TWI373879B - - Google Patents

Download PDF

Info

Publication number
TWI373879B
TWI373879B TW096149365A TW96149365A TWI373879B TW I373879 B TWI373879 B TW I373879B TW 096149365 A TW096149365 A TW 096149365A TW 96149365 A TW96149365 A TW 96149365A TW I373879 B TWI373879 B TW I373879B
Authority
TW
Taiwan
Prior art keywords
ion
cation
oxygen
stability
cerium
Prior art date
Application number
TW096149365A
Other languages
Chinese (zh)
Other versions
TW200929675A (en
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW096149365A priority Critical patent/TW200929675A/en
Publication of TW200929675A publication Critical patent/TW200929675A/en
Application granted granted Critical
Publication of TWI373879B publication Critical patent/TWI373879B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 發明係關於一種導體材料,特別係關於-種且右* — 丐、、·。構之尚穩定性氧化鉍系氧離子導體。 ’、 氟化 【先前技術】 源之ΐίίί不畴展錢人敎輯需之肖電量的遽增,對妒 7電池等遂成為本世紀相當重要之研究S如=== 能源的她化之優勢,因此在替代 體還ί性燃料_ :氣氣)與氧化性氣 水了並無«,其歧紅生成物為 電解中Ξ分子電解質燃料電池與固態氧化物燃料電池之 ί解=固體’因而具有較廣泛地翩空間,也成為當前的研究 前常電極與電解料由氧化物所構成,目 (Ni/YSZ) · 二屬與釔安定氧化鍅所組成之複合材料 maneanH 極彳貝原子添加的錳酸鑭(d〇Ped lanthanum lanthanum femte)" cobaltite) ^ ^ (d〇ped YS7彳電解質為釔女定氧化錯(yttna Stabmzed zirconia, 而在電操作溫度較高(約6〇0至1〇〇〇°C)’因 效率,/ 嚴苛’也因此具有較高的能源轉換 ^借私物燃料電池的高溫電化學反應過程中,陰陽極必須 L 導性與催化性質,而電解質則扮演著離子傳導的 !t命離子導電率顯成為固態電解質開發之趨勢。 1373879 氧化鉍(Bi2〇3)在800°C的高溫氧離子導電率達2.3 s/cm,約為 同溫度之釔安定氧化錯(〇.〇2 S/cm)之100倍,但卻由於高溫的抗還 ,性不佳以及相變化之原因,而無法成為主流之固態電解質材 ,。近年來,藉由緩衝層(buffer layer)的阻隔可有效地改善此一問 而使得氧化鉍系固態電解質bismuth-based solid electrolyte)之研 究而逐漸受到重視。氧化鉍之所以具有最高氧離子導電率之原 因主要在於25%之氧空缺濃度以及自由空間(free Space)較大之氟 1匕鈣(fluorite)結構,但卻由於缺陷過多,使其具有氟化妈型結構之 立方相僅能存在於高溫(723〜83〇。〇,降低至室溫則發生立方相(立 正方相(tetragonal)—單斜相(monoclinic)之相變化,因此 』關研究仍紐力於立方_合成,以及高低溫之間相變化的 乂 ’以免使用過程因體積變化過大而造成破裂,所使用之方 ίϊ ίΐ目半陽離子,藉此縮小晶格尺寸以穩定缺陷結 戴至目㈤為止H舰軒具有敎対相且維持 Ϊ i^T^^^M(yttria StabiliZed MSmUth 〇xide^SB) 疋乳化树erb晒stabilized bismmh,),由於/ 二=支險離子工缺之濃度,而使得導電率高於其他添加备 Si立方相氧化料、固態氧化物之研究,可得知若要 離子特仅_方式,關補轉子缺騎造狀飾 6 ,價陽離子與-低於五價陽 為五=離子,B為二價陽離子、^二 料,B 為二價 為鉬離子(Mc?t^該六價陽離子 為鈮二工其中該五價陽離子 )组離子(Ta )'或磷離子(p5+)。 發明,高穩定性氧化料、氧離子導體,1忖四彳H 為鈦離子(Τί,、錫離子况+)、轉子(的:或諦離?(冗 鏑離子卟勹或稀土族離子。)蝴Gd )、辑離子㈤+)、 本發明之南穩定性氧化鉍系氧離子導 為_ 子㈣)、_.2+)、_BBa2+);^;^^ 葬由ΐί^ϊί技藝人士瞭解本發明之目的 '特徵及功效’兹 並配合所附之圖式,對本發明詳加說明,說 【實施方式】 ,參考第了圖’說明習知之氧化紐導體χ光繞射圖譜 氧匕鉍導體係以添加稀土族氧化物氧化釔(γ2〇3)( _ (&203)錄化亂(Gd2〇3))後之氧化紀氧她( ^體,其t橫軸為繞射角度(2θ ),縱轴為繞射(峰 ⑺爽祕固溶體經燒結後,雖然具有立方晶系氟化^制舞 (如第一圖之下圖所示),但在還原氣氛(5%氫氣(H2) _95%氬 氣(A〇)下以40(TC進行熱處理5小時後,可發現,習知之 (Y〇.2Bi〇8)2〇3固溶體在結構上有了明顯變化,叙離子會被析出(如 ,一圖上圖之「+」符號所示),顯示習知(Y〇2Bi〇8)2〇3固溶體在低 溫(40〇。〇加熱後會產生相變化,進一步造成導電率之變化,使 結構之穩定性下降。 以下’凊參考第二(a)與(b)圖;第二(a)圖說明習知之 ,化鉍導體之掃瞄式電子顯微鏡照片圖,第二(b)圖說明習知之 氧化鉍導體在還原氣氛(5%氫氣(h2) _95%氬氣(Ar))以400°C 進行熱處理5小時後掃瞄式電子顯微鏡照片圖;其中第二圖 係在15千伏jkV)之加壓電壓、工作距離(w〇rking distance, WD)為10.2毫米(mm)之條件下,以5〇〇倍之放大倍率進行觀 察,其比例尺刻度為50μιη,第二(b)圖係在15kV之加壓電壓' WD為l〇.9mm之條件下,以3000倍之放大倍率進行觀察,其比 例尺刻度為ΙΟμιη,由第二(b)圖之箭號所示可知,習知之 (Y〇.2Bia8)2〇3固溶體在經過還原氣氛處理後,鉍金屬會被還原析 出。 第二圖,說明本發明第一實施例之氧化銀系氧離子導體X光 繞射,譜,本發明之第一實施例係為添加氧化鈮(^^203)後之氧 ,銳氧化侧溶體(^雨⑽3 ’在第一實施例中,係以一五價陽 離子為添加劑,並未添加低於五價之另一陽離子,因此在該實驗 式Bik-yAxByOj中,A為鈮離子’ x為〇 2,y為〇,d為3 4,因此 第一實施例之氧化叙系氧離子導體具有帅〇讽8)2〇3 4之化學式, 其令橫軸為繞射角度⑽),縱軸為繞射峰強度(au),本發明 ^(Nb〇.2Bi〇.8)2〇34固溶體經燒結後,具有立方晶系氟化鈣之結構(如 第三圖之下圖所示)’但在還原氣氛(5%氫氣(h2)_95%氮氣( 下以400 C進行熱處理5小賴,可魏,本發明之_卻。8)2〇3 4 固溶體在低訂加熱,並不會對結構造細難化(如第三圖之 上圖所不),顯不了本發明之(Nbo 2別〇 AOs *固溶體結構十分穩定。 1373879 接,,請參考第四(a)與(b)圖;分別說明本發明第一實 施,,氧化鉍系氧離子導體之掃瞄式電子顯微鏡照片圖,與在還 原氣氛(5%氫氣(¾) -95%氬氣(Ar))以400°C進行熱處理5 小時後掃瞄式電子顯微鏡照片圖。第四(a)圖及第四圖係 在15kV之加壓電壓下,以5〇〇〇倍之放大倍率進行觀察其比例 尺刻度為5μπι,第四(a)圖及第四(b)圖之_分別為^ 9及 |l=m。在此條件下’相較於前述之第二(b)圖之箭號所示可知, S知之(Y〇.2B1〇.8)2〇3固溶體在經過處理後,有鉍金屬被還 本發明第一實施例之(叫讽8)2。34固溶體則無明顯變化'。、’ Y 圖為本發明第二實施例之高穩定性氧化辦、氧離子導體 X光%射圖譜,其中第五圖之上半部分圖為 =加氣化鶴(W〇3)及氧化:二= 陽離^ (Y3dT子/w6)為添加劑’並添加低於六價之三價 為釔離子、Λ /在树驗式Bll+yAxByC>d巾,A為麟子,B ί Γ為y為αι,d為145,因此第二實施例之氧化 實施例(叫属成1)203,45固溶體在還ί 為繞射譜,其中縱轴為繞射角度(2θ ),橫軸 5+)進丄月Α第一實施例中’係以添加一五價銳離子⑽ 子(Bi2+)之位署~ )及一知陽離子(Υ3+)進入鉍離 化紐系氧離料體摔[°二’低本發明之高穩定性氧 離子_之庫用μ/ ^度 了該高穩定性氧化絲系氧 Β 之應用層面·。其中根據較佳實施例可知9 ,睹雜I * 铒離子(Εγ3+)、侧i 子aa )、釓離子(Gd )、 丁)、鏑離子(Dy3+)或稀土族 子為子幢爾以五價陽離 (W^·添加六價之陽離子(例如:_子⑽,或鶴離子 (2) 同時添加—六價陽離子與—低於六價之陽離子; (3) 添加五價之陽離子,· 同時添加五價陽離子與一低於五價之陽離子; (5)添加―四價陽離子;或 高結。四價_顿—胁四叙_子以達到提 中,氧化叙系氧離子導體之一較佳實施例 、中離子為銦離子(μο6+)或鶴離子(以貫施例 t ^ (#)、或磷離子(ρ5Γ^離子⑽)、銳離子(V)、组離子. f本發明之高穩定性氧化纽系氧離 (Gd )、铒離子(Εγ3+)、鋼離子(Dy3+)或稀土族^亂離子 (Ba2+)或錯離子«)。 心離子(Sr2+)、額離子 氟化發系氧離子導體具有立方 處理或室度,同時,在還原氣氛熱 測器等範乳離子導體於固態氡料導體、氧氣感 由以上較仏具體實施例之詳述係 明之特徵與精神,而並非以上述所揭清楚描述本發 發明之範8♦加以限制。相反地,其目的體實施例來對本 具相等性的麵於本發明所欲帽之專各種改變及 %阁的乾疇内。Nine, the invention: [Technical field to which the invention pertains] The invention relates to a conductor material, in particular, to - and right * - 丐, . The structure is still stable yttrium oxide oxygen ion conductor. ', fluorination [previous technology] source ΐ ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί Therefore, in the alternative body, the fuel _: gas is not oxidized with water, and the reddish product is the electrolyte in the electrolytic molecular fuel cell and the solid oxide fuel cell. It has a wide range of mantle space, and it has become the current research electrode and electrolyte material composed of oxides, and the composite material of MananH, which is composed of oxides (Ni/YSZ) and two genus and yttrium yttrium oxide. Manganese manganate (d〇Ped lanthanum lanthanum femte)" cobaltite) ^ ^ (d〇ped YS7彳 electrolyte is yttna Stabmzed zirconia, and the electrical operating temperature is higher (about 6〇0 to 1〇) 〇〇°C) 'Because of efficiency, / harshness' also has a high energy conversion. In the high-temperature electrochemical reaction process of a fuel cell, the anode and cathode must have L-conductivity and catalytic properties, while the electrolyte acts as an ion. Conducted!t ion conductivity It has become a trend of solid electrolyte development. 1373879 Bismuth oxide (Bi2〇3) has a high temperature oxygen ion conductivity of 2.3 s/cm at 800 °C, which is about the same temperature and stable oxidative error (〇.〇2 S/cm). 100 times, but due to the high temperature resistance, poor performance and phase change, it can not become the mainstream solid electrolyte material. In recent years, the buffer layer can effectively improve this problem. The research on bismuth-based solid electrolytes has been paid more and more attention. The reason why cerium oxide has the highest oxygen ion conductivity is mainly due to the 25% oxygen vacancy concentration and the free space. Fluorine fluorite structure, but due to too many defects, the cubic phase with fluorinated mother structure can only exist at high temperature (723~83〇.〇, the cubic phase occurs when it is lowered to room temperature (Li Zhengfang The phase of the tetragonal-monoclinic phase, so the research is still focused on the cubic-synthesis, and the phase change between the high and low temperatures, so as not to cause the process to be broken due to excessive volume change. The ίϊ ί ΐ 半 半 半 , , , , , , 缩小 缩小 缩小 缩小 缩小 缩小 H H H H H H H H H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Emulsified tree erb sun stabilized bismmh,), due to the concentration of / 2 = dangerous ion work, so that the conductivity is higher than other additions of Si cubic phase oxide oxides, solid oxides, it can be known that only ions _ way, off the rotor lack of riding shape decoration 6, the cation cation and - below the pentavalent yang is five = ion, B is divalent cation, ^ two material, B is bivalent molybdenum ion (Mc? t ^ The hexavalent cation is a divalent cation in which the pentavalent cation has a group ion (Ta)' or a phosphorus ion (p5+). Invention, high stability oxidizing material, oxygen ion conductor, 1 忖 tetra 彳 H is titanium ion (Τί, tin ion condition +), rotor (or: 谛 away? (redundant ion 卟勹 or rare earth ion.) Butterfly Gd), series ion (5)+), the south stable yttrium oxide oxygen ion guide of the present invention is _ child (four)), _.2+), _BBa2+); ^; ^^ burial by ΐί^ϊί skilled person understands this OBJECTS AND EFFICIENCY OF THE INVENTION The present invention will be described in detail with reference to the accompanying drawings, and the embodiments of the present invention are described with reference to the accompanying drawings which illustrate the conventional oxidized neoconductor neon light diffraction pattern oxygen enthalpy conduction system. Adding rare earth oxide yttrium oxide (γ2〇3) ( _ (& 203) recorded chaos (Gd2〇3)) after the oxidation of oxygen (^ body, its horizontal axis is the diffraction angle (2θ) The vertical axis is diffraction (peak (7) cool solid solution after sintering, although it has a cubic crystal fluorination dance (as shown in the figure below), but in a reducing atmosphere (5% hydrogen (H2 After _95% argon (A〇) is heat treated at 40 (TC for 5 hours, it can be found that the conventional (Y〇.2Bi〇8) 2〇3 solid solution has a significant change in structure. Being precipitated (eg The "+" symbol in the figure above shows the conventional (Y〇2Bi〇8)2〇3 solid solution at a low temperature (40 〇. 〇 heating will produce a phase change, further causing a change in conductivity, Decreasing the stability of the structure. The following '凊 refer to the second (a) and (b) diagrams; the second (a) diagram illustrates the conventional scanning electron microscope photo of the bismuth conductor, the second (b) A scanning electron micrograph of a conventional yttrium oxide conductor in a reducing atmosphere (5% hydrogen (h2) _95% argon (Ar)) at 400 ° C for 5 hours; wherein the second figure is at 15 kV JkV) The pressure voltage and working distance (w〇rking distance (WD) are 10.2 mm (mm), and the magnification is 5 times magnification. The scale scale is 50 μm, and the second (b) diagram Under the condition that the pressurization voltage 'WD of 15kV is l〇.9mm, and the magnification is 3000 times, the scale scale is ΙΟμιη, which is known from the arrow of the second (b) figure. Y〇.2Bia8) 2〇3 solid solution after the treatment of reducing atmosphere, the base metal will be reduced and precipitated. The X-ray diffraction and spectrum of the silver oxide-based oxygen ion conductor according to the first embodiment of the present invention, the first embodiment of the present invention is an oxygen-added yttrium oxide (^^203), and a sharp oxidation side solution (^rain (10) 3 'In the first embodiment, a pentavalent cation is used as an additive, and another cation lower than pentavalent is not added. Therefore, in the experimental formula Bik-yAxByOj, A is a cerium ion 'x is 〇2, y That is, d is 3 4, so the oxidized oxygen ion conductor of the first embodiment has a chemical formula of 8) 2 〇 3 4 , which makes the horizontal axis a diffraction angle (10)) and the vertical axis a diffraction peak. Strength (au), the present invention ^(Nb〇.2Bi〇.8) 2〇34 solid solution after sintering, has a cubic crystal calcium fluoride structure (as shown in the figure below in the third figure) Reduction atmosphere (5% hydrogen (h2) _95% nitrogen (under heat treatment at 400 C for 5 Å, can be Wei, the invention _ _. 8) 2〇3 4 The solid solution is heated at a low order, and the structure is not difficult to be made (as shown in the figure above in the third figure), and the invention is not shown (Nbo 2 〇 AOs * solid solution) The structure is very stable. 1373879, please refer to the fourth (a) and (b) drawings; respectively, illustrating the first embodiment of the present invention, a scanning electron micrograph of the yttrium oxide oxygen ion conductor, and in a reducing atmosphere ( 5% hydrogen (3⁄4) -95% argon (Ar)) is heat-treated at 400 ° C for 5 hours and then scanned by electron micrograph. The fourth (a) and fourth figures are under a voltage of 15 kV. The magnification scale is 5μπι at 5x magnification, and the __ and |l=m are respectively in the fourth (a) and fourth (b) graphs. As shown by the arrow of the second (b) diagram, it is known that the S (Z〇.2B1〇.8) 2〇3 solid solution is treated, and the base metal is further treated by the first embodiment of the present invention. (Expression 8) 2.34 solid solution has no obvious change '., 'Y Figure is a high stability oxidation office, oxygen ion conductor X-ray % emission spectrum of the second embodiment of the invention, wherein the fifth figure Half The picture shows = gasification crane (W〇3) and oxidation: two = cation ^ (Y3dT sub / w6) as additive 'and add less than hexavalent trivalent to yttrium ion, Λ / in tree test Bll + yAxByC>d towel, A is lining, B ί Γ is y is αι, d is 145, so the oxidation example of the second embodiment (called genus 1) 203, 45 solid solution is still diffraction spectrum Wherein, the vertical axis is the diffraction angle (2θ), and the horizontal axis is 5+). In the first embodiment, the 'addition of a pentavalent sharp ion (10) sub-(Bi2+) to the target is used) Υ3+) Entering the 铋 化 纽 氧 氧 [ [° 二 二 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低According to the preferred embodiment, it can be seen that 9 , doping I * 铒 ions (Εγ3+), side i aa), cesium ions (Gd), butyl), strontium ions (Dy3+) or rare earths are sub- valence Cation (W^·addition of hexavalent cations (eg: _ sub (10), or crane ion (2) simultaneously added - hexavalent cations with - hexavalent cations; (3) addition of pentavalent cations, · simultaneously Adding a pentavalent cation to a cation lower than pentavalent; (5) adding a "tetravalent cation; or a high knot. The tetravalent _ ton - flank _ _ sub to reach the middle, one of the oxidized oxygen ion conductors In a preferred embodiment, the medium ions are indium ions (μο6+) or crane ions (for example, t ^ (#), or phosphorus ions (ρ5Γ^ ions (10)), sharp ions (V), group ions. Stable oxidation of oxygenation (Gd), strontium ions (Εγ3+), steel ions (Dy3+) or rare earth ions (Ba2+) or mis-ions «). Heart ions (Sr2+), front-ion fluorinated oxygen The ionic conductor has a cubic treatment or chamber degree, and at the same time, in a reducing atmosphere, a thermal ionizer, etc. The features and spirit of the present invention are not limited by the above description of the specific embodiments of the present invention. Conversely, the embodiments of the present invention are equivalent to the present invention. The various changes in the caps of the caps are within the scope of the cabinet.

I 圖式簡單說明】 第-圖為習知之氣化 Μ 第二(a)圖為習知之訇匕^·!先、-射圖瑨; 第二(b)圖為習知之氧化掃f式電^微鏡照片圖; 式電子顯微鏡照片圖; 、導體,,望逛原氣氛熱處理後之掃瞄 X光本發明第1施例之高穩定性氧化㈣氧離子導體 導體之掃H電子顯微鏡實H之高敎性氧化料、氧離子 第四(b)圖為本發明篦—° 1及 導體經還原氣氛熱處理後施高穩定性氧化紐系氧離子 第五圖為本發明第子顯微鏡照片圖;及 X光繞射圖譜。 爿之1^穩定性氧化㈣氧離子導體 【主要元件符號說明】I. Simple description of the figure] The first picture is the conventional gasification Μ The second (a) picture is the conventional 訇匕^·! first, the - 瑨 瑨; the second (b) is the conventional oxidized sweep f-type ^Micro-mirror photo; Electron micrograph; Electron, scanning, X-ray after heat treatment in the original atmosphere High-stability oxidation of the first embodiment of the invention (IV) Sweeping H-electron microscope of oxygen ion conductor The fourth (b) diagram of the high-temperature oxidizing material and the oxygen ion is the first micrograph of the present invention, and the fifth embodiment of the present invention is a high-stability oxidized oxidized oxygen ion after heat treatment in a reducing atmosphere; And X-ray diffraction map.爿1 1 stability oxidation (four) oxygen ion conductor [main component symbol description]

Claims (1)

1373879 13738791373879 1373879 、申請專利範圍: 1· 一種高穩定性氧化鉍系氧離子導體,係 5相氧化Μ主财,添加―第—陽離子及 2約結構之 劑,該第-陽離子為離子半徑小或高價數離子為添加 離子之價數低於該f陽離子,其巾該第二陽 (Bi3+)位置,改變氧空缺濃度及鉍離子離子 氧離子導體結構之穩定度及導電性。又以棱尚氣化鉍系 2. 利範圍第i項所述的高穩紐氧化辦 其^第—陽離子為四價陽離子、五價陽離子‘離子導體’ 其中該第二陽離子為二價陽離子、三價糸1子導體, 五價陽離子。 俏險離子、四價陽離子或 4. ΐΐϊί利範圍第2項所述的高穩定性氧化叙系氧離+塞興 ,、中该六價陽離子為鉬離子(Μ〇6+)或雜子/w6+)。體’ 5. ^申請專利範圍第2項所述的高穩定性氧化 ^ 7中5f五價陽離子為鈮離子(Nb5+)、釩離子(V5+子導2 ’ (Ta ) '或鱗離子(p5+)。 )、组離子 6· it:專利械第2項所述的高穩定性氧化轉氧離子導濟 四,離子為鈦離子(Ti4+)、錫離子(S冗 (Zr )、或鎊離子(Te4+)。 )氦離子 專利範_ 3項所述的高穩定性氧化㈣氧 。中f二價陽離子為釔離子(Y3+)、鑭離子(La3+t S ’ 8 ^^辑離子(Er3+)、鏑離子(%3+)或稀土“子 .Ϊίϊ ?1陽U 3項所述的Ϊ穩定性氧她系氧離子導體, 為_子似)娜子(sr2+)、鋇離子⑽+) 9. ΪΙ”圍第3項所述的高穩定性氧化料氧離子導f, ^五,陽離子為錕離子⑽5+)、奴離子(V5+)、组離子 (Ta )、或磷離子(P5+)。 J k離子 14 1373879 _ . 100年10月14曰修正替換頁 • 10.如申請專利範圍第3項所述的高穩定性氧化鉍系氧離子導體, 其中該四價陽離子為鈦離子(Ti4+)、錫離子(Sn4+)、锆離子 (Zr4+)、或鎊離子(Te4+)。Patent application scope: 1. A high-stability yttrium oxide oxygen ion conductor, which is a 5-phase cerium oxide main additive, adding a "first-cation" and a two-about structure agent, the first cation is a small ionic radius or a high valence ion In order to add ions, the valence is lower than the f cation, and the second positive (Bi3+) position of the towel changes the oxygen vacancy concentration and the stability and conductivity of the erbium ion ionic oxygen ion conductor structure. Further, the cation is a tetravalent cation, a pentavalent cation 'ion conductor', wherein the second cation is a divalent cation, Trivalent 糸 1 subconductor, pentavalent cation. A high-stability oxidative oxygenation + Sexing as described in item 2 of the 俏 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利 利W6+). Body ' 5. ^ The high stability oxidation described in item 2 of the patent application scope 5 5f pentavalent cation is cerium ion (Nb5+), vanadium ion (V5 + sub-guide 2 ' (Ta) ' or scaly ion (p5+) .), group ion 6· it: the high-stability oxidized oxygen-transporting ion guide described in the second item of the patented instrument, the ion is titanium ion (Ti4+), tin ion (S redundancy (Zr), or pound ion (Te4+) )) Highly stable oxidized (tetra) oxygen as described in the bismuth ion patent. The f-valent cation in the middle f is a cerium ion (Y3+), a cerium ion (La3+t S '8 ^^ ion (Er3+), a cerium ion (%3+) or a rare earth "sub. Ϊίϊ ?1 yang U 3 term" The Ϊ-stabilized oxygen is an oxygen ion conductor, which is _子like) nar (sr2+), ytterbium ion (10)+) 9. ΪΙ". The high-stability oxidizing agent oxygen ion derivative f, as described in item 3, ^5 The cation is cerium ion (10) 5+), slave ion (V5+), group ion (Ta), or phosphorus ion (P5+). Jk Ion 14 1373879 _ . October 2014 14 曰 Amendment Replacement Page • 10. The high stability yttrium oxide oxygen ion conductor according to claim 3, wherein the tetravalent cation is titanium ion (Ti4+) Tin ion (Sn4+), zirconium ion (Zr4+), or pound ion (Te4+). 1515
TW096149365A 2007-12-21 2007-12-21 High stability bismuth oxide-based ionic conductor TW200929675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096149365A TW200929675A (en) 2007-12-21 2007-12-21 High stability bismuth oxide-based ionic conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096149365A TW200929675A (en) 2007-12-21 2007-12-21 High stability bismuth oxide-based ionic conductor

Publications (2)

Publication Number Publication Date
TW200929675A TW200929675A (en) 2009-07-01
TWI373879B true TWI373879B (en) 2012-10-01

Family

ID=44864593

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096149365A TW200929675A (en) 2007-12-21 2007-12-21 High stability bismuth oxide-based ionic conductor

Country Status (1)

Country Link
TW (1) TW200929675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165268A (en) * 2019-06-20 2019-08-23 合肥学院 A kind of calcium carbonate collaboration promotion bismuth oxide method for preparing composite solid electrolyte
US11186494B2 (en) 2017-09-29 2021-11-30 Cornell University Method of making room temperature stable δ-phase bismuth(III) oxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110292B (en) * 2017-12-28 2020-03-10 成都新柯力化工科技有限公司 Fluorinated bismuth oxide electrolyte for fuel cell and preparation method thereof
WO2023140816A1 (en) * 2022-01-24 2023-07-27 T. C. Erci̇yes Üni̇versi̇tesi̇ Lanthanide (iii) oxide added bismuth (iii) oxide solid electrolyte material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186494B2 (en) 2017-09-29 2021-11-30 Cornell University Method of making room temperature stable δ-phase bismuth(III) oxide
CN110165268A (en) * 2019-06-20 2019-08-23 合肥学院 A kind of calcium carbonate collaboration promotion bismuth oxide method for preparing composite solid electrolyte

Also Published As

Publication number Publication date
TW200929675A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
Zheng et al. Solid oxide electrolysis of H 2 O and CO 2 to produce hydrogen and low-carbon fuels
Lu et al. Mo-doped Pr0. 6Sr0. 4Fe0. 8Ni0. 2O3-δ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells
Rajendran et al. Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs)
Tang et al. Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells
Fergus Lanthanum chromite-based materials for solid oxide fuel cell interconnects
Liu et al. Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering
Huang et al. Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+ δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs
Zakaria et al. Advanced modification of Scandia‐stabilized zirconia electrolytes for solid oxide fuel cells application—a review
Tang et al. Electrochemical performance of nanostructured LNF infiltrated onto LNO cathode for BaZr0. 1Ce0. 7Y0. 2O3-δ–based solid oxide fuel cell
Mahato et al. Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: a review
Vinchhi et al. Recent advances on electrolyte materials for SOFC: A review
Zhu et al. Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells
Xu et al. Oxide composite of La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells
Ma et al. Redox-stable symmetrical solid oxide fuel cells with exceptionally high performance enabled by electrode/electrolyte diffuse interface
Xu et al. Electrochemical performance of highly active ceramic symmetrical electrode La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ-CeO2 for reversible solid oxide cells
TWI373879B (en)
Yi et al. Perovskite-based nanocomposites as high-performance air electrodes for protonic ceramic cells
JP6573243B2 (en) Air electrode composition, air electrode and fuel cell including the same
Afroze et al. Solid oxide fuel cell (SOFC); A new approach of energy generation during the pandemic COVID-19
US20170162896A1 (en) Layered Electrolytes and Modules for Solid Oxide Cells
Xie et al. Review on Fe-based double perovskite cathode materials for solid oxide fuel cells
He et al. A new Pr0. 25Nd0. 25Sr0. 5MnO3-δ cathode for proton-conducting solid oxide fuel cells
Yang et al. Tuning Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode to high stability and activity via Ce-doping for ceramic fuel cells
He et al. Unveiling the effect of dopants on the hydration reaction and proton conduction of Nd and Y Co-doped BaZrO3 in solid oxide fuel cells
Zhang et al. A-site deficient Sr0. 9Ti0. 3Fe0. 7O3− δ perovskite: A high stable cobalt-free oxygen electrode material for solid oxide electrochemical cells with excellent electrocatalytic activity and CO2 tolerance

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees