TWI364735B - - Google Patents

Download PDF

Info

Publication number
TWI364735B
TWI364735B TW96100381A TW96100381A TWI364735B TW I364735 B TWI364735 B TW I364735B TW 96100381 A TW96100381 A TW 96100381A TW 96100381 A TW96100381 A TW 96100381A TW I364735 B TWI364735 B TW I364735B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
driving
data
overdrive
potential
Prior art date
Application number
TW96100381A
Other languages
Chinese (zh)
Other versions
TW200830243A (en
Original Assignee
Sitronix Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sitronix Technology Corp filed Critical Sitronix Technology Corp
Priority to TW96100381A priority Critical patent/TW200830243A/en
Publication of TW200830243A publication Critical patent/TW200830243A/en
Application granted granted Critical
Publication of TWI364735B publication Critical patent/TWI364735B/zh

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

1364735 九、發明說明: ’ 【發明所屬之技術領域】 一種被動矩陣式液晶顯示器的驅動技術,尤指一種針 對扭轉線型(TN)及超扭轉線型(STN)被動矩陣式液晶顯示 •器彳1^13)上,確實能有效地縮短液晶反應時間,改善動態 晝面模糊(Blurring)的現象。 【先前技術】 由於液晶顯示器的輕薄短小的特性,且比傳統CRT顯 • 示器更低的電力消耗,使得近年來液晶顯示器已逐漸取代 CRT顯示器。 液晶平面顯示器若依驅動顯示方法’可分為被動矩陣1364735 IX, invention description: 'Technical field of invention> A driving technology of passive matrix liquid crystal display, especially for a twisted line type (TN) and super twisted line type (STN) passive matrix type liquid crystal display device 彳 1^ 13), it can effectively shorten the liquid crystal reaction time and improve the phenomenon of dynamic bucking. [Prior Art] Due to the thin and light characteristics of liquid crystal displays and lower power consumption than conventional CRT displays, liquid crystal displays have gradually replaced CRT displays in recent years. Liquid crystal flat panel display can be divided into passive matrix according to the driving display method

型(PM-LCD)與主動矩陣型(AM-LCD)二種。PM-LCD 的驅動方式是在上、下二玻璃面板上,分別在一個面板上 設置列(X )方向透明ITO ( Indium Tin Oxide )電極,另 一個面板上設置行(Y)方向透明ITO電極,兩面板貼合 後(中間填充液晶),上、下面板形成電極交差的格子狀 ® 部位就是顯示面板的晝素,晝素之電位差是由外部提供驅 動電壓來控制X、Y兩方向上的電極,達成驅動晝素中液 晶的轉動。 AM-LCD的驅動方式是在面板上的每一個書素彳立置點 上設置開關元件(即薄膜電晶體(TFT))及儲存訊號的輔‘助 電容(Cst),各畫素驅動是由晝素上的元件獨立控制,因為 AM-LCD是將薄膜電晶體(TFT)置於面板上,也就是常稱 的 TFT-LCD。 5 1364735 請參閱「第1圖」所係被動糾舰晶顯示器加 xn)之架構示意圖。常見的扭轉向列型(TN)與料轉向列型 (STN)皆屬PM_LCD產品,本身沒有非線性元件(類似一開 關兀件)以控制液晶畫素的操作,所以每一個晝素丨的形成 v 是水平的共同(C〇mmon)電極2走線與垂直之數據 (Segment)電極3走線的重疊區域。1>厘丄〇:>的基本操作原 理是利用液晶材料對所施加電壓的均方根值(R〇〇t Mean Square Value ; RMS)所產生的電光效應,液晶材料的反應 ® 時間必須要遠大於驅動脈波的掃描週期,若是圖框掃描頻 率(Frame Rate)為60Hz,每一條水平掃描線(即共極電極2) 被選取的時間間隔為16.67ms ’則所需的液晶材料反應時 間一般為200ms,這是液晶對均方根值(RMS)反應的必要 條件® 但是’傳統的振幅選擇驅動(Alt & Pleshko Theory ; APT)方式,若要顯示動態晝面時,由於液晶材料的反應時 間過慢,會造成移動畫面拖影的現象,若是使用快速反應 I 的液晶材料,會造成晝面嚴重的閃爍(Flicker)現象,同時 畫面對比會大幅降低。 請參閱「第2圖」,係一般過驅動(Over-Driving)電路 之查表運算方塊示意圖。針對前述問題,一般的解決方式 係針對不同畫面給定不同的過驅動電壓V’的值。作法是利 用一畫面判斷電路1〇將新進來的現行圖框資料(Current Field)與先前被儲存於一設置於驅動裝置内部(或外部)的 儲存裝置11之前一圖框資料(Previ〇us Field)經過一比較裝 6 1364735Type (PM-LCD) and active matrix type (AM-LCD). The driving method of the PM-LCD is to set the column (X) direction transparent ITO (Indium Tin Oxide) electrode on one of the upper and lower glass panels, and the row (Y) direction transparent ITO electrode on the other panel. After the two panels are bonded (intermediately filled with liquid crystal), the upper and lower panels form a grid-like intersection of the electrodes, which is the element of the display panel. The potential difference of the halogen is to provide the driving voltage from the outside to control the electrodes in the X and Y directions. , to achieve the rotation of the liquid crystal in the driving element. The driving method of the AM-LCD is to set a switching element (ie, a thin film transistor (TFT)) and a secondary auxiliary capacitor (Cst) for storing signals on each of the tops of the panel. The pixel driving is performed by each pixel. The components on the halogen are independently controlled because the AM-LCD is a thin film transistor (TFT) placed on a panel, also known as a TFT-LCD. 5 1364735 Please refer to the schematic diagram of the passive correction ship crystal display plus xn) in Figure 1. Common twisted nematic (TN) and material steering type (STN) are PM_LCD products, and there are no nonlinear components (similar to a switch element) to control the operation of liquid crystal pixels, so the formation of each element v is the overlapping area of the horizontal common (C〇mmon) electrode 2 trace and the vertical data (Segment) electrode 3 trace. 1> centistoke: > The basic principle of operation is to use the electro-optic effect of the liquid crystal material on the root mean square value (R〇〇t Mean Square Value; RMS) of the applied voltage, and the reaction time of the liquid crystal material must be It is much larger than the scanning period of the driving pulse wave. If the frame rate is 60 Hz, the horizontal scanning line (ie, the common electrode 2) is selected at a time interval of 16.67 ms. Typically 200ms, this is a necessary condition for liquid crystal to root mean square (RMS) response. However, 'traditional amplitude selection drive (Alt & Pleshko Theory; APT) mode, to display dynamic surface, due to liquid crystal material If the reaction time is too slow, it will cause smear of the moving picture. If the liquid crystal material of the fast reaction I is used, the flicker will be severely flickered and the contrast will be greatly reduced. Please refer to "Figure 2", which is a block diagram of the general operation of the Over-Driving circuit. In view of the foregoing problems, a general solution is to give different values of the overdrive voltage V' for different pictures. The method is to use a picture judging circuit 1 to add a new current current frame data to a frame data (Previ〇us Field) previously stored in a storage device 11 disposed inside (or outside) the driving device. ) After a comparison of 6 1364735

置12的互相比較,若不相同表示是動態晝面,一般對於 動態畫面的資料係透過一查表運算(LUT)電路13利用查表 的方式去查表後’送出相對應的過驅動的輸出電壓值,這 就是過驅動(Over-Driving)電路的操作原理。 查表運算(LUT)是使用一個索引的陣列當作新的過驅 動電壓V’值表’將一些非線性及複雜的演算整合成以常數 來概括,使得整個運算過程中省略了繁複的計算,提高了If the different representations are dynamic, the data of the dynamic picture is generally sent through a look-up table operation (LUT) circuit 13 to look up the table and then send out the corresponding overdrive output. The voltage value, which is the operating principle of the Over-Driving circuit. The look-up table operation (LUT) uses an array of indices as a new overdrive voltage V'value table' to integrate some non-linear and complex calculus into constants, which omits complicated calculations throughout the operation. increased

實質的影像處理效率。而被送出的輸出電壓值即可對應出 數據電極3正確的輸出過驅動電壓ν’,如此可有效縮短傳 統被動矩陣型液晶顯示器(TN型與STN型)所用的驅動法 為振幅選擇驅動(APT)的反應時間,降低撥放動態畫面中 拖影的現象。 因為被動矩陣型液晶顯示器(TN型與STN型)是一種 被2式架構’每個晝素内並無開關元件,無法將液晶儲存 ,合,電後的電荷鎖住,所以當數據電極輸出電壓後,液 曰曰電:内的電荷會經雜散電容(Cgd)或其充電路徑漏電,所 、液b曰電谷無法維持固定準位,故數據電極在一個圖框時 電後在液阳晝素電容的真正有效電位會比數據電極 1的】很夕,造成顯示動態晝面邊緣模糊(Blurring)的現 【發明内容】 於對2 ’為解決上述之缺失,避免缺失存在,本發明在 型轉向列型(TN)與超扭轉向列型(stn)等被動矩陣 曰曰頌不器之振幅選擇驅動(Αρτ),利用過驅動(〇να 7 1364735 driving )補償法與尚頻更新率的概念,應用在扭轉線型(tn) 及超扭轉線型(STN)等被動矩陣型液晶顯示器,藉此能有 效地縮短反應時間,確實改善動態晝面模糊(B lurring)的現 象。 為達上述之目的,本發明係利用過驅動的操作原理, 在輸入紅綠藍(R G B)三原色資料匯流排後方經過_個動態 晝面的判斷機制,只要目前的資料與前一個晝面的資料不 同,透過一輸出倍頻電路,彈性地在每個資料匯流排更新 的時間(refresh time)内給定N次比原來輸出電位更高或更 低的過驅動(〇ver_Driving)補償電位,且該N為大於等於 2,小於等於8之正整數(2SNS8)。一般情況下只會在二 個圖框(frame)時間内輸出一次的資料電壓對液晶電容充 電,因為被動矩陣型液晶顯示器(TN型與STN型)每個書 素内並無開關元件,液晶電容内的電荷會經雜散電容(匸如 或其充電路徑漏電,故在一個圖框時間後,液晶電容上的 電壓疋不足以達到輸入資料匯流排預期的電壓準位。我們 改以在一個圖框(frame)時間内重覆輸出N次(即在—個= 框時間内對晝素電容N次充電),並給以更高或更低的= 驅動補償電壓,故能在更短的時間内就讓液晶旋轉達= 們期望的目標亮度,大幅改善扭轉向列型(TN)與超扭 列型(STN)等被動矩陣型液晶顯示器反應時間過t 向 動影像模糊(blurring)的問題。 移 而該補償電位V’係原來輸出電位v經過查表々 (LUT)所對應的值,送出相對應的過驅動的輸出電壓值异 1364735 其電壓範圍為OgV’S液晶驅動的最高電壓。 另外,我們可以將影像資料之三原色RGB資料轉換 成YCbCr資料,依視訊壓縮標準壓縮取樣及結合。其中, 該壓縮取樣係擇自Y : Cb : Cr=4 : 2 : 〇及Y : Cb : Cr = k 4:1:1之其中一取樣演算規則,藉此,可有效地降低一半的 . 儲存資料量。 【實施方式】 g 茲有關本發明之詳細内容及技術說明,現以實施例來 作進一步說明,但應瞭解的是,該等實施例僅為例示說明 之用,而不應被解釋為本發明實施之限制。 扭轉向列型(TN)與超扭轉向列型(STN)等被動矩陣型 液晶顯示器所用的驅動法,驅動裝置的數據(Segment)根據 每個圖框(Frame)輸入的數位紅綠藍(RGB)三原色資料的不 同而轉換不同的輸出灰階電壓(在光學上對應的就是某個 灰階的亮度)。因為扭轉向列型(TN)與超扭轉向列型(STN) • /、有黑白兩種狀態,而灰階的產生是在一條掃描線(1 line) 的時間内以脈寬調變(Pulse Width Modulation ; PWM )的 方式來區分。請參閱「第3圖」所示,係數據電極訊號SEG j 一個掃描圖框(Frame)的時間内輸出波形之示意圖。假設 α個圖框的時間内有m條的掃描線(mxn矩陣型液晶顯示 =)一個讀寫(WR)週期表示一條掃描線的時間(1 Hne me)_’由「第3圖」可看出數據電極訊號SEG依照資料 不同的輸出灰階電壓,而輪出不同的脈寬調變波形。 如「第4圖」所示,假設把一條掃描線充電的時間分 9 1364735 割成16個等份,數據電極訊號SEG0在某一條線的時間内 全黑的等份是佔6/16,下一條線則是12/16,而數據電極 訊號SEG1在此條線的時間内全黑所佔的等份是13八6, 一條線則是10/16。Substantial image processing efficiency. The output voltage value sent out can correspond to the correct output overdrive voltage ν' of the data electrode 3, which can effectively shorten the driving method used by the conventional passive matrix liquid crystal display (TN type and STN type) as the amplitude selective driving (APT). The reaction time reduces the phenomenon of smear in the dynamic display. Because the passive matrix type liquid crystal display (TN type and STN type) is a type 2 structure, there is no switching element in each element, and the liquid storage, closing, and electric charge cannot be locked, so when the data electrode output voltage After that, the liquid charge will leak through the stray capacitance (Cgd) or its charging path, and the liquid b can not maintain a fixed level, so the data electrode is in a frame and then in the liquid phase. The true effective potential of the halogen capacitor is higher than that of the data electrode 1 , which results in the display of dynamic edge blurring (Blurring). [2] In order to solve the above-mentioned deficiency, avoiding the existence of the defect, the present invention Type-steering type (TN) and super-torsional nematic (stn) passive matrix 振幅 之 amplitude selection drive (Αρτ), using overdrive (〇να 7 1364735 driving) compensation method and frequency update rate The concept is applied to passive matrix liquid crystal displays such as twisted linear (tn) and super-twisted linear (STN), which can effectively shorten the reaction time and improve the dynamic bucking. In order to achieve the above purpose, the present invention utilizes the operating principle of overdrive, and passes the judgment mechanism of the dynamic surface after inputting the red, green and blue (RGB) three primary color data bus, as long as the current data and the previous data are used. Differently, an overdrive (〇ver_Driving) compensation potential that is higher or lower than the original output potential is given N times in an update time of each data bus through an output frequency multiplier circuit, and N is a positive integer (2SNS8) of 2 or more and less than or equal to 8. Under normal circumstances, only the data voltage outputted once in two frame times will charge the liquid crystal capacitor, because the passive matrix liquid crystal display (TN type and STN type) has no switching elements in each of the books, the liquid crystal capacitor The internal charge will pass through stray capacitance (such as its charging path leakage, so after a frame time, the voltage on the liquid crystal capacitor is not enough to reach the expected voltage level of the input data bus. We change it to a graph Repeat the output N times in the frame time (that is, charge the halogen capacitor N times in the frame = time), and give the higher or lower = drive compensation voltage, so it can be used in a shorter time. The liquid crystal is rotated up to the desired target brightness, and the problem of the reaction time of the passive matrix type liquid crystal display such as the twisted nematic (TN) and the super twisted type (STN) is greatly improved. The compensation potential V' is the value corresponding to the original output potential v after the look-up table (LUT), and the corresponding overdrive output voltage value is different 1364735. The voltage range is the highest voltage of the OgV'S liquid crystal drive. We can convert the three primary color RGB data of the image data into YCbCr data, compress and sample and combine according to the video compression standard. The compressed sampling is selected from Y: Cb : Cr=4 : 2 : 〇 and Y : Cb : Cr = k One of the sampling calculation rules of 4:1:1, whereby the amount of stored data can be effectively reduced by half. [Embodiment] g The details and technical description of the present invention are further described by way of examples. It should be understood that the embodiments are for illustrative purposes only and are not to be construed as limiting of the embodiments of the invention. Twisted nematic (TN) and super twisted nematic (STN) passive matrix types The driving method used in the liquid crystal display, the data of the driving device converts different output gray scale voltages according to the digital red, green and blue (RGB) three primary color data input by each frame (optically correspondingly The brightness of a gray scale.) Because the twisted nematic (TN) and super twisted nematic (STN) • /, there are two states, and the gray scale is generated at the time of one scan line (1 line). Pulse width modulation inside (Pulse W Idth Modulation; PWM) way to distinguish. Please refer to "Figure 3", which is a schematic diagram of the output waveform of the data electrode signal SEG j in a scan frame. It is assumed that there are time in the alpha frame. m scanning lines (mxn matrix type liquid crystal display =) One read/write (WR) period indicates the time of one scanning line (1 Hne me)_' It can be seen from "Fig. 3" that the data electrode signal SEG is different according to the data. Output gray scale voltage, and rotate different pulse width modulation waveforms. As shown in Figure 4, assume that the time for charging a scan line is divided into 16 equal parts by 9 1364735, and the data electrode signal SEG0 is in a certain section. The black aliquot of the line time is 6/16, the next line is 12/16, and the data electrode signal SEG1 is all black in the time of this line is 13 VIII, one line It is 10/16.

但,因為被動矩陣型液晶顯示器(TN型與STN型)是 一種被動式架構’每個畫素内並無開關元件,所以當數$ 電極輸出電壓後’液晶電容内的電荷會經雜散電容⑴扣) 或其充電路徑漏電’所以液晶電容無法維持固定準位,故 數據電極在一個圖框時間充電後,在液晶晝素電容的真正 有效電位會比數據電極輸出的小报多。 請參閱「第5圖」所示,係-個晝素内液晶由初始亮 度到目標亮度之位置示意圖。數據電極需要經過多個圖=However, because passive matrix liquid crystal displays (TN type and STN type) are a passive architecture, there is no switching element in each pixel, so when the number of electrodes is output voltage, the charge in the liquid crystal capacitor will pass through the stray capacitance (1). Buckle) or its charging path leakage 'so liquid crystal capacitor can not maintain a fixed level, so the data electrode is charged in a frame time, the real effective potential of the liquid crystal pixel capacitor will be more than the data electrode output. Please refer to the figure in Figure 5 for the position of the liquid crystal from the initial brightness to the target brightness. The data electrode needs to go through multiple graphs =

時間的充電後,晝素内液晶由初始位置到目標位置之有六文 電壓Veff才會達到,所以扭轉向列型(TN)與超扭轉向列型 (STN)等被動矩陣型液晶顯示器的反應時間 J I如此镑 慢「第5圖」中表示,當第-個圖框時間數 ’ 液晶電容内的充電電壓為VI,但因為雜散電容 St 徑漏電dl ’所以最後第一個圖框時間數據電極 Y、充電路 ...........一 - $收晶電容 ‘個圖框時 dlAfter the time is charged, the liquid crystal in the halogen has a six-fold voltage Veff from the initial position to the target position, so the reaction of the twisted nematic (TN) and the super-twisted nematic (STN) passive matrix liquid crystal display Time JI is so slow. "Figure 5" shows that when the first frame time 'the charging voltage in the liquid crystal capacitor is VI, but because the stray capacitance St is the leakage current dl ', the last frame time data Electrode Y, charging circuit ........... one - $ crystal capacitor 'frame dl

Veff2 的有效電壓為Vl_dl = Veffl,依此類推,第 間數據電極對液晶電容的有效電壓也是Vi 假設經過數據電極送出十二次的相同電愿後 的目標亮度’所以液晶顯示器的反應時間就是每到我們 時間16.67msxl2,接近200ms。 <固圖框的 請參閱 第6圖」所示,係本發明過驅 勒電路之方塊 1364735 示意圖。與一般過驅動(Over-Driving)相同,係針對不同畫 面給定的不同過驅動電壓V’的值,利用一晝面判斷電路 20將新進來的現行圖框資料(Current Field)與先前被儲存 於一設置於驅動裝置内部(成外部)的儲存裝置21之前一圖 框資料(Previous Field)經過〆比較裝置22的互相比較,若 不相同表示是動態畫面,一般對於動態畫面的資料係透過 一查表運算(LUT)電路23利用查表的方式去查表後,送出 相對應的過驅動電壓V’的值° 本發明係利用過驅動的操作原理’在輸入紅綠藍(RGB) 三原色資料匯流排後方經過判斷動態畫面的比較裝置 22,只要發現目前的資料與前一個晝面的資料不同,透過 一位於該查表運算(LUT)電路23後之輸出倍頻電路24,彈 性地在每個資料匯流排更新的時間(refresh time)内給定N 次比原來輸出電位V更高或更低的過驅動補償電位V’, 且該N為大於等於2,小於等於8之正整數(2SNS 8),而 該補償電位V,係原來輸出電位V經過查表運算(LUT)所對 應的值,送出相對應的過驅動的輸出電壓值,其電壓範圍 為〇SV,$液晶驅動的最高電壓。所以驅動元件的數據電 極寫入顯示面板的頻率將是輸入紅綠藍(RGB)三原色資料 匯流排更新頻率的N倍。 請參閱「第7圖」所示’係描述驅動元件的數據電極 寫入面板的頻率將是輸入資料匯流排更新頻率的N倍(6倍) 與原更新頻率之比較示意圖。右邊所示為一個晝素内液晶 由初始零準位到目標亮度的電壓準位(Target Voltage),數 1364735The effective voltage of Veff2 is Vl_dl = Veffl, and so on, the effective voltage of the first data electrode to the liquid crystal capacitor is also Vi. The target brightness after the same electric wish is sent out 12 times by the data electrode', so the reaction time of the liquid crystal display is By our time 16.67msxl2, close to 200ms. <Fig. 6 of the solid frame, which is a schematic diagram of the block 1364735 of the present invention. As with the general over-driving (Over-Driving), the current incoming frame data (Current Field) is previously stored with a facet judgment circuit 20 for different values of different overdrive voltages V' given for different pictures. Before the storage device 21 disposed inside the drive device (outside), a frame field (Previous Field) is compared with each other by the comparison device 22, and if the display is a dynamic picture, the data of the dynamic picture is generally transmitted through a The look-up table operation (LUT) circuit 23 uses the look-up table to look up the table and sends the value of the corresponding overdrive voltage V'. The present invention utilizes the principle of overdrive operation to input red, green and blue (RGB) three primary colors. The comparing means 22 for judging the dynamic picture behind the bus bar, as long as the current data is found to be different from the previous one, is elastically transmitted through an output frequency multiplying circuit 24 located after the look-up operation (LUT) circuit 23. An overdrive compensation potential V' higher or lower than the original output potential V is given N times in the refresh time of the data bus, and the N is greater than or equal to 2, less than A positive integer equal to 8 (2SNS 8), and the compensation potential V is a value corresponding to the original output potential V through a table lookup operation (LUT), and the corresponding overdrive output voltage value is sent, and the voltage range is 〇SV. , the highest voltage of the LCD driver. Therefore, the data electrode of the driving component is written to the display panel at a frequency N times the input frequency of the red, green and blue (RGB) three primary color data bus. Please refer to the figure shown in Figure 7 for describing the data electrode of the drive component. The frequency of the write panel will be a comparison of the N times (6 times) of the input data bus update frequency with the original update frequency. The right side shows the voltage level of the liquid crystal from the initial zero level to the target brightness (Target Voltage), number 1364735

據電極需要經過 後才能達到我=框的時間送出相同輪出電壓νι與 听_)的時間二標亮度’所以反應時間就是 π 间 16.6msx6,接近 1〇〇ms,复 的漏電路徑所拉下的電壓準位。而在「第7圖=畫素 我職據電極原來輪出電位V1在料」=’ 一個圖框時間)内,透過該輸出倍頻電路更新時即 V1重覆輸出六次,故能在-個圖框的時間内電壓 達到我們期望的目標亮度,所以反應時間能=曰疑轉 框的時間,.6ms。 町]月匕縮紐到-個圖 頻率的N倍(6倍)與原電壓原更新頻率之比較 新 v中將數據電極的輸_V1改已用過忒電】 Γ Γ广將使反應時間更為縮短(反應時間能小於-個ί 框的時間)’改善扭轉向列型(ΤΝ)與超扭轉向列型 被動式矩陣顯示器反應時間過慢的效果更好。 藉此做法,不但使數據電極輸出比原來輪出電位 大(或更小)的有效電壓,也在―個資料更新時間 出多次’故能在更短的時間内就讓液晶旋轉達到我= 的目標亮度,大幅改善扭轉向列型(ΤΝ)與超扭轉向列型 (STN)等被動矩陣型液晶顯示器反應時間過慢造成移動影 像模糊(blurring)的問題。 請參閱「第9圖」所示’為過驅動(〇ver_Driving) 補償數據電極準位波形之示意圖(將「第4圖」的輸出準位 12 1364735 波形過驅動)’在過驅動後數據電極SEGO在某一條線的時 間内全黑的等份是佔整條掃描線時間(1 line 的 13/16,下一條線則是14/16,而數據電極SE(}1在某一條 線的時間内全黑的等份是佔i 5/16,下-條線則是12/16。 在每個肓料更新時間内讓數據電極SEG輸出N次的 過驅動補償使得畫素内的液晶能在更短的時間内(接近一 個圖框時間)達到或接近使—個畫素内液晶由初始位置到 目標位置之有效電壓Veff的目標亮度,所以能大幅改善移 動畫面模糊的現象。且,由於扭轉向列型(TN)與超扭轉向 列型(STN)的基本驅動法為振幅選擇驅動(Αρτ),其操作原 理是利用液晶材料對所施加電壓的均方根值(R M s )所產生 的電光效應,因此本發明之過驅動電壓補償法經過均方根 值(RMS)後,並不會有嚴重的閃爍現象。 在節省成本上,原本過驅動(〇ver_Driving)補償法需增 加一個額外的繪圖記憶體(GRAM),儲存上一張畫面的^ 料,用來與目則進來晝面資料的比較,我們可以將影像資 料之三原色RGB資料轉換成YCbCr資料,依視訊壓縮標 準壓縮取樣及結合。請參閱「第1〇圖」所示,係本發明 過驅動電路之另一實施方塊示意圖,所以前一圖框資料先 經過一第一轉換單元25,該第一轉換單元25接入前一圖 框之三原色RGB之影像資料,且將三原色RGB資料轉換 成YCbCr資料’如「第n圖」所示,其中該壓縮取樣係 擇自 Y : Cb : cr=4 : 2 : 〇 及 Y : Cb : Cr=4:1:1 之其中一 取樣演算規則。再將YCbCr資料儲存於驅動裝置内部(或 13 1364735 外部)之儲存裝置21,而一第二轉換單元26再將YCbCr • 資料轉換成三原色RGB資料,且將資料送給該比較裝置 22。因為Y所代表的意義是亮度(luminance)信號,而cb 和Cr所代表的意義是色差信號’針對人類眼睛影響最大 的Y成份’透過一取樣比例的取樣壓縮後再儲存於記憶體 内’減少驅動裝置所需記憶體的大小。藉此,可有效地降 低一半的儲存資料量,如此可直接將上一張晝面與目前畫 面經過過驅動補償處理後的資料都一起儲存在原始驅動 #裝置内部的—顆繪圖記憶體,不需要額外的繪圖記憶體。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發,說明内容所作之簡單的等效變化與 屬本發明專利涵蓋之範圍内。 白奶 1364735 【圖式簡單說明】 第1圖’係被動矩陣型液晶顯示器(mxn)之架構示意圖。 ,2圖’係一般過驅動電路之查表運算方塊示意圖。 第3圖’係數據電極訊號(SEG)在一個掃描圖框(frame) 的時間内輸出波形之示意圖。 第4圖’係數據電極訊號(SEG)在一條線時間分割成 16個等份的輪出準位波形之示意圖。 第f圖,係一個畫素内液晶由初始亮度到目標亮度之位 置示意圖。 第6圖’係本發明過驅動電路之方塊示意圖。 第7圖’描述驅動元件的數據電極寫入面板的頻率將是 輸入資料匯流排更新頻率的N倍(6倍)與原更新頻率之 比較示意圖。 第8圖,描述驅動元件的數據電極以過驅動電壓寫入面 板’且頻率將是輸入資料匯流排更新頻率的N倍(6倍) 與原電壓原更新頻率之比較示意圖。 第9圖’係過驅動補償數據電極訊號(SEG)在一條線時 間分割成16個等份的輸出準位波形之示意圖。 第10圖’係本發明過驅動電路之另一實施方塊示意圖。 第11圖,係三原色RGB資料經過YCbCr(4 : 2 : 〇)轉 換之示意圖。 【主要元件符號說明】 1 :畫素 2 .共極電極 3:數據電極 10、20 :晝面判斷電路 15 1364735 11、 21 :儲存裝置 12、 22 :比較裝置 13、 23 :查表運算電路 24 :輸出倍頻電路 25 :第一轉換單元 26 :第二轉換單元 V’ :過驅動電壓 C0M1〜COMm:共極訊號 SEG1〜SEGn :數據訊號According to the time required for the electrode to pass, I can send the same round-out voltage νι and listen to _) the time of the second standard brightness. So the reaction time is π between 16.6msx6, close to 1〇〇ms, and the complex leakage path is pulled down. Voltage level. In the "Fig. 7 = pixel, my job electrode, the original turn-out potential V1 is in the material" = 'one frame time), when the output frequency multiplier circuit is updated, V1 is repeatedly output six times, so it can be - The voltage in the frame time reaches the target brightness we expect, so the reaction time can be = the time of the frame, .6ms.町] month 匕 纽 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到Shorter (reaction time can be less than - ί box time) 'Improve the twisted nematic (ΤΝ) and super-twisted nematic passive matrix display reaction time is too slow. In this way, not only does the data electrode output an effective voltage that is larger (or smaller) than the original turn-off potential, but also a plurality of data update times, so that the liquid crystal can be rotated to reach me in a shorter time. The target brightness greatly improves the problem of moving image blurring due to the slow reaction time of the passive matrix type liquid crystal display such as the twisted nematic (ΤΝ) and the super twisted nematic (STN). Please refer to the figure in Figure 9 for the overdrive (〇ver_Driving) compensation data electrode level waveform (the output level of the "Figure 4" output level 12 1364735 waveform is overdriven) 'after the overdrive data electrode SEGO The all black aliquot of the time in a certain line is the entire scan line time (13/16 of 1 line, the next line is 14/16, and the data electrode SE(}1 is within a certain line time). The all black aliquot is i 5/16, and the lower - line is 12/16. The overdrive compensation of the data electrode SEG output N times in each data update time enables the liquid crystal in the pixel to be more The short-time (close to one frame time) reaches or approaches the target brightness of the effective voltage Veff of the liquid crystal from the initial position to the target position in the pixel, so that the phenomenon of moving picture blur can be greatly improved. The basic driving method of column type (TN) and super twisted nematic (STN) is amplitude selective driving (Αρτ), which is operated by using the electro-optic light generated by the liquid crystal material to the root mean square value (RM s ) of the applied voltage. Overdrive voltage compensation method of the present invention After the rms value, there is no serious flicker. In terms of cost saving, the original overdrive (〇ver_Driving) compensation method needs to add an additional drawing memory (GRAM) to store the previous picture. The material is used to compare the data of the three primary colors of the image data into YCbCr data, and the compression and sampling are combined according to the video compression standard. Please refer to the “Figure 1”. A block diagram of another implementation of the overdrive circuit of the present invention, so that the previous frame data first passes through a first conversion unit 25, and the first conversion unit 25 accesses the image data of the three primary colors RGB of the previous frame, and the three primary colors are The RGB data is converted into YCbCr data as shown in the "nth image", wherein the compressed sampling is selected from one of Y: Cb: cr=4: 2: 〇 and Y: Cb: Cr=4:1:1. The calculation rule is to store the YCbCr data in the storage device 21 inside the driving device (or 13 1364735), and a second converting unit 26 converts the YCbCr data into three primary color RGB data, and sends the data to the comparing device 22 .because The meaning represented by Y is the luminance signal, and the meaning of cb and Cr is that the color difference signal 'the Y component that has the greatest influence on the human eye' is compressed by sampling of a sampling ratio and then stored in the memory. The size of the memory required by the driving device. Thereby, the amount of stored data can be effectively reduced by half, so that the data of the previous one and the current picture after being subjected to the drive compensation processing can be directly stored in the original driving device. Internal drawing memory, no additional drawing memory required. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, the simple equivalent change and the genus of the description according to the scope of the present invention. The scope of the invention is covered. White milk 1364735 [Simple description of the diagram] Figure 1 is a schematic diagram of the structure of a passive matrix liquid crystal display (mxn). The 2 figure is a block diagram of the general operation of the overdrive circuit. Figure 3 is a schematic diagram of the output waveform of the data electrode signal (SEG) in a frame of a scan frame. Fig. 4 is a schematic diagram showing the data electrode signal (SEG) divided into 16 equal-part round-off level waveforms in one line time. Figure f is a schematic diagram showing the position of the liquid crystal in a pixel from the initial brightness to the target brightness. Figure 6 is a block diagram showing the overdrive circuit of the present invention. Figure 7 depicts the frequency of the data electrode write panel of the drive component as a comparison of the N-fold (6 times) frequency of the input data bus update with the original update frequency. Fig. 8 is a view showing a comparison of the data electrode of the driving element with the overdrive voltage writing panel' and the frequency will be N times (6 times) the update frequency of the input data bus and the original voltage update frequency. Figure 9 is a schematic diagram of the overdrive compensation data electrode signal (SEG) divided into 16 equal output level waveforms at one line time. Figure 10 is a block diagram showing another embodiment of the overdrive circuit of the present invention. Figure 11 is a schematic diagram of the conversion of the RGB data of the three primary colors by YCbCr (4: 2: 〇). [Description of main component symbols] 1 : pixel 2 . Common electrode 3 : data electrode 10 , 20 : facet judgment circuit 15 1364735 11 , 21 : storage device 12 , 22 : comparison device 13 , 23 : look-up table operation circuit 24 Output multiplier circuit 25: first conversion unit 26: second conversion unit V': overdrive voltage C0M1~COMm: common pole signal SEG1~SEGn: data signal

1616

Claims (1)

十、申請專利範圍:X. The scope of application for patents: 利用過驅動的操作原理,在〗 後方經過動態畫面的判斷機 在輸入紅綠藍(RGB)三原色之資料匯流排 機制’只要目前的資料與前一個晝面的 j不同’透過—輸出倍頻電路,彈性地在每個資料匯流排更新 ,、、〗内、次比原來輪出電位更高或更低的過驅動補償電 位’以補償液晶顯示器之液晶電容内之電荷的漏電;且該n為大 於2,小於等於8之正整數。 2. 依齡請專利第丨酬述之驅動方法,其中,進-步該過驅 動補仏電位係透過_絲運算,過驅動電路糊絲的方式,送 出1對應不同晝面給定不同的過驅動補償電位,其過驅動補償電 位範圍大於等於〇,小於等於液晶驅動的最高電壓。 3. 依據巾請專·圍第丨綱述之驅動方法,其中,進—步將該資 料匯流排所接收之紅雜(隐)三聽資料轉換成YCbCr資料,依 視訊壓縮標準壓縮取樣。 依據申μ專利範圍第3顿述之驅動方法,其巾,該壓縮取樣係 擇自Y.Cb:Cr=4:2:0及Y:Cb:Cr=4:hl之其中-取樣演算規則。 17Using the operating principle of overdrive, after the dynamic screen judgement machine is input, the data bus mechanism of the three primary colors of red, green and blue (RGB) is input as long as the current data is different from the previous one, 'transmission-output frequency multiplier circuit Elastically updating, in each data bus, an overdrive compensation potential higher or lower than the original turn-off potential to compensate for leakage of charge in the liquid crystal capacitor of the liquid crystal display; and the n is A positive integer greater than 2 and less than or equal to 8. 2. According to the age-approved patent, the method of driving the rewards, in which the step-by-step driving of the 仏-potential system is through the _ wire operation, the method of driving the circuit paste, sending 1 corresponding to different faces given different The compensation potential is driven, and the overdrive compensation potential range is greater than or equal to 〇, which is less than or equal to the highest voltage of the liquid crystal drive. 3. According to the driving method of the 请 · 围 围 , , , , , , , , , , , , , , , , , , 围 围 围 围 围 围 围 围 围 围 围 围 围 围 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动According to the driving method of the third embodiment of the patent application scope, the compression sampling is selected from the Y-Cb:Cr=4:2:0 and Y:Cb:Cr=4:hl-sampling calculation rules. 17
TW96100381A 2007-01-05 2007-01-05 Driving method of reducing response time of TN-type and STN-type LCD TW200830243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96100381A TW200830243A (en) 2007-01-05 2007-01-05 Driving method of reducing response time of TN-type and STN-type LCD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96100381A TW200830243A (en) 2007-01-05 2007-01-05 Driving method of reducing response time of TN-type and STN-type LCD

Publications (2)

Publication Number Publication Date
TW200830243A TW200830243A (en) 2008-07-16
TWI364735B true TWI364735B (en) 2012-05-21

Family

ID=44818266

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96100381A TW200830243A (en) 2007-01-05 2007-01-05 Driving method of reducing response time of TN-type and STN-type LCD

Country Status (1)

Country Link
TW (1) TW200830243A (en)

Also Published As

Publication number Publication date
TW200830243A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
TWI393094B (en) Liquid crystal display device and driving method
JP4201026B2 (en) Liquid crystal display device and driving method of liquid crystal display device
JP5329051B2 (en) Liquid crystal display
US8049698B2 (en) Liquid crystal display and driving method thereof
US8810491B2 (en) Liquid crystal display with color washout improvement and method of driving same
US20110285759A1 (en) Liquid crystal display device and method for driving same
TWI434256B (en) Bistable display and method of driving panel thereof
KR20090129248A (en) Liquid crystal display and driving method thereof
US8130187B2 (en) OCB liquid crystal display with active matrix and supplemental capacitors and driving method for the same
US7986376B2 (en) Liquid crystal display device
US20080198113A1 (en) Driving method for reducing response time of twisted nematic liquid crystal displays and super twisted nematic liquid crystal displays
CN109785803B (en) Display method, display unit and display
KR20130084811A (en) Display panel and method of driving the same
US20070146299A1 (en) Liquid crystal display and method for driving the same
US9530384B2 (en) Display device that compensates for changes in driving frequency and drive method thereof
CN101231826A (en) Drive method for reducing torsion type and ultra-torsion type LCD device reaction time
KR20130062649A (en) Liquid crystal display and driving method thereof
TWI357046B (en) Method for driving lcd monitors
KR101621553B1 (en) Liquid crystal display and driving method thereof
JP2009210607A (en) Liquid crystal display device
WO2006109376A1 (en) Liquid crystal display apparatus, circuit for driving the same, and method for driving the same
KR101327869B1 (en) Liquid Crystal Display Device
JP2008216893A (en) Flat panel display device and display method thereof
TW200416430A (en) Liquid crystal display panel and its driving method
KR101866389B1 (en) Liquid crystal display device and method for driving the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees