TWI364836B - Resistance memory and method for manufacturing the same - Google Patents

Resistance memory and method for manufacturing the same Download PDF

Info

Publication number
TWI364836B
TWI364836B TW96144383A TW96144383A TWI364836B TW I364836 B TWI364836 B TW I364836B TW 96144383 A TW96144383 A TW 96144383A TW 96144383 A TW96144383 A TW 96144383A TW I364836 B TWI364836 B TW I364836B
Authority
TW
Taiwan
Prior art keywords
conductive material
resistive memory
oxide
vapor deposition
manufacturing
Prior art date
Application number
TW96144383A
Other languages
Chinese (zh)
Other versions
TW200924166A (en
Inventor
Heng Yuan Lee
Ching Chiun Wang
Pang Hsu Chen
Tai Yuan Wu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96144383A priority Critical patent/TWI364836B/en
Publication of TW200924166A publication Critical patent/TW200924166A/en
Application granted granted Critical
Publication of TWI364836B publication Critical patent/TWI364836B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

1364836 /Μ年/b月巧曰條正替換頁 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種電阻式記憶體(resistance memory )以及其製造方法,尤其是有關於一種使用與CMOS 製程相容之材料的電極之電阻式記憶體以及製造該電阻式 記憶體之方法,以降低元件的製程整合的困難度。 【先前技術】 氧化物電阻式記憶體通常需要使用鉑(Pt)作為電極。 但由於鉑不易與其他元素反應,因此會造成元件在蝕刻上 非常的困難,而使得製程整合的難度提高許多。此外,單 價高的鉑也會造成整體的製造成本上升。 圖一為曰本富士通(Fujitsu)在2006 SSDM會議上所 發表的鉑/氧化鈦/氮化鈦(Pt/Ti02/TiN )的電阻式記憶體之 結構示意圖。在圖一中,該電阻式記憶體包括氮化鈦所形 成之下電極11、氧化鈦所形成之介電層12以及鉑所形成 之上電極13。該電阻式記憶體雖然可以呈現出不錯的電阻 轉換特性,但是鉑電極的使用將會造成元件在製程整合的 難度提高與製造成本的增加。 因此,為了改善上述缺失,亟需一種電阻式記憶體以 及其製造方法,使用與CMOS製程相容之材料的電極,以 降低元件的製程整合的困難度。 【發明内容】 本發明之一目的在於提供一種電阻式記憶體以及其製 5 1364836 年/>月A曰條正替換頁 造方法,使用與CMOS製程相容之材料的電極,以降低元 件的製程整合的困難度。 本發明之另一目的在於提供一種電阻式記憶體以及其 製造方法,使用兩種不同功函數的電極,其中功函數較大 的金屬做為元件的下電極,而功函數較低的金屬做為元件 的上電極。此元件在經過適當的熱處理後,會形成能穩定 操作的雙極性電阻轉換元件。 為達上述目的,本發明提供一種製造電阻式記憶體之 方法,包括以下步驟: 提供一基板; 依序沉積一第一導電材料、一非化學計量比氧化物以及 一第二導電材料於該基板上;以及 進行一熱處理程序; 其中該第一導電材料之功函數高於該第二導電材料之 功函數。 為達上述目的,本發明提供一種電阻式記憶體,包括: 一第一導電材料所形成之下電極、一非化學計量比氧化 物所形成之介電層以及一第二導電材料所形成之上 電極; 其中該第·一導電材料之功函數兩於該第二導電材料之 功函數。 【實施方式】 為使貴審查委員能對本發明之特徵、目的及功能有 更進一步的認知與瞭解,茲配合圖式詳細說明如後。 1364836 年%修正替換頁 在本發明中,係提供一種電阻式記憶體以及其製造方 法,一種電阻式記憶體以及其製造方法,使用與CMOS製 程相容之材料的電極,以降低元件的製程整合的困難度。 圖二為本發明之電阻式記憶體之橫截面示意圖。在圖 二中,該電阻式記憶體包括一第一導電材料所形成之下電 極21、一非化學計量比氧化物所形成之介電層22以及一 第二導電材料所形成之上電極23。其中,該第一導電材料 之功函數1¾於該第二導電材料之功函數。 在一具體實施例中,上電極23採用功函數較下電極 21低的導電材料。倘若下電極為氮化鈦(TiN)、釕(Ru)、 氮化鈕(TaN)等功率函數介於4·5至5.0eV之材料,則上 電極則可為鈦(Ti)、鋁(A1)、鋁銅(AlCu)合金等功 率函數介於4.0至4.5之材料。上述下電極與下電極之導電 材料的沉積方式可為物理氣相沉積(PVD)或化學氣相沉 積(CVD ),以形成厚度為5nm至500nm之薄膜。例如, 上、下電極可以分別採用物理氣相沉積所成長的鋁銅合金 和氮化鈦。 在一具體實施例中,介電層22則使用非化學計量比之 金屬氧化物,如氧化鈦(TiOx)、氧化铪(HfOx)、氧化 銅(CuOx)、氧化鋁(A10x)、氧化鈮(NbOx)以及氧化 锆(ZrOx)等。非化學計量比氧化物係以物理氣相沉積 (PVD)、化學氣相沉積(CVD)以及金屬氧化方式之一 者形成,以形成厚度為l〇nm至100nm之薄膜。例如,可 利用原子層化學氣相沉積(ALD)所形成的非化學計量比 氧化給。 7 1364836 _ |ί)ό年月负曰絛正替換頁 在完成記憶體早元的薄膜沉積後’為了使元件產生電 阻轉換的特性,須進行一道熱處理程序。在一具體實施例 中,熱處理程序可為爐管加熱或是快速熱退火(RTA), 處理溫度可為300至800°C,熱處理時間可為l〇s至 10000s,在氮氣(N2)、氮氣與氫氣(N2+H2)、氬(Ar) 以及氬與氫氣(Ar+H2)之一種環境中進行。 圖三為本發明之電阻式記憶體之元件特性示意圖。在 圖三中,本發明之電阻式記憶體呈現穩定的電阻轉換的特 性。 圖四為本發明之電阻式記憶體之寫入/抹除測試結 果。其中,該電阻式記憶體係使用鋁銅合金/氧化铪/氧 化鈦(AlCu/HfO/TiN)結構作為展示範例。可知本發明之 電阻式記憶體除了因採用鋁銅合金與氧化鈦而可以降低元 件的製程整合難度與製作成本外,其穩定的寫入/抹除次 數(>104)也超越一般採用鉑電極元件的寫入/抹除次數 (<103)。 綜上所述,當知本發明提供一種電阻式記憶體以及其製 造方法,一種電阻式記憶體以及其製造方法,使用與CMOS 製程相容之材料的電極,以降低元件的製程整合的困難 度。故本發明實為一富有新穎性、進步性,及可供產業利 用功效者,應符合專利申請要件無疑,爰依法提請發明專 利申請,懇請貴審查委員早曰賜予本發明專利,實感德 便。 惟以上所述者,僅為本發明之較佳實施例而已,並非 用來限定本發明實施之範圍,即凡依本發明申請專利範圍 8 1364836 / μ年曰條正替換頁 所述之形狀、構造、特徵、精神及方法所為之均等變化與 修_,均應包括於本發明之申請專利範圍内。 1364836 车丨厶月幻日修正替換頁 【圖式簡單說明】 圖一為一習知電阻式記憶體之橫截面示意圖; 圖二為本發明之電阻式記憶體之橫截面示意圖; 圖三為本發明之電阻式記憶體之元件特性示意圖;以及 圖四為本發明之電阻式記憶體之寫入/抹除測試結果。 【主要元件符號說明】 11 下電極 12 介電層 13 上電極 21 第一導電層 22 介電層 第二導電層 231364836 / leap year / b month clever strip replacement page 9 , invention description: [Technical field of the invention] The present invention relates to a resistive memory (resistance memory) and a method of manufacturing the same, and particularly relates to a use A resistive memory of an electrode of a material compatible with a CMOS process and a method of manufacturing the resistive memory to reduce the difficulty of process integration of the device. [Prior Art] Oxide resistive memory generally requires the use of platinum (Pt) as an electrode. However, since platinum is not easily reacted with other elements, it is extremely difficult to etch the components, which makes the process integration much more difficult. In addition, high-priced platinum will also increase overall manufacturing costs. Figure 1 shows the structure of a resistive memory of platinum/titanium oxide/titanium nitride (Pt/Ti02/TiN) published by Fujitsu at the 2006 SSDM conference. In Fig. 1, the resistive memory includes an electrode 11 formed of titanium nitride, a dielectric layer 12 formed of titanium oxide, and an upper electrode 13 formed of platinum. Although the resistive memory can exhibit good resistance conversion characteristics, the use of the platinum electrode will increase the difficulty of component integration in the process and increase the manufacturing cost. Therefore, in order to improve the above-mentioned defects, there is a need for a resistive memory and a method of manufacturing the same, which uses an electrode of a material compatible with a CMOS process to reduce the difficulty of process integration of the device. SUMMARY OF THE INVENTION An object of the present invention is to provide a resistive memory and a method for fabricating the same, which uses a material compatible with a CMOS process to reduce the components. The difficulty of process integration. Another object of the present invention is to provide a resistive memory and a method of fabricating the same, using electrodes of two different work functions, wherein a metal having a larger work function is used as a lower electrode of the element, and a metal having a lower work function is used as The upper electrode of the component. This component, after proper heat treatment, forms a bipolar resistance-switching element that operates stably. To achieve the above object, the present invention provides a method of fabricating a resistive memory, comprising the steps of: providing a substrate; sequentially depositing a first conductive material, a non-stoichiometric oxide, and a second conductive material on the substrate And performing a heat treatment process; wherein a work function of the first conductive material is higher than a work function of the second conductive material. To achieve the above object, the present invention provides a resistive memory comprising: a lower electrode formed by a first conductive material, a dielectric layer formed of a non-stoichiometric oxide, and a second conductive material formed thereon An electrode; wherein a work function of the first conductive material is equal to a work function of the second conductive material. [Embodiment] In order to enable the reviewing committee to have a further understanding and understanding of the features, objects and functions of the present invention, the detailed description will be made in conjunction with the drawings. 1364836% Correction Replacement Page In the present invention, there is provided a resistive memory and a method of fabricating the same, a resistive memory and a method of fabricating the same using an electrode of a material compatible with a CMOS process to reduce process integration of components The difficulty. 2 is a schematic cross-sectional view of a resistive memory of the present invention. In FIG. 2, the resistive memory comprises a lower electrode 21 formed by a first conductive material, a dielectric layer 22 formed by a non-stoichiometric oxide, and an upper electrode 23 formed by a second conductive material. Wherein the work function of the first conductive material is a work function of the second conductive material. In a specific embodiment, the upper electrode 23 is made of a conductive material having a lower work function than the lower electrode 21. If the lower electrode is a material having a power function of 4·5 to 5.0 eV such as titanium nitride (TiN), ruthenium (Ru), or nitride button (TaN), the upper electrode may be titanium (Ti) or aluminum (A1). ), aluminum-copper (AlCu) alloy and other materials with a power function between 4.0 and 4.5. The conductive material of the lower electrode and the lower electrode may be deposited by physical vapor deposition (PVD) or chemical vapor deposition (CVD) to form a film having a thickness of 5 nm to 500 nm. For example, the upper and lower electrodes may be respectively formed by physical vapor deposition of an aluminum-copper alloy and titanium nitride. In a specific embodiment, the dielectric layer 22 uses a non-stoichiometric ratio of metal oxides such as titanium oxide (TiOx), hafnium oxide (HfOx), copper oxide (CuOx), aluminum oxide (A10x), and antimony oxide ( NbOx) and zirconia (ZrOx) and the like. The non-stoichiometric oxide is formed by one of physical vapor deposition (PVD), chemical vapor deposition (CVD), and metal oxidation to form a film having a thickness of from 10 nm to 100 nm. For example, non-stoichiometric oxidation formed by atomic layer chemical vapor deposition (ALD) can be used. 7 1364836 _ | ί) ό 月 替换 替换 替换 替换 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在In a specific embodiment, the heat treatment process may be furnace tube heating or rapid thermal annealing (RTA), the treatment temperature may be 300 to 800 ° C, the heat treatment time may be l 〇 s to 10000 s, in nitrogen (N 2 ), nitrogen. It is carried out in an environment of hydrogen (N2+H2), argon (Ar), and argon and hydrogen (Ar+H2). Fig. 3 is a schematic view showing the characteristics of the components of the resistive memory of the present invention. In Fig. 3, the resistive memory of the present invention exhibits stable resistance conversion characteristics. Figure 4 is a graph showing the write/erase test results of the resistive memory of the present invention. Among them, the resistive memory system uses an aluminum-copper alloy/yttria/titanium oxide (AlCu/HfO/TiN) structure as an example of display. It can be seen that the resistive memory of the present invention can reduce the process integration difficulty and the manufacturing cost of the device by using aluminum-copper alloy and titanium oxide, and the stable write/erase times (>104) exceeds the general use of the platinum electrode. Number of write/erase times of the component (<103). In summary, the present invention provides a resistive memory and a method of fabricating the same, a resistive memory and a method of fabricating the same, using an electrode of a material compatible with a CMOS process to reduce the difficulty of process integration of the device. . Therefore, the present invention is truly novel, progressive, and available for industrial use. It should be in accordance with the requirements of the patent application, and the application for invention patents should be filed according to law, and the reviewing committee is required to give the invention patent as soon as possible. However, the above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the practice of the present invention, that is, the shape described in the patent application section 8 1364836 / μ Equivalent changes and modifications to the structure, features, spirits, and methods are intended to be included in the scope of the invention. 1364836 丨厶 幻 幻 修正 修正 修正 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 364 364 364 364 364 364 364 364 364 364 364 364 364 ; 364 ; 364 ; ; ; ; 364 ; 364 A schematic diagram of the element characteristics of the resistive memory of the invention; and FIG. 4 is a result of the write/erase test of the resistive memory of the present invention. [Main component symbol description] 11 Lower electrode 12 Dielectric layer 13 Upper electrode 21 First conductive layer 22 Dielectric layer Second conductive layer 23

Claims (1)

-月巧時正替換頁 十、申請專利範圍: n電:式記憶體之方法,包括以下步驟: 依序沉積一第一導電材料、— —馀,旨♦ 非化于S十里比氧化物以及 、一第一導电材料於該基板上;以及 進行一熱處理程序; 其導電材料之功函數高於該第二導電材料之 2·ί,申=專利範圍第1項所述之製造電阻式記憶體之方 、中"亥第一導電材料之功函數介於4.5至5.0ev,而 °〆苐二導電材料之功函數介於4.0至4.5eV。 、:申睛專利範圍第2項所述之製造電阻式記憶體之方 二’,、中該第-導電材料係以氮化欽(TiN)、舒(㈣、 氮化组(TaN)以及其混合物之一者形成。 如申請專利範圍第3項所述之製造電阻式記憶體之方 法其中該第一導電材料係以物理氣相沉積(pvD)以 及化學氣相沉積(CVD)之一者形成。 如申咕專利範圍第2項所述之製造電阻式記憶體之方 法,其中該第二導電材料係以鈦(Ti)、鋁(A〇、鋁 鋼(AlCu)合金以及其混合物之一者形成。 如申請專利範圍第5項所述之製造電阻式記億體之方 法’其中該第一導電材料係以物理氣相沉積(PVD )以 及化學氣相沉積(C VD )之一者形成。 如申請專利範圍第1項所述之製造電阻式記憶體之方 法’其中該非化學計量比氧化物係以氧化鈦(Ti〇j、 卑0_月力曰修正替換頁 、- 氧化給(HfOx)、氧化銅(Cu〇j、氧化鋁⑷〇〇、 氧化鈮(NbOx)以及氧化鍅(Zr〇J之一者形成。Χ 8.如申請專利範圍第7項所述之製造電阻式記憶體之方 法,其中該非化學計量比氧化物係以物理氣相沉積 (PVD)、化學氣相沉積(CVD)以及金屬氧化方式之 一者形成。 •如令睛專利範圍第8項所述之製造電阻式記憶體之方 法,其中該熱處理程序係以爐管加熱、快速熱退火() ,一種方式’在氮氣(n2)、氮氣與氫氣(n2+H2)、 氬(Ar)以及氬與氫氣(Ar+H2)之一種環境中進行。 .種電阻式s己憶體,具有一電容結構,其包括: 一第一導電材料所形成之下電極、一非化學計量比氧化 物所形成之介電層以及一第二導電材料所形成之上 電極; 其中該第一導電材料之功函數高於該第二導電材料之 功函數。 U.如申請專利範圍第1〇項所述之電阻式記憶體,其中該 第一導電材料之功函數介於4.5至5.0eV,而該第二導電 材料之功函數介於4.〇至4.5eV。 12、如申請專利範圍第11項所述之電阻式記憶體,其中該 第導電材料係以氮化鈦(TiN)、釕(Ru )、氮化组 (TaN )以及其混合物之一者形成。 13·如申請專利範圍第12項所述之電阻式記憶體,其中該 第一導電材料係以物理氣相沉積(PVD)以及化學氣相 沉積(CVD)之一者形成。 12 1364836 ___ • - 年日修正替換頁 14. 如申請專利範圍第11項所述之電阻式記憶體,其中該 第二導電材料係以鈦(Ti)、鋁(A1)、鋁銅(AlCu) 合金以及其混合物之一者形成。 15. 如申請專利範圍第14項所述之電阻式記憶體,其中該 第一導電材料係以物理氣相沉積(PVD)以及化學氣相 沉積(CVD)之一者形成。 16. 如申請專利範圍第10項所述之電阻式記憶體,其中該 非化學計量.比氧化物係以氧化鈦(TiOx )、氧化铪 (HfOx)、氧化銅(CuOx)、氧化鋁(A10x)、氧化鈮 (NbOx)以及氧化锆(ZrOx)之一者形成。 17. 如申請專利範圍第16項所述之電阻式記憶體,其中該 非化學計量比氧化物係以物理氣相沉積(PVD)、化 學氣相沉積(CVD)以及金屬氧化方式之一者形成。 13 1364836 车月^曰條正替換頁 七、 指定代表圖: (一) 本案指定代表圖為:第(二)圖。 (二) 本代表圖之元件符號簡單說明: 21 第一導電層 22 介電層 23 第二導電層 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式:- Replacement page 10 at the time of the month, the scope of application for patents: n electricity: the method of memory, including the following steps: sequentially deposit a first conductive material, - 馀, ♦ not to S Siri oxide and a first conductive material on the substrate; and performing a heat treatment process; the work function of the conductive material is higher than the second conductive material, and the resistive memory is manufactured according to claim 1 of the patent scope The work function of the first and second conductive materials of the body is between 4.5 and 5.0 ev, and the work function of the second conductive material is between 4.0 and 4.5 eV. The method of manufacturing a resistive memory according to item 2 of the scope of the patent application, wherein the first conductive material is a nitrided (TiN), a (four), a nitrided group (TaN), and The method of manufacturing a resistive memory according to claim 3, wherein the first conductive material is formed by one of physical vapor deposition (pvD) and chemical vapor deposition (CVD). The method of manufacturing a resistive memory according to claim 2, wherein the second conductive material is one of titanium (Ti), aluminum (A〇, aluminum steel (AlCu) alloy, and a mixture thereof The method of manufacturing a resistive type of body described in claim 5, wherein the first conductive material is formed by one of physical vapor deposition (PVD) and chemical vapor deposition (C VD ). The method for manufacturing a resistive memory according to claim 1, wherein the non-stoichiometric oxide is made of titanium oxide (Ti〇j, 00_月力曰 corrected replacement page, - oxidized to (HfOx) , copper oxide (Cu〇j, alumina (4) bismuth, oxygen铌(NbOx) and yttrium oxide (formed by Zr〇J. The method of manufacturing a resistive memory according to claim 7, wherein the non-stoichiometric oxide is physically vapor deposited (PVD), chemical vapor deposition (CVD), and metal oxidation. The method of manufacturing a resistive memory according to the invention of claim 8, wherein the heat treatment process is performed by heating the furnace tube. Rapid thermal annealing (), a method 'in nitrogen (n2), nitrogen and hydrogen (n2+H2), argon (Ar) and argon and hydrogen (Ar + H2) in an environment. The body has a capacitor structure, comprising: a lower electrode formed by a first conductive material, a dielectric layer formed by a non-stoichiometric oxide, and an upper electrode formed by a second conductive material; wherein the first The work function of the conductive material is higher than the work function of the second conductive material. U. The resistive memory of claim 1, wherein the first conductive material has a work function of 4.5 to 5.0 eV. And the second conductive material The work function is in the range of 4. 〇 to 4.5 eV. The resistive memory according to claim 11, wherein the first conductive material is titanium nitride (TiN), ruthenium (Ru), nitrided group. (TaN) and one of the mixture thereof. The resistive memory of claim 12, wherein the first conductive material is physically vapor deposited (PVD) and chemical vapor deposited (CVD) The one of the resistive memory of claim 11, wherein the second conductive material is titanium (Ti), aluminum (A1). , aluminum copper (AlCu) alloy and one of its mixtures. 15. The resistive memory of claim 14, wherein the first conductive material is formed by one of physical vapor deposition (PVD) and chemical vapor deposition (CVD). 16. The resistive memory of claim 10, wherein the non-stoichiometric ratio oxide is titanium oxide (TiOx), hafnium oxide (HfOx), copper oxide (CuOx), aluminum oxide (A10x). It is formed by one of cerium oxide (NbOx) and zirconia (ZrOx). 17. The resistive memory of claim 16, wherein the non-stoichiometric oxide is formed by one of physical vapor deposition (PVD), chemical vapor deposition (CVD), and metal oxidation. 13 1364836 Che Yue ^曰条正换页 七. Designated representative map: (1) The representative representative of the case is: (2). (2) Brief description of the component symbols of this representative figure: 21 First conductive layer 22 Dielectric layer 23 Second conductive layer 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96144383A 2007-11-23 2007-11-23 Resistance memory and method for manufacturing the same TWI364836B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96144383A TWI364836B (en) 2007-11-23 2007-11-23 Resistance memory and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96144383A TWI364836B (en) 2007-11-23 2007-11-23 Resistance memory and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200924166A TW200924166A (en) 2009-06-01
TWI364836B true TWI364836B (en) 2012-05-21

Family

ID=44728901

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96144383A TWI364836B (en) 2007-11-23 2007-11-23 Resistance memory and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI364836B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472596B2 (en) 2013-12-27 2016-10-18 Taiwan Semiconductor Manufacturing Co., Ltd. Metal line connection for improved RRAM reliability, semiconductor arrangement comprising the same, and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472596B2 (en) 2013-12-27 2016-10-18 Taiwan Semiconductor Manufacturing Co., Ltd. Metal line connection for improved RRAM reliability, semiconductor arrangement comprising the same, and manufacture thereof
US9893122B2 (en) 2013-12-27 2018-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Metal line connection for improved RRAM reliability, semiconductor arrangement comprising the same, and manufacture thereof

Also Published As

Publication number Publication date
TW200924166A (en) 2009-06-01

Similar Documents

Publication Publication Date Title
CN100388488C (en) Semiconductor integrated circuit devices having a hybrid dielectric layer and methods of fabricating the same
TWI338331B (en) Method for forming tetragonal zirconium oxide layer and method for fabricating capacitor having the same
TWI491033B (en) Method for fabricating resistive memory device
US7735206B2 (en) Method for forming a capacitor dielectric and method for manufacturing capacitor using the capacitor dielectric
US7888726B2 (en) Capacitor for semiconductor device
TWI274379B (en) MIM capacitor structure and method of manufacturing the same
JP5278717B1 (en) Solid state electronic equipment
KR102179912B1 (en) Thin film transistor and method for manufacturing thin film transistor
JP2007013086A (en) Nano-mixed dielectric film, capacitor having the same, and its manufacturing method
US9224947B1 (en) Resistive RAM and method of manufacturing the same
TW201133644A (en) Method for adjusting the threshold voltage of a gate stack of a PMOS device
KR101942606B1 (en) Method for forming resistive switching memory elements
TW201539814A (en) Resistive random access memory and method of fabricating the same
TWI364836B (en) Resistance memory and method for manufacturing the same
JP2017509147A (en) Diffusion-resistant electrostatic clamp
JP2014022549A (en) Thin film transistor and manufacturing method of thin film transistor
Han et al. Effect of electrode and substrate on the fatigue behavior of PZT thick films fabricated by aerosol deposition
US9099430B2 (en) ZrO-based high K dielectric stack for logic decoupling capacitor or embedded DRAM
CN100565881C (en) Metal-insulator-metal type capacitance structure and manufacture method thereof
CN101604626B (en) Method for manufacturing semiconductor capacitance element
US20110038094A1 (en) Capacitor
TWI710527B (en) Oxide dielectric and manufacturing method thereof, and solid-state electronic device and manufacturing method thereof
US10475575B2 (en) In-situ oxidized NiO as electrode surface for high k MIM device
Zhang et al. High-performance MIM capacitors using HfLaO-based dielectrics
US20210098596A1 (en) Thin film structure and electronic device including the same