭曲態,❹加液曰II 不裔的操作電麼以及灰階顯示的範圍。此外,二液曰曰曰1 ==換為彎曲態的速度較從展曲態轉換為ΐ; 以加快液晶顯示器的反應速度,^ is the relationship between the voltage difference between the electrode and the common electrode of the qCB liquid crystal molecule of the present invention. Among them, the tooth permeability of OCB has been normalized' and Vt is applied to the strip electrode, electricity [difference please refer to Figure 7 and Figure 8, as shown by curve S1, no electricity is applied 15 1375073 P0S0099ALZ1TW 28326twf.doc/ n When the pressure difference is between the strip electrodes 16GG (Vt = G v), the same as the liquid crystal display panel 100, the transmittance of the 0CB liquid crystal molecules 13〇 is close to the voltage, and the special time and the concave phenomenon are obvious. This - the undercut Wei indicates that the transition of the OCB liquid crystal molecules has a twisted state and a curved state. Please continue to refer to FIG. 7 and FIG. 8 when a slight voltage difference is applied to the strip-shaped electric two-1600 (Vt = 〇.5, μ, i 2, i 5 v, wherein the curve phantom pair library Vt=0.5, curve S3 corresponds Vt=1〇, curve % corresponds to vt=i 〇 and curve S5 corresponds to Vt=1.5) 'the undercut phenomenon is significantly improved' and when the small voltage applied to the strip electrode 1600 is equal to 1〇,! When the penetration rate is 2 or i 5 volts, the curve of the voltage is significantly relieved as the curves S3, S4, and S5. In particular, when the micro voltage is 1.5 volts, the relationship between the transmittance and the voltage is the most gentle. In detail, when the voltage difference applied between the common electrode 15 (8) and the denier electrode 1200 is gradually reduced, the parallel electric field E3 generated between any two adjacent strip electrodes 1600 can be used to make the 〇CB liquid crystal molecule Maintain the twisted state C4. As is apparent from Fig. 8, the range of the operating voltage of the liquid crystal display 3000 is increased, and the gray scale display range available for the liquid crystal display 3 is also increased. Therefore, the power consumed by the liquid crystal display unit 3 will be reduced due to the drop in the operating voltage, and the transmittance and brightness will be improved. In addition to reducing the need for backlight brightness and energy loss, it also enhances the quality of the display surface due to the larger grayscale display range. In addition, since the time required for the OCB liquid crystal molecules to change from the twisted state C4 to the curved state C2 is also longer than the time from the curved state C1 to the curved state C2, the reaction speed of the liquid crystal display 3000 can be accelerated, thereby increasing the liquid crystal display. The smoothness of the face. 16 1375073 P080099ALZ l TW 28326twf doc/n It is obvious that in the control unit of the present invention and the liquid crystal display boundary and the vertical electric field, the Weijia electric slit is arranged in the pole to separate between two adjacent strip electrodes. ^ And the electric parallel electric field can be applied to the ugly tracing, and the voltage difference between the OCB and the 电极 电极 电极 减 减 ! ! ! ! ! ! ° ° ° ° ° ° ° ° ° In the twisted state, the operation of the liquid 曰 II is not the operating power and the range of the gray scale display. In addition, the speed at which the two liquid helium 1 == is changed to the curved state is converted from the expanded state to the helium; to speed up the reaction speed of the liquid crystal display,

If發明已以較佳實施例揭露如上,然其並非用以 a U ’任何所料術領域巾具有 *之保。故®料後附之ΐ料概ju所界定者 马準。 【圖式簡單說明】 OCB液晶分 圖1Α是習知之〇cb液晶顯示面板中的 子為展曲態之示意圖。 圖1Β是習知之OCB液晶顯示面板中的〇CB液晶分 子為彎曲態之示意圖。 圖1C是習知之OCB液晶顯示面板中的〇CB液晶分 子為杻曲態之示意圖。 圖1D為習知〇CB液晶分子穿透率與電壓的關係圖。 ΙΏ 17 1375073 P080099ALZ1TW 28326twf.doc/n - 圖2為本發明一實施例的液晶顯示器的示意圖。 . 圖3為應用圖2之控制單元的液晶顯示器的示意圖。 圖4為圖3之兩個偏光片的吸收轴及第一配向膜盘第 二配向膜的配向方向示意圖。 圖5A〜圖5C為圖2之控制單元的控制基板的製作流 程圖。 圖6為本實施例之液晶顯示器的顯示方法的步驟示意 • 圖。 圖7為本實施例之液晶顯示器的〇CB液晶分子於不 同電壓差下各種狀態的示意圖。 圖8為本發明一實施例中〇CB液晶分子的穿透率與施 力°於晝素電極及共用電極的電壓差的關係圖。 【主要元件符號說明】 100:液晶顯示面板 110 .對向基板 112:共用電極 120 :主動元件陣列基板 122:畫素電極 130 · OCB液晶分子 1000 :控制單元 • 1100:第一基板 1110 :第一表面 1120 .弟二表面 1200 :晝素電極 Γ2] 18 1375073 P080099ALZ1TW 28326twf.doc/n 1300 :第二基板 1310 :第二表面 1320 :第四表面 1400 :絕緣層 1500 :共用電極 1600 :條狀電極 1700a、1700b :偏光片 1800a、1800b :配向膜 2000 :液晶層 2100 :主動元件陣列基板 2200 :控制基板 2300 :背光模組 3000 :液晶顯示器 SI、S2、S3、S4、S5 : OCB的穿透率與晝素電極及 共用電極之間的電壓差的關係曲線 Vt :施加於條狀電極的電壓差 E1 :轉態電場 E2 :垂直電場 E3 :平行電場 C1 :展曲態 C2 :彎曲態 C3 :垂直配向態 C4 :扭曲態 V+ :昇壓 V-:降壓 19If the invention has been disclosed above in the preferred embodiment, it is not intended to be used in any of the U. Therefore, the material attached to the material after the material is defined by Ma. [Simple description of the figure] OCB liquid crystal is shown in Fig. 1 is a schematic diagram of the sub-exhibition state of the conventional cb liquid crystal display panel. Fig. 1 is a schematic view showing a state in which a 〇CB liquid crystal molecule in a conventional OCB liquid crystal display panel is in a bent state. Fig. 1C is a schematic view showing a 〇CB liquid crystal molecule in a conventional OCB liquid crystal display panel in a meander state. Fig. 1D is a graph showing the relationship between the transmittance and the voltage of a conventional CB liquid crystal molecule. ΙΏ 17 1375073 P080099ALZ1TW 28326twf.doc/n - FIG. 2 is a schematic diagram of a liquid crystal display according to an embodiment of the present invention. Figure 3 is a schematic illustration of a liquid crystal display employing the control unit of Figure 2. Figure 4 is a schematic view showing the alignment direction of the absorption axis of the two polarizers of Figure 3 and the second alignment film of the first alignment film disk. 5A to 5C are flowcharts showing the process of controlling the control substrate of the control unit of Fig. 2. Fig. 6 is a schematic diagram showing the steps of the display method of the liquid crystal display of the embodiment. Fig. 7 is a view showing various states of 〇CB liquid crystal molecules of the liquid crystal display of the present embodiment under different voltage differences. Fig. 8 is a graph showing the relationship between the transmittance and the applied force of the 〇CB liquid crystal molecules in the voltage difference between the halogen electrode and the common electrode in an embodiment of the present invention. [Description of main component symbols] 100: liquid crystal display panel 110. opposite substrate 112: common electrode 120: active device array substrate 122: pixel electrode 130 • OCB liquid crystal molecule 1000: control unit • 1100: first substrate 1110: first Surface 1120. Dimensional surface 1200: Alizarin electrode Γ 2] 18 1375073 P080099ALZ1TW 28326twf.doc/n 1300: Second substrate 1310: Second surface 1320: Fourth surface 1400: Insulation layer 1500: Common electrode 1600: Strip electrode 1700a 1700b: polarizer 1800a, 1800b: alignment film 2000: liquid crystal layer 2100: active device array substrate 2200: control substrate 2300: backlight module 3000: liquid crystal display SI, S2, S3, S4, S5: OCB transmittance and Curve of voltage difference between the halogen electrode and the common electrode Vt: voltage difference E1 applied to the strip electrode: transition electric field E2: vertical electric field E3: parallel electric field C1: curved state C2: curved state C3: vertical alignment State C4: Twisted State V+: Boost V-: Buck 19

Claims (1)

^/5073 l〇L 5. 2 3 —. _ 101-5-23 ----- 年月曰修(更)正替換气 十、申請專利範圍: ] 1. 一種控制單元,用以控制一光學補償彎曲型液晶 層,該控制單元包括: 一第一基板,具有一第一表面; 多個晝素電極,配置於該第一表面; ㈣一第二基板,具有—第二表面’其中該第二表面朝向 孩第一表面; 一絕緣層,配置於該第二表面; 一共用電極,配置於該絕緣層及該第二表面之間,其 t各該些畫素電極與該共用電極間具有—第—方向的^ ^ ’該第-方向的電場控制該光學補償彎曲型液晶層的液 曰曰分子的扭轉程度在一展曲態與一彎曲態之間轉換;以及 政多個條狀電極’其中該絕緣層位於該些條狀電極及該 ./、用電極之間,且任二相鄰之該些條狀電極存在電壓差而 在其間產生一第二方向的電場,其中該第二方向與該第一 =向垂直,當該第一方向的電場逐漸減弱時,該光學補償 秦曲型液晶層的液晶分子藉由該第二方向的電場而維持於 一扭曲態,且處於該扭曲態的液晶分子,其扭轉程度介於 該展曲態與該彎曲態之間。 2. 如申請專利範圍第1項所述之控制單元,其中該些 條狀電極的間距相等。 3. 如申請專利範圍第2項所述之控制單元,其中該些 條狀電極的間距為8微米。 4. 如申請專利範圍第1項所述之控制單元,其中該些 20 1375073 ιοί. 5. 23 ' , 101-5-23 年月日修(更)正替換 • 條狀電極的寬度為4微米。 . 5.如申請專利範圍第1項所述之控制單元,其中該些 條狀電極的厚度為〇.1微米。 ~ 一 6. 如申請專利範圍第1項所述之控制單元,更包括二 • 偏光片,其中一偏光片配置在該第一基板相對遠離該第二 ^板的一第三表面,而另一偏光片配置在該第二基板相對 遠離該第一基板的一第四表面’且該些偏光片的吸收軸互 相垂直。 7. 如申請專利範圍第6項所述之控制單元,更包括一 第一配向膜以及一第二配向臈,其中該第二配向膜覆蓋該 共用電極及該些條狀電極’而該第一配向膜覆蓋該些晝素 電極及該第一基板之該第一表面,且該第一配向膜的配向 方向及§亥第一配向膜的配向方向相同,而該第一配向膜的 配向方向與該些吸收軸夾一角度。 8. 如申請專利範圍第7項所述之控制單元,其中該角 度為45度。 9. 如申請專利範圍第7項所述之控制單元,其中該些 條狀電極的長度方向與該第一配向膜的配向方向平行。 10. —種液晶顯示器,包括: 一種控制單元,包括: • 一第一基板,具有—第一表面; 多個晝素電極,且該些晝素電極配置於該第一表 面; 一第二基板,具有一第二表面,且該第二表面朝 21 1375073 肌 5. 23 101-5-23 年月曰修(更)正替換頁 向該第一表面; 一液晶層,配釁於該第一基板與該第二基板之間; 一絕緣層,配ί於該第二表面; 一共用電極,配置於該絕緣層及該第二表面之 間’其中各該些畫素電極與該共用電極間具有一第一 方向電場,該第一方向的電場控制該液晶層的液晶分 :的扭轉程度在一展曲態與一彎曲態之間轉換;以及 多個條狀電極,其中該絕緣層位於該些條狀電極及該 共用電極之間,且任二相鄰之該些條狀電極存在電壓差= 在八間產生—第二方向的電場,其中該第二方向與該第一 方=垂直,當該第一方向的電場逐漸減弱時,該液晶層的 液晶分子藉由該第二方向的電場而維持於一扭曲態,I严 =扭曲態的液晶分子’其扭轉程度介於該展曲 曲態之間。 、次< 11.如申請專利範圍第1G項所述之液晶顯示器 該些條狀電極的間距相等。 β 12·如申Μ專利範圍第u項所述之液晶 該些條狀電極的間距為8微米。 α 13·如申請專圍第1G項所述之液 該些條狀電極的寬度為4微米。 硕不斋 該些:=^=所述之液晶顯示器 該液晶層為光學補述之液晶顯示器,其中 其中 其中 其中 其中 22 101 5. 23 ^ , 101-5-23 ^ . 牛月U修(更j正替換頁 〇〇 16.如申請專利範圍第10項所述之液晶顯示器,控制 單元更包括二偏光片,其中一偏光片配置在該第一基板相 f十遠離該第二基板的一第三表面,而另一偏光片配置在該 第〜基板相對遠離該第一基板的一第四表面,且該些偏光 片的吸收軸互相垂直。 17.如申請專利範圍第16項所述之液晶顯示器,控制 單元更包括一第一配向膜以及一第二配向膜,其中該第二 =向膜覆蓋該絕緣層及該些條狀電極,而該第一配向膜覆 ,該第一基板的該第一表面及該些晝素電極,且該第一配 向獏及该第二配向膜的配向方向相同,而該第一配向膜的 配向方向與該些吸收軸各夾一角度。 ^ 18.如申請專利範圍第17項所述之液晶顯示器,其中 該角度為45度。 、 ^ 19.如申睛專利範圍第16項所述之液晶顯示器,其中 该些條狀電極的長度方向與該第一配向膜的配向方向平 行。 2匕0·如申請專利範圍第1〇項所述之液晶顯示器,更包 月光模組,其中該控制單元配置於該背光模組上。 提供一液晶顯示器, 件陣列基板、一抟岳,丨其扣 21.—種液晶顯示器的顯示方法,包括: 曰曰顯示器,其中該液晶顯示器包括一主動元^/5073 l〇L 5. 2 3 —. _ 101-5-23 ----- Year of the month repair (more) is replacing the gas ten, the scope of patent application:] 1. A control unit to control a Optically compensating the curved liquid crystal layer, the control unit comprises: a first substrate having a first surface; a plurality of halogen electrodes disposed on the first surface; (4) a second substrate having a second surface a second surface facing the first surface of the child; an insulating layer disposed on the second surface; a common electrode disposed between the insulating layer and the second surface, wherein each of the pixel electrodes and the common electrode The electric field having the first direction of the ^^ direction controls the degree of torsion of the liquid helium molecules of the optically compensated curved liquid crystal layer to be converted between a curved state and a curved state; The electrode 'where the insulating layer is located between the strip electrodes and the electrodes, and any two adjacent strip electrodes have a voltage difference to generate a second direction electric field therebetween, wherein the first The second direction is perpendicular to the first = direction, when the electric field in the first direction is When gradually decreasing, the liquid crystal molecules of the optically compensated Qin curved liquid crystal layer are maintained in a twisted state by the electric field in the second direction, and the liquid crystal molecules in the twisted state have a twisting degree between the curved state and the Between the curved states. 2. The control unit of claim 1, wherein the strip electrodes are equally spaced. 3. The control unit of claim 2, wherein the strip electrodes have a pitch of 8 microns. 4. For the control unit described in the first paragraph of the patent application, wherein the 20 1375073 ιοί. 5. 23 ', 101-5-23 months (more) are being replaced • the width of the strip electrode is 4 microns . 5. The control unit of claim 1, wherein the strip electrodes have a thickness of 0.1 micron. The control unit of claim 1, further comprising two polarizers, wherein one of the polarizers is disposed on a third surface of the first substrate that is relatively far from the second board, and the other The polarizer is disposed on a second surface of the second substrate that is relatively far from the first substrate and the absorption axes of the polarizers are perpendicular to each other. 7. The control unit of claim 6, further comprising a first alignment film and a second alignment layer, wherein the second alignment film covers the common electrode and the strip electrodes and the first An alignment film covers the first surface of the halogen electrode and the first substrate, and the alignment direction of the first alignment film is the same as the alignment direction of the first alignment film, and the alignment direction of the first alignment film is The absorption shafts are clamped at an angle. 8. The control unit of claim 7, wherein the angle is 45 degrees. 9. The control unit of claim 7, wherein the lengthwise direction of the strip electrodes is parallel to the alignment direction of the first alignment film. 10. A liquid crystal display comprising: a control unit comprising: • a first substrate having a first surface; a plurality of halogen electrodes, wherein the halogen electrodes are disposed on the first surface; and a second substrate , having a second surface, and the second surface facing 21 1375073 muscle 5. 23 101-5-23 years of repair (more) is replacing the page toward the first surface; a liquid crystal layer, coupled to the first Between the substrate and the second substrate; an insulating layer disposed on the second surface; a common electrode disposed between the insulating layer and the second surface Between each of the pixel electrodes and the common electrode Having a first direction electric field, the electric field in the first direction controlling the degree of twist of the liquid crystal layer of the liquid crystal layer to be switched between a curved state and a curved state; and a plurality of strip electrodes, wherein the insulating layer is located Between the strip electrodes and the common electrode, and any two adjacent strip electrodes have a voltage difference= generate an electric field in the second direction—the second direction is perpendicular to the first side, When the electric field in the first direction is gradually weakened, The liquid crystal molecules of the liquid crystal layer are maintained in a twisted state by the electric field in the second direction, and the degree of twist of the liquid crystal molecules of the twisted state is between the splayed states. < 11. The liquid crystal display of claim 1G, wherein the strip electrodes have the same pitch. β 12· The liquid crystal as described in claim U of the patent range has a pitch of 8 μm. α 13· If the application is as specified in item 1G, the strip electrodes have a width of 4 μm. The above liquid crystal display is the optical liquid crystal display, of which 22 101 5. 23 ^ , 101-5-23 ^ . The liquid crystal display according to claim 10, wherein the control unit further comprises two polarizers, wherein a polarizer is disposed on the first substrate phase f away from the second substrate a third surface, wherein the other polarizer is disposed on a fourth surface of the first substrate that is relatively far from the first substrate, and the absorption axes of the polarizers are perpendicular to each other. 17. The liquid crystal according to claim 16 The display unit further includes a first alignment film and a second alignment film, wherein the second = alignment film covers the insulating layer and the strip electrodes, and the first alignment film covers the first substrate a first surface and the halogen electrodes, wherein the alignment directions of the first alignment layer and the second alignment film are the same, and the alignment direction of the first alignment film is at an angle to each of the absorption axes. Applying for the liquid crystal display described in item 17 of the patent scope The liquid crystal display according to claim 16, wherein the length direction of the strip electrodes is parallel to the alignment direction of the first alignment film. 0. The liquid crystal display according to claim 1, wherein the control unit is disposed on the backlight module, and the liquid crystal display, the array substrate, the 21. A display method for a liquid crystal display, comprising: a display, wherein the liquid crystal display comprises an active element 二二间的一液晶層,該主動元件陣列基板具有 '電極’該控制基板具有—制電極以及多個條狀 且该些條狀電極位於餘晶層與該制電極之間; 多個晝素電極, 23 1375073 101 5. 101-5-23 年月日紙幻正替換頁j 對該液晶顯示器施加一電壓,使該些晝素電極及該共 用電極之間產生一第一電場,以使該液晶層之多個光學補 償彎曲型液晶分子由展曲態轉換為彎曲態,其中該第一電 場的電場方向垂直該控制基板的一表面; 減少該電壓,使該些光學補償彎曲型液晶分子由彎曲 態轉換為扭曲態;以及 使任兩相鄰之該些條狀電極之間分別產生一第二電 %,其中該第二電場的電場方向平行該控制基板的該表 面’以使該些絲麵料魏4分 方法22ί:Γ^_21項輯錢晶顯示器_示 二電場間分別產生該第 相鄰之該些條狀電極之間。 '的電壓差於任兩 24a liquid crystal layer of two or two, the active device array substrate has an 'electrode', the control substrate has an electrode and a plurality of strips, and the strip electrodes are located between the residual layer and the electrode; Electrode, 23 1375073 101 5. 101-5-23 The paper replaces the page j by applying a voltage to the liquid crystal display to generate a first electric field between the halogen electrodes and the common electrode, so that the electrode a plurality of optically compensated curved liquid crystal molecules of the liquid crystal layer are converted from a curved state to a curved state, wherein an electric field direction of the first electric field is perpendicular to a surface of the control substrate; and the voltage is reduced to cause the optically compensated curved liquid crystal molecules to be Converting the curved state to a twisted state; and generating a second electricity % between the two adjacent strip electrodes, wherein the electric field direction of the second electric field is parallel to the surface of the control substrate to make the wires Fabric Wei 4 points method 22 ί: Γ ^ _ 21 item series of crystal display _ shows two electric fields between the adjacent strip electrodes. 'The voltage difference is between the two 24
TW97151878A 2008-12-31 2008-12-31 Control unit and liquid crystal display and displaying method thereof TWI375073B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97151878A TWI375073B (en) 2008-12-31 2008-12-31 Control unit and liquid crystal display and displaying method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97151878A TWI375073B (en) 2008-12-31 2008-12-31 Control unit and liquid crystal display and displaying method thereof

Publications (2)

Publication Number Publication Date
TW201024846A TW201024846A (en) 2010-07-01
TWI375073B true TWI375073B (en) 2012-10-21

Family

ID=44852323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97151878A TWI375073B (en) 2008-12-31 2008-12-31 Control unit and liquid crystal display and displaying method thereof

Country Status (1)

Country Link
TW (1) TWI375073B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472857B (en) * 2012-04-05 2015-02-11 Innocom Tech Shenzhen Co Ltd Liquid crystal display panel and pixel electrode structure thereof

Also Published As

Publication number Publication date
TW201024846A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
TWI701462B (en) Liquid crystal beam control device and manufacture
TWI243924B (en) Liquid crystal display device, method of producing thereof, and method of driving liquid crystal display device
JP2024050861A (en) Light-modulating film and glass laminate
TWI322290B (en) Liquid crystal display
KR102421609B1 (en) Light control film, driving method of light control film, light control member, vehicle
WO2013177902A1 (en) Liquid crystal display viewing angle control method, liquid crystal display panel, and liquid crystal display
TWI516845B (en) A liquid crystal element, and a liquid crystal display device
TWI288270B (en) Liquid crystal display device
US8692958B2 (en) Polarization film
TWI280447B (en) OCB mode LCD and method for driving the same
TW201224594A (en) Liquid crystal element
TWI375073B (en) Control unit and liquid crystal display and displaying method thereof
JP5452381B2 (en) LIQUID CRYSTAL DISPLAY ELEMENT, LIQUID CRYSTAL DISPLAY ELEMENT MANUFACTURING METHOD, AND DRIVING METHOD
US7777837B2 (en) LCD polarizers
JP6119908B1 (en) Light control film, light control film laminate and vehicle
JP2000035581A (en) Liquid crystal display device of vertically oriented mode with multiple domains
JP2008209813A (en) Liquid crystal alignment processing method, liquid crystal display panel and rubbing cloth
TW200426449A (en) Liquid crystal display element of semi-transmission type
KR102176854B1 (en) Laminate and liquid crystal display comprising the same
TW200527080A (en) Bistable liquid crystal device
JP6024844B1 (en) Light control film, light control film laminate and vehicle
CN114942550B (en) Display panel and display device
JP2017181825A (en) Light control film and window
JP7074071B2 (en) Dimming film
Liang et al. Crucial influence on d∕ p range in bistable chiral tilted-homeotropic nematic liquid crystal cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees