1362506 、 第95135950號專利說明書修正本 修正日期:100年5月16日 九、發明說明: 【發明所屬之技術領域】 ; 本發明係有關於一種製造方法,特別是有關於—種彩. 色濾光片之製造方法。 【先前技術】 無光罩(markless)技術是有效解決光罩成本不斷攀升 的方法之一。目前,在半導體或光電產業上’無光罩技術 • 主要是由 Anvik Corporation、Ball Semiconductor - pUji Photo Film、Exitech 及 Mulitbeam System 等廠商所研究開 發。1362506, Patent Specification No. 95135950 Revision of this amendment date: May 16, 100, ninth, invention description: [Technical field to which the invention pertains] The present invention relates to a manufacturing method, and more particularly to - coloring. A method of manufacturing a light sheet. [Prior Art] The markless technology is one of the effective ways to solve the rising cost of the mask. Currently, there is no reticle technology in the semiconductor or optoelectronics industry. It is mainly developed by manufacturers such as Anvik Corporation, Ball Semiconductor - pUji Photo Film, Exixech and Mulitbeam System.
• 以下列出數篇有關無光罩技術的專利。美國專利(US• Several patents on maskless technology are listed below. US patent (US
2004/037487)揭露使用無光罩技術並配合空間調整元 件’以定義出斜坡狀(taper)的光阻層。美國專利(US • 6,473,237)揭露使用無光罩技術來控制光束移動方式,= 獲得不同厚度的光阻層。美國專利(us 2〇〇5/〇219496)揭路 鲁 無光罩技術之曝光置之設計。 【發明内容】 本發明提供—種彩色遽光片之製造方法,包枯下列少 - 驟。形成複數個彩色濾光圖案於-基板上;形成一導電廣 於該些彩色渡光圖案上;形成一光阻層於該導電層上;以 及以紫外光雷射對該光阻層進行局部曝光,以同時形成複 . 數個配向元件及複數個感光間隙子。· 纟發明另提供—種彩色濾、光片之製造方法,包栝下列 步驟。形成-光阻層於一基板上;以紫外光雷射對該光限 修正日期:觸年5月16日 二進仃局4曝光’以形成複數個彩色濾光圖案於該基板 ,以及形成一導電層於彩色濾光圖案上。 步驟本發明再提供一種彩色濾光片之製造方法,包括下列 、# 一形成《阻層於該基板上;以紫外光雷射對該光阻 二t了局部曝光,以形成複數個黑矩陣圖案於該基板上; >成複數個彩色濾光圖案於該基板上;以及形成一導電層 於該些黑矩陣與彩色濾光圖案上。 气讓本發明之上述目的、特徵及優點能更明顯易懂, 下文特舉一較佳實施例,並配合所附圖式,作 說明如 下: 【實施方式】 第1A〜1E圖係說明本發明之一實施例,彩色濾光片 的製造方法。 /请參閱第1A圖,首先,提供一基板1〇。接著,以例 如微影法、乾膜法(dryfilm)或喷墨印刷法(inkjet printing) 形成複數個黑矩陣圖案12與複數個彩色濾光圖案14於基 板10上,使各黑矩陣圖案12位於兩相鄰彩色濾光圖案2 間。之後,以例如濺鍍法或塗佈法形成一導電層16於黑 矩陣圖案12與彩色濾光圖案14上。接著,形成一光阻層 18於導電層16上。 導電層16可包含反射材質、透明材質或上述材質的 組合,形成例如單層、複層或半穿透半反射層。反射材質 可包含金、銀、銅、链、鶴、欽、鈦、组、翻、氮化鈦、 氮化坦或上述材質的合金及組合。透明材質可包含銦錫氧 化物(indirnn tin oxide,ΙΤ0)、銦鋅氧化物(indium zinc 1362506 第9505950聽麵_修正本 修正日期:100年5月16日 v 〇Xlde,IZ0)、銘鋅氧化物(aluminum zinc oxide,AZO)或其 他類似材質。 之後,請參閱第1B圖,以波長範圍大約介於3〇〇nm 至500nm,較佳為365nm ,例如KrF、ArF、GaN半導體 雷射或其他半導體雷射的紫外光雷射作為光源,待數位微 鏡兀件(digital micromirror device,DMD)擷取欲曝光之圖 案$,以,光強度差異對光阻層18進行局部曝光2〇。曝 光纣,以單一方向2〇’掃描前進,同時調整出例如一第一 曝光強度22、一第二曝光強度24以及一第三曝光強度 16°由圖中可知’第—曝光強122大於第二曝光強度24, 弟二曝光強度24先遞減再遞增,而第三曝光強度26為零。 22下光罩局部曝光 '顯影後,位於第-曝光強度 it曰18被完全去除,位於第二曝光強度24下 々光F層18被部份去除,以形成一配向元件28,而第三 ,光強度26下的緣層18職完全 糾 隙子30,如此,使配而云丛〜风a尤间 時形成,如第8及感光間隙子%得以同 感光二:的曝光強度不同於形成 30的曝光強度可設定為近木另ά先間隙子 阻層18進行局部曝光2 0,以同時开;二=、外光雷射對光 及複數個感光間隙子30時 二?:數個配向兀件28 士 / +卞春 ’亦可藉由調整棒光強唐,π 時形成稷數個配向元件28 冰九強度问 例如需要被曝露的部份之$ 子3Q以外的區域, 示區)及其對應之位置片所在位置(亦稱為顯 而要被曝露的部份之黑矩陣圖案 1362506 第95135950號專利說明書修正本 修正日期:100年5月16日 斤在位置及其對應之位置、未被配向元件及感光間隙子所 遮敝的。卩伤之區域及其對應之訊號線(如:掃描線、資料 線)、非顯示區、或其它區域。而形成配向元件28的曝光 強度可小於形成配向元件28及感光間隙子30以外區域 曝光強度。 “本發明可藉由控制不同的曝光強度,製作出各種不同 外觀的配向元件,例如凸起物、狹縫或上述之組合。若上 述配向元件運用於多區域垂直配向(multi_domain wrtical ahgnment,MVA)或圖案化垂直配向(patterned vertical alignment,PVA)時,稱之為垂直配向元件。而運用於水平 配向時’則稱為水平配向元件。 上述形成複數個黑矩陣圖案12與複數個彩色濾光圖 案14於基板10上的步驟更可包括利用如上所述以紫外光 雷射對一光阻層進行局部曝光的方式加以完成。形成黑矩 陣圖案12的曝光強度可不同於形成配向元件“及感光間 隙’子30以外區域的曝光強度,例如形成黑矩陣圖案丨2的 曝光強度大於形成配向元件28及感光間隙子3〇以外區域 的曝光強度。另形成彩色濾光圖t 14㈣光強度亦可不 同於形成配向元件28及感光間隙子3〇以外區域的曝光強 度,例如形成彩色濾光圖案14的曝光強度大於形成配向 兀件28及感光間隙子30以外區域的曝光強度。此外,形 成黑矩陣圖案12的曝光強度可與形成彩色濾光圖案14的 曝光強度不同。 無光罩(markless)技術不需製作光罩,大幅提昇了生 產速率並減少製作成本,而機台設備所需空間也較傳統曝 光機少了許多。此處,對於配向元件及感光間隙子而言, 1362506 第95135950號專利說明書修正本 修正日期:100年5月16曰 利用無光罩技術加上局部曝光強度的控制,可將配向元件 及感光間隙子的製作合併成一道製程,使其在同一時間内 : 完成,達到簡化製程的效果,及降低生產成本。 本發明更可包含形成一陣列層(array layer) 11於基板 10上,以完成一彩色滤光在陣列上(color filter on array, COA)的設計,如第ID圖所示。陣列層11可包含複數條 訊號線、複數個切換元件及複數個電容。而包含複數條訊 號線、複數個切換元件及複數個電容的陣列層15,亦可 I 選擇形成於彩色圖案層14上,而完成一陣列在彩色濾光 上(array on color filter, AOC)的設計,如第1E圖所示。陣 ..· 列層11及15中的薄膜電晶體可包括頂閘極(top gate)或底 • 閘極(bottom gate)兩種型式,閘極材質可為非晶矽、多晶 矽、單晶矽、微晶矽或上述材質的組合。 • 第2A〜2D圖係說明本發明之一實施例,彩色濾光片 • 的製造方法。 請參閱第2A圖,首先,提供一基板100。接著,以 例如微影法、乾膜法(dryfilm)或喷墨印刷法(inkj et printing) • 形成複數個黑矩陣圖案102於基板100上。之後,形成一 第一光阻層104於基板100上。 接著,請參閱第2B圖,以波長範圍大約介於300nm - 至500nm ’較佳為365nm,例如KrF、ArF、GaN半導體 雷射或其他半導體雷射的紫外光雷射作為光源,待數位微 鏡元件(digital micromirror device,DMD)擷取欲曝光之圖 • 案後,以曝光強度差異對第一光阻層104進行局部曝光 • 1〇6。曝光時,以單一方向106’掃描前進,同時調整出例 如一第一曝光強度108以及一第二曝光強度11〇。由圖中 9 1362506 第95135950號專利說明書修正本 修正日期:100年5月!6日 可知’第一曝光強度1〇8大於第二曝光強度11〇。 經上述然光罩局部曝光 '喊影後,形成複數個第一彩 色濾光圖案112,如第2C圖所示。由於第—曝光強度 與第二曝光強度11 〇的差異’使特殊形狀的第一彩色淚光 圖案112得以順利克服製程中的角段差。 續重複上述步驟(第2A圖〜2C圖)兩次,分別形成第 二及第三光阻層於基板1〇〇上,並經由無光罩局部曝光、 顯影,獲得複數個第二彩色濾光圖案1 14及第三彩色濾光 圖案116,如第2D圖所示。圖中顯示,各黑矩陣圖案1〇2 位於兩相鄰彩色濾、光随之間。第—彩色濾光圖案ιι2、 第二彩色濾光圖案1H及第三彩色濾光圖案116可分別為 紅色、綠色或藍色彩色濾光圖案。 一々 取匕骠兀固系叼啄无強度、形成第 2色慮光圖s 114的曝光強度以及形成第三彩色濾光 圖木11 ό的曝光強度彼此可不同。 、上^4 %成第—、第二及第三彩色濾光圖案的過程如 下。"T先’形成-第—光阻層1()4,經無光罩曝光(丽此% -os巧後’形成一第一彩色據光圖案m,之後,形成 :二=層乂同樣經無光罩曝光後,形成-第二彩色濾 ^木^ ’取後’形成—第三光阻層,經無光罩曝光後, 形成一弟三彩色濾光圖案116。 干)本^月,更包括形成複數個第四彩色濾光圖案(未圖 ^第濾光圖s的曝光強度可與第—彩色濾光圖 者其中二广:光圖案及弟三彩色濾_案的曝光強度三 色彩可為無色或盥塞一贫_ j弟四衫色濾先圖本的 "、 弟—或第三彩色濾光圖案的色彩 1362506 第灿5950號專利說明書修正本 修正日期:1〇〇年5月16日 ·=或相異。此外’若上述彩色濾光圖案彼此有部份重疊 復盍,則可產生如黑矩陣圖案可提高對比度的效果。 一之後,仍麥閱第2D圖,以例如濺鍍法或塗佈法形成 一導電層118於彩色濾光圖案112、114、116盥里 上。導電層118可包含反射材質、透明 貝的組合,形成例如單層、複層或半穿射 射材質7包含金、銀、銅、銘、鎢、歛、鈦、叙射f 化鈦、氮化坦或上述材質的合金及組合。透明材質可包含 纛銦錫氧化物(indium tin oxide,IT0)、銦鋅氧化物(祕⑽2004/037487) discloses a photoresist layer that uses a maskless technique in conjunction with a spatial adjustment element to define a taper. U.S. Patent No. 6,473,237 discloses the use of a maskless technique to control beam movement, = obtaining photoresist layers of different thicknesses. US patent (us 2〇〇5/〇219496) Jie Lu Lu design of exposure without mask technology. SUMMARY OF THE INVENTION The present invention provides a method for manufacturing a color calendering sheet, which comprises the following few steps. Forming a plurality of color filter patterns on the substrate; forming a conductive layer over the color light-passing patterns; forming a photoresist layer on the conductive layer; and partially exposing the photoresist layer by ultraviolet light laser To simultaneously form a plurality of alignment elements and a plurality of photosensitive spacers. · The invention also provides a method for manufacturing color filters and light films, including the following steps. Forming a photoresist layer on a substrate; correcting the optical limit by ultraviolet light laser: a dimming exposure on May 16th to form a plurality of color filter patterns on the substrate, and forming a The conductive layer is on the color filter pattern. The present invention further provides a method for manufacturing a color filter, comprising the following: forming a resist layer on the substrate; and partially exposing the photoresist to a plurality of black matrix patterns by ultraviolet light laser. On the substrate; > forming a plurality of color filter patterns on the substrate; and forming a conductive layer on the black matrix and the color filter pattern. The above-mentioned objects, features, and advantages of the present invention will become more apparent and understood from the following description. One embodiment is a method of manufacturing a color filter. / Please refer to FIG. 1A. First, a substrate 1 is provided. Next, a plurality of black matrix patterns 12 and a plurality of color filter patterns 14 are formed on the substrate 10 by, for example, a lithography method, a dry film method, or an inkjet printing method, so that the black matrix patterns 12 are located. Two adjacent color filter patterns 2 are provided. Thereafter, a conductive layer 16 is formed on the black matrix pattern 12 and the color filter pattern 14 by, for example, sputtering or coating. Next, a photoresist layer 18 is formed on the conductive layer 16. The conductive layer 16 may comprise a reflective material, a transparent material, or a combination of the above materials to form, for example, a single layer, a plexed layer, or a transflective layer. The reflective material may comprise gold, silver, copper, chain, crane, chin, titanium, group, turn, titanium nitride, tantalum or alloys and combinations of the above materials. The transparent material may include indium tin oxide (ΙΤ ) ) ) 、 、 、 、 、 、 、 in in in 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 950 Aluminum zinc oxide (AZO) or other similar materials. After that, please refer to FIG. 1B, as a light source with a wavelength range of about 3〇〇nm to 500nm, preferably 365nm, such as KrF, ArF, GaN semiconductor laser or other semiconductor laser, to be digital. A digital micromirror device (DMD) captures the pattern $ to be exposed, and the photoresist layer 18 is locally exposed by a difference in light intensity. After exposure 纣, scanning in a single direction 2〇', while adjusting, for example, a first exposure intensity 22, a second exposure intensity 24, and a third exposure intensity 16°, it can be seen from the figure that the first exposure intensity 122 is greater than the second The exposure intensity 24, the second exposure intensity 24 is first decreased and then increased, and the third exposure intensity 26 is zero. After the partial exposure of the mask 22 is developed, the first exposure intensity is 18 is completely removed. At the second exposure intensity 24, the phosphor layer F is partially removed to form an alignment element 28, and thirdly, The edge layer 18 under the light intensity 26 is completely entangled 30, so that the cloud and the wind are formed at the same time, for example, the eighth and the photosensitive spacers are the same as the photosensitive two: the exposure intensity is different from that of forming 30. The exposure intensity can be set to be close to the first layer of the barrier layer 18 for local exposure 20 to simultaneously open; two =, external laser to the light and a plurality of photosensitive spacers 30: 2: several alignment elements 28 士 / + 卞春 ' can also be adjusted by the bar light intensity Tang, π when forming a number of aligning elements 28 ice nine strength ask for example, the area that needs to be exposed, other than the sub-3Q area, the display area) The position of the corresponding position piece (also known as the black matrix pattern of the part to be exposed) 1362506 Patent Specification No. 95135950 Amendment Date: May 16th, 100th, in the position and its corresponding position, not The alignment element and the photosensitive gap are concealed. Corresponding signal lines (eg, scan lines, data lines), non-display areas, or other areas. The exposure intensity of the alignment elements 28 may be less than the exposure intensity of the areas other than the alignment elements 28 and the photo spacers 30. By controlling different exposure intensities, aligning elements of various appearances, such as protrusions, slits or combinations thereof, are produced. If the above-mentioned alignment elements are used for multi-domain vertical alignment (MVA) or patterned vertical In the case of a patterned vertical alignment (PVA), it is called a vertical alignment element, and when it is used for horizontal alignment, it is called a horizontal alignment element. The above-described plurality of black matrix patterns 12 and a plurality of color filter patterns 14 are formed on the substrate 10 The above step may further comprise performing the partial exposure of a photoresist layer by ultraviolet laser as described above. The exposure intensity of the black matrix pattern 12 may be different from the formation of the alignment element "and the photosensitive gap" sub- 30. The exposure intensity of the region, for example, the exposure intensity of the black matrix pattern 丨 2 is greater than that of the alignment element 28 The exposure intensity of the region other than the photosensitive spacer 3 。. The color filter t 14 (4) may also be different from the exposure intensity of the region other than the alignment element 28 and the photo spacer 3 , for example, the exposure forming the color filter pattern 14 The intensity is greater than the exposure intensity of the regions forming the alignment member 28 and the photosensitive spacers 30. Further, the exposure intensity of the black matrix pattern 12 may be different from the exposure intensity for forming the color filter pattern 14. The markless technique is not required The production of reticle has greatly increased the production rate and reduced the production cost, and the space required for the machine equipment is much less than that of the conventional exposure machine. Here, for the alignment element and the photosensitive spacer, 1362506 Patent Specification No. 95135950 is amended. Date of revision: May 16th, 100. Using the maskless technology plus local exposure intensity control, the alignment element and the photosensitive gap can be used. The production of the sub-processes is combined into one process, so that it is completed at the same time: to achieve the effect of simplifying the process and reducing the production cost. The invention may further comprise forming an array layer 11 on the substrate 10 to complete a color filter on array (COA) design, as shown in the ID diagram. The array layer 11 can include a plurality of signal lines, a plurality of switching elements, and a plurality of capacitors. The array layer 15 including a plurality of signal lines, a plurality of switching elements, and a plurality of capacitors may also be selectively formed on the color pattern layer 14 to complete an array of color on color filter (AOC). Design, as shown in Figure 1E. The thin film transistor in the column layers 11 and 15 may include a top gate or a bottom gate, and the gate material may be amorphous germanium, polycrystalline germanium or single crystal germanium. , microcrystalline germanium or a combination of the above materials. • Figs. 2A to 2D are views showing a method of manufacturing a color filter according to an embodiment of the present invention. Referring to FIG. 2A, first, a substrate 100 is provided. Next, a plurality of black matrix patterns 102 are formed on the substrate 100 by, for example, lithography, dry film or inkjet printing. Thereafter, a first photoresist layer 104 is formed on the substrate 100. Next, please refer to FIG. 2B, taking a wavelength range of about 300 nm - to 500 nm ' preferably 365 nm, such as KrF, ArF, GaN semiconductor laser or other semiconductor laser ultraviolet light as a light source, to be a digital micromirror The digital micromirror device (DMD) draws the image to be exposed. After the case, the first photoresist layer 104 is partially exposed by the difference in exposure intensity. At the time of exposure, the scanning progress is performed in a single direction 106' while adjusting, for example, a first exposure intensity 108 and a second exposure intensity 11 〇. Amendment to the patent specification No. 95135950 in the figure 9 1362506 Revision date: May, 100! On the 6th, it can be seen that the first exposure intensity 1〇8 is greater than the second exposure intensity 11〇. A plurality of first color filter patterns 112 are formed by partial exposure of the above-mentioned masks, as shown in Fig. 2C. Since the difference between the first exposure intensity and the second exposure intensity 11 ’ 'the special shaped first color tear pattern 112 is smoothly overcome by the angular difference in the process. Repeating the above steps (Fig. 2A to Fig. 2C) twice, respectively forming the second and third photoresist layers on the substrate 1 and partially exposing and developing through the mask without a mask to obtain a plurality of second color filters. The pattern 1 14 and the third color filter pattern 116 are as shown in FIG. 2D. The figure shows that each black matrix pattern 1〇2 is located between two adjacent color filters and light. The first color filter pattern ιι2, the second color filter pattern 1H, and the third color filter pattern 116 may be red, green or blue color filter patterns, respectively. The intensity of the exposure of the tamping system, the exposure intensity of the second color map s 114, and the exposure intensity of the third color filter pattern 11 彼此 may be different from each other. The process of applying ^4% to the first, second and third color filter patterns is as follows. "T first 'formed-the first photoresist layer 1 () 4, exposed by a reticle (respectively %-os after the 'formed a first color light pattern m, then formed: two = layer 乂 same After exposure by the reticle, the second color filter is formed, and the third photoresist layer is formed. After exposure by the reticle, a third color filter pattern 116 is formed. The method further includes forming a plurality of fourth color filter patterns (the exposure intensity of the filter image s is not the same as that of the first color filter: the exposure intensity of the light pattern and the third color filter) The color can be colorless or sputum-poor _ j brother four-shirt color filter first map of the "," - or the third color filter pattern of color 1362506 No. 5950 patent specification revised this revision date: 1 year May 16th = or different. In addition, 'If the above-mentioned color filter patterns are partially overlapped and retraced, a black matrix pattern can be produced to improve the contrast effect. After that, the 2D picture is still read. For example, a conductive layer 118 is formed on the color filter patterns 112, 114, 116 by sputtering or coating. The conductive layer 118 may be packaged. a combination of a reflective material and a transparent shell to form, for example, a single layer, a multi-layer or a semi-through-shot material 7 comprising gold, silver, copper, indium, tungsten, condensed, titanium, fluoridated titanium, tantalum or the like Alloys and combinations. Transparent materials can contain indium tin oxide (IT0), indium zinc oxide (secret (10)
ZmC 〇Xlde,IZ0)、鋁辞氧化物(aluminum zinc oxide,AZO) 或其他類似材質。 ’ 上述开^成複數個黑矩陣圖案1 〇2於基板1 〇〇上的步驟 ^可包括利用如上所述以紫外光雷射對一光阻層進行局 曝光的方式加以完成。形成黑矩陣圖案102的曝光強度 可/、形成第、第一或第三彩色濾光圖案的曝光強度不 同。 無光罩(markless)技術不需製作光罩,大幅提昇了生 產速率並減少製作成本,而機台設備所需空間也較傳統曝 光機少了許多。此處,對於彩色濾光圖案而言,利用無光 罩技術加上局部曝光強度的控制,可去除在彩色濾光圖案 製轾中所產生的角段差,由於不須再研磨,遂可大幅簡化 製程,及降低生產成本。 本七明更可包含形成一陣列層(array layer) 1 〇 1於基板 100上,以元成—彩色濾光在陣列上(c〇l〇r fiker 〇n array COA)的設計,如第2E圖所示。陣列層1〇1可包含複數條 訊號線、複數個切換元件及複數個電容。而包含複數條訊 1362506 第95135950號專利說明書修正本 修正曰期:】〇〇年5月丨6曰 號線、複數個切換元件及複數個電容的陣列層117,亦可 選擇形成於彩色圖案層112、114及116上,而完成一陣 列在彩色濾光上(array on color filter,AOC)的設計,如第 2F圖所示。陣列層101及117中的薄膜電晶體可包括頂 閘極(top gate)或底閘極(bottom gate)兩種型式,閘極材質 可為非晶碎、多晶梦、早晶石夕、微晶碎或上述材質的組合。 第3A〜3D圖係說明本發明之一實施例,彩色濾光片 的製造方法。 \ 請參閱第3A圖’首先,提供一基板500。接著,形 成一光阻層502於基板500上。之後,請參閱第3B圖, 以以波長範圍大約介於300nm至500nm,較佳為365nm, 例如KrF、ArF、GaN半導體雷射或其他半導體雷射的紫 外光雷射作為光源’待數位微鏡元件(digital micromirror device,DMD)擷取欲曝光之圖案後,以曝光強度差異對光 阻層502進行局部曝光504。曝光時,以單一方向504’ 掃描前進,同時調整出例如一第一爆光強度506以及一第 二曝光強度508。由圖中可知’第一曝光強度506大於第 二曝光強度508。 經上述無光罩局部曝光、顯影後,形成複數個黑矩陣 圖案510,如第3C圖所示。由於第一曝光強度506與第 二曝光強度508的差異’使階梯狀的黑矩陣圖案51 〇,在 後續堆疊彩色濾光圖案時,可避免產生角段差。黑矩陣圖 案510的形狀,除為階梯狀外,亦可呈斜坡狀(taper)。 接著’以例如微影法、乾膜法(dryfilm)或噴墨印刷法 (inkjet printing)形成複數個彩色濾光圖案512於基板500 上’如第3D圖所示。圖中顯示’各黑矩陣圖案510位於 1362506 • 第95135950號專利說明書修正本 修正日期:100年5月16曰 兩相鄰彩色濾光圖案之間。 ‘ 之後’仍參閱第3D圖’以例如濺鍍法或塗佈法形成 • 一導電層514於彩色濾光圖案512與黑矩陣圖案510上。 導電層514可包含反射材質、透明材質或上述材質的組 合,形成例如單層、複層或半穿透半反射層。反射材質可 包含金、銀、銅、铭、鎢、斂、鈦、组、鉬、氮化鈦、氣 化坦或上述材質的合金及組合。透明材質可包含銦錫氧化 物(indium tin oxide, ITO)、銦鋅氧化物(indium zinc oxide, IZO)、銘鋅氧化物(aluminum zinc oxide, AZO)或其他類似 *材質。 上述形成複數個彩色滤光圖案512於基板500上的步 j 驟更可包括利用如上所述以紫外光雷射對一光阻層進行 • 局部曝光的方式加以完成。形成彩色濾光圖案512的曝光 • 強度可與形成黑矩陣圖案510的曝光強度不同。 、 無光罩(markless)技術不需製作光罩’大幅知·升了生 產速率並減少製作成本,而機台設備所需空間也較傳統曝 光機少了許多。此處’對於黑矩陣圖案而δ ’利用無光罩 • 技術加上局部曝光強度的控制,可製作出特殊黑矩陣圖 案,以防止彩色濾光圖案堆疊上去後所產生的角段差’達 到簡化製程的效果。 本發明更可包含形成一陣列層(array layer)505於基 板500上,以完成一彩色濾光在陣列上(color filter on ' array, COA)的設計,如第3E圖所示。陣列層505可包含 - 複數條訊號線、複數個切換元件及複數個電容。而包含複 數條訊號線、複數個切換元件及複數個電容的陣列層 513,亦可選擇形成於彩色圖案層512上,而完成一陣列 1362506 第95135950號專利說明書修正本修正日期:100年5月16曰 在彩色遽光上(array on color filter, AOC)的設計,如第3F 圖所示。陣列層505及513中的薄膜電晶體可包括頂閘極 (top gate)或底閘極(bottom gate)兩種型式,閘極椅質可為 非晶矽、多晶矽、單晶矽、微晶矽或上述材質的組合。 再者,本發明上述之實施例,若數位微鏡元件(digital micro-mirror device,DMD)擷取欲曝光之圖案較為模糊 時,亦可再搭配實體光罩,來形成本發明上述之圖案,使 圖案較為清晰。而光罩之類型,並不限於一般之光罩,亦 包含特殊之光罩,例如:狹縫圖案(slit pattern)、半調型 (half-tone)、灰調型(gray-tone)、或類似之光罩。 本發明可廣泛應用於液晶顯示器(liquid crystal display)、電激發光顯示器(electroluminescence display)或 場發射顯示器(filed-emission display)等。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 1362506 . 第95135950號專利說明書修正本 修正日期:100年5月16曰 - 【圖式簡單說明】 • 第1A〜1E圖係為本發明之一實施例,彩色濾光片製 - 造方法之剖面示意圖。 第2A〜2F圖係為本發明之一實施例,彩色濾光片製造 方法之剖面示意圖。 第3A〜3F圖係為本發明之一實施例,彩色濾光片製造 方法之剖面示意圖。 【主要元件符號說明】 • 10、100、500〜基板; U、15、101、117、505、513〜陣列層; . 12、102、510〜黑矩陣圖案; 14、112、114、116、512〜彩色濾光圖案; 16、118、514〜導電層; 18、104、502〜光阻層; 20、106、504〜局部曝光; 20’、106’、504’〜曝光方向; φ 22、24、26、108、110、506、508〜曝光強度; 28〜配向元件; 30〜感光間隙子。 15ZmC 〇Xlde, IZ0), aluminum zinc oxide (AZO) or other similar materials. The step of opening the plurality of black matrix patterns 1 〇 2 on the substrate 1 can be accomplished by performing a local exposure of a photoresist layer by ultraviolet laser as described above. The exposure intensity of the black matrix pattern 102 is formed to be different from that of the first, third or third color filter patterns. Markless technology eliminates the need for a reticle, dramatically increasing production rates and reducing manufacturing costs, while machine equipment requires less space than conventional exposures. Here, for the color filter pattern, by using the maskless technique and the control of the local exposure intensity, the angular difference generated in the color filter pattern can be removed, and the simplification can be greatly simplified since it is not necessary to re-grind. Process and reduce production costs. The present invention may further comprise forming an array layer 1 〇1 on the substrate 100, and designing the color on the array (c〇l〇r fiker 〇n array COA), such as the 2E The figure shows. The array layer 〇1 may include a plurality of signal lines, a plurality of switching elements, and a plurality of capacitors. And including a plurality of lines 1362506 Patent Specification No. 95135950, the revised period:] May 丨 6 线 line, a plurality of switching elements and a plurality of capacitor array layers 117, may also be formed in the color pattern layer 112, 114 and 116, and complete an array on the color filter (AOC) design, as shown in Figure 2F. The thin film transistors in the array layers 101 and 117 may include a top gate or a bottom gate. The gate material may be amorphous, polycrystalline dream, early quartz, and micro. Crystal crush or a combination of the above materials. 3A to 3D are views showing a method of manufacturing a color filter according to an embodiment of the present invention. \Please refer to FIG. 3A' First, a substrate 500 is provided. Next, a photoresist layer 502 is formed on the substrate 500. After that, please refer to FIG. 3B to use the ultraviolet light laser with a wavelength range of about 300 nm to 500 nm, preferably 365 nm, such as KrF, ArF, GaN semiconductor laser or other semiconductor laser as the light source. After the digital micromirror device (DMD) picks up the pattern to be exposed, the photoresist layer 502 is locally exposed 504 with a difference in exposure intensity. At the time of exposure, the scanning progresses in a single direction 504' while adjusting, for example, a first exposure intensity 506 and a second exposure intensity 508. As can be seen from the figure, the first exposure intensity 506 is greater than the second exposure intensity 508. After partial exposure and development by the above-mentioned maskless, a plurality of black matrix patterns 510 are formed as shown in Fig. 3C. Since the difference between the first exposure intensity 506 and the second exposure intensity 508 makes the stepped black matrix pattern 51 〇, the angular difference can be avoided when the color filter pattern is subsequently stacked. The shape of the black matrix pattern 510 may be a taper in addition to a step shape. Then, a plurality of color filter patterns 512 are formed on the substrate 500 by, for example, lithography, dry film or inkjet printing, as shown in Fig. 3D. The figure shows that each black matrix pattern 510 is located at 1362506. • Amendment No. 95135950 Patent Specification Revision Date: May 16th, 100 曰 Between two adjacent color filter patterns. ‘After' is still referred to the 3D image', formed by, for example, sputtering or coating. • A conductive layer 514 is over the color filter pattern 512 and the black matrix pattern 510. Conductive layer 514 can comprise a reflective material, a transparent material, or a combination of the foregoing materials to form, for example, a single layer, a plexed layer, or a transflective layer. The reflective material may comprise gold, silver, copper, indium, tungsten, condensed, titanium, group, molybdenum, titanium nitride, gasified tantalum or alloys and combinations of the above materials. The transparent material may include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO) or the like. The step of forming the plurality of color filter patterns 512 on the substrate 500 may further comprise performing partial exposure of a photoresist layer by ultraviolet laser as described above. The exposure of the color filter pattern 512 is formed. The intensity may be different from the exposure intensity at which the black matrix pattern 510 is formed. There is no need to make a mask for the markless technology. The production rate is greatly increased and the production cost is reduced. The space required for the machine equipment is much less than that of the conventional exposure machine. Here, 'for the black matrix pattern and δ', using the maskless technology and the local exposure intensity control, a special black matrix pattern can be created to prevent the angular difference generated after the color filter pattern is stacked up to a simplified process. Effect. The invention may further comprise forming an array layer 505 on the substrate 500 to complete a color filter on 'array (COA) design, as shown in Figure 3E. The array layer 505 can include - a plurality of signal lines, a plurality of switching elements, and a plurality of capacitors. The array layer 513 including a plurality of signal lines, a plurality of switching elements, and a plurality of capacitors may also be formed on the color pattern layer 512 to complete an array 1362506. Patent Specification No. 95135950 Amendment Date: May, 100 16 ar on the design of the array on color filter (AOC), as shown in Figure 3F. The thin film transistors in the array layers 505 and 513 may include a top gate or a bottom gate. The gate chair may be amorphous germanium, polycrystalline germanium, single crystal germanium, or microcrystalline germanium. Or a combination of the above materials. Furthermore, in the above embodiment of the present invention, if the digital micro-mirror device (DMD) draws a pattern that is to be exposed to be blurred, the physical mask can be further combined to form the above-mentioned pattern of the present invention. Make the pattern clearer. The type of mask is not limited to a general mask, but also includes a special mask, such as: slit pattern, half-tone, gray-tone, or A similar reticle. The present invention can be widely applied to a liquid crystal display, an electroluminescence display or a filed-emission display. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached. 1362506. Patent Specification No. 95135950 Revision Date: May 16th, 100th - [Simplified Description] • 1A to 1E are diagrams of an embodiment of the present invention, a color filter manufacturing method schematic diagram. 2A to 2F are schematic cross-sectional views showing a method of manufacturing a color filter according to an embodiment of the present invention. 3A to 3F are schematic cross-sectional views showing a method of manufacturing a color filter according to an embodiment of the present invention. [Major component symbol description] • 10, 100, 500~ substrate; U, 15, 101, 117, 505, 513~ array layer; . 12, 102, 510~ black matrix pattern; 14, 112, 114, 116, 512 ~ color filter pattern; 16, 118, 514~ conductive layer; 18, 104, 502~ photoresist layer; 20, 106, 504~ partial exposure; 20', 106', 504'~ exposure direction; φ 22, 24 , 26, 108, 110, 506, 508 ~ exposure intensity; 28 ~ alignment element; 30 ~ photosensitive spacer. 15