TWI373954B - Bridge dc/dc power converting apparatus and bidirectional communication method thereof - Google Patents

Bridge dc/dc power converting apparatus and bidirectional communication method thereof Download PDF

Info

Publication number
TWI373954B
TWI373954B TW96135679A TW96135679A TWI373954B TW I373954 B TWI373954 B TW I373954B TW 96135679 A TW96135679 A TW 96135679A TW 96135679 A TW96135679 A TW 96135679A TW I373954 B TWI373954 B TW I373954B
Authority
TW
Taiwan
Prior art keywords
signal
circuit
voltage
mode
control circuit
Prior art date
Application number
TW96135679A
Other languages
Chinese (zh)
Other versions
TW200915833A (en
Inventor
Lon Kou Chang
Ru Shiuan Yang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW96135679A priority Critical patent/TWI373954B/en
Publication of TW200915833A publication Critical patent/TW200915833A/en
Application granted granted Critical
Publication of TWI373954B publication Critical patent/TWI373954B/en

Links

Description

1373954 〇7(β)Α039 24682twf.doc/n A、Β之間的線圈),整流電路9〇與阻抗調變電路ΐ5〇 接於變壓器100之次級線圈(端點C、D之間的線圈)。 、續參照® 1,變壓H 100可提供隔離機制。當順向資 料被允許傳輸時,順向資料會產生數個控〜、 並利用控制訊號s,〜s4控制橋式開關電路5G =對供應4電 ^ 進行相位調變,進而產生第—調變訊號於初麟 圈、、中’此第一調變訊號的電壓為VAB,其電壓VAB的 =位(或稱極性,即正電壓或負)包含了順向資料的 ,,又Cli 1GG將第-調變訊號之能量由初級線圈傳遞 圈以產生電壓VCD。整流電路將電壓V③整流成 直Μ電壓,以產生供應電源給次級的電路,1中,供應 =2為V。。變㈣㈣之阻抗與電容65 (電容^可 t立電容或電路之寄生電容)形成共振電路。當逆向資 傳輪時,逆向資料會產生控制訊號s5,以控制阻 ==路150改變變壓器100之阻抗,藉此調變共振電 振訊叙產生第二難訊號。其中,此第二調變 :遽的電壓為VCD,其電壓VCD包含了逆向資料的資訊。 變訊號經由變壓器⑽的次級線圈與初級線圈改變 m Vab ° 雷政’s、/ ’產生第—卿訊號的雙向鐵芯激補橋式開關 挽Μ,了全橋類型架構外,亦可為半橋開關電路、推 =1橋_架構。圖1的實施例使用全橋開 中,全棒方便解說’並非用以限定本發明。其 θ開關電路50包括開關電晶體10、20、30及40, 11 1373954 07(專)A039 24682twf.doc/n 開關電晶體10、20、30及40分別具有寄生二極體。 當順向資料要傳輸時,可利用根據順向資料產生的控 制訊號S! S4控制全橋開關電路5〇的各個開關電晶體 10、20、30及40的導通/截止,以對供應電壓VlN進行相 位調變,進而產生第一調變訊號於變壓器的初級線圈上。 第一調變訊號之電壓Vab藉由變壓器100耦合至次級線圈 以產生電魔VCD,透過整流電路90將次級線圈上的電壓 VCD轉換為直流的供應電壓乂〇,以提供電源給次級的電路 使用。同時,第一調變訊號的相位所包含之順向資料之資 訊亦自變壓盗100之初級線圈傳遞至次級線圈。當順向資 料為”0”時,全橋開關電路50產生的第一調變訊號之電壓 vAB為正值;當順向資料為”,,時,則電壓Vab為負值。此 時’藉由偵測變壓器1〇〇次級線圈的電壓訊號Vcd的相 位’便能以獲得順向資料的資訊。 另外,圖1之實施例的整流電路90包括二極體73、 75、77、79與電容85。整流電路90將變壓器1〇〇的次級 線圈的訊號之電壓VCD轉換為直流電壓v〇,以提供電源給 次級的電路使用。然而,圖1之整流電路90的實施方式僅 是為了方便說明,並非用以限定本發明。 當逆向資料要傳輸時,則是利用變壓器100本身之電 感及電路所寄生或外加之獨立的電容65產生共振。在共振 時段,阻抗調變電路150根據逆向資料所產生的控制^號 S5改變變壓器阻抗,藉此對共振電路上的共振訊號進行調 變,以產生第二調變訊號。在逆向資料要傳輸時,全橋開 關電路50之開關電晶體10〜40會全部截止,變壓器@1〇〇 12 1373954 07(專)A039 24682twf.doc/n 之電感與電谷65組成共振駐(res〇nant加业)。當逆向資料 為時’開關電晶體165維持截止狀態;當逆向資料為”1” 時開關電晶體165導通,使變壓器ι〇〇之次級線圈、開關 電晶體165的内阻與兩顆二極體173、175形成串聯,進而 改變了變壓器100的阻抗值。而藉由變壓器1〇〇可以將次 級線圈上第一調變訊號(其電壓為vcd)的能量傳遞至初 級線圈以產生電壓vAB。此時,藉由量測初級線圈之訊號 的電壓VAB,可以判讀出逆向資料的資訊。 上述實施例所提供的裝置1000可以在一個週期内有 四個模式Model、Mode2、Mode3與Mode4。其中,模式 Model為順向資料模式,模式Mode2為放磁模式,模式 Mode3為逆向資料模式,而模式Mode4為週期同步模式。 其中,於各模式Model〜Mode4中所產生的控制訊號Sl 〜S4如下表所示〇 狀況A :順向 資料為”0” -—------- 模式Model 控制訊號Si 〜S4的值 Si=l S2=0 s3=i s4=o 狀況B:順向 資料為”1” 模式Model 控制訊號Si 〜s4的值 τ· Si=〇 S2=l s3=〇 s4=i 模式Mode2 Si=0 S2~0 SfO S4=0 模式Mode2 Si=〇 S2=〇 S3=〇 S4=〇 模式Mode3 Sj=0 S2~0 S3=0 S4=l 模式Mode3 Si=〇 S2=〇 83=1 S4=〇 模式Mode4 Sj^O S2=0 S;j=l Sfl 模式Mode4 Si=〇 S2=〇 S3—I S4=l 13 1373954 〇7(專)A039 24682twf.doc/n 睛參照圖2 ’圖2是產生控制訊號Si〜S4的初級通訊 控制電路的一種實施例之電路圖。初級通訊控制電路2〇〇 • 用以傳送順向資料RXi與接收逆向資料TX〗,產生上述之 • 控制訊號S!〜S4與控制此裝置1〇〇〇該處於何種模式 . Model〜Mode4。此初級通訊控制電路200包括通訊單元 ‘ 210、串列匯流排介面220、時脈訊號產生器230、模式控 制器240、位準解碼器250與相位調變電路290。其中,通 • 訊單70 210耦接於電腦端(Host),串列匯流排介面220耦 接於通訊單元210、位準解碼器250與相位調變電路29〇, 位準解碼器250耦接於變壓器100的初級線圈的兩端A、 B,模式控制器240耦接於時脈訊號產生器23〇、位準解碼 益250與相位調變電路290,而相位調變電路29〇耦接於 橋式開關電路50。其中,時脈訊號產生器23〇用以產生時 巧訊號ck】。通訊單元210用以傳送逆向資料ΤΧι給電腦 端與自電腦端接收順向資料RXi。串列匯流排介面22〇用 以自通訊單元210接收順向資料RXi與傳送逆向資料τχι 、給通訊單元210。於模式M〇de3時,位準解碼器25〇用以 ,谓,電壓v沾的變化’以藉此解出逆向資料ΤΧι。模式控 .· 制""240根據%脈訊號CKi產生模式訊號Mii、Mi2、Mi3 與’以控制每一個模式M〇del〜M〇de4的時間長度。其 中,模式訊號‘為為與M14分別代表模式Mode卜 〇de2、Mode3 與 Mode4,例如處於模式 M〇del 時,Μιι=1, =12-〇 ’ M13=〇 ’ Ml4=0。於模式M〇del時’相位調變電路 290根據順向資料叫與模式訊號Mu〜Mi4 (請參照前述 1373954 〇7(專)A039 24682twf.doc/n 之表格)產生控制訊號Si-Sc 請參照圖3,圖3是次級通訊控制電路的一種實施例 之電路圖。初級通訊控制電路3〇〇用以傳送逆向資料以丨 與接收順向資料TX2,以及控制初級通訊控制電路2〇〇與 次級通訊控制電路300之間的同步。次級通訊控制電路3〇〇 包括通訊單元310、串列匯流排介面32〇、穩壓器34〇、相 位解碼器350、阻抗調變控制電路39〇與同步控制器4〇〇。1373954 〇7(β)Α039 24682twf.doc/n A, the coil between the turns), the rectifier circuit 9〇 and the impedance modulation circuit ΐ5 are connected to the secondary coil of the transformer 100 (between the terminals C and D) Coil). With continued reference to ® 1, the transformer H 100 provides an isolation mechanism. When the forward data is allowed to be transmitted, the forward data will generate several controls~, and use the control signal s, ~s4 to control the bridge switch circuit 5G = phase modulation of the supply 4 electric ^, and then generate the first modulation The signal is in the first lap, and the voltage of the first modulation signal is VAB. The voltage VAB = (or polarity, ie positive voltage or negative) contains the forward data, and Cli 1GG will - The energy of the modulation signal is transmitted by the primary coil to produce a voltage VCD. The rectifier circuit rectifies the voltage V3 to a direct voltage to generate a supply of power to the secondary circuit, in which supply =2 is V. . The impedance of (4) (4) and the capacitance 65 (capacitance of the capacitor or the parasitic capacitance of the circuit) form a resonant circuit. When the reverse transmission wheel is reversed, the reverse data generates a control signal s5 to control the resistance == way 150 to change the impedance of the transformer 100, thereby modulating the resonant vibration signal to generate a second difficult signal. Among them, the second modulation: the voltage of 遽 is VCD, and the voltage VCD contains the information of the reverse data. The change signal is changed by the secondary coil of the transformer (10) and the primary coil. m Vab ° Lei Zheng's, / 'The two-way core-activated bridge switch that generates the first-signal signal, in addition to the full-bridge type architecture, can also be half Bridge switching circuit, push = 1 bridge _ architecture. The embodiment of Figure 1 uses a full bridge, and is fully illustrated and is not intended to limit the invention. The θ switch circuit 50 includes switch transistors 10, 20, 30 and 40, 11 1373954 07 (specific) A039 24682 twf.doc/n The switch transistors 10, 20, 30 and 40 respectively have parasitic diodes. When the forward data is to be transmitted, the control signals S! S4 generated according to the forward data can be used to control the on/off of the respective switching transistors 10, 20, 30 and 40 of the full bridge switching circuit 5A to supply the voltage V1N. The phase modulation is performed to generate a first modulation signal on the primary coil of the transformer. The voltage Vab of the first modulation signal is coupled to the secondary coil by the transformer 100 to generate an electric magic VCD, and the voltage VCD on the secondary coil is converted into a DC supply voltage 透过 through the rectifying circuit 90 to provide power to the secondary The circuit is used. At the same time, the information of the forward data contained in the phase of the first modulated signal is also transmitted from the primary coil of the transformer 100 to the secondary coil. When the forward data is “0”, the voltage vAB of the first modulation signal generated by the full bridge switching circuit 50 is a positive value; when the forward data is “,, the voltage Vab is a negative value. The information of the forward data can be obtained by detecting the phase ' of the voltage signal Vcd of the secondary coil of the transformer 1 . In addition, the rectifier circuit 90 of the embodiment of FIG. 1 includes the diodes 73, 75, 77, 79 and Capacitor 85. The rectifying circuit 90 converts the voltage VCD of the signal of the secondary winding of the transformer 1〇〇 into a DC voltage v〇 to provide power to the secondary circuit. However, the embodiment of the rectifier circuit 90 of FIG. 1 is only For convenience of description, it is not intended to limit the present invention. When the reverse data is to be transmitted, the resonance is generated by the inductance of the transformer 100 itself and the independent capacitor 65 parasitic or externally added to the circuit. During the resonance period, the impedance modulation circuit 150 The transformer impedance is changed according to the control signal S5 generated by the reverse data, thereby modulating the resonance signal on the resonance circuit to generate the second modulation signal. When the reverse data is to be transmitted, the switch of the full bridge switching circuit 50 is generated. The crystals 10~40 will all be cut off, and the inductance of the transformer @1〇〇12 1373954 07 (special) A039 24682twf.doc/n and the electric valley 65 constitute the resonance station (res〇nant). When the reverse data is 'switching electricity' The crystal 165 maintains an off state; when the reverse data is "1", the switching transistor 165 is turned on, so that the internal resistance of the secondary winding of the transformer ι and the switching transistor 165 are connected in series with the two diodes 173, 175. The impedance value of the transformer 100 is changed, and the energy of the first modulation signal (the voltage of which is vcd) on the secondary coil can be transmitted to the primary coil by the transformer 1 to generate the voltage vAB. The voltage VAB of the signal of the primary coil can be used to read the information of the reverse data. The apparatus 1000 provided by the above embodiment can have four modes Model, Mode2, Mode3 and Mode4 in one cycle. The mode Model is the forward data mode. Mode Mode2 is the demagnetization mode, mode Mode3 is the reverse data mode, and mode Mode4 is the periodic synchronization mode. Among them, the control signals S1 to S4 generated in each mode Model~Mode4 are as shown in the following table. Condition A: Forward data is “0” -—------- Mode Model Control signal Si~S4 value Si=l S2=0 s3=i s4=o Condition B: Forward data is “1” Mode Model Control signal Si~s4 value τ· Si=〇S2=l s3=〇s4=i Mode Mode2 Si=0 S2~0 SfO S4=0 Mode Mode2 Si=〇S2=〇S3=〇S4=〇 mode Mode3 Sj=0 S2~0 S3=0 S4=l Mode Mode3 Si=〇S2=〇83=1 S4=〇Mode Mode4 Sj^O S2=0 S;j=l Sfl Mode Mode4 Si=〇S2=〇S3 —I S4=l 13 1373954 〇7(Special) A039 24682twf.doc/n Eye Referring to FIG. 2' FIG. 2 is a circuit diagram of an embodiment of a primary communication control circuit for generating control signals Si to S4. The primary communication control circuit 2 〇〇 • is used to transmit the forward data RXi and the receive reverse data TX, to generate the above control signals S!~S4 and control the device 1 〇〇〇 which mode is in. Model~Mode4. The primary communication control circuit 200 includes a communication unit '210, a serial bus interface 220, a clock signal generator 230, a mode controller 240, a level decoder 250, and a phase modulation circuit 290. The communication unit 70 210 is coupled to the computer (Host), and the serial bus interface 220 is coupled to the communication unit 210, the level decoder 250, and the phase modulation circuit 29, and the level decoder 250 is coupled. Connected to the two ends A and B of the primary coil of the transformer 100, the mode controller 240 is coupled to the clock signal generator 23, the level decoding benefit 250 and the phase modulation circuit 290, and the phase modulation circuit 29〇 It is coupled to the bridge switch circuit 50. The clock signal generator 23 is used to generate the clock signal ck]. The communication unit 210 is configured to transmit the reverse data to the computer and receive the forward data RXi from the computer. The serial bus interface 22 is used to receive the forward data RXi and the reverse data τχ from the communication unit 210 to the communication unit 210. In the mode M 〇 de3, the level decoder 25 is used to say that the voltage v is changed by ' to thereby solve the inverse data ΤΧι. The mode control .. system""240 generates mode signals Mii, Mi2, Mi3 and ' according to the % pulse signal CKi to control the length of each mode M〇del~M〇de4. The mode signal ‘for the M14 respectively represents the mode Mode 2、de2, Mode3 and Mode4, for example, when in the mode M〇del, Μιι=1, =12-〇 ’ M13=〇 ’ Ml4=0. In the mode M〇del, the phase modulation circuit 290 generates the control signal Si-Sc according to the forward data and the mode signals Mu~Mi4 (please refer to the table of 1373954 〇7 (special) A039 24682twf.doc/n). Referring to Figure 3, Figure 3 is a circuit diagram of an embodiment of a secondary communication control circuit. The primary communication control circuit 3 is configured to transmit the reverse data to receive the forward data TX2, and to control the synchronization between the primary communication control circuit 2 and the secondary communication control circuit 300. The secondary communication control circuit 3 includes a communication unit 310, a serial bus interface 32A, a voltage regulator 34A, a phase decoder 350, an impedance modulation control circuit 39A, and a synchronization controller.

其中,通訊單元310耦接於串列匯流排介面32〇,串列匯 流排介面320耦接於相位解碼器35〇與阻抗調變控制電路 390’同步控制器4〇〇耦接於相位解碼器35〇與阻抗調變控 制電路390。 夂 通訊單元310接收來自1/0端之逆向資料,並將The communication unit 310 is coupled to the serial bus interface 32, and the serial bus interface 320 is coupled to the phase decoder 35 and the impedance modulation control circuit 390'. The synchronization controller 4 is coupled to the phase decoder. 35〇 and impedance modulation control circuit 390.通讯 The communication unit 310 receives the reverse data from the 1/0 end and will

^^_1^2紅__排介面32()’串列匯流排介 \〇用以接收與傳送逆向資料RX2與順向資料τχ2。穩 340提供穩定的電源電壓給次級通訊控制電路。 相位解碼器350接收變壓器1〇〇之次級線圈的電壓ν⑶, f模,Model時,相位解碼器35〇藉由偵測電壓v^D變 ’可,出自初級通訊控制電路2〇〇所接收到的順向資料 之賁訊。當相位解碼器350偵測到的電壓Vcd為正電 =則判讀順向資料TX2為T;反之,若電壓^為3 3%將判i = 向Λ 2為”1”。之後,相位解碼器 320。阻㈣%傳遞至串列匯流排介面 w之開6電5路^0用以產生控制阻抗調變電路 關電曰曰體165的控制訊號S5,並依據擬傳送的逆 1373954 07(ί)Α039 24682twf.doc/n 向資料改變變壓器100之阻抗值,以完成逆向資料的訊號 傳遞。同步控制器400則是負責產生模式訊號M21〜M24, 使初次級通訊控制電路200與次級通訊控制電路300能夠 同步工作。其中,模式訊號M21〜M24分別代表目前處於模 式Model〜Mode4,例如處於模式Mode3時,M21=0, M22=0,M23=l,M24=0。^^_1^2 Red __ 排 面 32 ()' tandem bus 〇 \ 〇 used to receive and transmit reverse data RX2 and forward data τ χ 2 . The stable 340 provides a stable supply voltage to the secondary communication control circuit. The phase decoder 350 receives the voltage ν(3) of the secondary winding of the transformer 1〇〇, the f-mode, and the phase decoder 35〇 is received by the primary communication control circuit 2〇〇 by detecting the voltage v^D. The news of the forward information. When the voltage Vcd detected by the phase decoder 350 is positive = then the forward data TX2 is judged as T; otherwise, if the voltage ^ is 3 3%, i = Λ 2 is "1". Thereafter, phase decoder 320. The resistance (4)% is transmitted to the serial bus interface w, and the 6th circuit is used to generate the control signal S5 for controlling the impedance modulation circuit to turn off the power body 165, and according to the inverse of the intended transmission 1373954 07(ί) Α039 24682twf.doc/n Change the impedance value of transformer 100 to the data to complete the signal transmission of the reverse data. The synchronous controller 400 is responsible for generating the mode signals M21 to M24 to enable the primary and secondary communication control circuits 200 and the secondary communication control circuit 300 to operate in synchronization. The mode signals M21 to M24 respectively represent the current mode Model~Mode4, for example, when in the mode Mode3, M21=0, M22=0, M23=l, M24=0.

請參照圖1與圖2,當此1000裝置處於模式Model 時’通訊單元210會擷取電腦端的順向資料,並將順 向資料RX】送至串列匯流排介面220。串列匯流排介面220 會允許順向資料RXi通過,並將順向資料]^^送入相位調 變器電路290 ’相位調變器電路29〇根據上表產生控制訊 號si〜S4 ’若假設順向資料RXi為,,〇”,則控制訊號卜Referring to FIG. 1 and FIG. 2, when the 1000 device is in the mode Model, the communication unit 210 retrieves the forward data of the computer and sends the forward data RX to the serial bus interface 220. The serial bus interface 220 will allow the forward data RXi to pass, and the forward data will be sent to the phase modulator circuit 290. The phase modulator circuit 29 generates the control signals si~S4 according to the above table. Forward data RXi is,, 〇", then control signal

’ Sfi,SfO ’使得電壓Vab為正電壓。反之,若順 向貧料^為”1’’,則控制訊號SfO,S2=l,S3=0,S4=卜 使得電壓VAB為負電壓。電壓Vab藉由變壓器i〇〇將電壓 VAB之能量由初級線圈傳遞給次級線圈,進而產生電壓 VCD。請參照圖3,相位解碼器35〇藉由偵測電壓vcD的相 位,解出順向資料Τχ2,當電壓為負電壓,則表示順 ^資料TX2為”1”;反之,電壓vcD為正電壓,則表示順甸 貝料TX2為。相位解石馬器3s〇將解出的順向資料τχ2 送至=列匯流排介面32〇,串列匯流排介面32()將解出的 =向貝料τχ2送至通訊單元31〇,通訊單元31〇再進一夕 地將解出的順向資料TXs送至17〇端。 接著’凊參照圖1,當此裝置1000處於模式Mode2, 16 1373954 07(專)A039 24682twf.doc/n 此4,變塵器loo此元整地放磁,避免變蜃器I。。產生磁 飽和的現象。因為變壓器則能完整地放磁y所以於下個 ,式Mode3令,逆向資料1〇(2之傳遞將更為省電。當變壓 器1〇〇完成放磁後,變壓器1〇〇本身之電感與電容 的電能產生共振訊號。因此,於模式M〇de3時,便能利用 阻抗調變電路150改變變壓器100之阻抗,將可使丑振之 Q值(quality factor)改變,進而改變共振電壓之振幅了而\此 振幅的高低隱藏了逆向資料RX2之資訊。由於變壓器獅 電感與電容65誠生的共巍魏量是絲回收再利用 的能量。而_£,於逆向資料RX2傳遞時阻抗調變電路15〇 率少’因此本發明之裝置1〇00是高度節能之訊 就傳遞裝置。 請參照圖1與圖2,在模式M〇de2時,相位調變器電 路開關290所產生的控制訊號Si=〇,s尸〇,心=〇,心=〇, 因此’開關電晶體10〜40全部截止’變壓器1〇〇的磁4能經 由電晶體10〜40之寄生二極體路徑放磁 之 感與電容65因此能產生丘振。,胪㊉「 °σ 之電 振而變化。^產生,、振叫,電壓Vab會因為共 緊接著’請參照圖1與圖3 ’當裝置1〇〇〇會進入 單元Μ""會擷取1/〇端的逆峨4峨,並 送至串列流排介面320,串列匯流排 二逆向資料狀2送至阻抗調變控制電路39〇。 阻抗調讀制電路39G根據逆向f料 調變電路15G的控制訊號~。當逆向資料rx2為& 17 1373954 07(專)A039 24682twf.d〇c/n 控制訊號S5=0 ;反之,當逆向資料為T時,控制訊號s5 -:ι。因此’阻抗調變電路150可依據逆向資料队控制開 . 關電晶體165的導通/截止,以改變變壓器議的阻抗,進 . 而產生第二調變訊號’其電壓為Vw請參照圖2與圖卜 .^二調變訊號經由變壓器刚的Μ合傳遞至初級線圈並改 . 交電壓Vab ’位準解碼器250可偵測到電壓ν的變化, 並藉此解出逆向資料TXl。之後,串列匯流排介面21〇接 • 收位準解竭器250所解出的逆向資料TXi,並將此逆向資 料TX」送給通訊單元210 ’並藉由通訊單元21〇將解出的 逆向貧料1¾送至f腦端,使電腦端的使用者能夠獲得逆 向資料丁乂1的資訊。 +晴繼續參照圖1與圖2,於模式M〇de3時,若之前於 模式Model輸入的順向資料為,,〇,,,當變壓器1〇〇之 ,感與電容65開始共振,變壓器1〇〇之電壓Vab為負電 壓_。而相位調變電路290會輸出控制訊號Si=〇,S2=〇, S3j、’ S4==1 ’以藉此將開關電晶體40導通使端點A接地, 並里測端點B的訊號即可根據電壓v的變化判斷 ' ,的阻抗是否有改變。位準解碼器250量測端S = -.,疋=低於參考電壓VRef,若是,則位準解碼器25〇判斷 j向資料TXi為”1” ’反之,則逆向資料ΤΧι為”〇,,。若之 則於模式Model輸入的順向資料RXl為”Γ,,則當變壓器 1〇〇之電感與電容65開始共振,變壓器100之電壓vAB為 正電壓,而相位調變電路290會輸出控制訊號Si=〇,S2=〇, Sfl ’ S^o ’將開關電晶體30導通使端點B接地。此時, 18 07 傳)Α039 24682twf.doc/n 的訊號即可根據電壓I的變化判斷變壓 ㈣是否高於來考電壓、,?!心25(^測端點八的 _ REF右疋,則位準解碼器250判 斷逆向貧料TW;反之,則逆向資料TXi為” Γ,。 广:=5。會_電壓VAB是否大 』 2=B的絕對值大於參考電壓、,則位準解 馬叫250所解出的逆向資料τχ!為,,〇,,;反之,若電屋V解'Sfi, SfO' causes the voltage Vab to be a positive voltage. On the other hand, if the forward lean material ^ is "1", the control signal SfO, S2 = 1, S3 = 0, S4 = Bu makes the voltage VAB a negative voltage. The voltage Vab is the energy of the voltage VAB by the transformer i The primary coil is transmitted to the secondary coil to generate a voltage VCD. Referring to FIG. 3, the phase decoder 35 detects the forward data Τχ2 by detecting the phase of the voltage vcD, and when the voltage is a negative voltage, it indicates a smooth The data TX2 is "1"; conversely, if the voltage vcD is a positive voltage, it means that the Shundian shell material TX2 is. The phase calculus horse 3s 〇 sends the forward data τ χ 2 to the = bus bar interface 32 〇, string The bus bar interface 32 () sends the solution = to the bus τ χ 2 to the communication unit 31 〇, and the communication unit 31 〇 re-enters the decoded forward data TXs to the 17 〇 end. 1, when the device 1000 is in mode Mode2, 16 1373954 07 (special) A039 24682twf.doc/n 4, the dust collector loo this element to ground magnetically, to avoid the transformer I. The phenomenon of magnetic saturation. Because the transformer Then it can completely re-magnetize y, so in the next, the mode Mode3 makes the reverse data 1〇 (the transmission of 2 will save more power. After the transformer 1〇〇 is demagnetized, the inductance of the transformer 1 itself and the energy of the capacitor generate a resonance signal. Therefore, in the mode M〇de3, the impedance of the transformer 100 can be changed by the impedance modulation circuit 150. The Q factor of the ugly vibration is changed, and then the amplitude of the resonance voltage is changed. The amplitude of the amplitude hides the information of the reverse data RX2. Since the transformer lion inductance and the capacitance 65 are co-existing, the volume is the silk recovery. The energy used for reuse, and _£, the impedance modulation circuit 15 has a low rate when the reverse data RX2 is transmitted. Therefore, the device 1〇00 of the present invention is a highly energy-saving transmission device. Referring to FIG. 1 and FIG. 2, In the mode M〇de2, the control signal generated by the phase modulator circuit switch 290 is Si=〇, s corpse, heart=〇, heart=〇, so the 'switching transistors 10~40 are all turned off' transformer 1〇〇 The magnetic 4 can be demagnetized via the parasitic diode path of the transistors 10 to 40, and the capacitor 65 can thereby generate a square vibration. The tenth "°σ" is changed by the electric vibration. ^Generation, vibration, voltage Vab Will be followed by a total of 'please refer to Figure 1 and Figure 3 'When the device 1〇〇〇 enters the unit Μ"" will take the inverse of the 1/end 4 and send it to the serial flow interface 320, and the serial bus 2 will send the reverse data 2 to the impedance modulation The control circuit 39. The impedance read circuit 39G is based on the control signal of the reverse f-modulation circuit 15G. When the reverse data rx2 is & 17 1373954 07 (special) A039 24682twf.d〇c/n control signal S5= 0; conversely, when the reverse data is T, the control signal s5 -: ι. Therefore, the 'impedance modulation circuit 150 can control the on/off of the transistor 165 according to the reverse data team to change the impedance of the transformer, and generate the second modulation signal. The voltage is Vw. Please refer to FIG. 2 The signal is transmitted to the primary coil via the transformer, and the voltage Vab' level decoder 250 detects the change of the voltage ν, and thereby solves the reverse data TX1. Then, the serial bus interface interface 21 is connected to the reverse data TXi solved by the quasi-decomposer 250, and the reverse data TX" is sent to the communication unit 210' and is solved by the communication unit 21〇. The reverse lean 13⁄4 is sent to the f brain, so that the user on the computer can obtain the information of the reverse data. + Qing continued with reference to Fig. 1 and Fig. 2. In the mode M〇de3, if the forward data previously input to the mode Model is ,,,,,, when the transformer 1 is turned on, the sense and capacitance 65 begin to resonate, and the transformer 1 The voltage Vab of 〇〇 is a negative voltage _. The phase modulation circuit 290 outputs a control signal Si=〇, S2=〇, S3j, 'S4==1' to thereby turn on the switching transistor 40 to ground the terminal A, and measure the signal of the end point B. It is possible to judge whether the impedance of ', has changed according to the change of voltage v. The level decoder 250 measures the terminal S = -., 疋 = lower than the reference voltage VRef, and if so, the level decoder 25 determines that the j-direction data TXi is "1" ', and vice versa, the reverse data ΤΧ is "〇, If the forward data RXl of the mode Model input is "Γ,", when the inductance of the transformer 1〇〇 and the capacitor 65 start to resonate, the voltage vAB of the transformer 100 is a positive voltage, and the phase modulation circuit 290 The output control signal Si=〇, S2=〇, Sfl 'S^o' turns on the switching transistor 30 to ground the terminal B. At this time, the signal of 18 07 pass) Α 039 24682twf.doc/n can judge whether the voltage change (4) is higher than the test voltage according to the change of voltage I, ?? heart 25 (^ 端点 八 right 的 REF right 疋, Then, the level decoder 250 determines the reverse lean TW; otherwise, the reverse data TXi is "Γ,. Wide: = 5. Will the voltage VAB be large" 2 = the absolute value of B is greater than the reference voltage, then the level solution The horse called 250 reversed data τχ! For, 〇,,; vice versa, if the electricity house V solution

的絕對值小於參考電壓vREF,則準解2 AB 向資料TXl為”!”。 群解碼盗250所解出的逆 "月“’、圖卜圖2與圖3 ’當裝置1〇〇〇會進 級線圈會持續’使變㈣100初 从電堡AB為零’待模式Mode4結走 二vP新用同步控制器_偵測到_ VcD的變化,以找 ===的起始點,進而讓初級通訊控制電㈣二 -人、.及^訊控制電路3〇〇能夠同步工作。 、 -月參照圖4 ’圖4是位準解碼器25〇的一 立準解碼器25〇包括兩個比較器細工、 ,源255與及_。其中,參考電壓接2 車乂益260之正輸入端與比較器27 奶 柄接=關電晶體如之間極、比較器與 及閑278 ^電容^電日曰f 283之沒極與電容285, 一方式麟用以限定本發明,採用此種實施方式僅是為 19 1373954 〇7(專)A039 24682twf.doc/n 了方便解說。 比較器260之負輸入端與比較器270之正輸入端分別 接收變壓器100之端點入與3的電壓,並與參考電壓Vref 做比較。電流源280對電容器285對其做充電動作。或閘 272根據比較器260與270的輸出產生控制電晶體283的 ‘通/截止訊號。當電晶體283導通時,電流源280會對電 容器285進行放電動作。及閘278輸入連接至電容器285 與連接來自模式控制器240的模式訊號Mi3,當電容285 ^電壓訊號上升達到邏輯為”丨,,且Μη訊號亦為邏輯,, ¥,代表於模式Mode3之時段,初級通訊控制電路·接 收到的逆向資料值TXl為”〗”,位準解碼器25〇解碼所得的 逆向資料為”1”,由位準解碼器250之及閘278輸出;反之 則及閘278的輸出訊號為,,〇,,。 請參照圖5,圖5是相位調變電路29〇的動作流程圖。 於步驟S292時,相位調變電路290會讀取順向資料 並判斷其值。當判斷順向資料RXi為,,〇,,時,進入步驟1 S293 ;反之,進入步驟S294。於步驟S293時,相位調變 電路29〇依據模式訊號Mu〜Mi4與順向資料叫(參見前 述表格之狀兄Α)產生控制訊號S1〜S4,以藉此控制橋式開 關電路50各個電晶體1〇〜4〇的導通/截止。於步驟咖4 時’相位調變電路290依據模式訊號Μ!!〜與順向資料 RX!(參見前述表格之狀況B)產生控制訊號Si〜\, 此控制橋式開關電路5〇各個電晶體i 〇〜4〇的導通/截止曰。 其中各模式Model〜Mode4的時間長度由模式控制器24〇 20 1373954 〇7(專)A039 24682twf.doc/n 所產生的模式訊號]Vru〜Μ〗4決定。於步驟S293或S294結 束後,便兀成一週期内相位調變電路29〇的工作。 請參照圖6 ’圖6是相位解喝ϋ 35〇的一種實施方式 之電路圖。此相位解碼II 35〇包括比較器36〇、參考電壓 源355與及閘368。其中,比較器360之負輸入端輕接於 參考電壓源355 ’及閘368轉接於比較器36()之輸出端。 然而,® 6僅是相位解碼器35〇之一種實施方式,並非用 以限定本發明。 比較器360之正輸入端連接至變壓器1〇〇之端點d, 以端點D的電壓與參考電壓Vr之大小。及閘3邡對 比較器360之輸出訊號與模式訊號Μ〗!作及的邏輯運算。 ^中,+當模式訊號為,1,時,代表目前處於模式M〇del。 备於模式Model時,比較器會比較端點〇之電壓是否大 於參考電壓VR^,若端點D之電壓大於參考電壓%,則 代表次級通訊控制電路300接收到順向資料Τχ2為”丨,,,相 位解碼ϋ 350解碼所得的逆向資料為”Γ,,由相位解碼器 350之及閘368輸出;反之,則及閘施產生輸出訊號 為,,0,,。The absolute value of the reference is less than the reference voltage vREF, and the quasi-solution 2 AB is "!" to the data TX1. The group decoding pirates 250 solved the inverse "month"', Figure 2 and Figure 3 'When the device 1〇〇〇 will advance the coil will continue to make the change (four) 100 from the electric castle AB to zero 'wait mode' mode4 knot Take two vP new synchronous controller _ detect _ VcD change, to find the starting point of ===, and then let the primary communication control power (four) two-person, and the control circuit 3 can work synchronously Referring to FIG. 4, FIG. 4 is a leveling decoder 25A of the level decoder 25A, including two comparators, sources 255 and _, wherein the reference voltage is connected to the 260 The positive input terminal is connected with the comparator 27 milk handle = off the transistor such as the pole, the comparator and the 278 ^ capacitor ^ electric 曰 f 283 of the pole and the capacitor 285, a way to limit the invention, using This embodiment is only for the convenience of 19 1373954 〇7 (special) A039 24682twf.doc/n. The negative input of the comparator 260 and the positive input of the comparator 270 respectively receive the end of the transformer 100 into 3 The voltage is compared to a reference voltage Vref. Current source 280 charges the capacitor 285. Or gate 272 is based on comparator 260. The output of 270 produces an 'on/off signal' that controls transistor 283. When transistor 283 is turned on, current source 280 discharges capacitor 285. Gate 278 is coupled to capacitor 285 and coupled to mode controller 240. Mode signal Mi3, when the capacitor 285 ^ voltage signal rises to logic "", and the Μη signal is also logic, ¥, represents the period of mode Mode3, the primary communication control circuit · the received reverse data value TXl is "〗 The inverted data obtained by the level decoder 25 is "1", and is output by the gate decoder 278 of the level decoder 250; otherwise, the output signal of the gate 278 is ,, 〇,,. Please refer to FIG. 5. FIG. 5 is a flow chart showing the operation of the phase modulation circuit 29A. At step S292, the phase modulation circuit 290 reads the forward data and judges its value. When it is judged that the forward data RXi is ,, 〇,, the process proceeds to step 1 S293; otherwise, the process proceeds to step S294. In step S293, the phase modulation circuit 29 generates control signals S1 to S4 according to the mode signals Mu~Mi4 and the forward data (see the table of the foregoing table), thereby controlling the respective powers of the bridge switching circuit 50. The on/off of the crystal 1〇~4〇. In step 4, the phase modulation circuit 290 generates a control signal Si~\ according to the mode signal !!!~ with the forward data RX! (see the condition B of the above table), and the control bridge switch circuit 5 The on/off 曰 of the crystal i 〇~4〇. The length of each mode Model~Mode4 is determined by the mode signal generated by the mode controller 24〇20 1373954 〇7(special) A039 24682twf.doc/n]Vru~Μ4. After the end of step S293 or S294, the operation of the phase modulation circuit 29 is completed. Referring to Fig. 6', Fig. 6 is a circuit diagram of an embodiment of a phase desorption. This phase decoding II 35 includes a comparator 36, a reference voltage source 355 and a AND gate 368. The negative input of the comparator 360 is connected to the reference voltage source 355' and the gate 368 is switched to the output of the comparator 36(). However, the ® 6 is only one embodiment of the phase decoder 35, and is not intended to limit the invention. The positive input of the comparator 360 is connected to the terminal d of the transformer 1〇〇, with the voltage of the terminal D and the reference voltage Vr. And the gate 3 邡 pair comparator 360 output signal and mode signal Μ〗! Logical operations. ^, + When the mode signal is 1, 1, it represents the current mode M〇del. When the mode is prepared, the comparator compares whether the voltage of the terminal 〇 is greater than the reference voltage VR^. If the voltage of the terminal D is greater than the reference voltage %, the secondary communication control circuit 300 receives the forward data Τχ 2 as “丨”. The reverse data obtained by the phase decoding ϋ 350 decoding is “Γ, and is output by the phase decoder 350 and the gate 368; otherwise, the gate output signal is,, 0,,.

接著,請再參照圖3,同步控制器400包含週期偵側 σ。450、同步控制訊號產生器與時序還原電路55〇。週 期偵測器450偵測電壓Vcd之變化,當電壓Vcd電壓由低 位準變為高位準時,會產生脈衝訊號PLS表示偵測到新週 期的起始點。同步控制訊號產生器500利用脈衝訊號PLS 之正與負緣產生充電控制訊號CHG與取樣控制訊號SMP 21 1373954 〇7($)A039 24682twf.doc/n 訊號,藉以控制時序還原電路550動作。時序還原電路5s〇 於週期内產生斜坡訊號,並利用電阻分壓以及電容器充電 時間與電麗成正比之關係,產生出能使次級通訊控制電路 3〇〇同步於初級通訊控制電路的模式訊號M2i〜m24。 凊參照圖7 ’圖7是週期制器450的-種實施方式 之电路圖。週期積測器450包含參考電壓源355、比較器 360、460、反或閘462與脈衝產生器47〇。脈衝產生器包 括反閘484、電流源490、開關電晶體493、電容仍5、磁 滞f閘486與及閘。其中,參考電壓源奶_於比 杈益360與460之負輸入端,反或閘462耦接於比較器36〇 與460之輸出端,反閘484耦接於及閘4犯與反或閘 之輸入端,電流源490與開關電晶體493之汲極與電容495 耦接,開關電晶體493之閘極與反或閘462之輸出端耦接, 開關電晶體493之源極與電容495耦接,磁滯反閘486耦 接於開關電晶體493之汲極與及閘488。然而,上述之磁 滯反閘486亦可以是一般的反閘,採用磁滯反閘486只是 為了讓輸出之波型更加地穩定。且圖7僅是週期偵測器45〇 的一種實施方式,並非用以限定本發明。 比較器360、460分別比較端點D與C的電壓與參考 電壓VR之大小。反或閘462根據比較器36〇與46〇的比 較結果控制脈衝產生器470中開關電晶體493之導通與截 止。電流源490用以對電容器495充電,當開關電晶體493 導通時’電容器495會進行放電動作。當週期偵測器450 "(貞測到知點C及D之電壓’由同時低於參考電壓(模式 22 1373954 〇7(^)A039 24682twf.d〇c/nNext, referring again to FIG. 3, the synchronization controller 400 includes a periodic detection side σ. 450. Synchronous control signal generator and timing reduction circuit 55〇. The period detector 450 detects the change of the voltage Vcd. When the voltage Vcd changes from the low level to the high level, the pulse signal PLS is generated to indicate that the starting point of the new cycle is detected. The synchronous control signal generator 500 generates a charging control signal CHG and a sampling control signal SMP 21 1373954 〇7($)A039 24682 twf.doc/n signal by using the positive and negative edges of the pulse signal PLS, thereby controlling the timing reduction circuit 550 to operate. The timing reduction circuit 5s generates a ramp signal during the cycle, and uses a resistor divider and a relationship between the capacitor charging time and the battery to generate a mode signal that enables the secondary communication control circuit 3 to synchronize with the primary communication control circuit. M2i~m24. Referring to Figure 7, Figure 7 is a circuit diagram of an embodiment of a cycler 450. The period product detector 450 includes a reference voltage source 355, a comparator 360, 460, an inverse OR gate 462, and a pulse generator 47A. The pulse generator includes a reverse gate 484, a current source 490, a switching transistor 493, a capacitor still 5, a hysteresis gate 486 and a gate. Wherein, the reference voltage source milk is at the negative input end of the comparators 360 and 460, the inverse gate 462 is coupled to the output terminals of the comparators 36 and 460, the reverse gate 484 is coupled to the gate 4 and the reverse or gate The input terminal, the current source 490 and the drain of the switching transistor 493 are coupled to the capacitor 495, the gate of the switching transistor 493 is coupled to the output of the inverse or gate 462, and the source of the switching transistor 493 is coupled to the capacitor 495. The hysteresis switch 486 is coupled to the drain of the switch transistor 493 and the gate 488. However, the above-mentioned hysteresis switch 486 can also be a general reverse gate, and the hysteresis reverse gate 486 is only used to make the output waveform more stable. 7 is only one embodiment of the period detector 45A, and is not intended to limit the present invention. Comparators 360, 460 compare the voltages of terminals D and C with the magnitude of reference voltage VR, respectively. The inverse OR gate 462 controls the turn-on and turn-off of the switching transistor 493 in the pulse generator 470 based on the comparison of the comparators 36A and 46A. Current source 490 is used to charge capacitor 495, and capacitor 495 is discharged when switching transistor 493 is turned "on". When the period detector 450 " (measured to the voltage of the known points C and D' is simultaneously lower than the reference voltage (mode 22 1373954 〇 7 (^) A039 24682twf.d〇c / n

Mode4) ’轉變為端點c或D其中一點之電壓高於參考♦ 壓Vr時(模式Model),會產生脈衝訊號PLS由及閑481 輸出。 印參照圖8 ’圖8是同步控制訊號產生器5〇〇之—種 貝鉍方式的電路圖。同步控制訊號產生器5〇〇包括電流源 510、530、磁滯反閘506、526、及閘5〇8、528、開關電晶 體513、533、電容515、535與反閘504。其中,反閘5〇4 之輸出端耦接於開關電晶體513之閘極與及閘528,電流 源510耦接於電容515與開關電晶體513之汲極,電流源 530偶接於電容535與開關電晶體533之没極,磁滯反閘 506耦接於電容515與及閘508,磁滯反閘526耦接於電容 535與及閘528。然而,上述之磁滯反閘506與526亦可以 是一般的反閘’採用磁滯反閘506與526只是為了讓輸出 之波型更加地穩定。且圖8僅是同步控制訊號產生器5〇〇 的一種實施方式’並非用以限定本發明。 反閘504接收來自週期偵測器450之脈衝訊號PLS, 其輸出端之訊號可以控制電晶體513導通/截止。電流源 510用以對電容器515對充電,當開關電晶體513導通時, 電容515能藉由開關電晶體513進行放電。當同步控制訊 號產生器500偵測到脈衝PLS訊號之正緣時,及閘508會 產生取樣控制訊號SMP。反閘504之輸出訊號用以連接控 制開關電晶體533之導通/截止。電流源530用以對電容器 535充,當電晶體533導通時,電容535能藉由開關電晶 體533進行故電。當同步控制訊號產生器500偵測到脈衝 23 1373954 07(專)A039 24682twfdoc/n 訊说PLS之負緣時,及閘會產生充電控制訊號CHG。 請參照圖9’圖9是時序還原電路55〇之一種實施方 • ίΐίϊ圖。時序還原電路550包括時間積分器議、取 •樣維持電路7〇0以及模式分配器_。時間積分器600包 .括開關電晶體⑴、電容615與電流源610。時間積分器 • _減於雑維持電路7GG與模式分g&||卿,取樣維^ ^路彻輕接於模式分配器8〇〇。其中,電流源61〇與電 • 容615及開關電晶體613爐,電容615與開關電晶體613 ,接。取樣維持電路700包括緩衝器73〇、開關7兄與電 谷715。其中,受控開關753耦接於電容715與緩衝器乃〇 之輸出端。模式分配器800包括緩衝器81〇、電阻8〇8 8〇6、 804、、t匕較器 840、83〇、82〇、反閘 m、猶、⑽ 與及閘898、888。其中,電阻808耦接於緩衝器81〇之輸 出端與電阻806,電阻806耦接於電阻804’電阻804耦接 於電阻802,比較器84〇之負輸入端耦接於電阻8〇8與 806,比較器830之負輸入端耦接於電阻8〇6與8〇4,比較 鲁器820之負榆入端耦接於電阻8〇4與8〇2。反閘874耦接 • · 於比較器840之輸出端,反閘864耦接於比較器83〇之輸 · 出端,反閘854麵接於比較器820之輸出端,及閘898耗 接於比較器840之輸出端與反閘864,及閘888耦接於比 較器830之输出端與反閘854。然而,圖9僅是時序還原 電路550之一種實施方式,並非用以限定本發明。 時間積分器600依據充電控制訊號CHG控制電流源 610對電容615充電,使電容615可得到一個週期内累積 24 1373954 〇7(專)A039 24682twf.doc/n 的相對電壓vei。取樣維持電路·· 獲射目對電壓^之最高電壓值並將其容 7!5。核式分配$ 8GG是利用歐姆定律(V=IR)電阻與電壓成 正比的關聯性,以及庫倫定律(Q:=AVc*c=Ic*At),、將等比 例於各個模式Model〜Mode4所需之時間換算成電阻之比 例,以產生同步於初級通訊控制電路2〇〇各個工作模式 Model〜M〇de4的模式訊號‘〜叫4,以藉此同步訊號Mode4) When the voltage at one of the endpoints c or D is higher than the reference voltage Vr (mode Model), the pulse signal PLS is output and the 481 is output. Referring to Fig. 8', Fig. 8 is a circuit diagram of a synchronous control signal generator. The synchronous control signal generator 5A includes current sources 510, 530, hysteresis gates 506, 526, and gates 5, 8, 528, switching transistors 513, 533, capacitors 515, 535, and a gate 504. The output terminal of the reverse gate 5〇4 is coupled to the gate of the switching transistor 513 and the gate 528. The current source 510 is coupled to the drain of the capacitor 515 and the switching transistor 513, and the current source 530 is coupled to the capacitor 535. The hysteresis switch 506 is coupled to the capacitor 515 and the gate 508. The hysteresis gate 526 is coupled to the capacitor 535 and the gate 528. However, the above-described hysteresis gates 506 and 526 can also be general reverse gates. The hysteresis gates 506 and 526 are used only to make the output waveform more stable. 8 is only one embodiment of the synchronous control signal generator 5' and is not intended to limit the present invention. The reverse gate 504 receives the pulse signal PLS from the period detector 450, and the signal at the output thereof controls the transistor 513 to be turned on/off. The current source 510 is used to charge the capacitor 515. When the switching transistor 513 is turned on, the capacitor 515 can be discharged by the switching transistor 513. When the synchronous control signal generator 500 detects the positive edge of the pulsed PLS signal, the AND gate 508 generates the sampling control signal SMP. The output signal of the reverse gate 504 is used to connect the turn-on/turn-off of the control switch transistor 533. The current source 530 is used to charge the capacitor 535. When the transistor 533 is turned on, the capacitor 535 can be de-energized by the switching transistor 533. When the synchronous control signal generator 500 detects the pulse 23 1373954 07 (special) A039 24682twfdoc/n, the gate will generate the charging control signal CHG. Referring to FIG. 9', FIG. 9 is an implementation of the timing reduction circuit 55A. The timing reduction circuit 550 includes a time integrator, a sample maintenance circuit 7〇0, and a mode distributor_. The time integrator 600 includes a switching transistor (1), a capacitor 615, and a current source 610. Time integrator • _ less than 雑 sustain circuit 7GG and mode points g & | | Qing, sampling dimension ^ ^ Lu is lightly connected to the mode splitter 8 〇〇. The current source 61 is connected to the capacitor 615 and the switching transistor 613, and the capacitor 615 is connected to the switching transistor 613. The sample hold circuit 700 includes a buffer 73 〇, a switch 7 brother, and a valley 715. The controlled switch 753 is coupled to the output of the capacitor 715 and the buffer. The mode distributor 800 includes a buffer 81 〇, a resistor 8 〇 8 8 〇 6, 804, a 匕 comparator 840, 83 〇, 82 〇, a reverse gate m, a helium, a (10) and a gate 898, 888. The resistor 808 is coupled to the output of the buffer 81A and the resistor 806. The resistor 806 is coupled to the resistor 804. The resistor 804 is coupled to the resistor 802. The negative input of the comparator 84 is coupled to the resistor 8〇8. 806, the negative input end of the comparator 830 is coupled to the resistors 8〇6 and 8〇4, and the negative input end of the comparator 820 is coupled to the resistors 8〇4 and 8〇2. The reverse gate 874 is coupled to the output terminal of the comparator 840. The reverse gate 864 is coupled to the output terminal of the comparator 83, the reverse gate 854 is connected to the output terminal of the comparator 820, and the gate 898 is connected to the output terminal. The output of the comparator 840 and the reverse gate 864, and the gate 888 are coupled to the output of the comparator 830 and the reverse gate 854. However, Figure 9 is only one embodiment of the timing reduction circuit 550 and is not intended to limit the invention. The time integrator 600 controls the current source 610 to charge the capacitor 615 according to the charging control signal CHG, so that the capacitor 615 can obtain a relative voltage vei accumulated in a period of 24 1373954 〇7 (specific) A039 24682twf.doc/n. The sample-and-hold circuit is equipped with the highest voltage value of the voltage and the capacitance is 7!5. The nuclear distribution $8GG is based on Ohm's law (V=IR) resistance proportional to voltage, and Coulomb's law (Q:=AVc*c=Ic*At), which will be proportional to each mode Model~Mode4 The required time is converted into a ratio of resistances to generate a mode signal '~4, which is synchronized with each working mode Model~M〇de4 of the primary communication control circuit 2, thereby synchronizing the signals

M2!〜M24使得初級通訊控制電路2〇〇能夠與次級通訊控制 電路300能同步。M2!~M24 enable the primary communication control circuit 2 to be synchronized with the secondary communication control circuit 300.

當充電控制訊號CHG為”1”時,開關電晶體613會被 導通,電容615藉由導通的開關電晶體613進行放電,以 藉此重設積分電路600。當充電控制訊號CHG為,,〇”時, 開關電晶體613會呈現截止,電流源61〇對電容615充電, 電容615開始累計一個週期時間長度内的相對電壓。 其中’此相對電壓VC1在一個週期内的訊號波形為一斜坡 訊號。在一時間At内電流源610對電容615充電所產生的 斜坡訊號電壓值為Vcl=(I6*At)/ C〗,其中16為電流源61〇 所提供的電源值,C!為電容615的電容值,因此Vci正比 於相對的充電時間At。 緩衝器730使得電容615之電壓不受受控開關753之 導通而影響。當取樣訊號SMP為”1”時,受控開關753導 通電容615重設前之電壓,使得電容715之電壓接近電容 615之最高電壓,亦即Vc产MAX(V c])。此時,電容71s 之電壓VcfCUU/Ci’其中Ts為等同於初級通訊控制電 25 1373954 07(專)A039 24682twf.doc/n 路200工作的週期時間長度,亦即模式M〇del〜M〇de4之 累積時間長度。 緩衝器810使電阻808 —端之電壓%等同於乂口,且 使電壓Vo不受電阻802、8〇4、806及8〇8而降低。電阻 802、804、806及808的比例在設計時使之等同於各模式 Model〜Mode4的工作時間長度,亦即R8〇2 : R8〇4 : R8〇6 : R8〇8 = τ】:τ2: τ3: τ4 ’ 其中 ’ r802、Rs〇4、R8〇6、—分別 為電阻802、804、806與808的電阻值,τ〗、T2、T3、T 分別為模式Model〜Mode4的工作時間長度。由於串聯電 阻值正比於電阻兩端之電壓差’且電容615上電壓差正比 於電流Ie對電容615的充電時間。因此,各模式M〇del〜 Mode4的工作時間長度將正比於電阻8〇2、804、806與808 的電壓差,亦即 T】:T2 : T3: T4 = Vw : (Vx- Vw) : CVY- νχ): (VZ-VY)’其中Vw、VX、VY、VZ分別代表端點W、X、 Y、Z的端點電壓。各電阻802、804、806、808之端點W、 X、Y、Z的端點電壓Vw、VX、VY、VZ分別藉由比較 器820、830、840與電容615之電壓VC1做比較。比較器 820輸出產生模式Model之模式訊號M21,當處於模式 Model之階段時,模式訊號m21為” 1”,反之為”〇”。當處 於模式Mode2之階段時,模式訊號]y[22為,T,,反之為”0”。 當處於模式Mode3之階段時,模式訊號M23為’Τ’ ’反之 為。當處於模式Mode4之階段時,模式訊號Μ24 為”1”,反之為”0”。模式訊號Μ21〜Μ24控制次級通訊控制 電路300之時序,使得次級通訊控制電路300之電路能夠 26 1373954 〇7(專)A039 24682twf.doc/n 同步於初級通訊控制電路200。 在本發明所提供之裝置1〇〇〇開始進行雙向通訊前, 初級通訊控制電路200可先傳送數個週期的”〇”或”丨”的同 步順向資料作為初級通訊控制電路綱與次級通訊控制電 路300進行同步通訊的初始設定(111出&1叱如哗),使週期偵 測器450能夠擷取到正確之新週期起始點。當通訊傳輸持 續一段時間後,亦可增加此初級通訊控制電路2〇〇與次級 通訊控制電路300進行同步通訊的初始設定之時間,以確 保其通訊品質。 請參照圖10,圖10是同步控制器4〇〇之各輸入、輸 出=及内部訊號之波形圖。其中,利用偵測變壓器1〇〇之 電壓VCD的變化來產生可以判斷週期起始點的脈衝訊號 PLS。利用脈衝訊號PLS正緣產生取樣控制訊號SMp ;利 用PLS訊號的負緣產生充電控制訊號CHG。利用電容615 產生的斜坡訊號電壓vcl與電壓Vw、Vx、Vy比較產生模 式訊號Μ21〜Μ24。 請參照圖11,圖11是阻抗調變控制電路39〇之控制 流程圖。於步驟S392時,阻抗調變電路390會讀取逆向 資料RX2並判斷其值。當逆向資料RX2為,,〇,,時,進入步 驟S393 ;反之,進入步驟S394。於步驟S393時,阻抗調 變控制電路390產生Ss訊號使阻抗調變電路15〇的開關電 晶體165截止,因此,阻抗調變電路15〇並不會調變變壓 器100的阻抗。此時,初級通訊控制電路2〇〇的位準解碼 β 250會偵測端點a、B的共振訊號電壓,若測到電壓Va 27 ^73954 〇7(專)A039 24682twf.d〇C/n 或vB小於參考電壓Vref,便將逆向資料τι判讀為,,ι”。 ^步驟S394時,阻抗調變控制電路綱使開關電晶體165 L ,阻抗調變電路150動作,進而調變變壓器的 阻抗1開關電晶體165導通時,變壓器之阻抗&受到改 變此4,初級通訊控制電路2〇〇中的位準解碼器250會 偵’貝·Ih點A、B的共振訊號電壓,若偵測到電壓或 大於參考電壓,則將逆向資料ΤΧι判讀為”〇”。步驟Μ% 或S394結束後,阻抗調變電路15〇便完成一個週期内的 工作。 口請參照圖12,圖12是裝置1000進行雙向通訊時之訊 號波开>圖。初級通訊控制電路2〇〇依據時脈訊號控制 内部電路之工作時序。當順向資料RXi被判讀為,,〇,,,則 相位調變電路依照狀況A(如同前述之表格所示)產生 控制訊號SrS4,橋式開關電路15〇並藉此控制訊號心〜 產生第一調變訊號,此第—調變訊號之電壓為Vab,電 壓VAB經由變壓器100由初級線圈傳遞至次級線圈並產生 電壓VCD。於模式Model時,&、心訊號為,,丨,,(高電位), S2二訊號為低電位)’使得變壓器1〇〇之初級線圈上 的電壓VAB為正值,此時變壓器次級線圈上的電壓 亦為正值,則次級通訊電路3〇〇判斷 順向資料TX2傳送至1/0端。於模式 時’變廢器100會進行放磁,以避免磁飽和的現象發生, 此時’控制訊號S!〜S4全為,,〇”。於模式Mode3時,控制訊 唬S4為1” ’控制訊號Si、心、心訊號為,,〇”,且當逆向資 28 1373954 07(專)A039 24682twf.doc/n 料RX2被判讀為”0”,將使得訊號S5為”〇”,阻抗調變電路 150不工作。當逆向資料RX2判讀為”1”,將使得訊號心 • 為”1”,並啟動阻抗調變電路150以改變共振訊號。此時, . 可於變壓器1〇〇之初級線圈端量測電壓VAB低於參考電壓 • VREF,若是’則初級通訊電路200將判斷逆向資料TXi的 • •值為”1’’(高電位)’並將逆向資料TX1傳送至電腦端。於模 式Mode4時,同步控制器400會初次級通訊控制電路2〇〇 鲁 與次級通訊控制電路300能夠同步工作,此時控制訊號 S3、S4 為’’1”,控制訊號 s!、S2 為’’0”。 3月參照圖13 ’圖13是裝置1〇〇〇進行雙向通訊時之另 一訊號波形圖。當順向資料為”丨,,時,則相位調變電 路290依狀況Β(參照前述之表格)輸出控制訊號Si〜S4, 橋式開關電路150並藉此控制訊號s1〜s4產生第一調變訊 號,此第一調變訊號之電壓為Vab,電壓Vab經由變壓器 100由初級線圈傳遞至次級線圈並產生電壓Vci^於模式 Model時’ Sl、S3訊號為”Γ,(高電位),S2、S4訊號為,,〇”(低 • 電位),使得變壓器1〇〇之初級線圈上的電壓vAB為負值, ,· 此時變壓器100次級線圈上的電壓VCD亦為負值,則次級 .. 通訊電路300判斷順向資料TX2的值為,,1,,,並將順向資料 τχ,2,送至I/O端。於模式M〇de2時,控制訊號&〜&全 為〇。於模式Mode3時,控制訊號S3為”Γ,,控制訊號 S」〜S4為”〇”。料’可於變壓器1〇〇之初級線圈端量測電 堊VAB低於參考電壓奸’若是,則初級通訊電路2⑻將 判斷逆向資料TX1的值為,τ,(高電位),並將逆向資料邱 29 U73954 07(;專)A039 24682twfdoc/n ^至純端。於挺式MGde4時,控 控制_Sl、S2為,,〇,, 广唬S4為1 ’ 圖12與圖13的差別僅在於模式 Vab、Vgd的極性會根據之前於模式^^ # m不同。®12是於模式MQden㈣ 抖幻^為〇,所以於模式M〇de3i 屋。圖12是於模式Model之順向資=⑶所乂 3 模式^le3之_Vab、v⑶為正電^吼為1 ’所以於When the charge control signal CHG is "1", the switching transistor 613 is turned on, and the capacitor 615 is discharged by the turned-on switching transistor 613, thereby resetting the integrating circuit 600. When the charging control signal CHG is ",", the switching transistor 613 will be turned off, the current source 61 充电 charges the capacitor 615, and the capacitor 615 starts to accumulate a relative voltage within a period of time. [This relative voltage VC1 is in The signal waveform in the period is a ramp signal. The value of the ramp signal generated by the current source 610 charging the capacitor 615 at a time At is Vcl=(I6*At)/C, where 16 is provided by the current source 61〇. The power supply value, C! is the capacitance value of the capacitor 615, so Vci is proportional to the relative charging time At. The buffer 730 causes the voltage of the capacitor 615 to be unaffected by the conduction of the controlled switch 753. When the sampling signal SMP is "1" When the controlled switch 753 turns on the voltage before the capacitor 615 is reset, the voltage of the capacitor 715 is close to the highest voltage of the capacitor 615, that is, Vc is MAX(Vc)). At this time, the voltage of the capacitor 71s is VcfCUU/Ci' Ts is the length of the cycle time equivalent to the operation of the primary communication control circuit 25 1373954 07 (special) A039 24682twf.doc/n 200, that is, the cumulative time length of the mode M〇del~M〇de4. The buffer 810 makes the resistor 808 Terminal voltage %, etc. In the mouth, and the voltage Vo is reduced by the resistors 802, 8〇4, 806 and 8〇8. The ratio of the resistors 802, 804, 806 and 808 is designed to be equivalent to the working time of each mode Model~Mode4 Length, ie R8〇2: R8〇4: R8〇6: R8〇8 = τ]: τ2: τ3: τ4 ' where 'r802, Rs〇4, R8〇6, — respectively, resistances 802, 804, 806 With the resistance value of 808, τ, T2, T3, T are the working time lengths of mode Model~Mode4 respectively. Since the series resistance value is proportional to the voltage difference between the two ends of the resistance' and the voltage difference on the capacitor 615 is proportional to the current Ie to the capacitance The charging time of 615. Therefore, the working time length of each mode M〇del~Mode4 will be proportional to the voltage difference between the resistors 8〇2, 804, 806 and 808, ie T]: T2 : T3: T4 = Vw : (Vx - Vw) : CVY- νχ): (VZ-VY)' where Vw, VX, VY, VZ represent the terminal voltages of the terminals W, X, Y, Z, respectively. The ends of the resistors 802, 804, 806, 808 The endpoint voltages Vw, VX, VY, VZ of the points W, X, Y, and Z are compared with the voltage VC1 of the capacitor 615 by the comparators 820, 830, and 840, respectively. The comparator 820 outputs the generation mode Model. The mode signal M21, when in the mode of the mode Model, the mode signal m21 is "1", and vice versa is "〇". When in the mode of mode Mode2, the mode signal y [22 is, T, and vice versa "0" . When in the mode of mode Mode3, the mode signal M23 is 'Τ' and vice versa. When in the mode of mode Mode4, the mode signal Μ24 is "1", and vice versa is "0". The mode signals Μ21 to Μ24 control the timing of the secondary communication control circuit 300 so that the circuit of the secondary communication control circuit 300 can be synchronized to the primary communication control circuit 200 by 26 1373954 〇7 (special) A039 24682 twf.doc/n. Before the device provided by the present invention starts bidirectional communication, the primary communication control circuit 200 can transmit a plurality of cycles of "〇" or "丨" synchronous forward data as the primary communication control circuit and the secondary. The communication control circuit 300 performs the initial setting of the synchronous communication (111 out & 1), so that the period detector 450 can capture the correct new cycle start point. After the communication transmission continues for a while, the initial setting time of the synchronous communication between the primary communication control circuit 2 and the secondary communication control circuit 300 can also be increased to ensure the communication quality. Please refer to FIG. 10. FIG. 10 is a waveform diagram of each input, output= and internal signal of the synchronous controller 4. The pulse signal PLS, which can determine the start point of the cycle, is generated by detecting a change in the voltage VCD of the transformer 1〇〇. The sampling control signal SMp is generated by using the pulse signal PLS positive edge; the charging control signal CHG is generated by the negative edge of the PLS signal. The ramp signal voltage vcl generated by the capacitor 615 is compared with the voltages Vw, Vx, Vy to generate analog signals Μ21~Μ24. Please refer to Fig. 11, which is a control flow chart of the impedance modulation control circuit 39. At step S392, the impedance modulation circuit 390 reads the reverse data RX2 and judges its value. When the reverse data RX2 is ,, 〇,, the process proceeds to step S393; otherwise, the process proceeds to step S394. At step S393, the impedance modulation control circuit 390 generates the Ss signal to turn off the switching transistor 165 of the impedance modulation circuit 15A. Therefore, the impedance modulation circuit 15 does not modulate the impedance of the transformer 100. At this time, the level decoding β 250 of the primary communication control circuit 2 detects the resonance signal voltage of the terminals a and B, and if the voltage Va 27 ^73954 〇7 (special) A039 24682twf.d〇C/n is detected. Or vB is less than the reference voltage Vref, and the reverse data τι is interpreted as, ι". ^ At step S394, the impedance modulation control circuit causes the switching transistor 165 L and the impedance modulation circuit 150 to operate, thereby modulating the transformer When the impedance 1 switch transistor 165 is turned on, the impedance of the transformer & is changed. The level decoder 250 in the primary communication control circuit 2 detects the resonance signal voltage of the Baye Ih point A and B. When the measured voltage is greater than the reference voltage, the reverse data is judged as “〇.” After the step Μ% or S394 ends, the impedance modulation circuit 15 performs the work in one cycle. Please refer to FIG. 12 and FIG. It is a signal wave opening when the device 1000 performs two-way communication. The primary communication control circuit 2 controls the working timing of the internal circuit according to the clock signal. When the forward data RXi is read as, 〇,,, then the phase adjustment Variable circuit according to condition A (like the aforementioned table The control signal SrS4 is generated, and the bridge switch circuit 15 is controlled to generate a first modulation signal. The voltage of the first modulation signal is Vab, and the voltage VAB is transmitted from the primary coil to the secondary via the transformer 100. The level coil generates a voltage VCD. In the mode of Model, &, the heart signal is,, 丨,, (high potential), S2 two signal is low) 'so that the voltage VAB on the primary coil of the transformer 1 is positive Value, at this time, the voltage on the secondary coil of the transformer is also positive, and the secondary communication circuit 3 determines that the forward data TX2 is transmitted to the 1/0 terminal. In the mode, the waste device 100 is demagnetized to Avoid the phenomenon of magnetic saturation. At this time, 'control signals S!~S4 are all, 〇”. In the mode Mode3, the control signal S4 is 1" 'control signal Si, heart, heart signal is, 〇", and when the reverse resource 28 1373954 07 (special) A039 24682twf.doc/n material RX2 is judged as "0" ", the signal S5 will be made "〇", and the impedance modulation circuit 150 will not operate. When the reverse data RX2 is interpreted as "1", the signal heart is "1" and the impedance modulation circuit 150 is activated to change the resonance signal. At this time, the measurement voltage VAB at the primary coil end of the transformer 1〇〇 is lower than the reference voltage • VREF, and if it is 'the primary communication circuit 200 will judge the value of the reverse data TXi to be '1'' (high potential) 'Transfer the reverse data TX1 to the computer. In the mode Mode4, the synchronous controller 400 will synchronize the primary communication control circuit 2 and the secondary communication control circuit 300, and the control signals S3, S4 are ' '1', control signal s!, S2 is ''0'. March refers to Figure 13 'Figure 13 is another signal waveform when the device 1 〇〇〇 two-way communication. When the forward data is "丨,, When the phase modulation circuit 290 outputs the control signals Si to S4 according to the situation (refer to the table above), the bridge switch circuit 150 generates the first modulation signal by using the control signals s1 to s4, and the first modulation is performed. The voltage of the signal is Vab, and the voltage Vab is transmitted from the primary coil to the secondary coil via the transformer 100 and generates a voltage Vci. When the mode is Model, 'Sl, S3 signal is Γ, (high potential), S2, S4 signal is, 〇 "(low • potential), making the transformer 1〇〇 The voltage vAB on the primary coil is a negative value, and at this time, the voltage VCD on the secondary coil of the transformer 100 is also a negative value, then the secondary communication terminal 300 determines that the value of the forward data TX2 is 1, 1, And send the forward data τχ, 2 to the I/O end. In the mode M〇de2, the control signals &~& are all 〇. In the mode Mode3, the control signal S3 is "Γ, and the control signals S" to S4 are "〇". The material 'measured at the primary coil end of the transformer 1〇〇 is lower than the reference voltage'. If the primary communication circuit 2 (8) will judge the value of the reverse data TX1, τ, (high potential), and the reverse data Qiu 29 U73954 07 (; special) A039 24682twfdoc / n ^ to pure end. In the case of the MGde4, the control _Sl, S2 is,, 〇,, and the S4 is 1 ′. The difference between Fig. 12 and Fig. 13 is that the polarities of the modes Vab and Vgd are different according to the previous mode ^m #m. ® 12 is in the mode MQden (four) and the camera is 〇, so in the mode M〇de3i house. Figure 12 is the direction of the model Model = (3) 乂 3 mode ^le3 _Vab, v (3) is positive ^ 吼 is 1 ’ so

置採:,本發騎提供之具有電轉換與雙向通訊之裝 =用橋式電源供應器之開關切換原理,與搭配相位調變完成 心向通訊,並於變壓器之電感電容共振(LCres〇nance)時段, 1阻抗婦完成逆㈣訊,本發_述之裝置其電路簡 =且ii電。且本發明僅使用―組懸器作域離機置,因此 j少電路_積與應麟DAA。簡言之,本發明所提供之 二有電源轉難雙向通訊之裝置及其方法能達到高壓隔離 向通訊以及供應電源給次級之電路。Setting: The installation with electric conversion and two-way communication = the switching principle of the bridge power supply, the core communication with the phase modulation, and the inductance and capacitance resonance of the transformer (LCres〇nance ) Period, 1 impedance woman completes the inverse (four) message, the device of the present invention is simple and ii. Moreover, the present invention only uses the "group suspension" as the domain off-machine, so j has less circuit_product and Yinglin DAA. Briefly stated, the apparatus and method for power supply to two-way communication provided by the present invention can achieve high voltage isolation communication and supply of power to the secondary circuit.

雖然本發明已以實施例揭露如上,然其並非用以阳定 本發明,任何熟習此技藝者,在不脫離本發明之精神和(範 圍内,當可作些許之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1是本發明之具有電源轉換與雙向通訊之裝置1000 的一種實施例之電路圖。 圖2是產生控制訊號S1〜S4的初級控制電路的—種 施例之電路圖。 30 1373954 07(^)A039 24682twf.doc/n 圖 訊控制電路2〇〇的一種實施 圖5是相位調變電路携的動作流程Ϊ I 】二=碼器35〇的一種實施方式 。 圖7疋週期偵測器45〇的一口 圖8是同步控制訊號產生器‘-種 路Although the present invention has been disclosed in the above embodiments, it is not intended to be used in the present invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a circuit diagram of an embodiment of an apparatus 1000 for power conversion and two-way communication of the present invention. Figure 2 is a control signal generation Circuit diagram of a first embodiment of the S1 to S4 primary control circuit. 30 1373954 07(^)A039 24682twf.doc/n One embodiment of the picture control circuit 2〇〇 Figure 5 is the operation flow of the phase modulation circuit I 】 Two = one embodiment of the encoder 35 。 Figure 7 疋 a loop detector 45 〇 a port 8 is a synchronous control signal generator '-

圖9是時序還原電路5 圖10是同步控制哭4ηη Λ认 電路圖。 之波形圖。UG之各輸人、輸出以及内部訊號Fig. 9 is a timing reduction circuit 5, and Fig. 10 is a circuit diagram of a synchronous control crying. Waveform diagram. UG's input, output and internal signals

圖11是阻抗調變控制電路390之控制流程圖。 ^衫置1_進行雙向通訊時之訊號波形圖。 圖13以置職進行雙向軌時 訊號波 【主要元件符號說明】 1〇〇〇.具有電源轉換與雙向通訊之裝置 100:變壓器 50 .橋式開關電路 9〇 :整流電路 150:阻抗調變電路 H 30 ' 40 :開關電晶體 65 ' 85 :電容 73、75、77、79、173、175 :二極體 165 :電晶體 2〇〇 :初級控制電路 31 1373954 07(專)A039 24682twf.doc/n 210 :通訊單元 220 :匯流排收發介面 230 :時脈訊號產生器 240 :模式控制器 250 :位準解碼器 290 :相位調變電路 300 :次級通訊控制電路 310 :通訊單元 320:串列匯流排介面 340 :穩壓器 350 :相位解碼器 390 :阻抗調變控制電路 400 :同步控制器 260、270 :比較器 272 :或閘 280 :電流源 283 :開關電晶體 285 :電容 255 :參考電壓源 278 :及閘 S292、S293、S294 :步驟流程 360:比較器 355 :參考電壓源 368 :及閘 32 1373954 〇7(專)A039 24682twf.doc/nFIG. 11 is a control flow chart of the impedance modulation control circuit 390. ^ Shirt set 1_ signal waveform diagram for two-way communication. Figure 13 is a two-way orbital signal wave with a job. [Main component symbol description] 1〇〇〇. Device with power conversion and two-way communication 100: Transformer 50. Bridge switch circuit 9〇: Rectifier circuit 150: Impedance modulation Road H 30 ' 40 : Switching transistor 65 ' 85 : Capacitor 73, 75, 77, 79, 173, 175: Diode 165 : Transistor 2 〇〇: Primary control circuit 31 1373954 07 (Special) A039 24682twf.doc /n 210: communication unit 220: bus transceiver interface 230: clock signal generator 240: mode controller 250: level decoder 290: phase modulation circuit 300: secondary communication control circuit 310: communication unit 320: Tandem bus interface 340: voltage regulator 350: phase decoder 390: impedance modulation control circuit 400: synchronous controller 260, 270: comparator 272: or gate 280: current source 283: switching transistor 285: capacitor 255 : reference voltage source 278: and gate S292, S293, S294: step flow 360: comparator 355: reference voltage source 368: and gate 32 1373954 〇 7 (special) A039 24682twf.doc / n

355 : 參考電壓源 360 ' 460 :比較器 462 : 反或閘 470 : 脈衝產生器。 484 : 反閘 490 : 電流源 493 : 開關電晶體 495 : 電容 486 : 磁滯反閘 488 : 及閘 510、 530 :電流源 506、 526 :磁滯反閘 508、 528 :及閘 513、 533 :開關電晶體 515、 535 :電容 504 : 反閘 600 : 時間積分器 700 : 取樣維持電路 800 : 模式分配器 613 : 開關電晶體 615 : 電容 610 : 電流源 730 : 緩衝器753 :開關 715 : 電容 33 1373954 07(專)A039 24682twf.doc/n 810 :缓衝器 808、806、804、802 :電阻 840、830、820 :比較器 874、864、854 :反閘 898、888 :及閘 S392、S393、S394 :步驟流程355: Reference Voltage Source 360 '460: Comparator 462: Reverse OR Gate 470: Pulse Generator. 484: Reverse gate 490: Current source 493: Switching transistor 495: Capacitor 486: Hysteresis gate 488: Gates 510, 530: Current source 506, 526: Hysteresis gates 508, 528: and gates 513, 533: Switching transistor 515, 535: capacitor 504: reverse gate 600: time integrator 700: sample maintaining circuit 800: mode distributor 613: switching transistor 615: capacitor 610: current source 730: buffer 753: switch 715: capacitor 33 1373954 07 (specific) A039 24682twf.doc/n 810: buffers 808, 806, 804, 802: resistors 840, 830, 820: comparators 874, 864, 854: reverse gates 898, 888: and gates S392, S393 , S394: Step flow

3434

Claims (1)

1373954 99-10-28 細修正替換頁 十、申請專利範圍: 1· 一種全橋式直流轉直流電源轉換裝置,具有電源轉 換與雙向通訊功能,該裝置包括: 一變壓器,至少包括一第一線圈與一第二線圈,用以 傳遞能量與提供一隔離機制(isolation barrier),該變壓器 與一電容形成一共振電路; 一全橋式(fiill-bridge)開關電路,耦接於該第一線圈, 根據一第一資料產生一第一調變訊號; 一整流電路,耦接於該第二線圈,用以產生一供應電 壓;以及 ^ 一阻抗調變電路,耦接於該第二線圈,根據一第二資 料改變§玄變壓器的阻抗,進而調變該共振電路上的共振訊 號以產生一第二調變訊號; 時被傳遞。1373954 99-10-28 Fine correction replacement page X. Patent application scope: 1. A full-bridge DC-to-DC power conversion device with power conversion and two-way communication functions, the device includes: a transformer including at least a first coil And a second coil for transmitting energy and providing an isolation barrier, the transformer and a capacitor form a resonant circuit; a full-bridge (fiill-bridge) switching circuit coupled to the first coil, Generating a first modulation signal according to a first data; a rectifier circuit coupled to the second coil for generating a supply voltage; and an impedance modulation circuit coupled to the second coil, according to A second data changes the impedance of the sigma transformer, and then modulates the resonance signal on the resonant circuit to generate a second modulation signal; 其中,該第一調變訊號的能量藉由該變壓器由該第一 線圈傳遞至該第二線圈,使得該整流電路藉此產生該供應 電壓;以及該第-調變訊號的能量與該第—資料實質^ 該全橋式開關電路;以及The energy of the first modulation signal is transmitted from the first coil to the second coil by the transformer, so that the rectifier circuit generates the supply voltage; and the energy of the first modulation signal and the first Data substance ^ the full bridge switching circuit; ,、β次丨且仉碉變電路,根據 訊號’以藉此控制阻抗調 35 1373954 101-4-2 變電路改變該變壓器的阻抗; ±其中,該第—通訊控制電路更_於該第—線圈,用 以言買取該第一線圈上的訊號,以判_ 、·’ 用 =的^二讀之資訊;該第二通訊控制電路更減於^ 亡線么圈:用以讀取該第二線圈上的訊號’以藉此判斷讀 弟5周變訊號所攜帶的該第一資料之資訊。, β, and 仉碉 电路 ,, according to the signal 'to control the impedance of the impedance 35 1373954 101-4-2 variable circuit to change the impedance of the transformer; ± where the first communication control circuit is more The first coil is used to buy the signal on the first coil to judge the information of the second reading of _, · ' with =; the second communication control circuit is further reduced by the number of the dead line: for reading The signal on the second coil is used to determine the information of the first data carried by the five-week change signal. ㈣=中請t利範圍第1項所述之全橋式直流轉直流電 /田、轉換|置,其中,雜抗調變電路包括至少—電晶體, ^以根據該第二資料開關該電晶體,以藉 的阻抗。 又X文i免 如專職目帛i項所叙全橋式直雜直流電 ^轉域置,其巾’該餘是電路之寄生€容_立 獨立電容。 5·如f料概㈣2項職之全橋式直流轉直流電 〜轉換裝置,其中,該第—通訊控制電路包括:(4) = The full-bridge DC-to-DC/Train, conversion, and set-up according to Item 1 of the T-Scope, wherein the hybrid anti-modulation circuit includes at least a transistor, ^ to switch the electricity according to the second data Crystal, to borrow the impedance. And X text i-free, such as the full-time catalogue of the i-class full-bridge type direct-mixed DC power ^ turn-by-turn, its towel 'this is the parasitic capacity of the circuit _ stand-alone capacitor. 5. In the case of f-materials (4), the full-bridge DC-to-DC power conversion device of the 2nd position, wherein the first communication control circuit comprises: -相位調變電路’用以根據該第—㈣產生該些橋式 開關控制訊號;以及 ^ 一位準解碼器,藉由偵測該第一線圈上的訊號來判讀 "玄第二調變訊號所攜帶的該第二資料之資訊。 、6.如申請專利範圍第5項所述之全橋式直流轉直流電 源轉換裝置,其中,該第一通訊控制電路更包括: ^ 一模式控制器,用以產生多數個模式訊號,以藉此決 定傳送該第一資料與接收該第二資料之時序。 7.如申請專利範圍第6項所述之全橋式直流轉直流電 36 u/3954 W年/月>"曰修正替換買 1〇M-2 源轉換裝置’其中,該些模式訊號包括: 一第一資料傳送模式訊號,用以控制該第一诵 控制電路傳送該第-㈣; 通訊 , 一放磁模式訊號,用以控制該第一通訊控制電路 使得該變_進行放磁’以避免該變壓器產生磁飽和的現 象;- a phase modulation circuit 'for generating the bridge switch control signals according to the fourth (4); and a bit quasi decoder for intercepting the signal on the first coil to interpret the second key Information about the second data carried by the change signal. 6. The full bridge type DC to DC power conversion device according to claim 5, wherein the first communication control circuit further comprises: a mode controller for generating a plurality of mode signals to borrow This determines the timing at which the first data is transmitted and the second data is received. 7. The full-bridge DC-to-DC 36 u/3954 W year/month>"曰 revision replaces the purchase of a 1 M-2 source conversion device as described in claim 6 of the patent scope, wherein the mode signals include : a first data transmission mode signal for controlling the first control circuit to transmit the first (four); communication, a demagnetization mode signal for controlling the first communication control circuit to cause the variable to be demagnetized Avoid the phenomenon of magnetic saturation of the transformer; 一第二資料接收模式訊號’用以控制該第一 控制電路判讀接收_該第二:以及 通訊 ^ 一週期同步準備模式訊號,用以控制該第一通訊 控制電路來改變該第—線圈上的電壓,進而讓該第二通訊 控制電路與該第一通訊控制電路同步工作。 、8.如申請專利範圍第2項所述之全橋式直流轉直流電 源轉換裝置,其中,該第二通訊控制電路包括: 一阻抗調變控制電路,根據該第二資料控制產生該阻 抗調變控制訊號;a second data receiving mode signal 'to control the first control circuit to determine the receiving_the second: and the communication ^ cycle synchronization preparation mode signal for controlling the first communication control circuit to change the first coil The voltage, in turn, causes the second communication control circuit to operate in synchronization with the first communication control circuit. 8. The full bridge type DC to DC power conversion device according to claim 2, wherein the second communication control circuit comprises: an impedance modulation control circuit, and the impedance modulation is generated according to the second data control Variable control signal =相位解碼器,用以接收該第二線圈上之訊號,以藉 此判讀該第一調變訊號所攜帶的該第一資料之資訊;以及 同步控制斋,搞接於該相位解碼器與該阻抗調變控 制電路’ Μ侧該第二線圈上之職,以藉此對該第— 通訊控制電路與該第二通訊控制電路進行同步,並產生多 數個同步模式訊號。 源轉心範直流轉直流電 第一資料接收模式訊號,用以控制該第二通訊控制 37 1373954 99-10-28 ㈣泛月,修正替換頁 電路判讀接故到的該第一資料; 一放磁模式訊號; 用以控制該第二通訊控制 一第二資料傳送模式訊號 電路傳送該第 二資料。 電壓步式訊號’用以偵測該第二線圈上的 罨壓之改熒,以產生一週期起始訊號,進而讓該 控制電路與該第一通訊控制電路同步工作。Μ 一 sa phase decoder for receiving a signal on the second coil to thereby read information of the first data carried by the first modulation signal; and synchronizing control, engaging the phase decoder with the The impedance modulation control circuit Μ is on the second coil to synchronize the first communication control circuit with the second communication control circuit and generate a plurality of synchronization mode signals. The first data receiving mode signal is used to control the second communication control 37 1373954 99-10-28 The mode signal is used to control the second communication control-second data transmission mode signal circuit to transmit the second data. The voltage step signal ' is used to detect the change of the voltage on the second coil to generate a cycle start signal, thereby allowing the control circuit to operate in synchronization with the first communication control circuit. Μ a s 10.如申請專利範圍第9項所述之全橋式直 電源轉換裝置,其中,該同步控制器包括: 1 ^ 週期偵侧器,用以偵測該第二線圈上的電壓之改 變’以產生該週期起始訊號; 一同步控制訊號產生器,耦接於該週期偵測器,用以 接收該週期起始訊號,並根據該週期起始訊號產生一取樣 控制訊號與一充電控制訊號;以及 時序還原電路,耦接於該同步控制訊號產生器,用10. The full bridge type direct power conversion device of claim 9, wherein the synchronization controller comprises: a 1 ^ period detector for detecting a change in voltage on the second coil Generating a cycle start signal; a synchronous control signal generator coupled to the cycle detector for receiving the cycle start signal, and generating a sample control signal and a charge control signal according to the cycle start signal; And a timing reduction circuit coupled to the synchronous control signal generator for use 以根據該取樣控制訊號與該充電控制訊號產生該些^式訊 號。 、 11·如申請專利範圍第10項所述之全橋式直流轉直流 電源轉換裝置,其中,該時序還原電路包括: 一時間積分器,根據該充電控制訊號產生一斜坡電壓 訊號; 一取樣維持電路,具有一維持電容,耦接於該時間積 分器,根據該取樣控制訊號對該斜坡電壓訊號之最大值進 行取樣,並將該斜坡電壓訊號之最大值儲存在該維持電容 38 J I J I 99-10-28 ------—I 〜月為修正替換頁 上;以及 接於;= 器二:=與多數個比較器’轉 =”=該斜_訊號的最大== 電壓应靖電壓…Ϊ 些比較器比較該些比例 電Μ 叙大小,%生該些时模式訊號。 盘雔L Γ 轉錢訪、轉置,具有電源轉換 與雙向通訊功能,該裝置包括: ㈣’具有—初級線圈與—次級線圈,用以傳遞 =、、及”該次級線圈之能量,提供—隔離機制,其中該變 壓器與一電容形成一共振電路; 々開關電路’補於該初級制,根據多數讎 式渴關控制訊號產生一第一調變訊號; 一 級通難觀路,難誠橋式開關電路,根據 料產生該些橋式開關控制喊,以藉此控制該橋 式開關電路; 壓一整流電路,耦接於該次級線圈,用以產生一供應電 ^ 一阻抗調變電路,耦接於該次級線圈,根據一阻抗調 變控制訊蚊變該變壓器的阻抗,以產生—第 號;以及 β 一次級通訊控制電路,耦接於該阻抗調變電路,根據 一逆向資料產生該阻抗調變控制訊號; 其中,該第一調變訊號的能量藉由該變壓器由該初級 39 泞如月為修正替換頁 99'10-28 線圈傳遞至該次級線圈,使得該整流電路藉此產生該供應 電壓;該第一調變訊號的能量與該第一資料實質上同時2 傳遞·’該阻抗調變電路調變該變壓器的阻抗,以調變該共 振電路上的共振訊號,並藉此產生該第二調變訊號,該第 二調變訊號經由該變壓器改變初級線圈之電壓;該初級通 訊控制電路更耦接於該初級線圈,用以讀取該初級線圈上 的訊號,以判斷該第二調變訊號所攜帶的該逆向資料之資 訊;該次級通訊控制電路更耦接於該次級線圈,用以讀取 該次級線圈上的訊號,以藉此判斷該第一調變訊號所攜帶 的該順向資料之資訊。 13. 如申請專利範圍第12項所述之橋式直流轉直流電 源轉換裝置,其中,該橋式開關電路是全橋開關電路、半 橋開關電路或推挽式開關電路。 14. 如申請專利範圍第ι2項所述之橋式直流轉直流電 源轉換裝置,其中,該阻抗調變電路包括至少一電晶體, 用以根據該逆向資料開關該電晶體,以藉此調變該變壓器 的阻抗。 15. 如申請專利範圍第12項所述之橋式直流轉直流電 源轉換襄置’其中’該電容是電路之寄生電容或外接獨立 電容。 16·如申請專利範圍第12項所述之橋式直流轉直流電 源轉換裝置’其中,該初級通訊控制電路包括: 一相位調變電路,用以根據該初級資料與多數個模式 訊號產生該些橋式開關控制訊號;以及 1373954 卿〇神修正替換頁 99-10-28 一位準解碼器,藉由偵測該初級線圈上的訊號來判讀 該第二調變訊號所攜帶的該逆向資料之資訊。 17. 如申請專利範圍第16項所述之橋式直流轉直流電 源轉換裝置,其中,該初級通訊控制電路更包括: 一模式控制器,用以產生該些模式訊號,以藉此決 定傳送該順向資料與接收該逆向資料之時序。The generating signals are generated according to the sampling control signal and the charging control signal. 11. The full bridge type DC to DC power conversion device according to claim 10, wherein the timing reduction circuit comprises: a time integrator, generating a ramp voltage signal according to the charging control signal; The circuit has a sustaining capacitor coupled to the time integrator, sampling the maximum value of the ramp voltage signal according to the sampling control signal, and storing the maximum value of the ramp voltage signal in the maintaining capacitor 38 JIJI 99-10 -28 ------—I ~ month is the correction replacement page; and connected to; = device two: = with most comparators 'turn => = the maximum value of the oblique _ signal == voltage should be Jing voltage...比较 Some comparators compare the size of the proportional electric power, and % generate the time mode signals. 雔L Γ Transfer to money, transpose, with power conversion and two-way communication functions, the device includes: (4) 'With - primary coil And a secondary coil for transmitting the energy of the secondary coil, providing an isolation mechanism, wherein the transformer forms a resonant circuit with a capacitor; The primary system generates a first modulation signal according to the majority of the thirst control signal; the first level is difficult to observe the road, the difficult bridge switching circuit generates the bridge switch control according to the material, thereby controlling the bridge a switching circuit; a voltage-rectifying circuit coupled to the secondary coil for generating a supply circuit, an impedance modulation circuit coupled to the secondary coil, and controlling the mosquito to change the transformer according to an impedance modulation An impedance-to-generate-number; and a beta-secondary communication control circuit coupled to the impedance modulation circuit to generate the impedance modulation control signal according to a reverse data; wherein the energy of the first modulation signal is The transformer is transmitted to the secondary coil by the primary 39 泞 修正 修正 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 Simultaneously transmitting 2 'the impedance modulation circuit modulating the impedance of the transformer to modulate the resonance signal on the resonant circuit, and thereby generating the second modulation signal, the second modulation signal Changing the voltage of the primary coil by the transformer; the primary communication control circuit is further coupled to the primary coil for reading a signal on the primary coil to determine information of the reverse data carried by the second modulation signal; The secondary communication control circuit is further coupled to the secondary coil for reading a signal on the secondary coil to thereby determine information of the forward data carried by the first modulated signal. 13. The bridge type DC-to-DC power conversion device according to claim 12, wherein the bridge switch circuit is a full bridge switch circuit, a half bridge switch circuit or a push pull switch circuit. 14. The bridge type DC-to-DC power conversion device of claim 1, wherein the impedance modulation circuit comprises at least one transistor for switching the transistor according to the reverse data to thereby adjust Change the impedance of the transformer. 15. The bridge type DC-to-DC power conversion device described in claim 12 is 'where' the parasitic capacitance of the circuit or an external independent capacitor. The bridge type DC-to-DC power conversion device of claim 12, wherein the primary communication control circuit comprises: a phase modulation circuit for generating the signal according to the primary data and the plurality of mode signals Some bridge switch control signals; and 1373954 〇 修正 修正 correction page 99-10-28 a quasi-decoder, by detecting the signal on the primary coil, interpreting the reverse data carried by the second modulating signal Information. The bridge type DC-to-DC power conversion device of claim 16, wherein the primary communication control circuit further comprises: a mode controller for generating the mode signals, thereby determining to transmit the mode Forward data and the timing of receiving the reverse data. 18. 如申請專利範圍第17項所述之橋式直流轉直流電 源轉換裝置,其中,該些模式訊號包括: 一順向資料傳送模式訊號,用以控制該初級通訊 控制電路傳送該初級資料; 一放磁模式訊號,用以控制該初級通訊控制電路 使得該變壓器進行放磁’以避免該變壓器產生磁飽和的現 象; 貝竹按队俣式訊號,用以; 控制電路判讀接收到的該逆向資料;以及 批偏—同步準備模式訊號,用以控_初級通訊 來改變該初級線圈上的電壓,進而讓該初級通訊 控制電路與該次級通訊控制電路同步工作。 原轉換裂置’其巾,該次級通訊控制電路包括. 變控:控祕,根據該逆向資料產娜抗調 此判讀該第-調變訊號所攜帶的; ^73954 ㈣咖日修正替換頁 99-10-28 同步控制器,輕接於該相位解碼器與該阻抗調變控 制電路,用以偵測該次級線圈上之訊號,以藉此讓該初^ 通訊控制電路與該次級通訊控制電路同步工作,並產生多 數個同步模式訊號。 20. 如申請專利範圍第項所述之橋式直流轉直流電 源轉換裝置,其中,該些同步模式訊號包括: 一順向資料接收模式訊號,用以控制該次級通訊控制 電路判讀接收到的該順向資料; 一放磁模式訊號; 一逆向資料傳送模式訊號,用以控制該次級通訊控制 電路傳送該逆向資料。 。 週期同步準備模式訊號,用以偵測該次級線圈上的 電壓之改變’以產生—週驗始訊號,進而讓該初級通訊 控制電路與該次級通訊控制電路同步工作。 21. 如申請專利範圍第2〇項所述之橋式直流轉直流電 源轉換裝置,其中,該同步控制器包括: 一週期偵側器,用以偵測該次級線圈上的電壓之改 變’以產生該週期起始訊號; 一同步控制訊號產生器,耦接於該週期偵測器,用以 接收該週期起始訊號,並根據該週期起始訊號產生一取樣 控制訊號與一充電控制訊號;以及 時序還原電路,輕接於該同步控制訊號產生器,用 以根據該取樣控制_與槪電控觀鼓生·模式訊 號。 42 101-4-2 月〆日修正替換頁 22. 如申睛專利範圍第21項所述之橋式直流轉直流電 源轉換I置’其中’該時序還原電路包括: 一時間積分器’根據該充電控制訊號產生一斜坡電壓 訊號; 八_一取樣維持電路,具有一維持電容,耦接於該時間積 ^态:根據該取樣控制訊號對該斜坡電壓訊號之最大值進 行取樣,並將該斜坡電壓訊號之最大值儲存在該維持電容 上;以及 ^模式分配器’具有一分壓電路與多數個比較器,耦 接於。亥時間積分器與該取樣維持電路,利用該分壓電路對 該維持電容上之該斜坡電壓訊號的最大值進行比例之分配 以產生多_比例電壓’並利㈣些比較器比較該些比例 電壓與該斜坡電壓訊號之大小,以產生該些同步模式一訊號。 23. —種具有電源轉換與雙向通訊之方法: 虎 產生-順向資料’根據該順向資料產生多數個橋式開 關控制訊號,以藉此控制—橋式開關電路產生—第一調變 訊號; 提供具有隔離機制的-變壓器,將該第—調變訊號之 能量自該龍器_級線_遞轉變縫的次級線圈' ^中該第-調變訊號的能量與該_㈣實f上同時被傳 遞, 提供-签流電路,藉此對該次級線圈上的訊號進 流,以產生一供應電壓;以及 產生-逆向資料,根據該逆向資料產生—阻抗調變控 1373954 辨阶細正替換頁 · · 制訊號’以||此㈣阻抗調變魏調魏懸_阻抗, 進而調變該變壓||之共振電路上的共振訊號,以產生一第 二調變訊號,該第二調變訊號經由該變壓器改變該初級 圈之電壓。 、 24. 如申請專利範圍第23項所述之具有電源轉換與雙 向通訊之方法,該方法更包括: 、一又18. The bridge type DC-to-DC power conversion device of claim 17, wherein the mode signals include: a forward data transmission mode signal for controlling the primary communication control circuit to transmit the primary data; a magnetic release mode signal for controlling the primary communication control circuit to cause the transformer to be magnetically oscillated to avoid magnetic saturation of the transformer; the bamboo is used for the signal of the team; the control circuit interprets the received reverse And a batch offset-synchronization preparation mode signal for controlling the primary communication to change the voltage on the primary coil, thereby allowing the primary communication control circuit to operate in synchronization with the secondary communication control circuit. The original conversion splitting 'the towel', the secondary communication control circuit includes. Variable control: control secret, according to the reverse data generation Na Na, this interpretation of the first-modulation signal carried; ^73954 (four) coffee day correction replacement page a synchronization controller that is lightly connected to the phase decoder and the impedance modulation control circuit for detecting a signal on the secondary coil to thereby allow the initial communication control circuit and the secondary The communication control circuit works synchronously and generates a plurality of synchronization mode signals. 20. The bridge type DC to DC power conversion device of claim 1, wherein the synchronization mode signals comprise: a forward data reception mode signal for controlling the secondary communication control circuit to interpret the received The forward data; a magnetic release mode signal; and a reverse data transmission mode signal for controlling the secondary communication control circuit to transmit the reverse data. . A periodic synchronization preparation mode signal is used to detect a change in voltage on the secondary coil to generate a weekly detection signal, thereby allowing the primary communication control circuit to operate in synchronization with the secondary communication control circuit. 21. The bridge type DC to DC power conversion device of claim 2, wherein the synchronization controller comprises: a period detector for detecting a change in voltage on the secondary coil' And generating a start signal of the cycle; a synchronous control signal generator coupled to the period detector for receiving the cycle start signal, and generating a sample control signal and a charge control signal according to the cycle start signal And a timing reduction circuit that is lightly connected to the synchronous control signal generator for controlling the mode signal according to the sampling control. 42 101-4-2 〆 修正 修正 替换 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 The charge control signal generates a ramp voltage signal; the eight_one sample hold circuit has a sustain capacitor coupled to the time product state: the maximum value of the ramp voltage signal is sampled according to the sample control signal, and the slope is The maximum value of the voltage signal is stored on the sustain capacitor; and the mode distributor has a voltage dividing circuit and a plurality of comparators coupled to each other. a time-integrator and the sample-and-hold circuit, wherein the voltage-dividing circuit is used to allocate a ratio of the maximum value of the ramp voltage signal on the sustain capacitor to generate a multi-proportional voltage and to compare the ratios. The voltage and the magnitude of the ramp voltage signal are used to generate the sync mode signals. 23. A method for power conversion and two-way communication: Tiger generation - forward data 'generates a plurality of bridge switch control signals according to the forward data, thereby controlling - the bridge switch circuit generates - the first modulation signal Providing a transformer having an isolation mechanism, the energy of the first modulation signal is converted from the energy of the first modulation signal to the secondary coil of the slot _ level line _ and the _ (four) real f Simultaneously transmitted, providing-signing circuit, thereby influencing the signal on the secondary coil to generate a supply voltage; and generating - reverse data, according to the reverse data generation - impedance modulation control 1373954 Positive replacement page · · system signal ' to || this (four) impedance modulation Wei Wei Wei suspension _ impedance, and then modulate the resonance signal on the resonance circuit of the transformer | | to generate a second modulation signal, the first The second modulation signal changes the voltage of the primary ring via the transformer. 24. A method for power conversion and two-way communication as described in claim 23, the method further comprising: 讀取該初級線圈上的訊號,以判斷該第二調變訊號所 攜帶的該逆向資料之資訊;以及 讀取該次級線圈上的訊號,以藉此判斷該第一調變訊 號所攜帶的該順向資料之資訊。 ° 25. 如申請專利範圍第24項所述之具有電源轉換與雙 向通訊之方法,該方法更包括: 產生多數個模式訊號,以控制該順向與逆向資料之傳 26.如申請專利範圍第25項所述之具有電源轉換與雙 向通訊之方法’其中’該些同步模式訊號包括:Reading the signal on the primary coil to determine the information of the reverse data carried by the second modulated signal; and reading the signal on the secondary coil to thereby determine the carried by the first modulated signal Information on the forward information. ° 25. A method for power conversion and two-way communication as described in claim 24, the method further comprising: generating a plurality of mode signals to control the transmission of the forward and reverse data. The method of power conversion and two-way communication described in the '25', wherein the synchronization mode signals include: 一順向資料模式訊號,用以指示該方法傳送該順向資 料與判讀接收到的該順向資料; 、 一放模式訊號,用以指示該變壓器進行放磁,以避免 該變壓器產生磁飽和的現象; 一逆向資料模式訊號,用以指示該方法傳送該逆向資 料與判讀接收到的該逆向資料。 一週期同步準備模式訊號,用以進行雙向通訊所需之 同步工作,並產生一週期起始訊號,以告知該方法於下一 個週期之起始點依序產生該些模式訊號。 44a forward data mode signal for instructing the method to transmit the forward data and interpreting the received forward data; and a mode signal for indicating that the transformer is demagnetized to avoid magnetic saturation of the transformer Phenomenon; a reverse data mode signal for indicating that the method transmits the reverse data and interprets the received reverse data. The one-cycle synchronous preparation mode signal is used for synchronous operation required for two-way communication, and generates a cycle start signal to inform the method to sequentially generate the mode signals at the starting point of the next cycle. 44
TW96135679A 2007-09-26 2007-09-26 Bridge dc/dc power converting apparatus and bidirectional communication method thereof TWI373954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96135679A TWI373954B (en) 2007-09-26 2007-09-26 Bridge dc/dc power converting apparatus and bidirectional communication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96135679A TWI373954B (en) 2007-09-26 2007-09-26 Bridge dc/dc power converting apparatus and bidirectional communication method thereof

Publications (2)

Publication Number Publication Date
TW200915833A TW200915833A (en) 2009-04-01
TWI373954B true TWI373954B (en) 2012-10-01

Family

ID=44725845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96135679A TWI373954B (en) 2007-09-26 2007-09-26 Bridge dc/dc power converting apparatus and bidirectional communication method thereof

Country Status (1)

Country Link
TW (1) TWI373954B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414119B (en) 2009-10-30 2013-11-01 Delta Electronics Inc Power supply and power supply system incorporating a plurality of power supplies
TWI742830B (en) 2020-09-01 2021-10-11 亞源科技股份有限公司 Network communication power supply with digital signal isolation
TWI748868B (en) * 2021-02-08 2021-12-01 大陸商蘇州明緯科技有限公司 DC voltage conversion device

Also Published As

Publication number Publication date
TW200915833A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
TW200828744A (en) Sampling circuit and detecting circuit for power converter
JP6465880B2 (en) Method and system for supplying pulsed power and data on a bus
TWI419469B (en) Regulator and synchronized pulse generator thereof
TWI326963B (en) Resonant converter and synchronous rectification driving circuit thereof
US9577543B2 (en) Constant on time (COT) control in isolated converter
JP5532794B2 (en) Synchronous rectification control device, control method, and isolated switching power supply
CN107769567A (en) Burst mode control in resonance converter
US10516340B1 (en) Communication through the flyback power transformer by the usage of the zero voltage switching pulse
CN105680694A (en) System and method for a switched-mode power supply
CN103683530B (en) A kind of data transmission method and apply its wireless charging device
WO2015118139A1 (en) Transformer communication system
TWI373954B (en) Bridge dc/dc power converting apparatus and bidirectional communication method thereof
TW200917637A (en) Synchronous rectifying method and apparatus
TW201145790A (en) Digital dynamic delay modulator and the method thereof for flyback converter
TW200945718A (en) Switching power supply apparatus with current output limit
TW200849788A (en) Method and apparatus to provide synchronous rectifying circuit for offline power converters
TW200842545A (en) Controlling apparatus for a power converter and controlling method thereof
JP6968638B2 (en) Modulating the jitter frequency as the switching frequency approaches the jitter frequency
CN109600044B (en) Power converter and control method thereof
TWM577209U (en) Power converter, primary controller, and apparatus
TW201537856A (en) Circuit with both functions of wireless power transmitter and wireless power receiver and device thereof
US20110149608A1 (en) Electrical power converters and methods of operation
KR20200059655A (en) Wireless power receiving apparatus for controlling output voltage
TW576011B (en) Power supply device
TWI277741B (en) Valley voltage detection apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees