TWI374265B - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
TWI374265B
TWI374265B TW97146681A TW97146681A TWI374265B TW I374265 B TWI374265 B TW I374265B TW 97146681 A TW97146681 A TW 97146681A TW 97146681 A TW97146681 A TW 97146681A TW I374265 B TWI374265 B TW I374265B
Authority
TW
Taiwan
Prior art keywords
gas
absorbing material
gas sensor
capacitor electrode
gas absorbing
Prior art date
Application number
TW97146681A
Other languages
Chinese (zh)
Other versions
TW201022669A (en
Inventor
chun an Lu
Hong Ching Lin
Chiung Hsiung Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97146681A priority Critical patent/TWI374265B/en
Priority to JP2009054100A priority patent/JP4927115B2/en
Publication of TW201022669A publication Critical patent/TW201022669A/en
Application granted granted Critical
Publication of TWI374265B publication Critical patent/TWI374265B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

13742651374265

TW4853FA 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種氣辦成 種利用氣體吸收材來改變平面=裔’ 士特別疋有關於 頻率之氣體感測器。 …感電谷共振器的共振 【先前技術】 為達到農產品之分時銷售、# 4、, 置蔬果農產品衛星工廠或加工包;鮮:”管制’設 執丄 裝工廠疋目月一大趨 勢。由於台灣農業為小面積耕秸 ν 只祈種型態,農業個體戶無法承 2選與分級設備之成本,故若要達到農產品分級化必須 ,由衛星玉廠分散成本。目前針對水果進行分級之案例較 =主要針對水果之甜度、大小、熟度與含水量等果實品 :條件進行分選與分級’主要彻之技術有影像色澤檢測 \、GC氣相沉積法、MRI核磁共振與IR紅外線光譜等。 這些技術所使用之設備不僅體積龐大且價格十分昂貴。 1比較便宜的技術係由人工使用甜度計等手持設備進行 貝】,但此種技術屬於破壞式檢測且需較多人力成本。 農產品經過分選後再進行裝箱保存或運銷等處理,為 到農產品分時銷售之管理架構’農產品之保存格外重 押。目前較先進之技術主要針對冷藏保鮮庫之環境進行監 二,^保存環境之溫度、濕度及二氧化碳濃度進行監 則4=存時間軸之部分主要利用人力紀錄為主。目前 〜針對早箱或單批蔬果儲存進行分時銷售管控之技術 13/4265TW4853FA IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a gas sensor that utilizes a gas absorbing material to change a plane. ...Resonance of Sensing Valley Resonator [Prior Art] In order to achieve time-sharing sales of agricultural products, #4, set up a satellite factory or processing package for fruits and vegetables, fresh: "Control" set up a major trend in the installation of the factory. Taiwan's agriculture is a small area of cultivated straw ν only praying type, agricultural self-employed households can not bear the cost of 2 selection and grading equipment, so if it is necessary to achieve the classification of agricultural products, the satellite jade factory will disperse the cost. = Mainly for fruit sweetness, size, maturity and water content: conditions for sorting and grading 'mainly techniques such as image color detection\, GC vapor deposition, MRI NMR and IR infrared spectroscopy, etc. The equipment used in these technologies is not only bulky but also very expensive. 1 The cheaper technology is carried out by manually using handheld devices such as sweetness meters, but this technology is destructive and requires more labor costs. After sorting, it will be processed in box storage or transportation, and the management structure for the time-sharing sales of agricultural products will be particularly important for the preservation of agricultural products. At present, the more advanced technology mainly monitors the environment of the cold storage, and the temperature, humidity and carbon dioxide concentration of the storage environment are monitored. The part of the timeline is mainly based on the manpower record. Currently ~ for the early box or Single batch of fruits and vegetables storage for time-sharing sales control technology 13/4265

TW4853PA 或電子化技術。 龄來說,傳_做法缺點如下· /檢測設備_龐大。 一、设備價格昂貴。 三、需要較多人力成本 控。四、Μ針料践單歸㈣麵彳請時銷售管TW4853PA or electronic technology. In terms of age, the _ practice disadvantages are as follows · / detection equipment _ huge. First, the equipment is expensive. Third, more manpower costs are needed. Fourth, Μ 料 践 践 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

【發明内容】 解决傳統做法的缺 果儲存進行分時銷 本發明係有關於一種氣體感測器 點,而具有至少如下優點: 一、體積小; 二、 價格便宜; 三、 製造簡單;SUMMARY OF THE INVENTION The invention relates to a gas sensor point, and has at least the following advantages: 1. Small volume; 2. Low price; 3. Simple manufacturing;

四、 大幅降低人力成本;以及 五、 能夠有效地針對單箱或單抵荷 售管控。 平面式電感電容共振器及氣體吸收材益::感測器包括 振器包括電感電極及電容電極,且電 :電感電容共 電極。氣體吸收材係與電容電極之至少—部電: 外,氣體感測器更可包括-介電材,盆:連接。此 氣體吸收材及該電容電極相連接。氣體吸二== 1374265Fourth, significantly reduce labor costs; and 5. Effectively control single-box or single-load sales control. Planar Inductor-Capacitor Resonator and Gas Absorbing Material Benefits: The sensor includes a vibrator including an inductor electrode and a capacitor electrode, and the electric: inductor and capacitor common electrode. At least the gas absorption material and the capacitor electrode: In addition, the gas sensor may further comprise a dielectric material, a basin: a connection. The gas absorbing material and the capacitor electrode are connected. Gas suction two == 1374265

TW4853PA 體濃度的變化’改變平面式f感電容共㈣之共振頻率。 為讓本發明之上述内容能更日細易懂,下文特舉較佳 實施例’並配合所_式,作詳細說明如下: 【實施方式】 為了料傳統做法的諸項缺點,本發明提供—種氣體 感測益。氣體感測器包括平面今 式電感電容共振器及氣體吸 =。+面式電感電容共振器包㈣Μ 且電容電極係連接至電感電極。氣體吸】 之至少-部份相連接。氣體吸收 極 ^ ^ -V' ^ ^ ^ ^收材根據待测氣體濃度的變 化,改鍵千面式電感電容共振器之共振頻率。 氣體吸收材可視待測氣體的種類 收材’如乙烯氣體吸收材' —氣 +⑽虱體及 碳氣體吸收材等。舉例來說,U ^ _吸收材或二氧化 cyclopropene,1-MCP)可用作乙埽翁二丙烯 〇-methyl (Carbon Nano Tube,CNT)可用作乙嫌0收材,奈米碳官 化碳等氣體吸收材,活性碳則為常7魏碳或是二氧 氣體吸收材,高猛酸鉀則是會β及收㈣及㈣以作為 酸钟,可用作偵測乙稀的氣體吸收〜將之轉化成過猛 域中具有通常知識者可視實際需要’而適 氣體吸收材’上述僅為舉例說明。而氣調整使用不 平面式電感電容共振器使得本發明至小收材搭配簡易的 一、 體積小; 至-具有如下優點: 二、 價格便宜; 1374265TW4853PA Body Concentration Change 'Changes the resonant frequency of the planar f-capacitance capacitor (4). In order to make the above-mentioned contents of the present invention more comprehensible, the following description will be given in detail to the preferred embodiment of the present invention, and the following detailed description is given as follows: [Embodiment] In order to overcome the shortcomings of the conventional practice, the present invention provides - Gas sensing benefits. The gas sensor includes a planar current inductor-capacitor resonator and a gas suction =. + Face type inductor-capacitor resonator package (4) 且 and the capacitor electrode is connected to the inductor electrode. At least some of the gas suctions are connected. The gas absorption pole ^ ^ -V' ^ ^ ^ ^ is based on the change of the gas concentration to be measured, and the resonance frequency of the thousand-sided inductor-capacitor resonator is changed. The gas absorbing material can be regarded as the type of gas to be measured. The material such as ethylene gas absorbing material - gas + (10) steroid and carbon gas absorbing material. For example, U ^ _ absorber or cyclopropene, 1-MCP can be used as a carbon nanotube (CNT), which can be used as a material for the recovery of carbon. Carbon and other gas absorption materials, activated carbon is often 7 Wei carbon or dioxane gas absorption material, high potassium acid is β and received (4) and (4) as acid clock, can be used as a gas absorption for detecting ethylene ~ Turn it into a person with normal knowledge in the violent field. See the actual needs of the 'gas-absorbing material'. The above is only an example. The gas adjustment uses a non-planar inductor-capacitor resonator to make the invention to a small material with a simple one, small volume; to - has the following advantages: Second, the price is cheap; 1374265

» I» I

TW4853PA 三、 製造簡單; 四、 大幅降低人力成本;以及 ' 五、能夠有效地針對單箱或單批蔬果儲存進行分時銷 v 售管控。 為使本發明更為清晰易懂,後述將例舉數個實施例進 一步說明。 第一實施例 • 請參照第1圖,其繪示依照本發明第一實施例的一種 氣體感測器之局部剖面吊意圖。氣體感測器10包括電感 電極110、電容電極120及氣體吸收材130。在本實施例 中,氣體吸收材130係設置在電感電極110與電容電極120 的下方,而與電容電極120部份相連接。設置於氣體吸收 材130上之電感電極110及電容電極120係分別形成電感 及電容,以做為平面式電感電容共振器中的共振元件。當 待測氣體濃度改變時,氣體吸收材130所吸附之待測氣體 ® 分子的量就會改變,而使得氣體吸收材130本身的介電常 數發生變化,進而改變電容值的大小。如此一來,平面式 電感電容共振器的共振頻率即隨之改變。吾人藉由偵測共 振頻率之改變即能得知待測氣體的濃度變化,而偵測共振 頻率之設備例如為向量式網路分析儀(Vector Network Analyzer,νΝΛ)。 一般來說,農產品成熟時會釋放出乙烯或二氧化碳等 氣體。當氣體感測器10應用於偵測農產品成熟與否時, 1374265TW4853PA Third, the manufacturing is simple; Fourth, the labor cost is greatly reduced; and '5. It can effectively carry out time-sharing sales and control of single-box or single-batch fruits and vegetables. In order to make the present invention clearer and easier to understand, several embodiments will be further described below. First Embodiment Referring to Figure 1, there is shown a partial cross-sectional view of a gas sensor in accordance with a first embodiment of the present invention. The gas sensor 10 includes an inductor electrode 110, a capacitor electrode 120, and a gas absorbing material 130. In the present embodiment, the gas absorbing material 130 is disposed below the inductor electrode 110 and the capacitor electrode 120, and is connected to the capacitor electrode 120 portion. The inductor electrode 110 and the capacitor electrode 120 disposed on the gas absorbing material 130 form an inductor and a capacitor, respectively, as a resonant element in a planar inductor-capacitor resonator. When the concentration of the gas to be measured changes, the amount of the gas to be tested, which is adsorbed by the gas absorbing material 130, changes, and the dielectric constant of the gas absorbing material 130 itself changes, thereby changing the magnitude of the capacitance. As a result, the resonant frequency of the planar inductor-capacitor resonator changes. By detecting the change in the resonance frequency, we can know the change in the concentration of the gas to be measured, and the device for detecting the resonance frequency is, for example, a Vector Network Analyzer (νΝΛ). Generally, when the agricultural product matures, it will release gases such as ethylene or carbon dioxide. When the gas sensor 10 is used to detect the maturity of the agricultural product, 1374265

» I» I

TW4853PA 吾人能選擇適當的氣體吸收材130來使用。氣體吸收材可 分為氣體吸附材與氣體反應材。其中,氣體吸附材為其材 : 料本身因其表面官能機特性之不同,使得特定之氣體可以 ·· 化學或物理吸附方式,吸附於氣體吸附材上。但材料基本 結構並不與氣體產生物理或化學反應。而氣體反應材因其 材料結構與特性,可與氣體產生化學反應導致其結構或化 性產生變化,例如材料受氣體影響產生氧化或還原反應 等。一般常見的氣體吸附材例如係選自卜曱基環丙烯、活 ❿ 性碳、氯化锆(ZrCl2)、幾丁聚醣、高猛酸鉀、帶有鈀金屬 之銀金屬之聚丙烯醯胺(Polyacrylic amide)高分子聚合物 及竹淬液所組成的族群中。氣體反應材例如係選自金屬氧 化物催化、鉑-氧化鈦複合物(Pt-Ti02)、鉑金化合物(Pt TMOSFET)、鉑-氧化錫複合物(Pt-Sn02)、奈米碳管及具有 銀離子(Ag+)之材料所組成的族群中。當然,所屬技術領域 中具有通常知識者可視實際需要,而適當的調整使用不同的氣 I 體吸收材,上述僅為舉例說明。 第二實施例 請參照第2圖,其繪示依照本發明第二實施例的一種 氣體感測器之局部剖面示意圖。第二實施例繪示之氣體感 測器20與第1圖繪示之氣體感測器10不同之處在於:氣 體感測器20更包括基板240,且基板240位於氣體吸收材 130的下方,用以設置氣體吸收材130。而第一實施例是 直接將氣體吸收材130做為基板來使用。而氣體感測器20 9 工374265TW4853PA We can choose the appropriate gas absorption material 130 to use. The gas absorbing material can be classified into a gas adsorbing material and a gas reaction material. Among them, the gas adsorbing material is the material of the material: the material itself can be adsorbed on the gas adsorbing material by chemical or physical adsorption depending on the characteristics of the surface functional machine. However, the basic structure of the material does not physically or chemically react with the gas. However, due to the material structure and characteristics of the gas reactant, the chemical reaction with the gas may cause changes in its structure or chemical properties, such as oxidation or reduction of the material by gas. Commonly used gas adsorbing materials are, for example, polyacrylamides selected from the group consisting of diterpene-based propylene, activated carbon, zirconium chloride (ZrCl2), chitosan, potassium permanganate, and silver metal with palladium metal (Polyacrylic). Amide) Among the groups of high molecular polymers and bamboo quenching liquids. The gas reaction material is, for example, selected from the group consisting of metal oxide catalysis, platinum-titanium oxide composite (Pt-Ti02), platinum compound (Pt TMOSFET), platinum-tin oxide composite (Pt-Sn02), carbon nanotubes, and silver. Among the groups of materials of ions (Ag+). Of course, those having ordinary knowledge in the technical field can adjust the use of different gas-absorbing materials according to actual needs, and the above is merely illustrative. Second Embodiment Referring to Figure 2, there is shown a partial cross-sectional view of a gas sensor in accordance with a second embodiment of the present invention. The gas sensor 20 shown in the second embodiment is different from the gas sensor 10 shown in FIG. 1 in that the gas sensor 20 further includes a substrate 240, and the substrate 240 is located below the gas absorbing material 130. It is used to set the gas absorbing material 130. In the first embodiment, the gas absorbing material 130 is directly used as a substrate. And the gas sensor 20 9 374265

TW4853PA 作用原理及可選擇使用的氣體吸收材130與前述氣體感測 器10雷同’在此不予贅述。 4. 弟三實施例 請參照第3圖,其繪示依照本發明第三實施例的一種 氣體感測器之局部剖面示意圖。第三實施例繪示之氣體感 測器30與第1圖繪示之氣體感測器10不同之處在於:除 了有氣體吸收材130設置在電感電極11〇與電容電極120 鲁的下方之外,氣體感測器30更包括另一氣體吸收材350 ’ 且氣體吸收材350覆蓋於電容電極120上,增加了與電容 電極120連接的面積。本實施例的結構設計’由於在電容 電極120的周圍與下方有氣體吸收材350與130,因此可 同時偵測平面式電感電容共振器的上部與下部環境之氣 體濃度。當氣體吸收材350與130二者或其一所吸附之待 測氣體分子的量一發生改變,就可以改變電容值的大小, 進而使得平面式電感電容共振器的共振頻率改變來得知 待測氣體的濃度邊化’因此能夠增加氣體感測器3 〇的感 測性。 當然,在本實施例中,電容電極120的上下部分是分 別與氣體吸收材350、130相連接的,吾人也可以將氣體 吸收材130以基板2/0來取代之,此時僅有氣體吸收材35〇 將電容電極12〇覆蓋,而與電容電極12〇相連接,因此可 偵測平面式電感電容共振器的上部環境之氣體濃度。而氣 體吸收材35〇可利用印刷、物理鍍膜、化學錢_、電鑛或 1374265The TW4853PA function principle and the optional gas absorbing material 130 are the same as those of the gas sensor 10 described above, and will not be described herein. 4. Third Embodiment Referring to Figure 3, a partial cross-sectional view of a gas sensor in accordance with a third embodiment of the present invention is shown. The gas sensor 30 shown in the third embodiment is different from the gas sensor 10 shown in FIG. 1 in that, except that the gas absorbing material 130 is disposed below the inductor electrode 11 〇 and the capacitor electrode 120 The gas sensor 30 further includes another gas absorbing material 350' and the gas absorbing material 350 covers the capacitor electrode 120, increasing the area connected to the capacitor electrode 120. Since the structural design of this embodiment has gas absorbing members 350 and 130 around and below the capacitor electrode 120, the gas concentration of the upper and lower environments of the planar inductor-capacitor resonator can be simultaneously detected. When the amount of the gas molecules to be tested adsorbed by the gas absorbing materials 350 and 130 or one of them is changed, the magnitude of the capacitance value can be changed, and the resonance frequency of the planar inductor-capacitor resonator is changed to know the gas to be tested. The concentration of the edge is 'can therefore increase the sensitivity of the gas sensor 3 〇. Of course, in the present embodiment, the upper and lower portions of the capacitor electrode 120 are respectively connected to the gas absorbing materials 350 and 130. Alternatively, the gas absorbing material 130 may be replaced by the substrate 2/0. The material 35〇 covers the capacitor electrode 12〇 and is connected to the capacitor electrode 12〇, so that the gas concentration of the upper environment of the planar inductor-capacitor resonator can be detected. The gas absorption material 35〇 can be used for printing, physical coating, chemical money _, electric mine or 1374265

TW4853PA 轉印等方式進行製作。 . 氣體吸收材350、130可為相同或不同的材料,例如 為前述氣體吸附材或氣體反應材,在此不予贅述。TW4853PA transfer and other methods are produced. The gas absorbing materials 350, 130 may be the same or different materials, such as the aforementioned gas adsorbing material or gas reaction material, and will not be described herein.

請參照第4圖,其繪示依照本發明第四實施例的一種 氧體感測器之局部剖面示意圖。第四實施例繪示之氣體感 測器40與第3圖繪示之氣體感測器30不同之處在於:氣 體感測益40更包括基板240’且基板24Ό位於氣體吸收材 130的下方,用以設置氣體吸收材π〇。而第三實施例是 直接將氣體吸收材130做為基板來使用。 Μλλμμ. 請參照第5圖’其繪示依照本發明第五實施例的一種 氣體感測器之局部剖面示意圖。第五實施例繪示之氣體感 測器50與第3圖繪示之氣體感測器30不同之處在於:氣 體吸收材350並非直接覆蓋在電容電極120上,而是由介 電材560覆蓋在電容電極12〇上,氣體吸收材350再設置 於介電材560的上方。本實施例的詰構設計,由於在介電 材560的上下皆有氣體吸收封35〇與130,當氣體吸收材 350與130二者或其一所°及附之待測氣體分子的量一發生 改變’其本身的介電常數就會發生變化’進而使得與其連 接的介電材560的介電常數產生明顯的變化,由於介電材 560覆蓋在電容電極120上而與電容電極12〇連接,因此 1374265Referring to Figure 4, there is shown a partial cross-sectional view of an oxygen sensor in accordance with a fourth embodiment of the present invention. The gas sensor 40 illustrated in the fourth embodiment is different from the gas sensor 30 illustrated in FIG. 3 in that the gas sensing benefit 40 further includes a substrate 240 ′ and the substrate 24 Ό is located below the gas absorbing material 130 . Used to set the gas absorption material π〇. The third embodiment is to use the gas absorbing material 130 directly as a substrate. Μλλμμ. Please refer to Fig. 5, which is a partial cross-sectional view showing a gas sensor in accordance with a fifth embodiment of the present invention. The gas sensor 50 shown in the fifth embodiment is different from the gas sensor 30 shown in FIG. 3 in that the gas absorbing material 350 is not directly covered on the capacitor electrode 120 but covered by the dielectric material 560. On the capacitor electrode 12A, the gas absorbing material 350 is further disposed above the dielectric material 560. The structure of the present embodiment is such that there are gas absorbing seals 35 〇 and 130 on the upper and lower sides of the dielectric material 560, and one or both of the gas absorbing materials 350 and 130 and the amount of gas molecules to be tested. The change "the dielectric constant of itself changes" further causes a significant change in the dielectric constant of the dielectric material 560 connected thereto, since the dielectric material 560 is overlaid on the capacitor electrode 120 and is connected to the capacitor electrode 12A. , therefore 1374265

TW4853PA & w電材560的介電常數發生變化時電容值就會跟著改 .變,進而使得平面式電感電容共振器的共振頻率改變,來 得知待測氣體的濃度變化。在本實施例中,由於氣體吸收 ’材350或130之介電常數微量的變化會使得與其連接的 介電材560之介電常數產生明顯的變化,因此可藉由介電 材560的設置來增加氣體感測器5〇的感測能力。介電材 560係選自乙烯醇類、聚乙烯胺、二氧化矽(si〇2)、二氧化 欽(Τι〇2)、氧化鋅(zn〇)及二氧化錫(Sn〇2)組成的族群中, • 所屬技術領域令具有通常知識者可視實際需要,而適當的調整 使用不同的介電材’上述僅為舉例說明。 當然’在本實施例中,介電材560的上下部分是分別 與氣體吸收材350、130相連接的,吾人也可以將氣體吸 收材130以基板240來取代之,此時僅有氣體吸收材350 設置在介電材560的上方並與介電材相連接,因此可偵測 平面式電感電容共振器的上部環境之氣體濃度。 請參照第12圖’其繪示係為依照本發明第五實施例 ® 的又一種氣體感測器之局部剖面示意圖。第12圖繪示之 氣體感測器200與第5圖繪示之氣體感測器50不同之處 在於:第5圖之氣體吸收材130於第12圖係以基板240 取代。此時僅有氣體吸收材350設置在介電材560的上方 益與介電材560相連接,因此可偵測平面式電感電容共振 器的上部環境之氣體濃度。 請參照第13圖,其繪示係為不同介電材之頻率變化 圖。以使用如第12圖之氣體感測器200為例,曲線131 〇 1374265When the dielectric constant of TW4853PA & watt 560 changes, the capacitance value will change, and the resonant frequency of the planar inductor-capacitor resonator will change to know the concentration change of the gas to be tested. In the present embodiment, since the change in the dielectric constant of the gas absorption material 350 or 130 causes a significant change in the dielectric constant of the dielectric material 560 connected thereto, the dielectric material 560 can be disposed. Increase the sensing capability of the gas sensor 5〇. The dielectric material 560 is selected from the group consisting of vinyl alcohol, polyvinylamine, cerium oxide (si〇2), dioxin (Τι〇2), zinc oxide (zn〇), and tin dioxide (Sn〇2). In the ethnic group, the technical field of the art makes it possible for the person with ordinary knowledge to use the actual dielectric material, and the appropriate adjustment uses different dielectric materials. Of course, in the present embodiment, the upper and lower portions of the dielectric material 560 are respectively connected to the gas absorbing materials 350 and 130. Alternatively, the gas absorbing material 130 may be replaced by the substrate 240. At this time, only the gas absorbing material is used. The 350 is disposed above the dielectric material 560 and connected to the dielectric material, thereby detecting the gas concentration of the upper environment of the planar inductor-capacitor resonator. Referring to Figure 12, there is shown a partial cross-sectional view of yet another gas sensor in accordance with a fifth embodiment of the present invention. The gas sensor 200 shown in Fig. 12 is different from the gas sensor 50 shown in Fig. 5 in that the gas absorbing material 130 of Fig. 5 is replaced with a substrate 240 in Fig. 12. At this time, only the gas absorbing material 350 is disposed above the dielectric material 560 and is connected to the dielectric material 560, so that the gas concentration of the upper environment of the planar inductor-capacitor resonator can be detected. Please refer to Figure 13, which shows the frequency variation of different dielectric materials. Taking the gas sensor 200 as shown in Fig. 12 as an example, the curve 131 〇 1374265

參 IReference I

TW4853PA 係為無披覆介電材560之頻率變化曲線;曲線1320係為 彼覆乙烯醇類介電材560之頻率變化曲線;曲線1330係 1 為披覆聚乙烯胺介電材560之頻率變化曲線。吾人從第13 * 圖可看出披覆乙烯醇類介電材後之頻率變化相當地穩 定,不會產生頻飄的現象。因此,將進一步提高測量氣體 變化濃度的精確度。 第六實施例 • 請參照第6圖,其繪示依照本發明第六實施例的一種 氣體感測器之局部剖面示意圖。第六實施例繪示之氣體感 測器60與第5圖繪示之氣體感測器50不同之處在於:氣 體吸收材130係設置於基板240上,且介電材560上方並 沒有設置氣體吸收材350。藉由位於基板240上方的氣體 吸收材130介電常數的變化,使得與氣體吸收材130連接 的介電材560之介電常數一併發生改變,由於介電材560 係覆蓋在電容電極120上而與其相連接,因此當介電材560 ® 的介電常數發生變化時,電容值隨之而改變,進而使得平 面式電感電容共振器的共振頻率改變,來得知待測氣體的 濃度變化。 第七實施例 請參照第7圖,其繪示依照本發明第七實施例的一種 氣體感測器之局部剖面示意圖。第七實施例繪示之氣體感 測器70與第5圖繪示之氣體感測器50不同之處在於:氣 13 1374265 • »TW4853PA is the frequency variation curve of the uncoated dielectric material 560; the curve 1320 is the frequency variation curve of the vinyl alcohol-based dielectric material 560; the curve 1330 is the frequency variation of the coated polyvinylamine dielectric material 560. curve. From the 13th figure, we can see that the frequency change after coating the vinyl alcohol-based dielectric material is fairly stable and does not cause frequent drift. Therefore, the accuracy of measuring the gas concentration concentration will be further improved. Sixth Embodiment Referring to Figure 6, there is shown a partial cross-sectional view of a gas sensor in accordance with a sixth embodiment of the present invention. The gas sensor 60 shown in the sixth embodiment is different from the gas sensor 50 shown in FIG. 5 in that the gas absorbing material 130 is disposed on the substrate 240, and no gas is disposed above the dielectric material 560. Absorbent material 350. The dielectric constant of the dielectric material 560 connected to the gas absorbing material 130 is changed by the change of the dielectric constant of the gas absorbing material 130 located above the substrate 240, since the dielectric material 560 is covered by the capacitor electrode 120. It is connected to it, so when the dielectric constant of the dielectric material 560 ® changes, the capacitance value changes accordingly, and the resonance frequency of the planar inductor-capacitor resonator changes to know the concentration change of the gas to be measured. Seventh Embodiment Referring to Figure 7, a partial cross-sectional view of a gas sensor in accordance with a seventh embodiment of the present invention is shown. The gas sensor 70 shown in the seventh embodiment is different from the gas sensor 50 shown in Fig. 5 in that: gas 13 1374265 • »

TW4853PA 體感測器70更包括基板240,且基板240位於氣體吸收材 ‘ 1的下方,用以設置氣體吸收材13〇。而第五實施例是 直接將氣體吸收材130做為基板來使用。 ♦ 前述電感電極110及電容電極12〇例如係以印刷、物 理鍍膜、化學鍍膜、電鍍或轉印等方式進行製作。電感電 極110及電容電極120之形狀可視設計需求而不同。舉例 來說,電感電極1 ίο例如係為平面螺旋狀,而電容電極120 例如係為平面對稱指叉狀、平面對稱矩形或單一平面電 極。下述將分別以第8圖至第10圖繪示進一步說明。 "月參照第8圖,其繪示第一種平面式電感電容共振器 之示意圖。於第8圖繪示之平面式電感電容共振器80中, 刚述電感電極110於第8圖係以電感電極uofi)表示, 而電容電極120係以電容電極120 (1)表示。電感電極 lio(i)係為平面螺旋狀,而電容電極12〇(1)係為平面對稱 鲁指叉狀。由於電容電極120(1)為平面對稱指叉狀,因此吾 人了將其視為多個單一電容並聯。如此一來,電容電極12〇 (1)之等效電容值即能大幅地提高。 ,參照第9圖,其繪示第二種平面式電感電容共振器 之示意圖。於第9圖繪示之平面式電感電容共振器9〇中, 則述電感電極110於第9圖係以電感電極noci)表示, 而電容電極120係以電容電極12〇 (2)表示。平面式電感 電容共振器90與前述第8圖繪示之平面式電感電容共振 器80不同之處在於:電容電極12〇(2)係為平面對稱矩形。 1374265The TW4853PA body sensor 70 further includes a substrate 240, and the substrate 240 is located below the gas absorbing material '1' to set the gas absorbing material 13A. On the other hand, the fifth embodiment uses the gas absorbing material 130 as a substrate directly. ♦ The inductor electrode 110 and the capacitor electrode 12 are formed, for example, by printing, physical plating, electroless plating, plating, or transfer. The shape of the inductive electrode 110 and the capacitor electrode 120 may vary depending on design requirements. For example, the inductor electrode 1 is, for example, a planar spiral, and the capacitor electrode 120 is, for example, a plane symmetrical fork, a plane symmetrical rectangle, or a single planar electrode. Further description will be made below with reference to Figs. 8 to 10, respectively. "Month Referring to Figure 8, a schematic diagram of the first planar inductor-capacitor resonator is shown. In the planar inductor-capacitor resonator 80 shown in FIG. 8, the inductor electrode 110 is shown as an inductor electrode uofi) in FIG. 8, and the capacitor electrode 120 is represented by a capacitor electrode 120 (1). The inductor electrode lio(i) is a plane spiral, and the capacitor electrode 12〇(1) is a plane symmetrical lug fork. Since the capacitor electrode 120(1) is a plane symmetrical fork, it is considered to be a parallel connection of a plurality of single capacitors. As a result, the equivalent capacitance value of the capacitor electrode 12 〇 (1) can be greatly improved. Referring to Figure 9, a schematic diagram of a second planar inductor-capacitor resonator is shown. In the planar inductor-capacitor resonator 9 shown in FIG. 9, the inductor electrode 110 is represented by the inductor electrode noci) in the ninth diagram, and the capacitor electrode 120 is represented by the capacitor electrode 12〇(2). The planar inductor capacitor resonator 90 is different from the planar inductor-capacitor resonator 80 shown in Fig. 8 in that the capacitor electrode 12〇(2) is a plane symmetrical rectangle. 1374265

TW4853PA 。。請參照第10圖,其繪示第三種平面式電感電容共振 、=之:意圖。於第10圖繪示之平面式電感電容共振器100 , 則述電感電極110於第10圖係以電感電極110 (1) 表示’而電容電極120係以電容電極120(3)表示。平面 ^電感電容共振器100與前述第8圖繪示之平面式電感電 谷共振器80不同之處在於:電容電極120(3)係為單一平 面電極。 φ M當然,第8圖至第10圖所繪示的平面式電感電容共 振器s 了使用在别述之所有實施例中,所屬技術領域中且 有通¥知識者可視實際需要,而適當的調整使用不同的平面 式電感電容共振器,搭配不同的實施例組合,上述僅為舉 例說明。 δ月參照第11圖,其繪示係為共振頻率隨時間改變之 示意圖。為方便說明起見,第u圖係以青木瓜為例進行 測試’使用如第8圖之平面式電感電容共振器,採用第三 鲁實施例中的氣體感測器30,其中所使用的氣體吸收材為帶 有把金屬之銀金屬之聚丙烯醯胺高分子聚合物,用以量測 乙烯氣體,由第11圖中可以說明共振頻率的變化情形。 由於青木瓜會隨著時間增加而逐漸成熟,因此將釋放出乙 烯氣體。而氣體吸收材吸收乙烯氣體分子,使得平面式電 感電谷共振器之電容值改變,進而造成平面式電感電容共 振器之共振頻率將隨著時間而逐漸下降。 本發明上述實施例所揭露之氣體感測器,其氣體吸收 材可視待測氣體的種類選擇不同的氣體吸附材或氣體反 15 1374265TW4853PA. . Please refer to Figure 10, which shows the third planar inductor-capacitor resonance, =: intent. In the planar inductor-capacitor resonator 100 shown in Fig. 10, the inductor electrode 110 is represented by the inductor electrode 110 (1) in FIG. 10 and the capacitor electrode 120 (3) is represented by the capacitor electrode 120 (3). The planar inductor-capacitor resonator 100 is different from the planar inductor-valve resonator 80 shown in Fig. 8 in that the capacitor electrode 120(3) is a single planar electrode. φ M Of course, the planar inductor-capacitor resonators s shown in FIGS. 8 to 10 are used in all the embodiments described above, and those skilled in the art may have practical needs, and appropriate The adjustment uses different planar inductor-capacitor resonators, with different combinations of embodiments, the above is only an example. The δ month refers to Fig. 11, which is a schematic diagram showing the change of the resonance frequency with time. For convenience of explanation, the figure u is tested with green papaya as an example. Using the planar inductor-capacitor resonator as shown in Fig. 8, the gas sensor 30 in the third embodiment is used, in which the gas used is used. The absorbing material is a polypropylene phthalamide polymer having a silver metal of a metal for measuring ethylene gas, and the change of the resonance frequency can be explained from Fig. 11. Since green papaya will mature over time, ethylene gas will be released. The gas absorbing material absorbs the molecules of the ethylene gas, so that the capacitance value of the planar induction galvanic resonator changes, and the resonance frequency of the planar inductor-capacitor resonator gradually decreases with time. In the gas sensor disclosed in the above embodiment of the present invention, the gas absorbing material can select different gas adsorbing materials or gases according to the type of gas to be tested. 15 1374265

• I• I

TW4853PA 應材。此外,電容電極的設計方式可視設計需求選擇平面 對稱指叉狀、平面對稱矩形或單一平面電極等等。上述實 ' 施例揭露之氣體感測器不僅體積小且價格便宜。此外,上 £ 述實施例揭露之氣體感測器的製造相當簡單,如將其應用 於農產品的檢測分類上,將大幅降低人力成本。再者,吾 人利用上述氣體偵測器對單箱或單批蔬果進行偵測即能 有效地判斷個別農產品的成熟狀況,進而達到對單箱或單 批蔬果儲存進行分時銷售管控的目的。 ® 綜上所述,雖然本發明已以一較佳實施例揭露如上, 然其並非用以限定本發明。本發明所屬技術領域中具有通 常知識者,在不脫離本發明之精神和範圍内,當可作各種 之更動與潤飾。因此,本發明之保護範圍當視後附之申請 專利範圍所界定者為準。 【圖式簡單說明】 第1圖繪示依照本發明第一實施例的一種氣體感測 器之局部剖面示意圖。 ® 第2圖繪示依照本發明第二實施例的一種氣體感測 器之局部剖面示意圖。 第3圖繪示依照本發明第三實施例的一種氣體感測 器之局部剖面示意圖。 第4圖繪示依照本發明第四實施例的一種氣體感測 器之局部剖面示意圖。 第5圖繪示依照本發明第五實施例的一種氣體感測 器之局部剖面示意圖。 16 X只 1374265TW4853PA should be material. In addition, the design of the capacitor electrode can be selected from a plane symmetrical interdigitated shape, a plane symmetrical rectangular shape or a single planar electrode, etc. depending on the design requirements. The gas sensor disclosed in the above embodiment is not only small in size but also inexpensive. In addition, the manufacture of the gas sensor disclosed in the above embodiments is relatively simple, and if it is applied to the detection classification of agricultural products, the labor cost will be greatly reduced. Furthermore, by using the above gas detector to detect single box or single batch of fruits and vegetables, we can effectively judge the maturity of individual agricultural products, thereby achieving the purpose of time-sharing sales control of single-box or single-batch fruits and vegetables. In view of the above, the present invention has been disclosed above in a preferred embodiment, and is not intended to limit the invention. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a partial cross-sectional view showing a gas sensor in accordance with a first embodiment of the present invention. ® Fig. 2 is a partial cross-sectional view showing a gas sensor in accordance with a second embodiment of the present invention. Fig. 3 is a partial cross-sectional view showing a gas sensor in accordance with a third embodiment of the present invention. Fig. 4 is a partial cross-sectional view showing a gas sensor in accordance with a fourth embodiment of the present invention. Fig. 5 is a partial cross-sectional view showing a gas sensor in accordance with a fifth embodiment of the present invention. 16 X only 1374265

TW4853PA 六實施例的一種氣體感硎 七實施例的一種氣體感測 第6圖繪示依照本發明第 器之局部剖面示意圖。 第7圖繪示依照本發明第 裔之局部剖面示意圖。 示第一種平面式電感電容共振器之示意圖 圖4不第二種平面式電感電容共振器之示意圖 10圖緣示第三種平面式電感電容共振器之示意TW4853PA A Gas Sensing of the Sixth Embodiment A Gas Sensing of the Seventh Embodiment FIG. 6 is a partial cross-sectional view showing the first embodiment of the present invention. Figure 7 is a partial cross-sectional view showing the descent of the present invention. Schematic diagram of the first type of planar inductor-capacitor resonator Figure 4 Schematic diagram of the second type of planar inductor-capacitor resonator Figure 10 shows the schematic diagram of the third type of planar inductor-capacitor resonator

第11圖繪示係為共振頻率隨時間改變之示意圖。 第12圖♦不係為依照本發明第五實施例的又一種氣 體感測器之局部剖面示意圖。 第13圖!會示係為不同介電材之頻錢化圖。 【主要元件符號說明】 10、20、30、40、50、60、70、200 :氣體感測器 11〇、110 (1广電感電極 120、120 (1)、12〇 (2)、12〇 (3):電容電極 130、350 :氣體吸收材 240 =基板 560 :介電材 80、90、1G0 :平面式電感電容共振器 :iFigure 11 is a schematic diagram showing the change of the resonant frequency with time. Fig. 12 is a partial cross-sectional view showing still another gas sensor in accordance with a fifth embodiment of the present invention. Figure 13! The display shows the frequency of different dielectric materials. [Description of main component symbols] 10, 20, 30, 40, 50, 60, 70, 200: gas sensors 11〇, 110 (1 wide inductance electrode 120, 120 (1), 12〇 (2), 12〇 (3): Capacitance electrodes 130, 350: gas absorbing material 240 = substrate 560: dielectric materials 80, 90, 1G0: planar inductor-capacitor resonator: i

Claims (1)

1374265 年丨’月丨3日修正本丨 ^55 2011/12/13_151 申復 & 修正 十、申請專利範圍: 1. 一種氣體感測器,包括: 一平面式電感電容共振器,包括: 一電感電極;及 一電容電極,係連接至該電感電極;以及 一氣體吸收材,係與該電容電極之至少一部份相連 接;1374265 丨 '月丨3日修正本丨^55 2011/12/13_151 Shen Fu & Amendment 10, the scope of application for patent: 1. A gas sensor, comprising: a planar inductor-capacitor resonator, including: An inductor electrode; and a capacitor electrode connected to the inductor electrode; and a gas absorbing material connected to at least a portion of the capacitor electrode; 一介電材,係與該氣體吸收材及該電容電極相連接; 其中該氣體吸收材根據一待測氣體濃度的變化,改變 該平面式電感電容共振器之一共振頻率。 2. 如申請專利範圍第1項所述之氣體感測器,其中 該電容電極係設置於該氣體吸收材上,而與該氣體吸收材 相連接。 3. 如申請專利範圍第1項所述之氣體感測器,其中 該氣體吸收材係覆蓋於該電容電極上,而與該電容電極相 連接。A dielectric material is connected to the gas absorbing material and the capacitor electrode; wherein the gas absorbing material changes a resonance frequency of the planar inductor-capacitor resonator according to a change in a concentration of the gas to be measured. 2. The gas sensor according to claim 1, wherein the capacitor electrode is disposed on the gas absorbing material and is connected to the gas absorbing material. 3. The gas sensor of claim 1, wherein the gas absorbing material is attached to the capacitor electrode and connected to the capacitor electrode. 4. 如申請專利範圍第1項所述之氣體感測器,更包 括: 一基板’用以設置該氣體吸收材。 5. 如申請專利範圍第2項所述之氣體感測器,更包 括: 另一氣體吸收材,係覆蓋於該電容電極上而與該電容 電極相連接。 18 1374265 2011/12/13」5*申復&修正 6.如申請專利範圍第i項所述之氣體感測器,其中 該介電材係選自乙烯醇類、聚乙烯胺、二氧化矽(Si〇2)、 二氧化鈦(Ti〇2)、氧化鋅(Zn0)及二氧化錫(Sn〇2)組成的族 群中。 7·如申請專利範圍第1項所述之氣體感測器,更包 括: 一基板,用以設置該電容電極,且該介電材係覆蓋於 該電容電極上,該氣體吸收材設置於該介電材上。 8. 如申請專利範圍第i項所述之氣體感測器,更包 括: 一^板,用以設置該氣體吸收材,且該電容電極係設 置於該氣體吸收材上,該介電材係覆蓋於該電容電極上。 9. 如申請專利範圍第8項所述之氣體感測器,更包 括: 另一氣體吸收材,係設置於該介電材上。 10. 如申請專利範圍第1項所述之氣體感測器,其中 該氣體吸收材係為氣體反應材。 U.如申請專利範圍第10項所述之氣體感測器,其 中該氣體反應材係選自金屬氧化物催化、鉑-氧化鈦複合物 (Pt-Tl〇2)、翻金化合物(PtTMOSFET)、鉑-氧化錫複合物 (Pt_Sn〇2)、奈米碳管(Carbon Nano Tube,CNT)及具有銀離 子(Ag )之材料所組成的族群中。 12.如申請專利範圍第1項所述之氣體感測器,其中 該氣體吸收材係為氣體吸附材。 1374265 2011/12/13^51 申復 & 修正 13. 如申請專利範圍第12項所述之氣體感測器,其 中該氣體吸附材係選自1-曱基環丙浠(1-methyl cyclopropene,1-MCP)、活性碳、氯化錯(ZrCl2)、幾丁 聚醋' 高猛酸钟、帶有纪金屬之銀金屬之聚丙烯醯胺(Poly acrylic amide)高分子聚合物及竹淬液所組成的族群中。 14. 如申請專利範圍第1項所述之氣體感測器,其中 該電容電極係為一單一平面電極。 15. 如申請專利範圍第1項所述之氣體感測器,其中 該電容電極係為平面對稱指叉狀。 16. 如申請專利範圍第1項所述之氣體感測器,其中 該電容電極係為平面對稱矩形。 17. 如申請專利範圍第1項所述之氣體感測器,其中 該電感電極係為平面螺旋狀。 18. 如申請專利範圍第1項所述之氣體感測器,其中 該氣體吸收材係為乙烯氣體吸收材。 19. 如申請專利範圍第1項所述之氣體感測器,其中 該氣體吸收材係為一氧化碳氣體吸收材。 20. 如申請專利範圍第1項所述之氣體感測器,其中 該氣體吸收材係為二氧化碳氣體吸收材。 204. The gas sensor of claim 1, further comprising: a substrate for providing the gas absorbing material. 5. The gas sensor of claim 2, further comprising: another gas absorbing material covering the capacitor electrode and connected to the capacitor electrode. The gas sensor of claim i, wherein the dielectric material is selected from the group consisting of vinyl alcohol, polyvinylamine, and dioxide dioxide. Among the groups consisting of bismuth (Si〇2), titanium dioxide (Ti〇2), zinc oxide (Zn0), and tin dioxide (Sn〇2). The gas sensor of claim 1, further comprising: a substrate for arranging the capacitor electrode, wherein the dielectric material covers the capacitor electrode, and the gas absorbing material is disposed on the On the dielectric material. 8. The gas sensor of claim i, further comprising: a plate for arranging the gas absorbing material, wherein the capacitor electrode is disposed on the gas absorbing material, the dielectric material Covered on the capacitor electrode. 9. The gas sensor of claim 8, further comprising: another gas absorbing material disposed on the dielectric material. 10. The gas sensor of claim 1, wherein the gas absorbing material is a gas reactive material. U. The gas sensor according to claim 10, wherein the gas reaction material is selected from the group consisting of metal oxide catalysis, platinum-titanium oxide composite (Pt-Tl〇2), and gold-plated compound (PtTMOSFET). A group consisting of a platinum-tin oxide composite (Pt_Sn〇2), a carbon nanotube (CNT), and a material having silver ions (Ag). 12. The gas sensor of claim 1, wherein the gas absorbing material is a gas absorbing material. A gas sensor according to claim 12, wherein the gas adsorbing material is selected from the group consisting of 1-methylcyclopropene (1). , 1-MCP), activated carbon, chlorinated (ZrCl2), chitosan vinegar's high acid clock, polyacryl amide polymer with silver metal of the metal and bamboo quenching Among the groups of liquids. 14. The gas sensor of claim 1, wherein the capacitor electrode is a single planar electrode. 15. The gas sensor of claim 1, wherein the capacitor electrode is a planar symmetrical fork. 16. The gas sensor of claim 1, wherein the capacitor electrode is a plane symmetrical rectangle. 17. The gas sensor of claim 1, wherein the inductive electrode is a planar spiral. 18. The gas sensor of claim 1, wherein the gas absorbing material is an ethylene gas absorbing material. 19. The gas sensor of claim 1, wherein the gas absorbing material is a carbon monoxide gas absorbing material. 20. The gas sensor of claim 1, wherein the gas absorbing material is a carbon dioxide gas absorbing material. 20
TW97146681A 2008-12-01 2008-12-01 Gas sensor TWI374265B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97146681A TWI374265B (en) 2008-12-01 2008-12-01 Gas sensor
JP2009054100A JP4927115B2 (en) 2008-12-01 2009-03-06 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146681A TWI374265B (en) 2008-12-01 2008-12-01 Gas sensor

Publications (2)

Publication Number Publication Date
TW201022669A TW201022669A (en) 2010-06-16
TWI374265B true TWI374265B (en) 2012-10-11

Family

ID=42328420

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146681A TWI374265B (en) 2008-12-01 2008-12-01 Gas sensor

Country Status (2)

Country Link
JP (1) JP4927115B2 (en)
TW (1) TWI374265B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678531B (en) * 2014-12-30 2019-12-01 美商奇異電器公司 Sensors for detecting gaseous agents and preparation method thereof
US10704987B2 (en) 2016-11-15 2020-07-07 Industrial Technology Research Institute Smart mechanical component

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985815B (en) * 2010-07-09 2017-03-15 英派尔科技开发有限公司 Resonator gas sensor using nanotube
JP6098724B2 (en) * 2013-08-13 2017-03-22 株式会社村田製作所 Temperature / humidity sensor
JP6530637B2 (en) * 2015-05-18 2019-06-12 リンテック株式会社 Moisture sensor and moisture measuring device
WO2018025696A1 (en) 2016-08-05 2018-02-08 株式会社村田製作所 Multilayer substrate and electronic device
JP6838517B2 (en) 2017-07-31 2021-03-03 日立金属株式会社 Gas sensor
CN109060893B (en) * 2018-07-05 2020-11-13 太原理工大学 Humidity sensor based on carbon nanotube/zinc oxide/chitosan composite membrane
WO2022215220A1 (en) * 2021-04-08 2022-10-13 日本電信電話株式会社 Resonance circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378650A (en) * 1989-08-23 1991-04-03 Sato Keiryoki Seisakusho:Kk Detecting device of humidity
JP3084735B2 (en) * 1990-04-10 2000-09-04 エヌオーケー株式会社 Capacitive humidity sensor
JPH0712767A (en) * 1993-06-28 1995-01-17 Oki Electric Ind Co Ltd Smell sensor
US6173602B1 (en) * 1998-08-11 2001-01-16 Patrick T. Moseley Transition metal oxide gas sensor
JP2001338827A (en) * 2000-05-25 2001-12-07 Sel:Kk Circuit pattern forming method and sheet-like water content detecting sensor
JP2005003544A (en) * 2003-06-12 2005-01-06 Tdk Corp Carbon dioxide sensor and its manufacturing method
JP2005132644A (en) * 2003-10-28 2005-05-26 Tdk Corp Functional porous film and method of manufacturing the same, and sensor
JP2007178168A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd Hydrogen gas detection sensor and its manufacturing method
US7456744B2 (en) * 2006-05-16 2008-11-25 3M Innovative Properties Company Systems and methods for remote sensing using inductively coupled transducers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678531B (en) * 2014-12-30 2019-12-01 美商奇異電器公司 Sensors for detecting gaseous agents and preparation method thereof
US10704987B2 (en) 2016-11-15 2020-07-07 Industrial Technology Research Institute Smart mechanical component

Also Published As

Publication number Publication date
JP2010127927A (en) 2010-06-10
TW201022669A (en) 2010-06-16
JP4927115B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
TWI374265B (en) Gas sensor
Balasubramani et al. Recent advances in electrochemical impedance spectroscopy based toxic gas sensors using semiconducting metal oxides
Kim et al. Humidity-independent gas sensors using Pr-doped In2O3 macroporous spheres: role of cyclic Pr3+/Pr4+ redox reactions in suppression of water-poisoning effect
Kim et al. Realization of ppb-scale toluene-sensing abilities with Pt-functionalized SnO2–ZnO core–shell nanowires
Park et al. Role of the interfaces in multiple networked one-dimensional core–shell nanostructured gas sensors
Stassen et al. Chemiresistive sensing of ambient CO2 by an autogenously hydrated Cu3 (hexaiminobenzene) 2 framework
Righettoni et al. Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath
Weber et al. Superior acetone selectivity in gas mixtures by catalyst‐filtered chemoresistive sensors
Moseley Progress in the development of semiconducting metal oxide gas sensors: a review
Zhao et al. Proton-conductive gas sensor: a new way to realize highly selective ammonia detection for analysis of exhaled human breath
Comini et al. Electrical properties of tin dioxide two-dimensional nanostructures
Baik et al. Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy
Rai et al. Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties
Kanda et al. Development of a WO3 thick-film-based sensor for the detection of VOC
Kim et al. Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core–shell nanowires
Zhao et al. Room temperature ammonia sensing properties of W18O49 nanowires
US7955562B2 (en) Chemical sensor using thin-film sensing member
TW587165B (en) Gas sensor and the manufacturing method thereof
Sänze et al. Ethanol gas sensing by indium oxide: an operando spectroscopic Raman-FTIR study
KR101447788B1 (en) Gas sensitive material comprising microcrystalline selenium and gas sensor using same
Zappa et al. Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors
EP1887347A1 (en) Gas sensor using carbon natotubes
Nadargi et al. Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors
KR100723429B1 (en) Method of manufacturing gas sensor using metal ligand and carbon nanotubes
Stuckert et al. The effect of Ar/O2 and H2O plasma treatment of SnO2 nanoparticles and nanowires on carbon monoxide and benzene detection