TWI363041B - Waste water treatment system - Google Patents

Waste water treatment system Download PDF

Info

Publication number
TWI363041B
TWI363041B TW96150739A TW96150739A TWI363041B TW I363041 B TWI363041 B TW I363041B TW 96150739 A TW96150739 A TW 96150739A TW 96150739 A TW96150739 A TW 96150739A TW I363041 B TWI363041 B TW I363041B
Authority
TW
Taiwan
Prior art keywords
chamber
wastewater
treatment system
film
wastewater treatment
Prior art date
Application number
TW96150739A
Other languages
Chinese (zh)
Other versions
TW200927674A (en
Inventor
Mao Sung Lee
Wang Kuan Chang
Kueir Rarn Lee
Chih Pin Huang
Pih Liau Shiau
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96150739A priority Critical patent/TWI363041B/en
Publication of TW200927674A publication Critical patent/TW200927674A/en
Application granted granted Critical
Publication of TWI363041B publication Critical patent/TWI363041B/en

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

1363041 年月日條正替換頁 九、發明說明: 【發明所屬之技術領域】 . .本發明係有關於一種廢水處理系統,尤指一種利用複 合膜分隔廢水室與滲透室之廢水處理系統。 【先前技術】 基於環保需求,對於各種產業領域所製造產生排放之 _ 廢水必須善加處理,尤其生技、製藥、石化、化工、染顏 料等行業所產生之含高鹽濃度之液體廢棄物、高濃度廢 水’大多含有毒或有害成分,目前一般係採用萃取式薄膜 生物反應技術(Extractive Membrane Bio-reacter,EMB) • 進行處理;該類萃取式薄膜生物反應技術主要係使廢水中 . 之有機污染物通過一薄膜皮層,再於一滲透室中藉由微生 物分解該有機污染物,可選擇性去除廢水中之有害成分, 具備純化和資源回收效益。 • 惟該類萃取式薄膜生物反應技術普遍存在許多問題, 其一在於所採用之薄膜皮層厚度太厚且厚度調整不易,且 長時間使用後’薄膜皮層會產生積垢,影響有機污染物傳 輪速率’再者’廢水室内之無機離子濃度愈高,因而降低 微生物活性愈明顯,此狀況將抑制有機物的生物分解效 能’如圖一所示不同氣化鈉濃度對於有機污染物酚的生物 分解效能的抑制影響,其顯示當氯化鈉濃度為〇%及1%時, ... . .其酶濃度可於大約30小時内被完全分解,然而當濃度高於 3 %之.氣化鈉存在時,酚的生物分解能力即會受到嚴重影 1363041 _年月日修正替換頁_ 響,例如氯化鈉濃度為3%及5%時,需要約70小時方可將 酚完全分解’若氣化鈉濃度到達1〇%時,需要約120小時 方可將紛完全分解。 就習知專利而言’如美國發明專利6716352號「Method for removing and recovering aromatic amines by using a non-porous membrane」,該案係採用矽膠管作為薄膜, 因此存在有薄膜皮層厚度太厚,質傳效率較差,以及厚度 不易調整等缺失。 另如英國發明專利2338910號「Membrane separation involving a two-face fluid」,該案係揭露一種利用矽油 進行液-液相萃取技術,然而該技術需要後段分離純化,步 驟較為複雜。 【發明内容】 有鑑於習知技術之缺失,本發明之目的在於提出一種 廢水處理系統,可提昇廢水中有機污染物之薄膜傳輸速 率,並分離無機離子及有機污染物。 為達到上述目的,本發明提出一種廢水處理系統,其 包含一廢水室以及一渗透室,該廢水室係用以容置含有有 機污染物及無機離子之廢水;該滲透室係用以對有機污染 物進行生物處理;於該廢水室與該滲透室之間設有一複合 膜’用以分離廢水中之有機污染物及無機離子,可提供廢 水中之有機污染物通過並進入該滲透室,該複合膜係為對 稱薄膜與非對稱薄膜基材複合而成;本系統同時可配合於 該滲透室中添加適量擔體,以及經由參數控制建立最適當 6 年月 日修正替換頁 操作條件,以分解有機污染物。 本發明所提出之廢水處理系統,其包含一廢水室以及 一滲透室,該廢水室係用以容置含有有機污染物及無機離 子之廢水,一般來說,該有機污染物包括各種可透過複合 f之有機物,該有機物可為芳香族或脂肪族化合物;其中 芳香知包括齡(Phenol )、笨、曱苯、二笨曱酮、曱基二苯 曱_、氯苯、二氯苯、硝基笨、氯硝基笨等;脂肪族包括 —氯曱烷、二氯乙烷、二氯丙烷、二溴乙烷、乙基己醇等, 該無機離子包括高鹽性之無機離子、重金屬離子等;該廢 水室具有一入口端,可用以加入待處理廢水,且該廢水室 内設有至少一導流板,可增加廢水停留的時間,以加強廢 水在廢水室中的有機污染物與無機離子之對流性;該滲透 室係用以對有機汸染物進行生物處理;於該廢水室與該滲 遷至之間設有一极合膜’該複合膜做為該廢水室之出口 端’可提供已流過該導流板之廢水中之有機污染物通過並 進入該滲透室,爹於廢水中之無機離子則可被隔離滯留於 該廢水室中。 該複合膜係由對稱薄膜與非對稱薄膜基材複合而成, 其中該對稱薄膜為一種緻密性的薄膜,孔隙大小大致相 同,可採用聚二曱基石圭氧烧(polydimethylsi-loxane ’ PDMS)、聚四氣乙 (polytetraf luoroethylene,PTFE)、聚 偏二氟乙烯(polyvinylidene fluoride,PVDF')、聚丙烯 (polypropyrene, PP)組合或其一製成’該非對稱薄膜基材 為一種多孔洞性的薄膜-,孔隙大小並不一致,可採用聚砜 (Polysufone)與不織布(Non-woven)製成。 1363041 _______ _年月日絛正替換百 本發明所提出之廢水處理系統’其中’該廢水室更可 連接一泵浦,藉由該泵浦對該廢水室之廢水構成循環流動 作用;該滲透室係連接一可用以對該滲透室内之流體造成 擾動作用的擾動裝置,該擾動裝置玎為曝氣裝置或攪拌裝 置;為了進行質量平衡結算,該滲透室又連接一氣體收集 裝置,用以吸收該滲透室内之少量逸散氣體;該廢水室及 滲透室均設有一採樣口,可分別對該廢水室及滲透室内進 行定期或不定期採樣,以監控廢水處理狀況。 該滲透室另設有一投入口,係可用以將微生物污泥、 生物營養源及生物擔體投入該滲透室内。該微生物污泥中 含有微生物菌種,用以分解滲透室中的有機污染物;該生 物營養源用以提供養分予微生物,促進微生物生長;該生 物擔體用以提供微生物生長吸附,該生物擔體可採用可壓 縮性生物擔體或不可壓縮性生物擔體,該可壓縮性生物擔 體可為聚乙烯(Polyethylene,PE)、聚酯(p〇iyester, PET)、不織布(Non-woven)或聚氨基甲酸酯 (Polyurethane-base)系列之網狀結構物;該不可壓縮性生 物擔體可為活性炭、浪板、多孔高分子球體等。 為使貴審查委員對於本發明之結構目的和功效有更 進一步之了解與認同,茲配合圖示詳細說明如后。 【實施方式】 以下將參照隨附之圖式來描述本發明為達成目的所使 用的技術手段與功效’而以下圖式所列舉之實施例僅為輔 助說明’以W t審查委員瞭解’但本案之技術手段並不限 8 1363041 於所列舉圖式。 清參閱圖二所示’本發明所提出之廢水處理系統1〇, 其包含一廢水室11以及一滲透室12,該廢水室11係用以 容置含有有機污染物及無機離子之廢水,通常,該有機污 染物可為芳香族或脂肪族化合物;其中芳香族包括酚 (Phenol)、笨、甲苯、二笨曱酮、曱基二苯曱酮、氯笨' 二氣笨、硝基笨、氯硝基苯等;脂肪族包括二氯曱烷、二 氯乙烧、二氯丙烷、二溴乙烷、乙基己醇等,該無機離子 # 包括尚鹽性之無機離子;該廢水室11具有一入口端111, 可用以加入待處理廢水’於該廢水室11内設有至少一導流 板112 ’可増加廢水停留的時間,以加強廢水在廢水室11 中的有機污染物與無機離子之對流性;讓滲透室12係用以 對有機污染物進行生物處理;於該廢水室丨1與該滲透室 12之間設有一複合膜13,該複合膜13做為該廢水室11之 出口端’可提供已流過該導流板n2之廢水中之有機污染 物通過並進入該滲透室12,至於廢水中之無機離子則可被 φ 隔離於該廢水室11中。 ·够複合膜13係由對稱薄膜與非對稱薄膜基材複合而 成’其中該對稱薄膜為一種緻密性的薄膜,孔隙大小大致 相同’可採用聚二甲基石圭氧烧(口〇1丫(^1〇以1^15卜1〇又3116, PDMS)、聚四氟乙烯(p〇iytetraf iuoroethylene,PTFE)、聚 偏一 II 乙稀(polyvinylidene fluoride,PVDF)、聚丙稀 (polypropyr*ene,PP)組合或其一製成,該非對稱薄膜基材 為一種多孔洞性的薄膜,孔隙大小並不一致,可採用聚砜 (Polysufone)與不織布(Non_woven)製成。 13630411363041 The following is a replacement page. 9. Description of the Invention: [Technical Field of the Invention] The present invention relates to a wastewater treatment system, and more particularly to a wastewater treatment system for separating a wastewater chamber and a permeation chamber by using a composite membrane. [Prior Art] Based on environmental protection needs, wastewater generated by various industries must be treated well, especially liquid waste containing high salt concentration produced by biotechnology, pharmaceutical, petrochemical, chemical, dyeing and other industries. High-concentration wastewaters mostly contain toxic or harmful components. Currently, they are treated by Extractive Membrane Bio-reacter (EMB). The extraction membrane bioreactor technology is mainly used to make organic wastewater. The pollutants pass through a film skin layer and then decompose the organic pollutants by microorganisms in a permeation chamber, thereby selectively removing harmful components in the wastewater, and have the advantages of purification and resource recovery. • However, there are many problems in this type of extraction-type thin film bioreactor technology. One is that the thickness of the film skin layer used is too thick and the thickness adjustment is not easy. After a long time of use, the film skin will cause fouling and affect the organic pollutants. The higher the concentration of inorganic ions in the 'renewer' wastewater, the more obvious the microbial activity is reduced. This condition will inhibit the biodegradation efficiency of organic matter. The biodegradation efficiency of different gasification sodium concentrations for organic pollutants phenol is shown in Figure 1. The inhibitory effect, which shows that when the concentration of sodium chloride is 〇% and 1%, the enzyme concentration can be completely decomposed in about 30 hours, but when the concentration is higher than 3%, the gasification sodium exists. At the time, the biodegradability of phenol is severely affected by the 1363041 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ When the sodium concentration reaches 1%, it takes about 120 hours to completely decompose. As far as the conventional patent is concerned, 'Method for removing and recovering aromatic amines by using a non-porous membrane', the case uses a silicone tube as a film, so there is a film thickness that is too thick, and the quality is transmitted. Poor efficiency and lack of thickness adjustment. Another example is the British invention patent No. 2338910 "Membrane separation involving a two-face fluid", which discloses a liquid-liquid phase extraction technique using eucalyptus oil. However, this technique requires separation and purification in the latter stage, and the steps are complicated. SUMMARY OF THE INVENTION In view of the absence of the prior art, the object of the present invention is to provide a wastewater treatment system which can increase the film transport rate of organic pollutants in wastewater and separate inorganic ions and organic pollutants. In order to achieve the above object, the present invention provides a wastewater treatment system comprising a wastewater chamber and a permeate chamber for containing waste water containing organic pollutants and inorganic ions; the permeation chamber is for organic pollution Biological treatment; a composite membrane is disposed between the wastewater chamber and the permeation chamber for separating organic pollutants and inorganic ions in the wastewater, and the organic pollutants in the wastewater are passed through and enter the permeation chamber, the composite The membrane system is a composite of a symmetric membrane and an asymmetric membrane substrate; the system can be combined with the appropriate amount of the support in the permeation chamber, and the most appropriate 6-year correction date replacement page operation condition is established through parameter control to decompose the organic Contaminants. The wastewater treatment system of the present invention comprises a wastewater chamber and a permeate chamber for containing wastewater containing organic pollutants and inorganic ions. Generally, the organic pollutants include various permeable composites. The organic matter of f, which may be an aromatic or aliphatic compound; wherein the aromatics include age (Phenol), stupid, indole, dioxin, decyl diphenyl hydrazine, chlorobenzene, dichlorobenzene, nitro Stupid, chloronitro stupid, etc.; aliphatic includes -chlorosilane, dichloroethane, dichloropropane, dibromoethane, ethylhexanol, etc., the inorganic ions include high-salt inorganic ions, heavy metal ions, etc. The waste water chamber has an inlet end for adding waste water to be treated, and at least one baffle is arranged in the waste water chamber to increase the residence time of the waste water to strengthen the organic pollutants and inorganic ions in the waste water chamber. Convection; the permeation chamber is used for biological treatment of organic contaminants; a membrane is formed between the wastewater chamber and the infiltration to the 'extension end of the wastewater chamber' Organic pollutants in the wastewater passed through the baffle and into the osmotic chamber, Davis inorganic ion in the wastewater can be isolated from the waste water accumulated in the chamber. The composite film is composed of a symmetric film and an asymmetric film substrate, wherein the symmetric film is a compact film having substantially the same pore size, and the polydimethylsi-loxane 'PDMS can be used. Polytetraf-luoroethylene (PTFE), polyvinylidene fluoride (PVDF'), polypropylene (polypropyrene, PP) or a combination thereof. The asymmetric film substrate is a porous film. - The pore sizes are not uniform and can be made of polysufone and non-woven. 1363041 _______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Connecting a perturbation device that can be used to disturb the fluid in the permeation chamber, the perturbation device being an aeration device or a stirring device; for mass balance settlement, the permeation chamber is further connected to a gas collection device for absorbing the A small amount of fugitive gas in the chamber; the wastewater chamber and the permeate chamber are each provided with a sampling port for periodically or irregularly sampling the wastewater chamber and the infiltration chamber to monitor the wastewater treatment condition. The permeate chamber is additionally provided with an input port for applying microbial sludge, a biological nutrient source and a biological carrier into the permeation chamber. The microbial sludge contains microbial strains for decomposing organic contaminants in the permeation chamber; the bio-nutrient source is used to provide nutrients to the microorganisms and promote microbial growth; the bio-support is used to provide microbial growth and adsorption, and the bio-support The compressible biological carrier or the incompressible biological carrier may be a body, and the compressible biological carrier may be polyethylene (PE), polyester (p〇iyester, PET), non-woven fabric (Non-woven). Or a polyurethane structure of a polyurethane series; the incompressible biological carrier may be activated carbon, a wave plate, a porous polymer sphere or the like. In order to enable the reviewing committee to have a better understanding and approval of the structural purpose and efficacy of the present invention, the detailed description is as follows. [Embodiment] Hereinafter, the technical means and effects used by the present invention for achieving the object will be described with reference to the accompanying drawings, and the embodiments listed in the following drawings are merely for the purpose of explanation. The technical means are not limited to 8 1363041. Referring to Figure 2, there is shown a waste water treatment system 1 according to the present invention, which comprises a waste water chamber 11 and a permeate chamber 12 for containing waste water containing organic pollutants and inorganic ions, usually The organic pollutant may be an aromatic or aliphatic compound; wherein the aromatic includes phenol (Phenol), stupid, toluene, dioxin, decyl benzophenone, chloroform, dioxin, nitro stupid, Chloronitrobenzene, etc.; aliphatic includes dichlorodecane, dichloroethane, dichloropropane, dibromoethane, ethylhexanol, etc., the inorganic ion # includes inorganic ions that are still salty; the wastewater chamber 11 The utility model has an inlet end 111, which can be used to add waste water to be treated, and at least one baffle 112 in the waste water chamber 11 can increase the time for the wastewater to stay, so as to strengthen the organic pollutants and inorganic ions of the wastewater in the waste water chamber 11. Convection; let the permeate chamber 12 be used for biological treatment of organic pollutants; a composite membrane 13 is disposed between the wastewater chamber 1 and the permeate chamber 12, and the composite membrane 13 serves as an outlet of the wastewater chamber 11 End' can provide wastewater that has flowed through the deflector n2 The organic pollutants pass through and enter the permeate chamber 12, and the inorganic ions in the wastewater can be sequestered into the wastewater chamber 11 by φ. · The composite film 13 is composed of a symmetrical film and an asymmetric film substrate. The symmetrical film is a dense film with substantially the same pore size. Polydimethyl ketone can be used. (^1〇1^15卜1〇3116, PDMS), PTFE (p〇iytetraf iuoroethylene, PTFE), polyvinylidene fluoride (PVDF), polypropyr*ene (polypropyr*ene, PP) is a combination or a preparation thereof. The asymmetric film substrate is a porous film having inconsistent pore sizes and can be made of polysufone and non-woven fabric.

在本實施例中,所使用的對稱薄膜為聚二甲美硅& (polydimethylsi-loxane ’ PDMS),非對稱薄祺基二:二= 颯(Polysufone)與不織布(N〇n-woven)製成,兮八 可採用料娜換法料二f紐魏溶Χ σ ^ 與不織布形成之基材上製成。這裡要強調的是~該=, 11中的廢水會依序先通過該複合膜13 = 1 經過該非對稱薄膜基材,以分離廢水中之有機污染物2 機離子’提供廢水中之有機污染物通過並進入該滲透室… 請參閱以下表一及表二所示,具體說明該複人膜n 同實施例之製成條件,表一係本發明提供之複合膜之 稱薄膜基材實施例製成條件,表二係本發明提:、 士 稱薄膜厚度與非對稱薄膜基材製成複合膜實施例 件。 v、 非對稱薄膜基材 高分子 聚通 高分子濃度 20wt% 成臈溫a度 28°C/RH90% 厚度 130μια 支撐層 不織布 對稱薄 1 1 1 2 1 ——Τ 1 4~~ίr-η -- -—---- I Ο 高分子 聚二甲基硅氧炫 —— 交聯劑濃度 l~3wt% —-- 觸媒滾度 l-3wt96 '~~~·---— 成膜溫度 100-130°C - 到玲厚度 50 μ® 1 —- 高分子滚度 100wt« 75wt% 成型厚度 23.49 μω 14.42 μπι Θ.ΒΙμ,η 如表一所示,於本實施例中,以不織布作為支撐屉 於成膜溫溼度28°C/RH90%、聚砜高分子濃度2〇wt%: l ’ 下,於該不織布支撐層上成型聚砜高分子膜,總厚度約^ 工363〇41 修正替換頁 ⑽:’如此即可形成該複合膜13之非對 八次,再以溼式相轉換法將聚二甲美梟土 於該聚礙與不織布所形成之非對稱薄^:^到鑄 型厚度之對稱薄膜,於交聯劑漠度所 觸媒/辰度"wt%、成膜溫度1〇〇〜13〇 。、 100wt%. 75wt%. 5〇wt^ 20wt^: ? ^ 土石圭乳f向分子溶液,將其顺於該上述成型厚度約: 5〇,mV6V; 兩種,如此’可成型厚度分別為23心㈣ 、·: 、1。〇em、〇. 五種對稱薄膜。 . 2續參關二所示本發明所提出之廢水處理 1〇,其中,該廢水室u係連接一泵浦14,藉由該者〗·· 對該廢水室11之廢水構成循職動仙;該渗透室⑴系 fsf 15,該曝氣裝置15包括一壓縮機(或是 妓風機)151、一氣體流量計152以及設置於該渗透室 内之曝氣管153’該氣體流量計152具有一安全閥(圖令 未不出)可調整適當之氣體流量;藉由該壓縮機(或是—鼓 風機)151使空氣通過該氣體流量計152 π,藉由安全^ 凋整適當之氣體流量後,再將空氣打入該曝氣管丨Μ,再 由該排軋管153排入該滲透室12,可用以對該渗透室a 内之流體造成擾動作用,該曝氣裝置15可以具有相同功能 之攪拌裝置替代之,或具有相同作用之其他裝置皆可·,該 滲透室12又連接一氣體收集裝置16,用以收集該滲透室 12内之少量逸散氣體;該廢水室丨1及滲透室12均設有採 樣口 113、121,可分別對該廢水室丨丨及滲透室12内進行 11 1363041 _年月日修正替拖百 疋期或不定期採樣,以監控廢水處理狀況。 該/參透至12另設有一投入口 122,係可用以將微生物 π泥、生物營養源(圖中未示出),以及生物擔體17投入該 渗透至12内,該微生物污泥中含有微生物菌種,用以分解 渗透至12中之有機污染物;該生物營養源用以提供養分予 "^生物’促進微生物生長,該生物營養源為尿素、磷酸二 氣卸與氣化鐵所配置而成;該生物擔體17用以提供微生物 生長吸附’該生物擔體17可採用可壓縮性生物擔體或不可 壓縮性生物擔體,該可壓縮性生物擔體可為聚乙烯 (Polyethylene ’ ΡΕ)、聚 g旨(p〇lyester,ΡΕΤ)、不織布 (Non woven)或聚氣基甲酸醋(p〇iyurethane-base)結構 物’該不可壓縮性生物擔體可為活性炭、浪板、多孔高分 子球體等;該生物擔體17添加量係依實際廢水流量、廢水 有機污染物濃度,以及該滲透室12體積而定,依實際驗證 結果,當廢水進入廢水室丨1之流量約介於35〜180ml/min 之間,且該廢水中之有機污染物濃度(通常係指酚濃度)約 介於100~1000mg/L之間時’所添加之生物擔體17佔該渗 透室12體積約介於24. 6cm3/L〜198cm3/L之間,其中,當廢 水流量為180ml/min、有機污染物濃度為iooOmg/L,所添 加之生物擔體17佔該滲透室12體積為98. 4cm3/L時,可 達最佳生物分解效能,如圖三所示,生物擔體17佔該滲透 室12體積為98· 4cm3/L時,可達最高紛渗透通量約為9.54 g/m2d 〇 請參閱表三所示本發明提供之系統操作廢水室及滲透 室之酚濃度與導電度變化: 1363041 年月日修正替換頁In this embodiment, the symmetric film used is polydimethylsi-loxane 'PDMS, asymmetric bismuth diene: two = Po (Polysufone) and non-woven fabric (N〇n-woven) Cheng, 兮 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 换 换 换 换 换 换 换 换 换 换 f f f f f 与 与 与It should be emphasized here that the waste water in the 11 will pass through the composite membrane 13 = 1 through the asymmetric membrane substrate to separate the organic pollutants in the wastewater. Passing and entering the permeation chamber... Please refer to Tables 1 and 2 below to specify the preparation conditions of the composite film n and the embodiment. Table 1 is a composite film film according to the present invention. The conditions are as follows: Table 2 is a summary of the invention: a composite film made of a film thickness and an asymmetric film substrate. v. Asymmetric film substrate polymer polymerization polymer concentration 20wt% 臈 temperature a degree 28°C/RH90% thickness 130μια support layer non-woven symmetrical thin 1 1 1 2 1 ——Τ 1 4~~ίr-η - - ------ I I 高分子 High molecular polydimethylsiloxane oxime - crosslinker concentration l~3wt% —-- Catalyst rolling degree l-3wt96 '~~~·---- film formation temperature 100-130°C - to thickness 50 μ® 1 --- polymer rolling 100wt« 75wt% forming thickness 23.49 μω 14.42 μπι Θ.ΒΙμ,η As shown in Table 1, in this embodiment, it is supported by non-woven fabric The polysulfone polymer film is formed on the support layer of the non-woven fabric under the film forming temperature and humidity of 28 ° C / RH 90% and the polysulfone polymer concentration of 2 〇 wt%: l ', and the total thickness is about 363 〇 41. Page (10): 'This can form the non-parallel eight times of the composite film 13, and then use the wet phase conversion method to form the asymmetry of the polydimethyl samarium in the interference and non-woven fabric. Symmetrical film of thickness, the catalyst/density of the cross-linking agent is <wt%, and the film forming temperature is 1〇〇13〇. , 100wt%. 75wt%. 5〇wt^ 20wt^: ? ^ Earth and stone milk f to the molecular solution, which is compliant with the above formed thickness: about 5〇, mV6V; two, so 'formable thickness is 23 Heart (4), ·:, 1,. 〇em, 〇. Five symmetrical films. 2 Continuation 2 shows the wastewater treatment proposed by the present invention, wherein the wastewater chamber u is connected to a pump 14, by which the wastewater of the wastewater chamber 11 constitutes a mobilization The permeation chamber (1) is fsf 15, the aeration device 15 includes a compressor (or a blower fan) 151, a gas flow meter 152, and an aeration tube 153' disposed in the permeation chamber. The gas flow meter 152 has a The safety valve (not shown) can adjust the appropriate gas flow rate; by the compressor (or - blower) 151, the air is passed through the gas flow meter 152 π, and after the proper gas flow is safely The air is driven into the aeration tube, and the discharge tube 153 is discharged into the permeate chamber 12, which can be used to disturb the fluid in the permeate chamber a. The aeration device 15 can have the same function. The agitating device is replaced by another device having the same function, and the permeating chamber 12 is further connected to a gas collecting device 16 for collecting a small amount of fugitive gas in the permeation chamber 12; the wastewater chamber 1 and the permeation chamber 12 are provided with sampling ports 113, 121, which can be respectively _ Date were 111,363,041 corrected within 12 wastewater room Shushu room for penetration and drag one hundred Cloth period or irregular sampling to monitor the status of waste water treatment. The inlet/transparent to 12 is further provided with an input port 122 for applying microbial π mud, a biological nutrient source (not shown), and a biological carrier 17 into the permeate 12, the microbial sludge containing microorganisms a species used to decompose organic pollutants that penetrate into 12; the biological nutrient source is used to provide nutrients to "^bio' to promote microbial growth, and the nutrient source is configured for urea, phosphate gas discharge and gasification iron The biological carrier 17 is used for providing microbial growth adsorption. The biological carrier 17 can be a compressible biological carrier or an incompressible biological carrier. The compressible biological carrier can be polyethylene (Polyethylene ' ΡΕ), polyg (p〇lyester, ΡΕΤ), non woven (non-woven) or poly-glycolic acid vinegar (p〇iyurethane-base) structure 'The incompressible bio-support can be activated carbon, wave board, porous high Molecular spheres, etc.; the amount of the biological carrier 17 is determined according to the actual wastewater flow rate, the concentration of the organic pollutants in the wastewater, and the volume of the permeate chamber 12, according to the actual verification result, when the wastewater enters the wastewater chamber, the flow rate is about Between 35 and 180 ml/min, and the concentration of organic pollutants in the wastewater (generally referred to as the phenol concentration) is between about 100 and 1000 mg/L. 'The added biological carrier 17 accounts for the permeation chamber 12 The volume is about 24. 6cm3 / L ~ 198cm3 / L, wherein, when the wastewater flow rate is 180ml / min, the concentration of organic pollutants is iooOmg / L, the added biological carrier 17 accounts for 98 of the volume of the permeate chamber At 4cm3/L, the best biodegradation efficiency can be achieved. As shown in Fig. 3, when the biological carrier 17 accounts for 98. 4cm3/L of the permeate chamber 12, the highest permeation flux is about 9.54 g/ M2d 〇Please refer to Table 3 for the phenol concentration and conductivity change of the system operation wastewater chamber and the permeation chamber provided by the present invention: 1363041

其顯示本發明所提出之複合膜可有效分離高濃度氯化 鈉與酚,同時酚可以完全被微生物所分解;當廢水通過複 合膜進入滲透室後,導電度大幅降低,代表高濃度氯化鈉 被隔離於廢水室内,而酚則幾乎可完全被微生物分解,其 濃度為低於液相層析儀之所能檢測之數值(ND,No Detect) ° 請參閱表四所示本發明提供之系統利用L9直交實驗設 計法: 组 別 條件 結果 變因 酚濃度 (mg/L) 流量 (ml/min) 複合膜 厚度 (μπι) 氯化納 濃度 (%) 48小時 渗透通量 (g/m2d) 6小時 渗邊通量 (g/ra2d) 1 1 1 1 1 100 30 23.49 1 0.38 0.93 2 1 2 2 2 100 go 9.61 3 0.25 0.60 3 1 3 3 3 100 150 0. 40 5 0.18 0.35 4 2 1 2 3 550 30 9.61 5 1.14 1.21 5 2 2 3 1 550 90 0.40 1 1.07 1.11 6 2 3 1 2 550 150 23.49 3 1.29 1.40 7 3 1 3 2 1,000 30 0.40 3 2.35 3.25 8 3 2 1 3 1,000 90 23.49 5 2.87 4. 24 9 3 3 2 1 1,000 150 9.61 1 2.46 2.96It shows that the composite membrane proposed by the invention can effectively separate high concentration sodium chloride and phenol, and the phenol can be completely decomposed by microorganisms; when the wastewater enters the permeation chamber through the composite membrane, the conductivity is greatly reduced, representing a high concentration of sodium chloride. It is isolated in the wastewater chamber, and the phenol is almost completely decomposed by microorganisms, and its concentration is lower than that of the liquid chromatograph (ND, No Detect). Please refer to Table 4 for the system provided by the present invention. Using the L9 orthogonal experimental design method: group conditions results in phenol concentration (mg/L) flow rate (ml/min) composite film thickness (μπι) sodium chloride concentration (%) 48 hours permeate flux (g/m2d) 6 Hourly bleed flux (g/ra2d) 1 1 1 1 1 100 30 23.49 1 0.38 0.93 2 1 2 2 2 100 go 9.61 3 0.25 0.60 3 1 3 3 3 100 150 0. 40 5 0.18 0.35 4 2 1 2 3 550 30 9.61 5 1.14 1.21 5 2 2 3 1 550 90 0.40 1 1.07 1.11 6 2 3 1 2 550 150 23.49 3 1.29 1.40 7 3 1 3 2 1,000 30 0.40 3 2.35 3.25 8 3 2 1 3 1,000 90 23.49 5 2.87 4 . 24 9 3 3 2 1 1,000 150 9.61 1 2.46 2.96

複合琪(厚度=6. 8μιη) 操作開始 操作結束 檢測次數 1 2 1 2 操作時間(小時) 141 161 141 161 廢水室 導電度 Onhos/coi) 31.5 31.3 31.4 31.4 紛波度(mg/L) 401 404 362 323 滲透室 等電度(mhos/cin) 0.35 0.62 1.01 1.28 紛浪度(mg/L) ND (No Detect) 生物擔體佔滲透 室逋積比(cm3/L) 24.6 14.7 24.6 14.7Compound Qi (thickness = 6.8 μmη) Operation start operation End detection number 1 2 1 2 Operation time (hours) 141 161 141 161 Wastewater compartment conductivity Onhos/coi) 31.5 31.3 31.4 31.4 Dimension (mg/L) 401 404 362 323 Isoelectricity of the permeate chamber (mhos/cin) 0.35 0.62 1.01 1.28 Wave capacity (mg/L) ND (No Detect) Bio-loading ratio of permeate chamber (cm3/L) 24.6 14.7 24.6 14.7

利用L9直交實驗設計法,參數是四項變因三水準數 13 1363041 年月日修正替換頁 據,四項變因分別為酚濃度、流量、複合膜厚度及氯化鈉 濃度,操作約48小時,共進行九組試驗,每一組各取樣四 次,瞭解變化。分析後計算結果如表四所示,渗透通量分 為初期6小時及末期48小時,得知處理酚濃度越高,滲透 通量越高。利用統計軟體極差分析得到6小時及48小時極 差值R,分別是齡濃度=2. 86、流量=0. 41、複合膜厚度 =0. 62、氯化鈉濃度=0. 27及酚濃度=2. 29、流量=0. 11、複 合膜厚度=0. 31、氯化鈉濃度=0. 10,極差值R的數值愈大 表示該因子影響滲透通量之重要性愈大,因此影響滲透通 量的變因順序不論是初期6小時及末期48小時,都是酚濃 度—複合膜厚度—流量-^氯化鈉濃度。 以直交實驗設計法由酚濃度、流量、複合膜厚度、氯 化鈉濃度四項變因中篩選主要影響參數為酚濃度及複合膜 厚度,改變此兩參數,固定其他兩參數分別是流量及氯化 鈉濃度,進行應答曲面之中心組合法;實驗結果如圖四及 圖五所示求得不同酚濃度與不同複合膜厚度的滲透通量, 顯示在本實驗範圍内當酚濃度愈高,由於濃度差大,驅動 力大,滲透通量愈高,其中,圖四所指滲透液係為滲透室 中之液體,而滲透液滲透通量則為有機物質驗通過複合膜 進入滲透室中,其滲透液之單位截面積單位時間所顯示之 質量;當複合膜厚度越厚時,由於聚二曱基硅氧烷與酚的 親和力大,其廢水室滲透通量愈高,而滲透室滲透通量差 異性較小。若改變兩個操作參數為複合膜厚度及流量,固 定其他兩參數為酚濃度與食鹽濃度,進行應答曲面之中心 組合法,實驗結果如圖六及圖七所示求得不同流量與不同 14 複合膜厚度的滲透通量,顯示在 ^ 流量,滲透通量逐漸增大。 只驗範圍内’増力喝環 綜上所述,本發明提供之一 密性或無孔洞性複合膜分隔廢水理系統,利用織 該渗透室中添加適量擔體,經由“,同時配合* 昇廢水中有機污染物之薄膜傳輪數’可提 子及有機污染物的效果。 羊亚達到为離無機離 惟以上所述者,僅為本發明之 能以之限定本發明所實施之範 而已,當不 利範圍所作之均等變化與修飾依本發明申靖專 蓋之範圍内,謹請貴審杳委員=仍屬於本發明專利碎 禱。 —妥貝日月鐘’並祈惠准’是所至 【圖式簡單說明】 效能化鈉濃度對於有機污咖的生物分解 圖二係本發明提供之系統之架構示意。 圖二係本發明提供之系統添加生物擔體對酚滲透 之影響曲線。 崽 圖四係本發明提供之系統以酚濃度與複合膜厚度為座 標的參透液13小時滲透通量回應值。 圖五係本發明提供之系統以酚濃度與複合膜厚度為座 標的廢水13小時滲透通量回應值。 圖六係本發明提供之系統以流量與複合膜厚度為座襟 的滲透液48小時滲透液滲透通量回應值。 15 1363041 _ 年月日絛正替換頁 圖七係本發明提供之系統以流量與複合膜厚度為座標 的廢水6小時滲透通量回應值。 【主要元件符號說明】 10-廢水處理系統 11_廢水室 111- 入口端 112- 導流板 113- 採樣口 12- 滲透室 12卜採樣口 122-投入口 13- 複合膜 14- 泵浦 15- 曝氣裝置 151 -壓縮機 152- 氣體流量計 153- 曝氣管 16- 氣體收集裝置 17- 生物擔體Using the L9 orthogonal experimental design method, the parameters are four variables due to the three-level number 13 1363041. The four variables are phenol concentration, flow rate, composite film thickness and sodium chloride concentration, and operation is about 48 hours. A total of nine trials were conducted, each of which was sampled four times to understand the changes. The results of the analysis are shown in Table 4. The permeate flux is divided into the initial 6 hours and the final period of 48 hours. It is known that the higher the treated phenol concentration, the higher the permeate flux. Using the statistical software range analysis, the extreme difference R was obtained for 6 hours and 48 hours, respectively, age concentration = 2.86, flow rate = 0.41, composite film thickness = 0.62, sodium chloride concentration = 0.27 and phenol. Concentration = 2. 29, flow rate = 0.1, composite film thickness = 0.31, sodium chloride concentration = 0.1, the greater the value of the extreme difference R, the greater the importance of the factor affecting the permeate flux, Therefore, the order of influence on the permeate flux is phenol concentration - composite film thickness - flow - sodium chloride concentration, both in the initial 6 hours and in the final 48 hours. The main influence parameters of the phenol concentration, flow rate, composite film thickness and sodium chloride concentration were selected by the orthogonal experimental design method as the phenol concentration and the composite film thickness. The two parameters were changed, and the other two parameters were flow and chlorine. The sodium concentration was used to perform the central combination method of the response surface; the experimental results are shown in Fig. 4 and Fig. 5 to obtain the permeation fluxes of different phenol concentrations and different composite film thicknesses, which shows that the higher the phenol concentration in the experimental range, due to The concentration difference is large, the driving force is large, and the permeation flux is higher. Among them, the permeate in Fig. 4 is the liquid in the permeation chamber, and the permeate permeate flux is the organic substance passing through the composite membrane into the permeation chamber. The unit cross-sectional area of the permeate shows the mass per unit time; when the thickness of the composite membrane is thicker, the penetration rate of the wastewater chamber is higher due to the greater affinity of the polydithiosiloxane and phenol, and the permeate flux of the permeate chamber The difference is small. If the two operating parameters are changed to the composite film thickness and flow rate, the other two parameters are fixed as the phenol concentration and the salt concentration, and the central combination method of the response surface is performed. The experimental results are shown in Fig. 6 and Fig. 7 to obtain different flow rates and different 14 composites. The permeate flux of the film thickness is shown at the flow rate, and the permeate flux is gradually increased. In the scope of the test, the present invention provides a dense or non-porous composite membrane separation wastewater treatment system, and uses the appropriate amount of the support in the permeation chamber to pass the "with The effect of the number of film-transports of organic pollutants on extractables and organic pollutants. The achievement of the invention is based on the above, and only the invention can limit the implementation of the invention. In the scope of the unfavourable scope of the changes and modifications in accordance with the scope of the Shenjing cover of the present invention, I would like to ask the judges of the trial = still belong to the patent prayer of the invention. - Tobey Bay clock 'and pray for the right' is the BRIEF DESCRIPTION OF THE DRAWINGS The biodegradation of the organic sodium is shown in Fig. 2. The structure of the system provided by the present invention is shown in Fig. 2. Fig. 2 is a graph showing the effect of the addition of the biological support on the phenol permeation by the system provided by the present invention. The system provided by the present invention provides a 13-hour permeation flux response value of the permeable liquid and the thickness of the composite membrane as a coordinate. Figure 5 is a system provided by the present invention with the phenol concentration and the thickness of the composite membrane as coordinates. The water permeation flux response value of 13 hours is shown in Fig. 6. Fig. 6 is the response value of the permeate permeate flux of the permeate for the permeate of the system with the flow rate and the thickness of the composite membrane as the seat. 15 1363041 _ The system provides the 6-hour permeate flux response value of the wastewater with the flow rate and the thickness of the composite membrane as a coordinate. [Main component symbol description] 10- Wastewater treatment system 11_Drug chamber 111- Inlet end 112- Deflector 113 - Sampling port 12 - Permeation chamber 12 - Sampling port 122 - Input port 13 - Composite membrane 14 - Pump 15 - Aeration device 151 - Compressor 152 - Gas flow meter 153 - Aeration tube 16 - Gas collection device 17 - Biological Support

Claims (1)

1363041 _— - 年月日條正替換頁 十、申請專利範圍: 1. 一種廢水處理系統,包含: 一廢水室’用以容置含有有機污染物及無機離子之廢 . 水’該有機污染物為芳香族或脂肪族化合物; 一滲透室’用以對有機污染物進行生物處理; 一複合膜’係設置於該廢水室與該滲透室之間,可提供 廢水中之有機污染物通過並進入該滲透室,該複合膜係 為對稱薄膜與非對稱薄膜基材複合而成,其中該對稱薄 0 膜為一種緻密性的薄膜’該對稱薄膜係採用聚二曱基硅 氧烷(polydimethylsi-l〇xane,PDMS)、聚四氟乙烯 (polytetrafluoroethylene,PTFE)、聚偏二氟乙烯 (polyvinylidene fluoride, PVDF)、聚丙烯 . (P〇1ypr〇pyrene,PP)組合或其一製成,該非對稱薄膜基 • 材為一種多孔洞性的薄膜,該非對稱薄膜基材係採用聚 颯(Polysufone)與不織布(Νοη-woven)製成。 2·如申請專利範圍第1項所述之廢水處理系統,其中該對 • 稱薄膜厚度約介於〇. 1〜26. 2#m之間。 3. 如申請專利範圍第1項所述之廢水處理系統,其中該非 對稱薄膜基材厚度約為130/zm。 4. 如申請專利範圍第1項所述之廢水處理系統,其中該滲 透室内添加有生物擔體,該生物擔體可採用可壓縮性生 物擔體或不可壓縮性生物擔體 5. 如申請專利範圍第4項所述之廢水處理系統,其中: 該可屋縮性生物擔體可採用聚乙烯(Polyethylene, .. PE)、聚酯(Polyester,PET)、不織布(Non-woven)或聚 17 41 41 年月 日條正替換頁 氨基曱酸酯(P〇lyurethane_base)結構物; 該不可壓縮性生物擔體可採用活性炭、浪板、多孔高分 子球體。 6. 如申請專利範圍第4項所述之廢水處理系統,其中該生 物擔體佔渗透室體積約介於24 6cm3/L〜i98cm3/L之間。 7. 如申請專利範圍第丨項所述之廢水處理系統,盆中: 該廢水中之有機污染物濃度約介於1()(M_mg/L之間。 •如^專利feu第1項所述之廢水處理系統,其中該廢 接-㈣及至少—導流板,藉由該泵浦及該導 ^板對該廢水室之廢水構成循環對流作用。 9。如:請專利範圍第丨項所述之廢水處㈣統,其令該渗 ,至係連接-擾動裝置,用以對該渗透室内之流體造成 擾動作用。 10.如申請專利範圍第9項所述之廢水處理系統,其中該 擾動裝置可採用曝氣裝置或攪拌裝置。 如申明專利範圍第1 〇項所述之廢水處理系統,其中 該曝氣裝置包括: 一壓縮機或一鼓風機; 一氣體流量計;以及 、曝,管,係没置於該滲透室内,藉由該壓縮機將空氣 通過氣體流量計之調整打入該曝氣管再進入該滲透室。 12.如申睛專利範圍第1項所述之廢水處理系統,其中該 滲透室係連接一氣體收集裝置,用以吸收該滲透室内之 少量逸散氣體。 3.如申请專利範圍第1項所述之廢水處理系統,其中該 14·如申染物可為芳香族或脂肪族化合物。 廢水中之項所述之廢水處理系統,其中該 等。",、機離子包括㈣性的無卿子或重金屬離子 15.如申請專利範圍第1頂淋、+,士 + 廢水室及滲透室均設有採樣口"旁水處理系統,其令該 室内進行採樣用以對該廢水室及滲透 16·如申請專利範圍第!項所述之廢水處1363041 _— - Year, month, and day are replacing page 10. Patent application scope: 1. A wastewater treatment system, comprising: a wastewater chamber for containing waste containing organic pollutants and inorganic ions. An aromatic or aliphatic compound; a permeation chamber 'for biological treatment of organic pollutants; a composite membrane' disposed between the wastewater chamber and the permeation chamber to provide passage and entry of organic contaminants in the wastewater In the permeation chamber, the composite film is a composite film of a symmetric film and an asymmetric film substrate, wherein the symmetric thin film is a dense film, and the symmetric film is made of polydimethylsi-l非xane, PDMS), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polypropylene (P〇1ypr〇pyrene, PP) or a combination thereof, the asymmetric film The base material is a porous film which is made of polysufone and non-woven fabric. 2之间之间。 The water treatment system according to the scope of the patent application, wherein the thickness of the film is about 1. 1~26. 2#m. 3. The wastewater treatment system of claim 1, wherein the asymmetric membrane substrate has a thickness of about 130/zm. 4. The wastewater treatment system according to claim 1, wherein the infiltration chamber is provided with a biological carrier, and the biological carrier can be a compressible biological carrier or an incompressible biological carrier. The wastewater treatment system of item 4, wherein: the contractible biological carrier can be made of polyethylene (Polyethylene, .. PE), polyester (Polyester, PET), non-woven (Non-woven) or poly 17 41 The 41st year of the Japanese calendar is replacing the P曱lyurethane_base structure; the incompressible biological carrier can be activated carbon, a wave plate or a porous polymer sphere. 6. The wastewater treatment system of claim 4, wherein the biomass carrier comprises between about 24 6 cm 3 /L and about 98 cm 3 /L. 7. In the wastewater treatment system described in the scope of patent application, in the basin: the concentration of organic pollutants in the wastewater is between 1 () (M_mg / L.) • as described in patent #1 The waste water treatment system, wherein the waste connection-(four) and at least the baffle plate, by the pump and the guide plate, constitute a cyclic convection effect on the waste water of the waste water chamber. 9. For example, please refer to the scope of the patent scope The waste water treatment system (4), which causes the seepage to the connection-disturbance device to cause a disturbance to the fluid in the permeate chamber. 10. The wastewater treatment system according to claim 9, wherein the disturbance is The apparatus may be an aeration device or a stirring device, such as the wastewater treatment system of claim 1, wherein the aeration device comprises: a compressor or a blower; a gas flow meter; and an exposure tube. Is not placed in the permeation chamber, and the compressor is used to drive air into the aeration tube through the adjustment of the gas flow meter and then enter the permeation chamber. 12. The wastewater treatment system according to claim 1 of the scope of the patent application, Where the permeation chamber is connected A gas collection device for absorbing a small amount of fugitive gas in the permeation chamber. 3. The wastewater treatment system according to claim 1, wherein the dyeing agent can be an aromatic or an aliphatic compound. The wastewater treatment system according to the item, wherein the machine ion comprises (four) non-clear or heavy metal ions. 15. The scope of application of the first top shower, +, ± wastewater chamber and permeation chamber There is a sampling port "side water treatment system, which allows the room to be sampled for the wastewater chamber and the infiltration 16·the wastewater area as described in the scope of claim patent item! 年月日條正替換f 渗透室設有投入口,用以投入微生物污泥生物技/表中該 以及生物擔體。 生物呂養源,The year, month, and day strips are replacing the f-permeability chamber with an input port for the microbial sludge biotechnology/table and the biological carrier. Biological Lu Yangyuan,
TW96150739A 2007-12-28 2007-12-28 Waste water treatment system TWI363041B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96150739A TWI363041B (en) 2007-12-28 2007-12-28 Waste water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96150739A TWI363041B (en) 2007-12-28 2007-12-28 Waste water treatment system

Publications (2)

Publication Number Publication Date
TW200927674A TW200927674A (en) 2009-07-01
TWI363041B true TWI363041B (en) 2012-05-01

Family

ID=44863724

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96150739A TWI363041B (en) 2007-12-28 2007-12-28 Waste water treatment system

Country Status (1)

Country Link
TW (1) TWI363041B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478073B (en) * 2014-12-10 2016-07-06 广西师范大学 A kind of device utilizing ABR-bio electricity Fenton coupling technique to process difficult for biological degradation industrial wastewater

Also Published As

Publication number Publication date
TW200927674A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
Bera et al. Emerging and advanced membrane technology for wastewater treatment: A review
Couto et al. A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater
Wenten et al. Extractive membrane bioreactor (EMBR): Recent advances and applications
Lu et al. Recent advances in membrane aerated biofilm reactors
Yang et al. State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America
Zhang et al. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor
Nguyen et al. Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms
Jin et al. Preparation of polydimethylsiloxane–polyvinylidene fluoride composite membranes for phenol removal in extractive membrane bioreactor
Kumar et al. Removal of phenol from coke‐oven wastewater by cross‐flow nanofiltration membranes
Tibi et al. Membrane distillation as post-treatment for anaerobic fluidized bed membrane bioreactor for organic and nitrogen removal
Kozak et al. Treatment of textile wastewater using combined anaerobic moving bed biofilm reactor and powdered activated carbon-aerobic membrane reactor
Robbins et al. Mitigating membrane wetting in the treatment of unconventional oil and gas wastewater by membrane distillation: A comparison of pretreatment with omniphobic membrane
Wenten et al. Membrane biosorption: recent advances and challenges
Ray et al. Synthetic polymeric membranes for the removal of toxic pollutants and other harmful contaminants from water
Arabi et al. Membrane processes
Gómez-Espinosa et al. Role of membrane on emerging contaminant removal
Zhou et al. Structural characteristics of cake layer in membrane bioreactor with chromate exposure
TWI363041B (en) Waste water treatment system
Roy et al. Removal of organic micro-pollutants by membrane filtration
Siagian et al. Advances in membrane bioreactor: High performance and antifouling configurations
Khan et al. Wastewater Treatment Using Membrane Bioreactor Technologies: Removal of Phenolic Contaminants from Oil and Coal Refineries and Pharmaceutical Industries
Zhang et al. Influence of solution and operating conditions on the treatment of aquaculture wastewater using direct contact membrane distillation: Ammonia rejection and membrane fouling
Priya et al. Membrane bioreactor for the treatment of VOC laden pharmaceutical wastewater: effect of biological treatment systems on membrane performance
Pathak et al. Membrane bioreactors for the removal of micro-pollutants
Kajitvichyanukul et al. Potable water biotechnology, membrane filtration and biofiltration