TWI362575B - - Google Patents

Download PDF

Info

Publication number
TWI362575B
TWI362575B TW096147909A TW96147909A TWI362575B TW I362575 B TWI362575 B TW I362575B TW 096147909 A TW096147909 A TW 096147909A TW 96147909 A TW96147909 A TW 96147909A TW I362575 B TWI362575 B TW I362575B
Authority
TW
Taiwan
Prior art keywords
path
curve
patent application
discrete
node
Prior art date
Application number
TW096147909A
Other languages
Chinese (zh)
Other versions
TW200925812A (en
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW096147909A priority Critical patent/TW200925812A/en
Publication of TW200925812A publication Critical patent/TW200925812A/en
Application granted granted Critical
Publication of TWI362575B publication Critical patent/TWI362575B/zh

Links

Landscapes

  • Numerical Control (AREA)

Description

1362575 九、發明說明: 【發明所屬之技術領域】 ,丨小π,入住两卸切削加工路徑規割 是指-種基於全域最佳化方式之創新設計者。 【先前技術】 按’隨著CAD/CAM技術的拉钵欢1362575 IX. Description of the invention: [Technical field to which the invention belongs], 丨 small π, occupancy in the two unloading cutting path regulation refers to an innovative designer based on the global optimization method. [Prior Art] Press 'With the CAD/CAM technology

旳持續發展,因應產品美觀性盘 ㈣需求的自由曲面造型日益f ^,大量被應用於如航= 、汽車、造船零件與消費性電子等產品結構上。 以航太與冷珠空調產素夕、a ^ ^ . 業之渦輪葉片為例,其開發能力 吊被視為工業技術水準的重要指標之一,线國家在此領 域上均投入大量研究資源、;渴輪葉片的開發屬於高度分工 的產業’外型幾何設計涉及尖端流體力學,而其製造工作 、!由專業加工廠負胃’需要專精的電腦辅助製造與切削經 驗,通常使用五軸數值控制加工技術。旳Continuous development, in response to the product aesthetics disk (4) the demand for free-form surface modeling is increasingly used, such as aerospace =, automotive, shipbuilding parts and consumer electronics and other product structures. Taking the aerospace and cold-bead air-conditioning production and the turbine blades of the industry as an example, the development capability crane is regarded as one of the important indicators of industrial technology standards. The line countries have invested a lot of research resources in this field. The development of thirsty wheel blades is a highly-divisional industry. 'External geometry design involves cutting-edge fluid mechanics, and its manufacturing work, by the professional processing plant negative stomach' requires specialized computer-aided manufacturing and cutting experience, usually using five-axis values Control processing technology.

渦輪葉片之曲面形狀高度複雜,由於三軸數值加工之 :具於空間中移動範圍較為有限,無法完整製造出設計之 成何較一軸加工多出旋轉與傾斜自由度之五軸銑削,因 為擁有更尚的刀具運動彈性,故較為適用於複雜幾何形狀 之"力口 JL ,宜*t刀 古 —r \ . ,、 」力式可分為端銑與側銑兩類,就直紋曲面 (加时surface)加工之時間與成本而言,側銑擁有較多的優 勢然而’其刀具路徑規劃與切削誤差控制上,則較為困 難且缺少自動計算方法之輔助。 5 1362575 且! ;白兵五轴側銳路控之規劃方法’必須弁—-登链 具運動模式,以等參數直紋線 ,丁選擇刀 線上等表數取这齡也 為幻先須於邊界曲 /數取仔離散點,若兩曲線產 對應點相連即可決定刀具轴向。若占數數相同’則將 合特殊運動# 4 f 1 τ 線,.·έ數不同,則可配 不哽勖杈式(如Tangent to fan)產生n 劃方法如固定刀且^ ;屋生①整路㉟,其它規 軸向等,對於整° 5依^曲面之法向量決定刀具 根據局部之曲^ 言其運動模式唯一且固定,無法 法彈性地改^ 當調整運動模式,這些規劃方法無 具位置徑所;成的切削誤差,僅能改變刀 上掸王又,產生非常小幅度的誤差改善,而實際 二二Γ置僅能減少數值加工之線性差補誤差(一 p atlonerror)而已,並非改善刀具之規劃方法。 “疋以,針對上述習知切削加工方式所存在之問題點’ 鞏只h n“用性之創新設計,實有待相關 業界再加以思索突破之目標及方向者。 與設此’發明人本於多年從事相關產品之製造開發 '、針對上述之目標,詳加設計與審慎評估後’ 、、得一確具實用性之本發明。 【發明内容】 本發明之主要目的,係在提供一種基於全域最佳化方 式之曲面切削加工路徑規劃方法,其所欲解決之問題點, 系針對如何研發出一種令切削誤差最小化、誤差控制機制 更加準讀之創新曲面切削加卫路徑規劃方法為目標加以思 6 ^^575 , 100. 系突破者; i丨6~ 本發明解決問題之# & & ^ 1 u- 政々 1了 1寺點,在於所述曲面切削加工 傻規劃方法係包括:設計 中之兩獨立曲線;將進行心削::= =為空間 =線:對應關係之數學規劃問題;復利用最佳 :式加以求解’以獲得最終之曲面切削加工: 稀:广“使本發明對照先前技術而言,俾可提出— :斬新的曲面切削加工路徑規劃方-整體切削誤差最小化下,自 了於考!曲面 亦能夠依據規書I]者設定之誤 #、'之加工刀具路徑’ 目……Γ 範圍與不同誤差定義來調整 摇仳二 提供滿足不同需求的刀具路徑組合,#此 援供極為彈性之曲面切削加工 精此 誤差控制機制。 方法’以及準確的 【實施方式】The curved shape of the turbine blade is highly complex. Due to the three-axis numerical processing: the movement range in the space is limited, it is impossible to completely manufacture the five-axis milling with more rotation and tilting degrees than the one-axis machining, because it has more The tool movement is still flexible, so it is more suitable for the complex geometry of the "JL, Yi *t knife ancient - r \ .," force can be divided into end milling and side milling two types, on the straight surface ( In terms of time and cost of machining, side milling has more advantages. However, its tool path planning and cutting error control are more difficult and lack the aid of automatic calculation methods. 5 1362575 and! ; Bai Bing five-axis side sharp road control planning method 'must 弁 ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ Discrete points, if the two curves are connected to the corresponding points, the tool axis can be determined. If the number is the same, then the special movement # 4 f 1 τ line, if the number of turns is different, can be matched with the type (such as Tangent to fan) to generate n strokes such as fixed knife and ^; 1 The whole road 35, other gauge axes, etc., for the normal vector of the surface of the curved surface, the tool is determined according to the local curve. The motion mode is unique and fixed, and cannot be flexibly changed. When adjusting the motion mode, these planning methods There is no positional path; the cutting error can only change the knives on the knives, and the error is improved by a very small amplitude. However, the actual two-two 仅 can only reduce the linear error of the numerical processing (a p atlonerror). It is not a way to improve the planning of tools. “In view of the problems in the above-mentioned conventional cutting methods,” he said, “The innovative design of the use of the nature is in need of consideration and direction.” In view of the fact that the inventor has been engaged in the manufacture and development of related products for many years, and has made detailed design and careful evaluation for the above objectives, the present invention has practicality. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for path cutting path planning based on a global optimization method, and the problem to be solved is to develop a method for minimizing cutting error and error control. The mechanism is more accurate and the innovative surface cutting and defensive path planning method is considered as the goal. 6 ^^575 , 100. Breakthrough; i丨6~ The problem solved by the invention # && ^ 1 u- Politics 1 1 The temple point is that the method of planning the surface cutting process includes: two independent curves in the design; the heart cutting will be performed: := = space = line: the mathematical programming problem of the correspondence; the best use of the complex: 'To obtain the final surface cutting process: Rare: wide" makes the present invention compared with the prior art, can be proposed -: the new surface cutting path planning side - the overall cutting error is minimized, since the test! It is possible to adjust the tool path combination that meets different requirements by adjusting the range and different error definitions according to the error #, 'machining tool path' set by the ruler I]. Supporting extremely flexible surface cutting processing, this error control mechanism. Method 'and accurate [Embodiment]

一 13圖所示,係本發明 式之曲面切削加工路 、王域取佳化才 施例僅供說明之用,在 准此專霄 本發明係著會於刀1二丨:亡不受此結構之限制。 曲面i五軸側銑之路徑規劃問題,:概心疋將 獨立曲線Μ對應關係 ^ 4換成空間中兩 設計曲面i之… 其進行步驟如下所述: 設刀具於每-個位置上分別接觸=立曲線,假 ’而此兩端點連線代表兩邊界:曲:3、14的-點 坶踝13、14間之最佳對應, 月'J誤差為最小。如此一來,每 ^ ώ 术 Λ際的刀具運動規劃變為邊界 、表13、14間之對應’目的在於建立兩邊界曲線13、^上 :與點之間的連線,以使整體切削誤差最小化。以圖例來 说明(如第1、2圖戶斤千、 , ^ '、),加工路徑10、11的規劃可視 ””在個—維矩Ρ車12中’找尋_條始於起點並止於終點的 加工路徑’其使得整體切削誤差最小,圖中橫轴代表其中 一條邊界曲線13之參數㈣,而縱轴則是另-條邊界曲線 14之參數值U2。 將規劃問題轉換成曲線對應之搜尋問題後,即可利用 既有之最佳化數學模式(例如動態規劃、&因演算法與粒 子群演算法等)加以求解。此外基於規劃者對切削誤差要 求之差異,最佳化數學模式可採用離散式或連續式的數學 表示法,若採離散表示法,則兩邊界曲線13、14將轉換成 離散點15形式,而其對應關係之建立僅侷限於離散點15間 。從第2圖(a)右邊的矩陣圖觀之,其橫軸與縱軸分別代 表兩邊界曲線13、14的參數值,當以離散點π來建立曲線 對應關係時,可行之路徑僅有三個方向(橫向,、縱向與對 角線),相較於連續式的最佳化數學模式(如第2圖(b) 所示)’其可行路徑則不受限於此三個方向(橫向、縱向 與對角線)’意即邊界曲線13、14對應關係之搜尋可在曲 線上任何位置進行。 藉由將五軸側銑之路徑規劃問題,轉換成曲線之間對 應關係的搜尋問題,並利用最佳化數學模式來求解,一 面可提升路捏規劃之彈性、效率與準喊性,另— 規^者擁有較佳的誤差控制機制 :了使 不同之刀具運動模式自動被納人考量,二過程, 選擇較佳的π斗· 配β局部曲面幾何 、具式,以降低整體的切削誤差。本發明 合待殊刀具Μ 自動組 之目#,與以往針對單-軸側銑,僅能採用固定路徑產生方式之作 大差異’亦是本發明突破創狀處。 有極 ,針項優勢則在於提供路徑規劃之高度彈性 用不同之最佳化目標函式,並據以 對應々木 徑袓人,拖‘ 卫^自動產生取佳的刀具路 與計算方式::,針對Γ設計曲面,隨著誤差精度要求 二差異,其最佳化刀具路徑將有所不同。 、本發明係提出兩種不同的最佳化曲面側銑路徑演算法 ’分別為以離散點為階段進行動態規劃及:階 …動態規劃網路圖兩種演算法作說明。其中所= 規d (Dyr脑c Prog聰mg ; Dp)是用來處理多階段㈤出伽 狖)決策問題的一種數學方法,其係將一個龐大的問題分 解成一系列前後相關的小問題’再加以處理,且所述動態 規並無-疋的數學模式。而本發明是屬於確定性(細㈣ 顧⑽動態規劃,利用此方法以產生最佳側銑路徑;而 上达兩種次异法均提供相同參數供使用者作選擇,其參數 分別有離散點數、可橫跨點、邊界曲線延伸比例及限制直 紋線橫跨值。(如表丨所示) 表1參數之描述 1362575As shown in Fig. 13, it is only for the purpose of explanation that the curved surface machining path and the king domain of the present invention are used for the purpose of illustration, and the invention is based on the invention. Structural limitations. Path planning problem of surface i five-axis side milling, the general axis 换 replaces the independent curve Μ correspondence ^ 4 into two design surfaces i in space... The steps are as follows: Set the tool to contact at each position = vertical curve, false 'and the two ends of the line represent the two boundaries: the: 3, 14 - point 坶踝 13, 14 the best correspondence, the month 'J error is the smallest. In this way, the tool motion planning for each 变为 变为 变为 变为 变为 、 、 、 、 、 、 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' minimize. Explain by legend (such as the first and second figures of the household, thousands, ^ ',), the planning of the processing path 10, 11 can be seen in the "dimension - the moment of the car 12" to find the beginning of the starting point and stop at The machining path of the end point 'which minimizes the overall cutting error, the horizontal axis of the figure represents the parameter of one of the boundary curves 13 (four), and the vertical axis is the parameter value U2 of the other - boundary curve 14. After converting the planning problem into a search problem corresponding to the curve, it can be solved by using the optimized mathematical model (such as dynamic programming, & algorithm and particle group algorithm). In addition, based on the difference in the cutting error requirements of the planner, the optimized mathematical model can adopt a discrete or continuous mathematical representation. If the discrete representation is used, the two boundary curves 13, 14 will be converted into discrete points 15 form, and The establishment of its correspondence is limited to only the discrete points 15. From the matrix diagram on the right side of Fig. 2(a), the horizontal axis and the vertical axis represent the parameter values of the two boundary curves 13, 14 respectively. When the curve correspondence is established by the discrete point π, only three possible paths are available. Direction (horizontal, longitudinal and diagonal), compared to the continuous optimization mathematical model (as shown in Figure 2(b)), the feasible path is not limited to these three directions (horizontal, The search for the correspondence between the longitudinal and diagonal lines, that is, the boundary curves 13, 14 can be performed anywhere on the curve. By transforming the path planning problem of five-axis side milling into a search problem of the correspondence between curves and using the optimized mathematical model to solve the problem, one can improve the flexibility, efficiency and impulsiveness of the road-spinning plan. The ruler has a better error control mechanism: the different tool motion modes are automatically considered by the person, and the second process selects the better π bucket and the β partial surface geometry and shape to reduce the overall cutting error. The present invention is a breakthrough in the present invention. There is a pole, the advantage of the needle is to provide a high degree of flexibility in the path planning with different optimization target functions, and according to the corresponding to the wood path, dragging the 'automatically generate a good tool path and calculation method:: For the design surface of the Γ, the optimized tool path will be different with the difference in error accuracy requirements. The present invention proposes two different algorithms for optimizing the surface side milling path ‘ respectively, which are dynamic programming with discrete points and dynamic programming network diagrams. Where = d (Dyr brain c Prog Cong mg; Dp) is a mathematical method used to deal with multi-stage (five) gamma decision-making problems, which breaks down a huge problem into a series of related small problems. It is processed, and the dynamic gauge has no mathematical model. The present invention is deterministic (fine (four) Gu (10) dynamic programming, using this method to produce the best side milling path; and two different methods provide the same parameters for the user to choose, the parameters have discrete points Number, can extend across the point, the boundary curve extends the ratio and limits the straight line crossing value. (As shown in Table )) Table 1 Parameter Description 1362575

述 —-- -=JL 參 數 取 點 • 以 等 參 數 值 在 邊 界 曲 上 取 點 〇 距 離 取 點 • 以 等 距 離 值 在 邊 界 曲 上 取 點 〇 同 一 條 邊 界 曲 線 上 次 跨 越 的 連 續 點 數 〇 條 邊 界 曲 線 之 控 制 點 , 應 產 生 出 四 個 向 量 依 伸 比 例 往 四 個 向 量 作 延 > 作 為 新 的 邊 界 曲 線 〇 制 曲 面 直紋線長度 〇————————================================================================================================= The control point of the boundary curve should produce four vector extension ratios to the four vectors. > As a new boundary curve, the length of the straight line is 〇

If浮正% 1 ----- 參數 離散點數⑽P,及他p2) 可橫跨點數(PS,及PS〇 邊界曲線延伸比例(ER, ER2) 限·制直紋線橫跨值(cs) 要對此曲面1作側銑加工,必/曲線13、14所構成的,若 離散取點,而離散取點分為兩條邊界曲線13、14上 ,本發明主要應用於等參數取點。距離取:兩種 -條邊界曲線上一次可跨越的點::::數代表者在同 •“‘數。一般來說’對於值姑 的側銑規劃而f,刀具必須行進於邊界曲線13、n 進灯切削’因此為了讓刀具不須經過每—個離散點15, 本發明提出等參數以進行刀具路徑規劃。如第3圖中⑷ 可橫跨點數=0 ,因此同-條邊界曲線13、14上之離散點都 會有直紋線16相連’亦代表刀具路徑將通過每—個離散點 15;而第3圖t⑻可橫跨點數=2,因此同一條邊界曲線 10 丄362575 .13、14上之離散點至多連續兩個離散點不會有直紋線16相 .連二:代表刀具路徑可以不必通過每一個離散點15,因為 疋要通過每一個離散點15才會造成總誤差量最小。 而一般在規劃刀具路徑時,都直接對原設計曲面之邊 界曲線離散取點,據此規劃刀具路徑使降低誤差量。本發 明係將邊界曲線13、14沿著對應控制點向量作延伸,再對 已延伸的邊界曲線13、14離散取點,再進行刀具路徑規劃 。如第4圖所示’圖中物件A原來邊界曲線控制點為ρι、 鲁P2、P3、P4四點;物件B原來邊界曲線控制點為p5 ' P6、 P7、p8四點。P1及p5構成V1向量,p2及p6構成v2向量兕 7構成V3向里,P4及P8構成料向量。物件a新邊界曲線 控制點P1由P1沿著-VI向量乘上延伸比率L=05獲得,四由 P2沿著-V2向量乘上延伸比率L=〇 5獲得,Ρ3φρ3沿著_V3 向量乘上延伸比率L=0.5獲得,以由以沿著_V4向量乘上延 伸比率L=0.5獲得。而物件b新邊界曲線控制點朽由朽沿著 VI向里乘上延伸比率L=〇. 5獲得,P6由P6沿著V2向量乘上延 • 伸比率L=0.5獲得,P7由P7沿著V3向量乘上延伸比率1=〇5獲 得’ P8由P8沿著V4向量乘上延伸比率L=〇. 5獲得。其數學^ 不式為·· * ㈣嫩)XffiIf floating positive % 1 ----- Parameter discrete points (10)P, and his p2) can cross the number of points (PS, and PS〇 boundary curve extension ratio (ER, ER2) limit · Straight line crossing value ( Cs) To perform side milling of this surface 1 , it must be composed of curves 13 and 14 . If the points are discretely taken, and the discrete points are divided into two boundary curves 13 and 14, the present invention is mainly applied to equal parameters. Point: Distance: Two kinds of points on the boundary curve that can be crossed at one time: :::: The number is represented by the same "" number. Generally speaking, for the value of the side milling plan and f, the tool must travel to the boundary Curves 13, n enter the lamp cutting 'Therefore, in order to allow the tool to pass through each discrete point 15, the present invention proposes parameters such as tool path planning. As shown in Fig. 3 (4), the number of points can be =0, so the same - The discrete points on the strip boundary curves 13, 14 will be connected by a straight line 16 'also means that the tool path will pass through each of the discrete points 15; and the third figure t (8) can span the number of points = 2, so the same boundary curve 10丄 362575 .13, 14 discrete points up to two consecutive discrete points will not have a straight line 16 phase. Even two: represents the tool path can It is not necessary to pass each discrete point 15, because the total error amount is minimized by each discrete point 15. Generally, when planning the tool path, the boundary curve of the original design surface is directly taken up, and the tool is planned accordingly. The path reduces the amount of error. In the present invention, the boundary curves 13, 14 are extended along the corresponding control point vector, and then the extended boundary curves 13, 14 are discretely taken, and then the tool path is planned. As shown in Fig. 4. 'The original boundary curve control points of object A in the figure are ρι, Lu P2, P3, P4 four points; the original boundary curve control point of object B is p5 ' P6, P7, p8 four points. P1 and p5 form V1 vector, p2 and p6 The v2 vector 兕7 constitutes V3 inward, and P4 and P8 constitute a material vector. The new boundary curve control point P1 of the object a is obtained by multiplying P1 along the -VI vector by the extension ratio L=05, and the fourth is multiplied by P2 along the -V2 vector. The upper extension ratio L=〇5 is obtained, and Ρ3φρ3 is obtained by multiplying the _V3 vector by the extension ratio L=0.5, which is obtained by multiplying the extension ratio L=0.5 along the _V4 vector, and the object b new boundary curve control point decay By the decay along the VI, the extension ratio is L=〇. 5 P6 is obtained by multiplying P6 along the V2 vector by the extension ratio L=0.5, P7 is obtained by P7 multiplying the V3 vector by the extension ratio 1=〇5 to obtain 'P8. P8 is multiplied by the V4 vector and the extension ratio L=〇 5. Acquired. Its mathematics ^ is not... (4) tender) Xffi

Pr為物件A邊界曲線之新控制點,ργ為物件B邊界曲線 之新控制點,Pi為A邊界曲線之原控制點,pj為物件B邊 界曲線之原控制點,其0 $ i $ N且〇 $ j S N , ERlER2 1362575 100. 8· 17Pr is the new control point of the boundary curve of the object A, ργ is the new control point of the boundary curve of the object B, Pi is the original control point of the A boundary curve, and pj is the original control point of the boundary curve of the object B, which is 0 $ i $ N and 〇$ j SN , ERlER2 1362575 100. 8· 17

分別為物件Α邊界西線及物件Β邊界之延伸比率 最後一個參數是限制直紋線橫跨值(CS),直紋線長度 則是被刀具刃長固定所限制’因此刀具加工的路徑須配合 刀具刀長進行規劃’因為當刀具橫跨曲面非常大時,將超 過刀具刃長可切削範圍,便導致加工失敗。如第5圖所示 ,在給定限制直紋線橫跨值下,尋找在邊界曲線^上印^ 所對應合理於邊界曲線18之離散點19。首先對丨變數進行 加減運算,使定義合理之範圍(i-CS〜i+cs),隨後便根據2 合理範圍在邊界曲線18上㈣)找到對應之離散點 19 ’如DP^便是合理離散點之一。 本發明主要是利用動態規劃進行刀具路徑最佳化.,在 進入動態規劃演算法以前’最基本之步驟必須建構符人動 態規劃之網路圖’其是由節點與路徑所组成。#第6圖所 不,為建立以離散點為階段之動態規劃網路程序圖,复 構步驟如下: 楚 一條邊界曲線上離散點作為The last parameter of the boundary between the west line of the object and the boundary of the object is the limit of the straight line crossing value (CS). The length of the straight line is limited by the length of the cutting edge. Therefore, the path of the tool must be matched. The tool length is planned 'because when the tool crosses the surface very large, it will exceed the cutting edge length of the tool edge, resulting in processing failure. As shown in Fig. 5, under the given limit of the straight line crossing value, the discrete point 19 corresponding to the boundary curve 18 corresponding to the boundary curve ^ is searched for. First, add and subtract the 丨 variable to make a reasonable range (i-CS~i+cs), and then find the corresponding discrete point 19' according to the 2 reasonable range on the boundary curve 18 (4). If DP^ is reasonably discrete One of the points. The present invention mainly utilizes dynamic programming for tool path optimization. Before entering the dynamic programming algorithm, the 'most basic step must construct a network diagram of human dynamic programming', which is composed of nodes and paths. #图图6 No, in order to establish a dynamic programming network program diagram with discrete points as the stage, the reconstruction steps are as follows: Chu A discrete point on a boundary curve is used as

在此方法中,是以其中一條 動態規劃之階段,因此需從In this method, it is one of the stages of dynamic planning, so it needs to

、a 〇、且、.入外f只巧值,則 依據所設定之可橫跨點數及 必須滿足限定條件式, 方能建構動態規劃網路圖。 12 〜本發明將節點定義机,其 即點,其中更包含了〃 ’-、在第J階段中第i 卢卜 種升/式之卽點,八W * 後無節點。該原始節赴6 』 刀別為原始節點與 έΒ ..4疋義為ONu ,此紐μ =紋線’而虛無節點則定義為^ 中均包含一 条虛有直紋線。此外 ’、即點中僅包含一 . 邊界曲線上之離埒外 ,而π表示此離散點於一條邊界 :从m及η表示 離散點可表示為DPa,n。本發明僅,’’上第η個點,因此 離散點作為動態規割之pb;而、:擇—條邊界曲線上之 -·之,而被選擇之邊 標曲線U邊界曲㈣稱為非目桿 線如為目 線上之離散點以FDP.n表示之。f先 斤述目標曲 人β 1 ± 攸FI。搜尋非目標曲線 上 相連之離散點,形成階段s。中的所有節點,接著 依續從FDPm到FDPn,n搜尋每一階段中 甲之即點,即完成動態規 劃網路圖中一項元素,節點。舉列說明如下: 如第7、8圖所示,係分別於邊界曲線2〇及邊界曲線 21上取三點參數,在給定參數(NDPl, NDP2, PSi,ρ&,贶,服,cs)=(3 ,3’ 1,0, 0, 0, 2)下’從離散點22 ( FDPi,。)開始於非目標曲線 上搜尋合理離散點,隨之獲得一組合理對應離散點(Df>2。 DP2,i,DP2.2 },而離散點22 ( FDPw )於此階段的節點依排列, a 〇 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 12~ The present invention defines a node, which is a point, which further includes 〃 '-, the 第 point of the i-th lub in the J-th stage, and no node after eight W*. The original section goes to 6 』, the knife is the original node and έΒ..4 疋 is ONu, this μμ = ’ line and the imaginary node is defined as ^ contains a virtual straight line. In addition, the point contains only one out of the boundary curve, and π means that the discrete point is at a boundary: from m and η, the discrete point can be expressed as DPa,n. The present invention only, ''the ηth point, so the discrete point is regarded as the dynamically-punched pb; and, the selected-side boundary curve U-boundary (4) is called non- The target line is represented by FDP.n as a discrete point on the line of sight. f first jin said the target song person β 1 ± 攸FI. Search for discrete points connected to the non-target curve to form stage s. All the nodes in the node, and then continue from FDPm to FDPn, n search for the point in each phase, that is, complete an element, node in the dynamic planning network diagram. The explanations are as follows: As shown in Figures 7 and 8, the three parameters are taken on the boundary curve 2〇 and the boundary curve 21 respectively, given the parameters (NDP1, NDP2, PSi, ρ&, 贶, service, cs )=(3 ,3' 1,0, 0, 0, 2) under 'From discrete point 22 ( FDPi, .) to search for a reasonable discrete point on the non-target curve, and then obtain a reasonable set of corresponding discrete points (Df> ;2. DP2,i,DP2.2}, and discrete point 22 (FDPw) is arranged in this stage

組合分別為{ ( DP2,〇 ) , ( DP" ),( DPnDPu ),( D P2,i,DP2.2 ) , ( DP2,。,DP2,1,DP2,2 ) }。而於此組合數中,均是以 離散點22 ( FDPu。)為直紋線23之起點且組合數裡的對應點 則為直紋線23之終點。因此這五個組合數即代表五個原始 節點 ON〇,〇 、ONd. 1 ' 〇N〇,2、ONm 、ONm 出現於階段 S。中。而 原始節點ONu中含有一條或一條以上之直紋線表示為Ra b(a 表示FDP〇>,n中之η值;b表示MV"中之η值)。完成離散點 丄冲2575The combinations are { ( DP2, 〇 ) , ( DP" ), ( DPnDPu ), ( D P2, i, DP2.2 ) , ( DP2 , . , DP 2 , 1, DP 2 , 2 ) }. In this combination number, the discrete point 22 (FDPu.) is the starting point of the ruled line 23 and the corresponding point in the combination number is the end point of the ruled line 23. Therefore, the five combined numbers represent five original nodes ON〇, 〇, ONd. 1 ' 〇N〇, 2, ONm, ONm appear in phase S. in. The original node ONu contains one or more straight lines represented by Ra b (a represents FDP〇>, the value of η in n; b represents the value of η in MV"). Complete discrete points 2 2575

I I V V J 22 ( fdp丨,〇)對廣所右 r i n 斤有即數之後,再以相同程序#~别~^-底-----’ 散點24 ( FDPu )及離散點25 ( FDPu )。如此-來即能完 成動態規劃網路圖中所有原始節點αι。 匕卜 個虛無崤點僅含有一條虛無直紋線,並不像 f始即點中可包含多條直紋線,而虛無直紋線被視為連接 J匕焱之直紋線。如第8圖所示,圖中&階段中有六個 f 始節點 I、·、0Nl.2、0Ni 3、0Ni 4、0N15,而每 ^ 原始節點.◦、 〇Nu 、〇Νι 2、〇Νι 3、〇N! 4、⑽ 5 中最 後條直紋線各為R°‘。、‘及跖,其於階段&中均有對應之 虛無即點。(因此’建立虛無節點必須依照前一階段中所 =原始節點内最後-條直紋線於下一個階段中有對應的虛 二即點。若設定可橫跨點數為2時,對於原始節點中最後 :條直紋線均於下一階段中有對應的虛無節點,至於下— 階段之虛無節,點,將會複製相同虛無節點於下下階段中。 )當建構好動態規劃網路圖中之原始節點⑽ & 。 nxr ’7 # &無卽里上 DNi’j後,隶後將增加起始節點30、苴對庫 “" 止即點31。而起始節點30及終止節點31分別代表〇 、 面2中起始直紋線及終止直紋線,而對應該起始曲 虛無節點與其它的虛無節點有所差異, ’’ 之 _ 馬此虛益節St主 不無任何一條直紋線以目標曲線上第— ’、’、表 ,除R。,。之外。 ㈣相作為起點 表2符號之描述 符號 描述 ~~~~" ~~~~~~~—----^ S, 動態規劃網路圖中第i階^ ^〜〜〜·〜---I I V V J 22 ( fdp丨, 〇) is the same as the program r # n 斤, then the same procedure #~别~^-底-----' scatter 24 (FDPu) and discrete point 25 (FDPu). In this way, all the original nodes αι in the dynamic plan network diagram can be completed.个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个As shown in Fig. 8, there are six f-start nodes I, ·, 0Nl.2, 0Ni 3, 0Ni 4, and 0N15 in the & stage, and each of the original nodes.◦, 〇Nu, 〇Νι 2 〇Νι 3, 〇N! 4, (10) 5 The last straight line is R°'. , ‘and 跖, it has a corresponding nothing in the stage & (Therefore, 'the establishment of the virtual node must be in accordance with the last-segment line in the original node in the previous stage. There is a corresponding virtual two point in the next stage. If the number of points can be 2, the original node is In the end: the straight lines have corresponding virtual nodes in the next stage. As for the next stage, the virtual nodes will copy the same virtual nodes in the next stage.) When constructing the dynamic planning network diagram The original node (10) & After nxr '7 # & in the case of DNi'j, the starting node 30 will be added, and the library will be added to the library "&"; point 31. The starting node 30 and the terminating node 31 represent 〇, 面2, respectively. The starting straight line and the ending straight line, and the corresponding curved virtual no node is different from other virtual nodes, '' _ Ma this virtual benefit St main does not have any straight line with the target curve Above - ', ', table, except R.,. (4) Phase as a starting point Table 2 symbol description symbol description ~~~~" ~~~~~~~-----^ S, dynamic Plan the i-th order of the network diagram ^ ^ ~ ~ ~ ~ ~ ---

1414

於目標邊界曲線上之離散點Discrete points on the target boundary curve

節點 將所 節點 規則 規則 虛無節點 第m邊界曲線上之第η點 線由 DP-,a 及 DPn.b (m 关 η)構成____ 套用動態規劃演算法之前,還必須決定相鄰兩階段之 關係。而節點内都記錄-條直紋線作為終點。本發明 有直紋線終點均利用序號作排序,因此相鄰兩階段中 可依據二項規則來判斷是否具相連關係。 1 :利用參數可橫跨點數(PS)去判斷兩個節點是否為 可相關。若比較前一階段中節點内最後一條直紋 線之序號和現階段中節點第一條直紋線之序號, 將此兩予號差與可橫跨點數值進行比較,若大於 可橫跨點數值(PS),則此兩節點將不具相關連, 即兩節點之間將不具有可行路徑作連接;若兩序 ,差小於或等於可橫跨點數值(ps),則表示此兩 郎點具有可行路徑作連接。 2 .避免直紋線有交錯情況發生。比較前一階段中節 點内的最後一條直紋線和現階段中節點裡第一條 直紋線生若發生交集,則此兩節點將不會有所關 連,也就是兩節點之間將不會有可行路徑作連接 如第9圖所示,係展示兩階段間可行路徑之連法 15 1362575The node will form the nth point line on the mth boundary curve of the node rule rule virtual node from DP-, a and DPn.b (m off η) ____ Before applying the dynamic programming algorithm, it must also decide the adjacent two stages. relationship. In the node, a straight line is recorded as the end point. In the present invention, the end points of the straight line are all sorted by the serial number, so that the adjacent two stages can be judged according to the two rules. 1: The parameter can be used to determine whether two nodes are related by the number of points (PS). If comparing the serial number of the last straight line in the node in the previous stage with the serial number of the first straight line in the current stage, compare the difference between the two numbers and the value of the cross-point, if it is greater than the cross-point The value (PS), then the two nodes will not be related, that is, there will be no feasible path between the two nodes for connection; if the two orders, the difference is less than or equal to the value of the crossing point (ps), it means the two points Have a feasible path for the connection. 2. Avoid staggering the straight lines. Comparing the last straight line in the node in the previous stage with the intersection of the first straight line in the node in the current stage, the two nodes will not be related, that is, there will be no connection between the two nodes. There is a feasible path for the connection as shown in Figure 9, which shows the connection of the feasible path between the two stages 15 1362575

Step2 Step3 示如βραι1。 · ^離散點利甩符號表 依目標邊界曲線上之離 双β k立原始節點。 增加起始節點和终止節 且依據給定參數下,建 構每一個原始節點所 丁愿之虛無節點。 零止節點’於相鄰兩階段中節點 從s": 規則2進行判斷是否有相連關係。 從Stepl到Step4即完成動態規劃網路圖。 完成動態規劃網路圖之後 ^ ^ - ,, yL 使了依據不同之標準評估 值進订取佳化。從起始節點到終止節點,每 路徑均代表一組刀具路徑^ 订 接著介紹以指定範圍為階段 ± Φ - B m ^ 運立動態規劃網路圖,其 主要遇疋利用動態規劃進行刀 ^ ^取佳化,但卻是以範 圍為h ^又所進行之演算法。如第丨 即弟1U圖所不,為建立以範 為階段之動態規劃程序圖。其步驟如下: 卿m延伸邊界曲線比率時,便於已延伸的曲線上 離散取點;若無設定延伸邊界 'T适介曲綠哈,則僅於原始 設計曲面之邊界曲線上離散取點。 此方法以範圍作為動態規劃之階段,目的主要是能 讓使用者直接指定在哪些範圍内刀具必須經過,方 便使用者更直覺地規劃刀具路徑。 根據使用者所設定之可楛路β βΒ Α j挾垮點數及限制直紋線橫跨 值,來建立動態規劃網路圖,換句話說動態規劃網Step2 Step3 shows as βραι1. · ^ Discrete point profit symbol table According to the target boundary curve, the double β k is the original node. Add the starting node and the terminating node and construct the virtual node of each original node according to the given parameters. The zero-node node is judged from the s": rule 2 in the two adjacent stages to determine whether there is a connection. Dynamically plan the network map from Stepl to Step4. After completing the dynamic planning of the network map ^ ^ - , , yL makes it possible to customize the value according to different criteria. From the starting node to the terminating node, each path represents a set of tool paths. Then, the specified range is the stage ± Φ - B m ^. The dynamic planning network diagram is used, and the main encounter is to use the dynamic programming to perform the tool ^ ^ It is better, but it is based on the algorithm of the range h ^. For example, the first step of the 1U map is not to create a dynamic planning program diagram. The steps are as follows: When the boundary curve ratio is extended, it is convenient to take points on the extended curve; if the extended boundary 'T is suitable for the green haha, the discrete boundary is taken only on the boundary curve of the original design surface. This method uses the scope as the stage of dynamic planning. The main purpose is to allow the user to directly specify the extent to which the tool must pass, so that the user can more intuitively plan the tool path. Dynamic programming network diagram is established according to the user's settable β βΒ Α j挟垮 points and the limit of the straight line crossing value. In other words, the dynamic programming network

Step4Step4

Step2Step2

Step3 需 16 1362575 路圖之規模大小是依據使用者所給定的參數限制作 為控制。 而此方法與以離散點為階段進行動態規劃最大不同處 ,在於每個階段僅具有原始節點並無虛無節點出現。而原 始節點只包含一條直紋線。如第n圖所示,在邊界曲線35 及邊界曲線36下分別取十點參數,在給定參數(NDPi, NDp2, p S’, PS% ER!’ ERZ> CSMlO’ 1〇’ 1,1,0, 〇, u,並選取兩個階段範圍 37 、38基礎,一個為DPi.3與Dp”,另一個p"與敝6。根Step3 Requires 16 1362575 The size of the road map is controlled according to the parameter limits given by the user. The biggest difference between this method and dynamic programming with discrete points is that each phase has only the original node and no virtual nodes appear. The original node contains only one straight line. As shown in the nth figure, ten parameters are taken under the boundary curve 35 and the boundary curve 36, respectively, given parameters (NDPi, NDp2, p S', PS% ER!' ERZ> CSMlO' 1〇' 1,1 , 0, 〇, u, and select two phase ranges 37, 38 basis, one for DPi.3 and Dp", the other for p" and 敝6.

據給定參數(PSfI與ρ§2=ι) 下界,以DP,,3與DPu為例, DPu ; m\3 之上界為 dp2.4, 界及下界形成區域R1。另一 上界為DPi.8而下界為DPi 6 ; P2.5 ’依據對應的上界及下界 Ri内依據參數(Cs=i)從下界 相連的離散點,結果獲得一 ,帆,3 },但由於dl低於 圍内,故最終合理對應離散 依序尋找DPu及DPlM合理對 代表此階段之節點數出現於 成階段So之所有節點數後, 段Sl中)所有節點數,如此 中之所有原始節點。 若選取DPi.2與Dp22作為 CS=1)從DPu搜尋邊界曲線上 決定階段範圍37、38之上界與 DPu之上界為DPu,而下界為 而下界為DP2,2,根據對應的上 個以DPu與DP2.6為例,DPu之 DP2.6之上界為DP2,7而下界而D 形成區域R2 β第一步先於區域 DPi.2搜尋邊界曲線36上合理可 組合理對應離散點{ DP2,丨,DP2,2 下界DPz,2,因此不列入合理範 點為{ DP2,2,DP” }兩點,接著 應離散點。最後所有組合數將 階段S。中,如第12圖所示。完 再相同程序完成區域r2内(階 一來便能完成動態規劃網路圖 階段範圍基礎,並依據參數( 合理可相連的離散點,結果獲 17 1362575 因此該範圍階段之 得一組對應離散點{ Dp2l, Dp22, DP23 節點具有三個,分別為R2,i、r2,2 ' &According to the lower bound of the given parameters (PSfI and ρ§2=ι), taking DP, 3 and DPu as an example, the upper boundary of DPu; m\3 is dp2.4, and the boundary and the lower boundary form region R1. The other upper bound is DPi.8 and the lower bound is DPi 6; P2.5 'based on the corresponding upper and lower bounds Ri according to the parameter (Cs=i) from the lower boundary connected discrete points, the result is one, sail, 3 }, However, since dl is lower than the circumference, it is reasonable to find the DPu and DPlM in a reasonable order, and the number of nodes representing the stage appears in all the nodes of the stage So, the number of all the nodes in the segment S1, and so on. The original node. If DPi.2 and Dp22 are selected as CS=1), the upper bound of the phase range 37, 38 and the upper boundary of the DPu are determined as DPu from the DPu search boundary curve, and the lower bound is the lower bound and DP2, 2, according to the corresponding last Taking DDu and DP2.6 as an example, the upper boundary of DPu DP2.6 is DP2, 7 is lower bound and D is forming region R2 β. The first step is to compare the discrete points on the search boundary curve 36 of the region DPi.2. { DP2, 丨, DP2, 2 lower bound DPz, 2, so do not include a reasonable point for {DP2, 2, DP" } two points, then discrete points. Finally all combinations will stage S. Medium, as in the 12th As shown in the figure, the same procedure is completed in the area r2 (the first step is to complete the dynamic planning network diagram phase range basis, and according to the parameters (reasonable and connectable discrete points, the result is 17 1362575, so the stage of the range is one The group corresponds to discrete points { Dp2l, Dp22, DP23 nodes have three, respectively R2, i, r2, 2 ' &

其中相鄰兩個階段中 否有相連。 節點可根據 二項規則進行判斷是 為可橫跨點數(PS)去判斷兩個節點是否 為":。如果比較前一階段令節點内的 為L和現階段中節點内直紋線為 d,>PS時,則此 Kca)-( ..^ sa 2將無相關,也就是說兩 口士 7 連接,右[(c-a)-(d-b)] spS 呀,則表示兩節點具有路徑作連接。 .避免直紋線會有交錯的情 旳虎况產生。如果比較前- 尸白&中郎點内直紋線盥現 "兄丨白杈中即點内直紋線發 生乂集,則代表此兩節點盔加 〜 P點無相關,換句話說即兩 即點之間並無路徑作連接。 接著開始依如下步驟建構此網路圖: Stepl ·於邊界曲線上離拾跑机 味上離散取點且將這些離散點用符號表示 如 Ι)·Ρπι, η 0 規則 細2:選定的範圍基礎去建立上界和下界 S)下,尋找所有可行的直紋線。’ Step3 ·增加起始節點和終止節點。Which of the two adjacent stages is connected. The node can judge according to the two rules to determine whether the two nodes are ": for the number of points (PS). If the previous stage is compared to the L in the node and the straight line in the node in the current stage is d, >PS, then this Kca)-( ..^ sa 2 will be irrelevant, that is, the two connections are 7 Right [(ca)-(db)] spS, it means that the two nodes have a path for the connection. Avoid the streak of the straight lines. If the comparison is before - the corpse white & Straight line 盥 盥 & & 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 直 直 直 直 直 直 直 直 直 直 直Then start to construct this network diagram according to the following steps: Stepl · Discrete the points on the boundary curve and mark the discrete points with symbols such as Ι)·Ρπι, η 0 Rule 2: Selected range basis To establish the upper and lower bounds S), look for all feasible straight lines. Step 3 · Add start and end nodes.

並根據參數(CAnd according to the parameters (C

Step4 :起始節點到終止節點, 依據規則1及規則2判 從St印1到SteP4即完成動態規劃 在相鄰兩個階段中的節點 斷是否具相連關係。 網路圖。 18 點 本發明之優 提供準確之誤差控制機制: 白知曲面切削路徑規劃方法係透過改變刀具路徑產生 方式’藉由試誤法降低切削誤差,本發明則是將根本 曲面整體誤差定義目標函式’配合嚴謹之數學最佳化 方法來求解,透過最佳化計算產生可行解答,故能夠 準確控制刀具路徑對應之誤差值,提高五軸側銑之加 工精度。 2. 具備南度彈性之路徑規劃: 右目標函式定義為減少「過切誤差」,則對應產生之 刀具路徑即為過切誤差最小化之結果,此做法於路徑 規劃上具備南度彈性,若使用者欲限定「過切誤差值 」介於某個範圍’則可定義對應之目標函式進行最佳 化求解,並由計算結果中判斷該設定範圍是否可行, 據此調整誤差範圍或更換 尺谀目払函式,故本發明將可滿 足不同的誤差控制需求,使 便用者於路徑規劃上將可擁 有更多選擇與規劃自由度。 3. 整合不同刀具運動模式: 本發明並不使用單-刀具運動模式產生路徑… 由最佳化計算依曲面幾何自動決定較適合的 = 此整合搭配不同的刀具運動,達成最 體:: 的目標,充分利用五車由加工的自由度。 差值 4. 最佳化數學方法論之輔助: 19 136-2575 最佳化數學規劃(mathematical programming)模式已發展 久遠’故當刀具運動問題抽象成為最佳化數學問題後 ,即能應用發展完備之不同方法論進行求解,並不侷 限於單一演算方法。 q ^ 股δ凡明尽發明,且文中 雖透過特定的術語進行說明,當不能以此限定本 利範圍;熟悉此項技術領域之人士當可在 專Step4: From the starting node to the terminating node, according to rules 1 and 2, the dynamic planning is completed from St1 to SteP4. Whether the nodes in the adjacent two phases are connected are connected. Network map. The 18 points of the present invention provide an accurate error control mechanism: The white surface cutting path planning method reduces the cutting error by the trial and error method by changing the tool path generation method. The present invention defines the target function of the fundamental surface overall error. 'With the rigorous mathematical optimization method to solve, through the optimization calculation to produce a feasible solution, it is possible to accurately control the error value corresponding to the tool path and improve the machining accuracy of the five-axis side milling. 2. Path planning with South Elasticity: The right target function is defined as reducing the “overcutting error”, and the corresponding tool path is the result of minimizing the overcutting error. This method has south elasticity in path planning. If the user wants to limit the "overcutting error value" to a certain range, then the corresponding target function can be defined to be optimally solved, and it is judged whether the setting range is feasible by the calculation result, and the error range or the replacement is adjusted accordingly. The invention can meet different error control requirements, so that the user can have more choices and planning degrees of freedom in path planning. 3. Integrate different tool motion modes: The present invention does not use the single-tool motion mode to generate the path... It is automatically determined by the optimization calculation according to the surface geometry. This integration is combined with different tool movements to achieve the most objective:: target Take full advantage of the freedom of processing of the five cars. Difference 4. Optimization of Mathematical Methodology: 19 136-2575 The optimal mathematical programming model has been developed for a long time. So when the abstraction of the tool motion problem becomes the optimal mathematical problem, it can be applied to the development. Solving different methodologies is not limited to a single algorithm. q ^ Shares δ are expressly invented, and although they are explained by specific terms, they cannot be used to limit the scope of the patent; those who are familiar with the technical field can

神與原則後對其進行變更I佟 ’、解本I明之精 等變更與修改,皆應涵蓋 :放之目的,而此 定範疇中。 后所述之申請專利範圍所界Changes and modifications, such as the change of God's and the principles, and the revision of the book, shall include: the purpose of the release, and the scope of this. The scope of the patent application mentioned later

20 1362575 修正#换頁i 【圖式簡單說明】20 1362575 Revision #Change page i [Simple description]

第1圖:本發明之曲線間最佳對應關係之搜尋示意圖。 第2圖:本發明之離散與連續式表示圖。 第3圖:本發明之可橫跨點數示意圖(a)及圖(b)。 第4圖:本發明之邊界曲線延伸示意圖。 第5圖:本發明之直紋線限制示意圖。 第6圖:本發明之建立動態規劃流程圖一。 第7圖:本發明之參數設計曲面圖一。 第8圖:本發明之曲面中各狀態之節點示意圖一。 第9圖:本發明之兩階段間之可行路徑圖。 第1 0圖:本發明之建立動態規劃流程圖二。 第1 1圖:本發明之參數設計曲面圖一。 第1 2圖:本發明之曲面中各狀態之節點示意圖二。 表1 :本發明參數之描述。 表2 :本發明符號之描述。Figure 1: Schematic diagram of the search for the best correspondence between the curves of the present invention. Figure 2: Discrete and continuous representation of the invention. Figure 3: Schematic diagram (a) and (b) of the cross-points of the present invention. Figure 4: Schematic diagram of the extension of the boundary curve of the present invention. Fig. 5 is a schematic view showing the restriction of the ruled line of the present invention. Figure 6: Flow chart 1 of the dynamic programming of the present invention. Figure 7: Figure 1 of the parametric design surface of the present invention. Figure 8 is a schematic view of a node of each state in the curved surface of the present invention. Figure 9: A feasible path diagram between the two phases of the present invention. Figure 10: Flow chart 2 of the dynamic programming of the present invention. Figure 11: Figure 1 of the parametric design surface of the present invention. Figure 12: Schematic diagram 2 of the nodes of each state in the curved surface of the present invention. Table 1: Description of the parameters of the invention. Table 2: Description of the symbols of the present invention.

【主要元件符號說明】[Main component symbol description]

物件 AObject A

物件 B 區域 R 1 區域 R 2 曲面 1 、2 邊界曲線 13、14、17、18、20、21、 3 5、3 6 21 1362575 加工路徑 二維矩陣 離散點 直紋線 起始節點 終止節點 階段範圍 1 〇、1 1 — 12 15、19、22、24、25 1 6、2 3 3 0 3 1 3 7、3 8Object B Region R 1 Region R 2 Curve 1 , 2 Boundary Curves 13, 14, 17, 18, 20, 21, 3 5, 3 6 21 1362575 Machining Path Two-Dimensional Matrix Discrete Point Straight Line Start Node End Node Stage Range 1 〇, 1 1 — 12 15 , 19 , 22 , 24 , 25 1 6 , 2 3 3 0 3 1 3 7 , 3 8

22 v22 v

Claims (1)

1362575 _· 8. 1 工 —----— - __—· 、申請專利範圍: 一種基於全域最佳化 "-- 法,包括: 式之曲面切削加工路徑規劃方 設計所述曲面之兩邊 線為空間中之兩獨立曲線; 將進行曲面切削加 旬立曲線 應關係之數學規劃問冑刀具運動問題轉換&曲線間對 利用最佳化數學模洼士 上、 削加工路徑者》 解,以獲得最終之曲面切 依據申5青專利範圍塗1 之曲面… 所述之基於全域最佳化方式 之曲面切削加工路徑 工T 工規^方法,其中所述曲面切削加 了為五軸側銑加工模式,所述五軸 向具有五個自由度,分別為沿X方向、γ方向與^ 向的二個平移自由纟,以及旋轉角與傾斜角兩個旋轉 自由度者。 、依據申請專利範圍第丨項所述之基於全域最佳化方式 之曲面切削加工路徑規劃方法,其中所述之曲線間對 應關係,係指空間中任兩獨立曲線間之對應關係,可 為連續或離散之對應型態者。 、依據申請專利範圍第]項所述之基於全域最佳化方式 之曲面切削加;路徑規劃方法’其中所述之最佳化數 學模式係可選用動態規劃、基因〉貝异法、粒子群演算 法等任其中一種最佳化計算方法。 23 1362575 5、依據申請專利範圍第1項所述之基於全域最佳化方式 之曲面切削加工路徑規劃方法,其中所述最佳化數學 模式可採用離散式或連續式的數學表示法。1362575 _· 8. 1 work——————————— __—·, patent application scope: A global optimization-based method, including: a curved surface machining path planning method to design two sides of the surface The line is the two independent curves in the space; the mathematical programming of the relationship between the surface cutting and the curve of the tenth curve will be performed, and the tool movement problem will be converted and the curve will be used to optimize the mathematical model of the gentleman. Obtaining the final curved surface according to the surface of the coating of the patent application scope of the Japanese Patent Application No. 1 ... The surface-finishing processing method according to the global optimization method, wherein the surface cutting is added to the five-axis side milling In the machining mode, the five axes have five degrees of freedom, namely two translational free 沿 in the X direction, the γ direction and the ^ direction, and two rotational degrees of freedom of the rotation angle and the inclination angle. According to the method of the patent application scope, the method for planning a surface cutting path based on the global optimization method, wherein the correspondence between the curves refers to the correspondence between any two independent curves in the space, which may be continuous Or discrete counterparts. According to the scope of the patent application, the globally optimized method based on the surface cutting plus; path planning method, wherein the optimized mathematical model can be selected by dynamic programming, gene > shell method, particle swarm calculus Law is one of the optimization methods. 23 1362575 5. The method of path machining path planning based on the global optimization method according to claim 1 of the patent application scope, wherein the optimized mathematical mode may adopt a discrete or continuous mathematical representation. 24twenty four
TW096147909A 2007-12-14 2007-12-14 Method of planning path for curved surface cutting process based on global optimization TW200925812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096147909A TW200925812A (en) 2007-12-14 2007-12-14 Method of planning path for curved surface cutting process based on global optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096147909A TW200925812A (en) 2007-12-14 2007-12-14 Method of planning path for curved surface cutting process based on global optimization

Publications (2)

Publication Number Publication Date
TW200925812A TW200925812A (en) 2009-06-16
TWI362575B true TWI362575B (en) 2012-04-21

Family

ID=44729487

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096147909A TW200925812A (en) 2007-12-14 2007-12-14 Method of planning path for curved surface cutting process based on global optimization

Country Status (1)

Country Link
TW (1) TW200925812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809510A (en) * 2012-11-09 2014-05-21 沈阳高精数控技术有限公司 Free curved surface reciprocating type cutter path planning method for high-precision processing
US10838403B2 (en) 2018-11-28 2020-11-17 Industrial Technology Research Institute Simulation method for milling by use of dynamic position error

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486907B (en) * 2010-02-01 2015-06-01 Hon Hai Prec Ind Co Ltd Free surface area computation system and method
TWI486905B (en) * 2010-03-18 2015-06-01 Hon Hai Prec Ind Co Ltd System and method for importing curved faces from an iges document
TWI414376B (en) * 2011-04-14 2013-11-11 Nat Univ Tsing Hua A five axis flank milling system for machining curved surface and the toolpath planning method thereof
TWI453078B (en) * 2011-11-28 2014-09-21 Nat Univ Tsing Hua A five axis flank milling system for machining curved surface and a toolpath planning method thereof
CN102495586B (en) * 2011-12-26 2013-06-12 北京进取者软件技术有限公司 Processing effect representation method based on curved surface model
TWI454868B (en) * 2012-11-02 2014-10-01 Ind Tech Res Inst Goal-oriented computer numerical controlled automatic tuning system and method
CN105785913B (en) * 2016-04-06 2018-03-20 武汉工程大学 Cutter path cutting direction optimization method based on machine spindle rate limitation
TWI742981B (en) 2021-01-06 2021-10-11 財團法人工業技術研究院 Method for analyzing overcutting defect of machining path

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809510A (en) * 2012-11-09 2014-05-21 沈阳高精数控技术有限公司 Free curved surface reciprocating type cutter path planning method for high-precision processing
US10838403B2 (en) 2018-11-28 2020-11-17 Industrial Technology Research Institute Simulation method for milling by use of dynamic position error

Also Published As

Publication number Publication date
TW200925812A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
TWI362575B (en)
Dunn Digital fabrication in architecture
TWI414376B (en) A five axis flank milling system for machining curved surface and the toolpath planning method thereof
WO2009148157A1 (en) Graphic information processing device for forming aesthetic curves, graphic information processing method, and graphic information processing program
EP2128777A2 (en) Method for designing part made from composite material and having a curved surface
Sun et al. Spiral cutting operation strategy for machining of sculptured surfaces by conformal map approach
CN101796546A (en) Interpolation processing method and interpolation processor
Grandguillaume et al. A tool path patching strategy around singular point in 5-axis ball-end milling
EP1376412B1 (en) Autonomous experimental design optimization
TWI333134B (en)
Moodleah et al. Five-axis machining of STL surfaces by adaptive curvilinear toolpaths
CN106897501A (en) The positioning and optimizing method based on blade parts deformation towards in adaptive machining
CN106202822A (en) B-spline surface model reconstruction method towards blade adaptive machining
Lu et al. Tool path generation for five-axis machining of blisks with barrel cutters
Anton et al. Vertical modulations
Niessen et al. Computer-aided manufacturing and focused ion beam technology enable machining of complex micro-and nano-structures
CN104615086B (en) A kind of numerical-control processing method of the propeller blade based on stream function
Hope et al. Layer building with sloping edges for rapid prototyping of large objects
CN109408991A (en) A kind of model parameter visualization processing method based on FANUC PICTURE man-machine interface
Bhooshan et al. Design workflow for additive manufacturing: a comparative study
Kim et al. A study on the precision machinability of ball end milling by cutting speed optimization
Xú et al. Conversion of G-code programs for milling into STEP-NC
Kaymakci et al. Tool path selection strategies for complex sculptured surface machining
CN104020718A (en) Self-adaption real-time interpolation method for NURBS curve reference model
CN105956328A (en) Parametric curve modeling method of high degree of freedom

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees