TWI361601B - Calibration of downlink and uplink channel responses in a wireless mimo communication system - Google Patents

Calibration of downlink and uplink channel responses in a wireless mimo communication system Download PDF

Info

Publication number
TWI361601B
TWI361601B TW094104760A TW94104760A TWI361601B TW I361601 B TWI361601 B TW I361601B TW 094104760 A TW094104760 A TW 094104760A TW 94104760 A TW94104760 A TW 94104760A TW I361601 B TWI361601 B TW I361601B
Authority
TW
Taiwan
Prior art keywords
matrix
error
calibration
matrices
pilot
Prior art date
Application number
TW094104760A
Other languages
Chinese (zh)
Other versions
TW200605582A (en
Inventor
J Rodney Walton
John W Ketchum
Mark S Wallace
Steven J Howard
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200605582A publication Critical patent/TW200605582A/en
Application granted granted Critical
Publication of TWI361601B publication Critical patent/TWI361601B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

1361601 九、發明說明: 【發明所屬之技術領域】 二 本發明概§之係關於通彳§,更具體而言,係關於用於在 -V 無線多輸入多輸出(ΜΙΜΟ)通信系統中校準下行鏈路及上 . 行鏈路通道響應之技術。 ν 【先前技術】 一 ΜΙΜΟ系統使用多個(Ντ個)發射天線及多個(Nr個)接 收天線進行資料傳輸。一由該等Ντ個發射天線及Nr個接收 • 天線構成之MIM〇通道可分解成Ns個空間通道,其中Ns $ min {NT,NR}。該等Ns個空間通道可用於平行發射資料, 以獲彳于更尚之總體通量或以冗餘方式獲得更高之可靠性。 為獲得高的效能,通常需要得知旭1肘〇通道之響應。舉 例而言,為對一傳輸至使用者終端之下行鏈路傳輸執行空 間處理’存取點可能需要得知下行鏈路通道之響應。在— 種傳統之通道估計技術中,係由存取點在下行鏈路上發射 φ 一導頻,然後由使用者終端根據該導頻來估計下行鏈路通 道響應並將該下行鏈路通道響應估計值發送回存取點。此 種通道估計技術會利用上行鏈路資源並進一步在發送回通 道響應估計值時引起一延遲,此二者皆非吾人所欲。 TDD系統係對下行鏈路及上行鏈路二者使用—單一頻 I 帶’其中為下行鍵路分配一部分時$、為上行鏈路分配其 餘部分時間。對於TDD系統,可假定下行鏈路與上行鏈路 通道響應互反。換言之,若£[代表-自天線陣列A至天線 陣列B之通道響應矩陣,則互反通道意味著自陣列B至陣 99590.doc1361601 IX. INSTRUCTIONS: [Technical field to which the invention pertains] 2. The present invention relates to general §, and more particularly to calibration for downlink in a -V wireless multiple input multiple output (MIMO) communication system Link and uplink and downlink channel response techniques. ν [Prior Art] A system uses multiple (Ντ) transmit antennas and multiple (Nr) receive antennas for data transmission. A MIM channel composed of the Ντ transmit antennas and Nr receive antennas can be decomposed into Ns spatial channels, where Ns $ min {NT, NR}. These Ns spatial channels can be used to transmit data in parallel to obtain a higher overall throughput or to achieve higher reliability in a redundant manner. In order to achieve high performance, it is usually necessary to know the response of the Asahi elbow channel. For example, performing a spatial process on a downlink transmission to a user terminal' access point may require knowledge of the response of the downlink channel. In a conventional channel estimation technique, an access point transmits a φ-pilot on the downlink, and then the user terminal estimates a downlink channel response based on the pilot and estimates the downlink channel response. The value is sent back to the access point. Such channel estimation techniques use uplink resources and further cause a delay in sending back channel response estimates, both of which are not what we want. The TDD system is used for both the downlink and the uplink - a single frequency I band' where a portion of the downlink key is allocated, and the rest of the time is allocated for the uplink. For TDD systems, the downlink and uplink channel responses can be assumed to be reciprocal. In other words, if £[represents the channel response matrix from antenna array A to antenna array B, then the reciprocal channel means from array B to array 99590.doc

示為sT ’其中表示廷之轉置。對於—互 反通道’其t_個鏈路(例如下行鏈路)之通道響應可根據 一經由另-鏈路(例如上行鏈路)接收之導頻來估計。 >存取點及使用者終端:者分別利用發射鏈及接收鍵來進 行發射及接收下行鏈路傳輸由此將觀測到—「有效」 下行鏈路通道響應,該「有效」下行鏈路通道響應包括存 取點處之發射鏈及使用者終端處之接收鏈之響應。相應 地,一上行鏈路傳輸將觀測到一有效上行鏈路通道響應, 该有效上行鏈路通道響應包括使用者終端處之發射鍵及存 取點處之接㈣之響應。存取點處之發射鏈及接收鏈之響 通4不同於使用者終端處之發射鏈及接收鏈之響應。因 此,有效下行鏈路及上行鏈路通道響應通常並不互反。若 將所獲得的一個鏈路之通道響應估計值用於對另一鏈路執 行空間處理,則存取點與使用者終端處之發射/接收鏈之 響應的任何差別皆將體現為誤差,若不對此種誤差加以確 定及補償,則其可能會使效能降格。 因此’在此項技術中需要提供用於校準TDD ΜΙΜΟ系統 中之下行鏈路及上行鏈路通道響應之技術。 【發明内容】 % 本文說明用於校準下行鏈路及上行鏈路通道響應以補償 存取點與使用者終端處之發射鏈及接收鏈響應之差別的技 術°在校準後,即可將所獲得的其中一個鏈路之通道響應 估計值用作另一鏈路之通道響應估計值。此可簡化通道估 計及空間處理。 99590.doc 1361601 該校準可劃分為兩個部分—初始校準及後續校準。在初 始校準中,存取點及使用者終端分別在下行鏈路及上行鏈 • 路上發射MIM〇導頻(如下文所述)。該等MIM〇導頻用於導 .·,· 出「有效」下行鏈路及上行鏈路通道響應估計值这^及 *· iup,該等「有效」下行鏈路及上行鏈路通道響應估計值 idn及&Up包括可適用之發射/接收鏈之響應。該等通道估計 值及Eup用於導出修正矩陣兹叩及I,然後,由存取點及 使用者終端分別使用修正矩陣I及I來補償其發射/接收 鍵之響應’如下文所述。 在後續校準中,其中一個實體(例如存取點)發射一 ΜΙΜΟ導頻及一導引參考信號(如下文所述)。另一實體(例 如使用者終端)則(1)根據該受導引參考信號導出一「實際 接收之」發射矩陣乞,及(2)根據該ΜΙΜ〇導頻及校準誤差 矩陣仏ρ及兑“導出一「假想」發射矩陣么〆矩陣^^及仏^ 分別包含對修正矩陣及盒⑴中誤差之猜想值或估計值。發 φ 射矩陣乞與^咖之差表示該等修正矩陣中誤差之估計值之精 確度。可根據一適應性程序來調節矩陣込?及,以使乞 與Yhyp之間的誤差最小化。下文將說明數種用於以疊代方式 s周節矩陣么p及么t之適應性程序。然後,分別藉由校準誤 差矩陣Q_ap及Q_ut來更新修正矩陣盒·ρ及L。 /下文將更詳細地闡述本發明之各種態樣及實施例。 【實施方式】 本文所用「實例性」一詞意指「用作一實例、範例或例 解」本文中描述為「實例性」之任何實施例皆未必應視 99590.doc 為較其他實施例為佳或有利。 • 本文所述校準技術可用於單載波及多載波TDD ΜΙΜΟ 系 • · 統為β楚起見,下文中將針對一單載波TDD ΜΙΜ〇系統 ’·, 來闡述該等技術。 圖1顯示一 TDD ΜΙΜΟ系統1 〇〇中一存取點i J 〇及一使用 者終端150處之發射及接收部分之方塊圖。對於下行鏈路 而言,在存取點110處,發射符號(由一向量仏表示)在由 φ 一發射鏈114處理後自Nap個天線110、經由一響應為Η之無 線ΜΙΜ〇通道發射。在使用者終端150處,該等Nap個下行 鏈路信號由Nut個天線152接收到並由一接收鏈154處理, 以獲得所接收付號(由—向量bn表示)。由發射鏈丨14執行 之處理通常包括數位—類比轉換、放大、濾波、上變頻等 等。由接收鏈154執行之處理通常包括下變頻、放大、濾 波、類比一數位轉換等等。 對於上行鏈路而言,在使用者終端15〇處,發射符號(由 φ 一向量Lp表示)在由一發射鏈164處理後自Nui個天線152藉Shown as sT ’ which represents the transposition of the court. The channel response for the t-links (e.g., the downlink) for the -reciprocal channel' can be estimated from the pilot received via the other link (e.g., the uplink). > Access Point and User Terminal: The transmitting and receiving downlink transmissions are respectively performed using the transmit chain and the receive key, thereby observing the "effective" downlink channel response, the "active" downlink channel The response includes the response of the transmit chain at the access point and the receive chain at the user terminal. Accordingly, an uplink transmission will observe a valid uplink channel response that includes the transmit key at the user terminal and the response at the access point (4). The response of the transmit chain and the receive chain at the access point is different from the response of the transmit chain and the receive chain at the user terminal. Therefore, effective downlink and uplink channel responses are usually not mutually exclusive. If the obtained channel response estimate for one link is used to perform spatial processing on another link, any difference in the response of the access point to the transmit/receive chain at the user terminal will be reflected as an error, if Without determining and compensating for such errors, it may degrade performance. Therefore, there is a need in the art to provide techniques for calibrating the downlink and uplink channel responses in a TDD® system. SUMMARY OF THE INVENTION This document describes techniques for calibrating the downlink and uplink channel responses to compensate for differences in the transmit chain and receive chain responses at the access point and the user terminal. After calibration, the The channel response estimate for one of the links is used as the channel response estimate for the other link. This simplifies channel estimation and spatial processing. 99590.doc 1361601 This calibration can be divided into two parts—initial calibration and subsequent calibration. In the initial calibration, the access point and the user terminal transmit MIM〇 pilots on the downlink and uplink, respectively (as described below). These MIM〇 pilots are used to derive “effective” downlink and uplink channel response estimates, and *· iup, these “effective” downlink and uplink channel response estimates. Idn and &Up include the response of the applicable transmit/receive chain. The channel estimates and Eup are used to derive the correction matrix I and I, and then the correction matrix I and I are used by the access point and the user terminal to compensate for the response of the transmit/receive key, respectively, as described below. In subsequent calibrations, one of the entities (e.g., access points) transmits a pilot and a pilot reference signal (as described below). Another entity (e.g., user terminal) (1) derives an "actually received" transmit matrix 根据 based on the guided reference signal, and (2) based on the ΜΙΜ〇 pilot and calibration error matrix 仏ρ and redemption Deriving a "hypothetical" emission matrix, the matrix ^^ and 仏^ respectively contain conjecture values or estimates for the error in the correction matrix and the box (1). The difference between the φ 乞 matrix and the 咖 coffee represents the accuracy of the estimate of the error in the correction matrix. The matrix can be adjusted according to an adaptive procedure to minimize the error between 乞 and Yhyp. Several adaptive procedures for the iterative matrix s and the t are described below. Then, the correction matrix boxes ρ and L are updated by calibrating the error matrices Q_ap and Q_ut, respectively. / Various aspects and embodiments of the invention are set forth in more detail below. [Embodiment] The term "exemplary" is used herein to mean "serving as an example, instance or example." Any embodiment described herein as "exemplary" is not necessarily considered to be 99590.doc. Good or beneficial. • The calibration techniques described in this paper can be used for both single-carrier and multi-carrier TDD systems. • For the sake of beta, the techniques will be described below for a single-carrier TDD system. 1 shows a block diagram of an access point i J 一 of a TDD system 1 and a transmit and receive portion at a user terminal 150. For the downlink, at access point 110, the transmitted symbols (represented by a vector )) are transmitted from the Nap antenna 110, via a ΜΙΜ〇-transmit chain 114, via a wireless channel that responds to Η. At user terminal 150, the Nap downlink signals are received by Nut antenna 152 and processed by a receive chain 154 to obtain the received payout number (represented by -vector bn). The processing performed by the transmit chain 14 typically includes digital-to-analog conversion, amplification, filtering, upconversion, and the like. The processing performed by receive chain 154 typically includes downconversion, amplification, filtering, analog to digital conversion, and the like. For the uplink, at the user terminal 15, the transmitted symbols (represented by φ-vector Lp) are borrowed from the Nui antenna 152 after being processed by a transmit chain 164.

由ΜΙΜΟ通道發射。在存取終端110處,該等Nut個上行鏈 路"is 5虎由Nap個天線116接收到並由一接收鍵124處理,以 獲得所接收符號(由一向量bp表示)C 對於下行鏈路而言,使用者終端處之接收向量可表達 為·Launched by the channel. At access terminal 110, the Nut uplinks "is 5 are received by Nap antenna 116 and processed by a receive key 124 to obtain received symbols (represented by a vector bp) C for the downlink In terms of roads, the receiving vector at the user terminal can be expressed as

Idn =Eu.HTap2(l„ 5 方程式(1) 其中支^係具有自Nap個存取點天線發送之Nap個發射符號之 99590.doc l36l6〇lIdn =Eu.HTap2(l„ 5 Equation (1) where the branch has the Nap transmit symbols transmitted from the Nap access point antennas 99590.doc l36l6〇l

向量; Ldn係具有經由Nut個使用者終端天線獲得之Nut個所接收 符號之向量; :EaP係一 Nap X Nap階對角矩陣,其具有對應於存取點發射 鏈之Nap個複增益,其中每—存取點天線皆對應於一個複 增益;Vector; Ldn is a vector having Nut received symbols obtained through Nut user terminal antennas; EaP is a Nap X Nap order diagonal matrix having Nap complex gains corresponding to the access point transmit chain, wherein each - the access point antennas all correspond to a complex gain;

Eut係一 Nut X Nut階對角矩陣,其具有對應於使用者終端 接收鏈之Nut個複增益,其中每一使用者終端天線皆對應 於一個複增益;及 SL係下行鏈路之Nut X Nap階通道響應矩陣。 發射/接收鏈及ΜΙΜΟ通道之響應通常係頻率之函數。為簡 明起見’假定為-具有―平坦頻率響應之平坦衰落通道。 對於上行鏈路而言,存取點處之接收向量可表達為:Eut is a Nut X Nut diagonal matrix with Nut complex gains corresponding to the receiving chain of the user terminal, wherein each user terminal antenna corresponds to a complex gain; and the Down X Nap of the SL system downlink Order channel response matrix. The response of the transmit/receive chain and the ΜΙΜΟ channel is usually a function of frequency. For the sake of simplicity, it is assumed to be a flat fading channel with a flat frequency response. For the uplink, the receive vector at the access point can be expressed as:

Tup =EapHrTmXup , 其中2Lup係具有自Nut個使 號之向量; 方程式(2) 用者終端天線發送之發射符Tup = EapHrTmXup, where 2Lup has a vector from Nut numbers; Equation (2) Transmitter transmitted by the user's terminal antenna

Hup係具有經由Nap個存取點 调所接收符 之向量 mNut階對角矩陣,其具有對應於使用者故 發射鏈之队(個複增益,其 、、 於-個複增益; 母使用者終端天線皆對 Eut係一 Napx Nap階對角矩陣,其具 鏈之Nap個複增益,其中每#取點=應於存取點接 中母—存取點天線皆對應於一個 99590.doc •10- 1361601 增益;及 廷7"係上行鏈路之Nap X Nut階通道響應矩陣。 根據方程式⑴及⑺,包含可適用之發射及接收鍵之響 應的有效」下行鏈路及上行鏈路通道響應廷心及&up可表 達為.The Hup system has a vector mNut order diagonal matrix of received symbols via Nap access points, which has a team corresponding to the user's transmit chain (a complex gain, and a complex gain; a mother user terminal) The antennas are all connected to a Napx Nap-order diagonal matrix, which has a chain of Nap complex gains, where each #点点= should be in the access point. The mother-access point antenna corresponds to a 99590.doc •10 - 1361601 Gain; and Ting 7" is the uplink Nap X Nut order channel response matrix. According to equations (1) and (7), effective "downlink and uplink channel response" including applicable transmit and receive key responses Heart and &up can be expressed as.

Sdn=EiaS3:*p 及 H„p=EapHTI:m。 將方程式組(3)中之兩個方程式相組合,即可得到下式:Sdn=EiaS3:*p and H„p=EapHTI:m. Combine the two equations in equation group (3) to get the following formula:

方程式(3) ' ^ ’方程式(4〕 其中 ‘=ϊ>ρ 且 Kut=r>ut. I。ip係存取點的—NapXNaf 階對角矩陣,其藉由接收鏈響應Eap對發射鏈響應Xap之比 率來獲得’其中該比率係逐—元素地進行求取。同樣p地, ILu係使用者終端的一 NutXNut階對角矩陣,其藉由接收鍵 響應Eut對發射鏈響應1^之比率來獲得。 方程式(4)亦可表達為: 方程式(5) 其中ilcup表示上行鏈路之已校準通道響應;及 SLcdn表示下行鏈路之已校準通道響應。 矩陣Kap及Etu包含用於補償存取點及使用者終端處發射/接 收鏈之差別之值。如方程式(5)所示,將對角矩陣基^及&^ 應用於有效下行鏈路及上行鏈路通道響應,會使其令一個 鏈路之已校準通道響應能夠由另一鏈路之已校準通道響應 來表達。 99590.doc ⑧ 1361601 可執行初始校準來確定矩陣Hap及Κ〆通常,真實之通 道響應旦及發射/接收鏈響應並不為吾人所已知且無法準 • - 4或容易地確定之。相反,可根據分別在下行鏈路及上行 * 鏈路上所發射之MIM〇導頻來估計有效下行鏈路通道響應 _· 廷及上行鏈路通道響應ILP。一MIM〇導頻係一由自心個 發射天線發送之Ντ個導頻傳輸構成之導頻,其中自每一發 射天線發射之導頻傳輸可由接收實體識別出。此可藉由 φ (舉例而言)對來自每一發射天線之導頻傳輸使用一不同之 正交序列來達成。然後,如下文所述,可根據有效下行鍵 路通道響應估計值食心及上行鏈路通道響應估計值良p來導 出矩陣Kap及U其稱作修正矩陣兹ap及容一之估計值。矩陣Equation (3) ' ^ ' Equation (4) where '=ϊ>ρ and Kut=r> ut. I. The ap-access point-NapXNaf-order diagonal matrix, which responds to the transmit chain by the receive chain response Eap The ratio of Xap is obtained to obtain 'the ratio is obtained from element to element. Similarly, a ratio of the NutXNut order diagonal matrix of the ILu user terminal, which is the response of the receiving chain by the receiving key response Eut Equation (4) can also be expressed as: Equation (5) where ilcup represents the calibrated channel response of the uplink; and SLcdn represents the calibrated channel response of the downlink. Matrix Kap and Etu are included for compensation access The value of the difference between the transmit/receive chain at the point and the user terminal. As shown in equation (5), applying the diagonal matrix base and &^ to the effective downlink and uplink channel responses will cause The calibrated channel response of one link can be expressed by the calibrated channel response of the other link. 99590.doc 8 1361601 An initial calibration can be performed to determine the matrix Hap and Κ〆 normally, the true channel response and the transmit/receive chain The response is not my It is known and cannot be accurately determined. - Conversely, the effective downlink channel response can be estimated based on the MIM pilots transmitted on the downlink and uplink* links respectively. The channel channel responds to the ILP. A MIM〇 pilot system is a pilot consisting of Ντ pilot transmissions transmitted from a self-transmitting antenna, wherein pilot transmissions transmitted from each transmitting antenna are recognized by the receiving entity. The use of φ, for example, for pilot transmission from each transmit antenna is achieved using a different orthogonal sequence. Then, as described below, the estimated downlink and channel uplink response values can be based on the estimated feed center and uplink. The channel response estimate is good p to derive the matrix Kap and U which are called the correction matrix ap and the estimate of the one.

Kap及Eu,包含可補償存取點及使用者終端處發射/接收鏈之 差別之修正因數。 圖2顯不在存取點11〇及使用者終端15〇處使用修正矩陣 Kap及在下行鏈路上,首先由一單元i 12將發射向量Ln φ 乘以修正矩陣兹,p。隨後由發射鏈π 4及接收鏈154執行之處 理闡述於圖1中。同樣地,在上行鏈路上,首先由一單元 162將發射向量Lp乘以修正矩陣&。隨後由發射鏈164及一 接收鏈124執行之處理亦闡述於圖1中。 在ΜΙΜΟ系統中,可在一 MIM〇通道之Ns個本徵模態上 發射資.料。該等本徵模態可視為該ΜΙΜΟ通道之各正交空 間通道。可將通道響應矩陣H r對角化」來獲得該μιμ〇 通道之Ns個本徵模態。此種對角化可藉由對廷執行奇異值 分解或對Η之相關矩陣(其係其中&表示η之共軛 99590.doc * 12- 丄允1601 轉置)執行本徵值分解來達成。 表1表示下行鏈路及上行鏈路之有效通道響應及已校準 通道響應以及對已校準下行鏈路及上行鏈路通道響應矩陣 之奇異值分解。 表1-奇異值分解Kap and Eu contain correction factors that compensate for the difference between the access point and the transmit/receive chain at the user terminal. 2 shows that the correction matrix Kap is used at the access point 11 and the user terminal 15 and on the downlink, the transmission vector Ln φ is first multiplied by the correction matrix, p, by a unit i12. The subsequent implementation by the transmit chain π 4 and the receive chain 154 is illustrated in FIG. Similarly, on the uplink, the transmit vector Lp is first multiplied by a unit 162 by the correction matrix & The subsequent processing by transmit chain 164 and a receive chain 124 is also illustrated in FIG. In the ΜΙΜΟ system, the material can be transmitted on the Ns eigenmodes of a MIM 〇 channel. The eigenmodes can be considered as orthogonal spatial channels of the chirp channel. The channel response matrix H r can be diagonalized to obtain the Ns eigenmodes of the μιμ〇 channel. Such diagonalization can be achieved by performing singular value decomposition on the singularity or on the correlation matrix of Η (which is the conjugate 99590.doc * 12- 160 1601 transpose of η) . Table 1 shows the effective channel response and calibrated channel response for the downlink and uplink and the singular value decomposition for the calibrated downlink and uplink channel response matrices. Table 1 - Singular Value Decomposition

對真實通道響應之奇異值分解 =Y;tZrU:p 上行鏈路Singular value decomposition for real channel response =Y; tZrU:p uplink

Hcup_ Hupl£uHcup_ Hupl£u

Hcup=uapiv^ 對所估計通道響應之奇異值分解 未正則化之發射矩陣 Η^=ν;ΣΓϋ:Hcup=uapiv^ Singular value decomposition of the estimated channel response Unnormalized emission matrix Η^=ν;ΣΓϋ:

Uapt = HcupVu 在表1中,ilap係一由ilcup之左本徵向量構成之NapXNap階單 位矩陣,係一由&cup之奇異值構成之NapXNut階對角矩 陣,Xut係一由|£eup之右本徵向量構成階單位矩 陣,且「*」表不複共軛。單位矩陣丛係由特性^來 表徵’其巾找,良等矩陣。矩陣匕及仏亦分別為由廷_之左 本徵向量及右本徵向量構成之矩陣。矩陣罝、亡、及 係矩陣之不同形式。為簡明起見,在下文說明中所提及 矩陣Hap及Xut亦可涉及其其他形式。矩陣仏ρ及其亦稱 作發射矩陣)分別由存取點及使用者終端用於空間處理並 由此藉由其下標來標記。Uapt = HcupVu In Table 1, ilap is a NapXNap order unit matrix consisting of the left eigenvector of ilcup, which is a NapXNut order diagonal matrix composed of singular values of &cup, and Xut is one by |£eup The right eigenvectors form a matrix of order units, and the "*" table is not conjugated. The unit matrix cluster is characterized by the characteristic ^'s towel lookup, good matrix. The matrices 匕 and 仏 are also matrices composed of the left eigenvector and the right eigenvector, respectively. Matrix 罝, 死, and different forms of the matrix. For the sake of brevity, the matrices Hap and Xut mentioned in the following description may also relate to other forms thereof. The matrix 仏ρ and its also known as the transmit matrix are used by the access point and the user terminal for spatial processing and are thus marked by their subscripts.

Gilbert Strang在題為「線性代數及其應用(乙⑹犯 Algebra and Its AppIicati〇ns)」(第二版,—c 99590.doc -13- ⑧ 1361601Gilbert Strang is entitled "Linear Algebra and Its Applications (B (6) Algebra and Its AppIicati〇ns)" (Second Edition, —c 99590.doc -13- 8 1361601

Press ’ 1980年)中對奇異值分解進行了更詳細的說明,該 書以引用方式倂入本文中。 在—實際系統中,不可得到矩陣廷…及艮up。而是,使 用者終端可根據一由存取點所發射之MIM〇導頻來估計已 校準之下行鏈路通道響應。然後,使用者終端可對已^準 之下行鏈路通道響應估計值盒池執行奇異值分解,以獲得 對角矩陣!及-由兹地之左本徵向量構成之矩陣,苴令每 -矩陣上方之帽形符號(「Λ」)表示其係實際矩陣:估計 值。同樣地 '存取點可根據一由使用者終端所發射之 Μ勵導頻來估計已校準之上行鏈路通道響應。然後,存 取=可對已校準之上行鍵路通道響應估計值ttcup執行奇異 值为解,以獲得一對角矩陣|及—命 由廷cup之左本徵向量構 成之矩陣ϋρ。 由於為互反通道且進行校準,因而僅需由使用者終端或 t點之-執行奇異值分解,來獲得矩陣£ 。為 π m # 卜貫轭方案來進行說明:其中 使用者終端獲得已校準之下行絲 ^. 丁鍵路通道響應估計值良dn, 對廷咖執行分解,使用矩陣iL進行* M由 -cdn 工間處理,碎德推用一合 導引參考信號將矩陣〇ap發送回存 ''' 3. A ^ 取點,如下文所述。受導 引參考信號(或受導引導頻)係一 令々々丄 u^ 目所有天線、在ΜΙΜΟ通 道之各本徵模態上發射之導頻。 使用者終端可按下式發射—上γ & 订鍵路受導引參考信號: ^up,m Υ — V* Λ ” 方程式(6) 99590.doc •14· 1361601 其中n係一在對應於該受導引參考信號之本徵模態w上發 射之導頻符號;The singular value decomposition is described in more detail in Press ’ 1980 (1980), which is incorporated herein by reference. In the actual system, the matrix can not be obtained... and 艮up. Instead, the user terminal can estimate the calibrated downlink channel response based on a MIM 〇 pilot transmitted by the access point. The user terminal can then perform singular value decomposition on the verified downlink channel response estimate pool to obtain a diagonal matrix! And - a matrix consisting of the left eigenvectors of the ground, and the hat symbol ("Λ") above each matrix indicates the actual matrix: the estimated value. Similarly, the 'access point' can estimate the calibrated uplink channel response based on a boost pilot transmitted by the user terminal. Then, the access = can perform a singular value solution on the calibrated uplink key channel response estimate ttcup to obtain a pair of angular matrices | and a matrix ϋ ρ consisting of the left eigenvector of the cup. Since it is a reciprocal channel and is calibrated, it is only necessary to perform a singular value decomposition by the user terminal or t-point to obtain the matrix £. For the π m # yoke scheme, the user terminal obtains the calibrated lower wire ^. The D-key channel response estimate is good, and the decomposition is performed on the Ting coffee, using the matrix iL for the *M by -cdn Inter-processing, the spurt pushes the matrix 〇ap back to save ''' with a homing reference signal. 3. A ^ takes the point, as described below. The pilot reference signal (or pilot pilot frequency) is a pilot that transmits all antennas on the eigenmodes of the ΜΙΜΟ channel. The user terminal can transmit as follows - the upper γ & the custom key is guided by the reference signal: ^up,m Υ — V* Λ ” Equation (6) 99590.doc •14· 1361601 where n is one corresponding to a pilot symbol transmitted on an eigenmode w of the guided reference signal;

2Lup,m係一對應於本徵模態W之上行鏈路受導引參考信號 之發射向量;及 工_係之第w個本徵向量或排,其中厶=[心u 。 在存取點處所接收上行鏈路受導引參考信號可表達為; = ΗϋρΪΒρπ + 5叩=HupEut:^;^ +2„p2Lup,m is a transmission vector corresponding to the uplink guided reference signal of the eigenmode W; and the wth eigenvector or row of the system, where 厶 = [heart u. The received uplink guided reference signal at the access point can be expressed as: = ΗϋρΪΒρπ + 5叩=HupEut:^;^ +2„p

+Snp=驗。一 h +flup ’ 方程式(7) 其中HuP,m係一對應於本徵模態w之上行鏈路受導引參考信 號之接收向量; 〜係S之第;η個對角線元素;及 u Λ+Snp=test. a h +flup ' Equation (7) where HuP,m is a reception vector corresponding to the uplink guided reference signal of the eigenmode w; ~the first of the S; n diagonal elements; and u Λ

㈣係’之第w個本徵向量或排,其中豆·ρ =υ如…心〜]。 方程式⑺表明’在不存在雜訊之情況下,存取點處之所接 收上行鏈路受導引參考信號約等於存取點可使用 各種估計技術、根據由制者終端料之受導引參考信號 來獲得上行鏈路通道響應之估計值。 在-實施例中,為獲得。之估計值,首先將所接收向量 U以導頻㈣之複共m然後將其針對每一本徵 ,多個所接收受導引參考符號實施積分,以獲得一向 置-:,該向量‘係對應於本徵模態估計值。由於 该寺本徵向量具有單位功至 力羊,因而可根據每一本徵模態之 之 灯鍵路受導引參考信號之接收功率來估計彼本徵模態 99590.doc -15- 1361601 奇異值% ’其係cr’U ‘之估計值之~個元素中每一 元素皆係藉由將^之~個元素中的一對應元素除以 獲得。 木 在另實施例中,係使用_ MMSE技術、根據所接收向 量‘來獲得‘之估計值。由於導頻符號〜係已知,因而 存取』可導i《估計值,以使所接收導頻符號九(其係 在使用^對所接收向量k m執行匹配滤波之後獲得)與所 七射導頻符號^之間的均方誤差最小化。 存取點可對, (其中m = 1 .. Ns)之估計值執行其他處 ★舉例* 5 ’ φ於每次為一個本徵向量獲得估計值,該 等〜個。本徵向量估計值可能會因(舉例而言)所接收受導^ 參考信號中之雜訊、MIM〇通道響應之變化等等而不相互 正交。因此,存取點可對該等①個本徵向量估計值執行(4) The wth eigenvector or row of the system, where Bean·ρ =υ如...心~]. Equation (7) shows that 'in the absence of noise, the received uplink guided reference signal at the access point is approximately equal to the access point. Various estimation techniques can be used, based on the guided reference of the manufacturer's terminal material. The signal is used to obtain an estimate of the uplink channel response. In the embodiment, it is obtained. The estimated value, firstly, the received vector U is multiplied by the pilot (4) and then integrated for each eigen, a plurality of received guided reference symbols to obtain a one-way-:, the vector corresponding to Estimated value of eigenmode. Since the eigenvector of the temple has unit work to force sheep, the eigenvalue of the eigenmode 99590.doc -15- 1361601 can be estimated according to the received power of the pilot reference signal of each eigenmode. Each of the ~ elements of the estimate of 'cr'U' is obtained by dividing one of the elements of ^. In another embodiment, the _MMSE technique is used to obtain an estimate based on the received vector ‘. Since the pilot symbol ~ is known, the access can be used to derive the estimated value so that the received pilot symbol nine (which is obtained after performing matched filtering using the received vector km) and the seven-sense The mean square error between the frequency symbols ^ is minimized. The access point can be performed on the estimated value of (where m = 1 .. Ns). ★ Example * 5 ′ φ is used to obtain an estimate for each eigenvector, such as ~. The eigenvector estimates may not be orthogonal to each other due to, for example, noise in the received reference signal, changes in the MIM channel response, and the like. Therefore, the access point can perform on the one eigenvector estimate

Gram-Schmidt正交化,以獲得正交之發射向量。總之,存 取點獲得-發射矩陣t其為化之估計值,而&係由使用 者終端根據U出。然後,存取點使用該發射矩仏對 下行鏈路傳輸執行空間處理。 1·後績校準 獲自初始校準之修正矩喊?及匕可能會包含由諸如以下 寻各種來源所造成之誤差:⑴用於初始校準之通道估計值Gram-Schmidt is orthogonalized to obtain orthogonal transmit vectors. In summary, the access point obtains an estimate of the transmit matrix t, and & is derived from the user terminal based on U. The access point then uses this transmit matrix to perform spatial processing on the downlink transmission. 1. Post-performance calibration The corrections obtained from the initial calibration and/or may include errors caused by various sources such as: (1) Channel estimates for initial calibration

Hdn及 Hup不理想,(2)存取^ fj; 3 1 )仔取點及使用者終端處之發射/接收鏈 子在變化’等等。修正矩陣中之誤差會在以下二者中造 Π :⑴由使用者終端用於空間處理並自^導出的發 射矩陣…及⑺由存取點用於空間處理並自使Α發送 99590.doc •16· 1361601 之上行鏈路受導引參考信號導出的發射矩陣t。若可估呀 並消除修正矩陣中之誤差,則可獲得改良之效能。 - 存取點及/或使用者終端可執行後續校準來估計修正矩 ·,· 陣I及I中之誤差。為清楚起見,下文係針對由使用者終 ' 端執行之後續校準來加以說明。在由使用者終端執行之後 續校準中,該存取點使用修正矩陣么p在下行鏈路上發射一 ΜΙΜΟ導頻,並亦使用發射矩陣&及修正矩陣反p在下行鏈 φ 路上發射一受導引參考信號。該下行鏈路受導引參考信號 可表示為:,其中。與上文‘ 對上行鏈路受導引參考信號所述者相似,使用者終端可根 據所接收之下行鏈路受導引參考信號來獲得之估計 值。為簡明起見,將自下行鏈路受導引參考信號導出之 L纩之估計值稱作一「實際接收之」發射矩陣見,其係一 包含Xut之估計值及左之估計值之非正規化矩陣。(為清楚起 見,矩陣上方之「〜」表示其係一非正規化矩陣”使用者 • 終端亦根據由存取點所發送之ΜΙΜΟ導頻來獲得包^之另一 版本。 ~ η 修正矩3^ap及盒过中之誤差可分別由校準誤差對角矩陣^ 及L來表示。因此,修正矩陣I及I可表達為: 心=匕1及£W=K息。 方程式(8) 若修正矩陣中之誤差較小, 近於1 +y〇之複數值。因而已 值ήαΐη可表達為·· 則免及交m之對角線元素係接 校準之下行鏈路通道響應估計 99590.doc 17 丄則601 方程式(9) 或處Hdn and Hup are not ideal, (2) access ^fj; 3 1) The transmit/receive chain at the point of the user and the user terminal is changing' and so on. The error in the correction matrix will be found in the following two cases: (1) the transmission matrix used by the user terminal for spatial processing and self-exporting... and (7) by the access point for spatial processing and self-contained 99 99990.doc • The uplink of the 16·1361601 is transmitted by the pilot reference signal. Improved performance can be obtained if the error in the correction matrix can be estimated and eliminated. - The access point and/or the user terminal can perform subsequent calibration to estimate the error in the correction moments, the arrays I and I. For the sake of clarity, the following is a description of the subsequent calibration performed by the user. In subsequent calibrations performed by the user terminal, the access point uses a correction matrix to transmit a pilot on the downlink, and also uses the transmit matrix & and the correction matrix inverse p to transmit on the downlink φ path. Guide the reference signal. The downlink guided reference signal can be expressed as: where. Similar to the above, as described for the uplink piloted reference signal, the user terminal can obtain an estimate based on the received downlink referenced signal. For the sake of brevity, the estimated value of L纩 derived from the downlink guided reference signal is referred to as an “actually received” transmit matrix, which is an informal one containing the estimated value of Xut and the estimated value of the left. Matrix. (For clarity, the "~" above the matrix indicates that it is an unnormalized matrix". The user terminal also obtains another version of the packet based on the pilot transmitted by the access point. ~ η Correction moment The error of 3^ap and the box can be represented by the calibration error diagonal matrix ^ and L respectively. Therefore, the correction matrices I and I can be expressed as: heart = 匕1 and £W=K. Equation (8) The error in the correction matrix is small, close to the complex value of 1 + y 。. Therefore, the value ή α ΐ η can be expressed as · · The exemption of the diagonal element of the line m is calibrated and the downlink channel response is estimated 99590.doc 17 丄 601 Equation (9) or

7矩陣K及L分別包含心及I中之「真實」誤差。%及 之猜想值或估計值可分別標記為込?及仏^。可將一「假 想J下行鏈路通道定義為: 、=倉<。 方程式(10)7Matrix K and L contain the "true" errors in the heart and I, respectively. Can the % or the guess value or the estimated value be marked as 込? And 仏^. A hypothetical J downlink channel can be defined as: , = bin <. equation (10)

假想下行鏈路通道係“之一猜想值,其係在假定所應用 之t確修正矩陣U之誤差係込Ρ之情況下導出。若込Ρ係 方程式(10)中心之理想猜想值且^係方寿里式⑼中^之理 想估計值,則廷^吼心且c=心。 —n 存取點處之空間處理可表達為: 方程式⑴)The hypothetical downlink channel is "one of the conjecture values, which is derived under the assumption that the applied t corrects the error matrix of the correction matrix U. If the ideal guess value of the center of the equation (10) is The ideal estimate of ^ in the formula (9), then the heart and c = heart. -n The spatial processing at the access point can be expressed as: Equation (1))

八中L係自包dn之奇異值分解獲得,而g咖係自下行鏈路 ΜΙΜΟ導頻獲得。使用者終端不具有I之值,而僅具有其 猜想值知。因此,使用者終端計算—非正規化發射矩陣 L ’假若校準誤差矩陣係‘及仏,則藉由假想方式將已 如下式所示由存取點獲得該非正規化發射矩陣 “认切认。 方程式⑽ 右iiap係义之理想猜想值且泛“係么之理想猜想值,則方程 式(j2)等於方程式⑴)。若確為如此,則.紅P。 」後’使用者終端以與存取點本應對所接收上行鍵路受 導引參考k號所執行之處理相同之方式對[執行處理,並 99590.doc ⑧ -18- !3616〇1The Eighth L system is obtained from the singular value decomposition of the packet dn, and the g coffee is obtained from the downlink ΜΙΜΟ pilot. The user terminal does not have a value of I, but only has its guess value. Therefore, the user terminal calculates the denormalized emission matrix L'. If the calibration error matrix is 'and 仏, the irregularized emission matrix is obtained from the access point as shown in the following equation by the imaginary method. (10) The ideal guess value of the right iip system and the general ideal guess value of the system, then the equation (j2) is equal to the equation (1). If this is the case, then red P. The "post" user terminal performs the processing in the same manner as the access point should be processed in response to the received uplink key being guided by the reference k number, and 99590.doc 8 -18- !3616〇1

獲得 所產生」發射矩陣Hg,仏係一與包p類似之正規化 發射矩陣。舉例而言,存取點可對所接收本徵向量執 行Gram Schmdit正父化,以提高其發射導引向量之效能。 在此種情形中,使用者终端將對&中之本徵向量執行相同 之正乂化。使用者終端僅模擬通常由存取點及使用者終端 ,者所執行之處理,雖然係假定校準誤差由心及仏表 示矩P車仏本應由存取點用於發射下行鍵路受導引參考信 號及對下行鏈路傳輸執行空間處理。 使用者終端處之空間處理可表達為: 方程式(13) 同樣’使用者終端不具有贮’而僅具有其猜想值紅。使 用者終端由此按下式為其自身計算—假定發射矩陣The resulting "emission matrix Hg" is obtained, which is a normalized emission matrix similar to packet p. For example, an access point may perform a Gram Schmdit positive affiliation on the received eigenvector to improve the performance of its transmit steering vector. In this case, the user terminal will perform the same normalization on the eigenvectors in & The user terminal only simulates the processing normally performed by the access point and the user terminal, although it is assumed that the calibration error is represented by the heart and the 矩, and the 仏 仏 should be used by the access point to transmit the downlink key. The reference signal and spatial processing are performed on the downlink transmission. The spatial processing at the user terminal can be expressed as: Equation (13) Similarly, the 'user terminal does not have a store' and only has its guess value red. The user terminal is calculated for this by itself - assuming the emission matrix

Yhyp - Hhyp§apiig。 、 方程式(14) 若迅外係&‘之理想猜想值且仏P#s:>p之理想猜想值,則 方程式(14)等於方程式(13)。矩陣^係一非正規化矩陣, 其包含-使用者終端發射矩陣以其對應於存取點發射矩 陣仏)及-對角矩陣以其類似於心假設使用者終端已藉 由如下方式接收到矩陣t⑴使用者終端使用免,發射一 上订鏈路受導引參考信號,(2)存取點對所接收上行鍵路受 導引參考信號執行其正常處理,以導出其發射矩陣仏, W存取點使用仏發射—下行鏈路受㈣參考信號,⑷修 ,矩陣Kap及κω之誤差分別由仏及仏矩陣表示,及⑺假定 在中沒有來自下行鏈路奶則導頻之通道估計誤差。 99590.doc -19- 1361601 若校準誤差矩陣込p及泛u t分別正確地表示修正矩陣鼠及 L中之真實誤差’則方程式(12)及(14)正確。自下行鍵路 ·: $導引參考信號獲得之實際接收之發射矩陣與自下行鏈路 :ΜΙΜΟ導頻獲得之假定發射矩陣玄吻之差可按下式來計算: ' Ε=ν.-ν^, 一 方程式(15) 其中係-由兄與之間的誤差構成一Nap階矩陣。誤 差矩陣1表示込?與込,之猜想值之精確度。可使用各種適 • 應性程序來調節矩陣込P與,以朝零驅動誤差矩陣E。 此等適應性程序包括MMSE適應性程序及最陡下降適^性 程序。對於適應性程序而言,可將心與仏之對角線元素 初始化為1 +y_〇。 對於MMSE適應性程序<^·τ,係計算仏中之元素相對於 泛叩與么t中之元素之近似偏導數。若藉由初始校準將&之 「首項」το素(其係最左上方之元素)設定為丨勺.0,則無需 調節該元素。此外,誤差矩陣1不受仏中各元素之值影 籲響。因此,舉例而言,可藉由將仏t之首項元素之實分量 定義為1.0來使么t正規化。進一步,可藉由—單位值複數 來換算一本徵向量(或旋轉任一相位),此並不影響其效 能。因此,可選擇一組相位使接近免而不失去一般性。 • 此種性質容許使用一任意單位值因數來換算仏…因而可 • 將仏,之首項元素之虛分量定義為〇.〇。 可按下述方式執行MMSE適應性程序。令江為一長度為 2(Nap+Nut-2)且由泛叩與Q_ut中除設定為I』之首項元素以外 99590.doc •20· ⑧ 的各對角線元素之實及虛分量構成之實向量。向量生可定 義為: ,其中Yhyp - Hhyp § apiig. Equation (14) Equation (14) is equal to equation (13) if the ideal guess value of 迅 &< and 仏P#s:>p is the ideal guess value. The matrix is an unnormalized matrix comprising - a user terminal transmit matrix corresponding to the access point transmit matrix 仏) and a diagonal matrix with a heart-like assumption that the user terminal has received the matrix by t(1) The user terminal uses the exemption, transmits a subscription link to receive the reference signal, and (2) the access point performs the normal processing on the received uplink signal by the pilot reference signal to derive its transmission matrix, and saves The point is 仏 transmit-downlink is subject to (iv) reference signal, (4) repair, the errors of matrix Kap and κω are represented by 仏 and 仏 matrices, respectively, and (7) assume that there is no channel estimation error for pilots from downlink milk. 99590.doc -19- 1361601 Equations (12) and (14) are correct if the calibration error matrices 込p and ubiquitous u t correctly represent the true error of the modified matrix mouse and L respectively. From the downlink link:: The actual received transmit matrix obtained by the $Guide reference signal and the difference from the downlink link: the 发射 pilot obtained by the assumed transmit matrix can be calculated as follows: ' Ε=ν.-ν ^, one program (15) where the system - the error between the brother and the child constitutes a Nap order matrix. What is the error matrix 1? And 込, the accuracy of the guess value. A variety of adaptive procedures can be used to adjust the matrix 込P and to drive the error matrix E towards zero. These adaptive procedures include the MMSE Adaptive Procedures and the steepest declines. For adaptive programs, the diagonal elements of the heart and the 仏 can be initialized to 1 + y_〇. For the MMSE adaptive program <^·τ, the approximate partial derivative of the element in 仏 relative to the elements in 叩 and t t is calculated. If the "first" τ (the uppermost element) of & is set to 丨.0 by initial calibration, there is no need to adjust the element. In addition, the error matrix 1 is not affected by the values of the elements in the frame. Thus, for example, t can be normalized by defining the real component of the first element of 仏t as 1.0. Further, an eigenvector (or any phase) can be converted by a complex number of unit values, which does not affect its effectiveness. Therefore, a set of phases can be selected to avoid proximity without losing generality. • This property allows the conversion of 仏 using an arbitrary unit value factor... thus • The imaginary component of the first element of 仏 is defined as 〇.〇. The MMSE adaptive procedure can be performed as follows. Let Jiang be a real and imaginary component of each diagonal element of length 99 (Nap+Nut-2) and 99590.doc •20· 8 other than the first element of ubiquitous and Q_ut except I Real vector. Vector can be defined as:

2 ... N ap r 92(i-D =Im{!2ep(z.,i)},其中 ζ· = 2 Ν 夺2(«η = Re(2Ui(z,2)},其中 ζ· =: 2 ν 、一議},其中,= 2...Ν::, 其中❼係a之第Η固元素; 2βΡ(Ζ·,Ζ·)係Hap之弟ί個對角線元素;及 δ«/(Ζ·,/)係仏t之第ί個對角線元素。 生中—帶奇數附標之元素對應於紅與仏中對角線元素之實 分量,生中帶偶數附標之元素則對應於仏Ρ與仏中對角線 疋素之虛分量。生中之前2Nap_2個元素對應於紅中除首項 _素乂外之Nap-1個對角線元素,而生中之最末肌「2個元 素對應於Q_ut中除首項①素以外之NurHgJ對角線元素。 π ^為一長度為2NapNut且由i中各元素之實及虚分量構 • 成之實向量。向量兰可定義為: =Μ^} ’ 其中/=1 υ) 其中Μ系竺之第/個元素;及 • 丑(以)係邕中之第…、第_;•行處之元素< . 1中帶奇數附標之元素對應於Ε中各元J 絲附標之元素則對應於£中各元素之虛分量。可藉由以 向里a汗價方程式(10)、(12)、(1句及(15)來獲得誤差矩陣 爻0 1…N, N • · _ Kao 及 之實分量,反中帶 99590.doc 1361601 對於MMSE適應性程序而言,可藉由擾動込p或込t中之 το素之分ϊ:並計算由方程式(1〇)、(12)、(14)及〇5)所定義 • 之函數’來產生&中之元素之實分量或虚分量相對於仏口或 ··. 立⑴中之凡素之實分量或虛分量之偏導數。作為空加之計算 k-之一部分,可將一單一 #項選擇成使氐最小化。 由此會使Q_ut之首項元素之相位正規化。 e中之元素相對於红中之元素之近似偏導數可表達為: Φ ^ 6 ’ 其中卜1 …2(Nap+Nut-2)且_/=1 ... 2NapNut 方程式(16) 其中Aj係一長度為2(Nap+Nut-2)之向量,其在第y個元素處 包含δ之小實數值、在其他位置則包含零;及 係兰中第/·個元素相對於辽中第ζ·個元素之近似偏導數。 可按下述方式獲得近似偏導數 首先按山=江+4計算出 一向莖flj。然後,針對化.(其包含込Ρ ,及仏t,,)評價由方程式 (10)、(12)及(14)所定義之函數,以獲得一新(或「經修 • 改」)的假定發射矩陣然後,自乞中減去5h〆以獲得 一新的誤差矩陣m,該新的誤差矩陣in用於 形成一新的誤i向量w _,自【之第,元素(在方程式 (16)中其標記為织a+4i))中減去L之第y個元素(在方程式 1 (16)中其標記為以江))。然後,將相減之結果除以在,以獲 得 A' ,·〇 針對SL之2(Nap+Nut-2)個元素中之每一元素執行方程式 (10)、(12)、(14)及(15)之計算,以獲得一對應之新誤差向 99590.doc -22· 1361601 量§j·。對於每一新誤差向量l·,皆逐一元素地自t中之 2NapNut個元素減去氩中之2NapNut個元素,以獲得L中之 2NapNut個元素相對於生中之第/個元素之2NapNut個近似偏導 數。可由對應於兰及殳之所有元素之所有偏導數形成一維數 為2NapNut X 2(Nap+Nut-2)之矩陣。中之每一行皆包含e 中之2NapNut個元素相對於辽中之一個元素之2NapNut個近似 偏導數。A中之2(Nap+Nut-2)個行則對應於a中之2(Nap+Nut-2)個元素。 若方程式(10)、(12)、(14)及(15)之關系式近似為線性, 則中之校準誤差猜想值與實際校準誤差之差之估計值可 表達為: " 方程式(17) 其中ri系一對應於所估計之辽與實際校準誤差之差之更新向 量。更新向量叉與向量生具有相同之格式及維數,生係一由 立叮及仏t中除首項元素以外之各對角線元素之實分量及虛 分量構成之實向量。 若a不為一方陣(通常即為如此),則不存在簡單之反矩 陣。此時可對方程式(17)使用4之穆爾—彭羅斯(M_e_ Penr〇se)虛擬反矩陣。該虛擬反矩陣僅係一滿足方程式 AA A-A及a 4A_1=A_1之矩陣。該虛擬反矩陣可藉由如下 方式^產生··對4執行奇異值分解,其係,然後按 Δ 乂來計算該虛擬反矩陣,其中这_,係一由泛中之對 應非零對角線元素之逆構成之對角矩陣。 99590.doc2 ... N ap r 92(iD =Im{!2ep(z.,i)}, where ζ· = 2 Ν 2 («η = Re(2Ui(z,2)}, where ζ· =: 2 ν , 一议}, where, = 2...Ν::, where the Η 元素 element of ❼ is a; 2βΡ (Ζ·, Ζ·) is the brother of Hap ί a diagonal element; and δ« /(Ζ·,/) is the ίth diagonal element of 仏t. The element of life with an odd number corresponds to the real component of the diagonal element in red and 仏, and the element with the even number attached Then corresponds to the imaginary component of the diagonal element in 仏Ρ and 仏. Before the birth, 2Nap_2 elements correspond to the Nap-1 diagonal elements in the red except for the first _ prime ,, and the last of the birth The "two elements of the muscle correspond to the NurHgJ diagonal elements of the Q_ut except for the first one. π ^ is a real vector of length 2NapNut and composed of real and imaginary components of the elements in i. Defined as: =Μ^} ' where /=1 υ) where the first element of the system; and • ugly (by) the first in the system..., _; • the element at the line < . The elements with odd-numbered labels correspond to the elements of the J-marked elements in the Ε, which correspond to the imaginary components of each element in £ The error matrix 爻0 1...N, N • · _ Kao and the real component can be obtained by using the inward a Khan equations (10), (12), (1 sentence and (15), and the anti-medium band 99590 .doc 1361601 For MMSE adaptive procedures, the division of τo in 込p or 込t can be disturbed: and the calculation is defined by equations (1〇), (12), (14) and 〇5) • The function 'to produce the partial or imaginary component of the element in & relative to the partial derivative of the real or imaginary component of the prime in (1). As part of the calculation of k-, A single # term can be chosen to minimize 氐. This will normalize the phase of the first element of Q_ut. The approximate partial derivative of the element in e relative to the element in red can be expressed as: Φ ^ 6 '卜1 ... 2(Nap+Nut-2) and _/=1 ... 2NapNut Equation (16) where Aj is a vector of length 2 (Nap+Nut-2) containing δ at the yth element The small real value, including zero at other positions; and the approximate partial derivative of the /e element in the system relative to the third element in the Liaozhong. The approximate partial derivative can be obtained as follows. According to the mountain=江+4, the stem flj is calculated. Then, the function defined by equations (10), (12) and (14) is evaluated to obtain the function (which includes 込Ρ, and 仏t, ,). A new (or "repaired") assumed emission matrix is then subtracted 5 〆 from 乞 to obtain a new error matrix m, which is used to form a new erroneous i vector w _ , from the first element, the element (marked as woven a+4i in equation (16)), subtracts the yth element of L (marked as Ei in equation 1 (16)). Then, divide the result of the subtraction by the value of A', and perform equations (10), (12), (14) for each of the 2 (Nap+Nut-2) elements of SL. (15) Calculate to obtain a corresponding new error to 99590.doc -22· 1361601 §j·. For each new error vector l·, the 2NapNut elements in argon are subtracted one by one from 2NapNut elements in t to obtain 2NapNut approximations of 2NapNut elements in L relative to the first element in the birth. Partial derivative. A matrix of 2NapNut X 2 (Nap+Nut-2) may be formed by all partial derivatives corresponding to all elements of Lan and Yu. Each of the lines contains 2NapNut approximate partial derivatives of 2NapNut elements in e relative to one element in Liao. The 2 (Nap+Nut-2) lines in A correspond to 2 (Nap+Nut-2) elements in a. If the relationship between equations (10), (12), (14), and (15) is approximately linear, the estimated difference between the calibration error guess value and the actual calibration error can be expressed as: " Equation (17) Where ri is an update vector corresponding to the difference between the estimated Liao and the actual calibration error. The update vector fork has the same format and dimension as the vector, and the real vector consists of the real and imaginary components of the diagonal elements other than the first element in the 叮t and 仏t. If a is not a matrix (which is usually the case), then there is no simple inverse matrix. At this point, the opponent program (17) uses the 4th Moh-Penrose (M_e_ Penr〇se) virtual inverse matrix. The virtual inverse matrix is only a matrix satisfying the equations AA A-A and a 4A_1=A_1. The virtual inverse matrix can be generated by performing singular value decomposition on the following method, and then calculating the virtual inverse matrix by Δ ,, wherein the _ is a corresponding non-zero diagonal in the pan The inverse of the elements constitutes the diagonal matrix. 99590.doc

-23· 1361601 偏導數矩陣4之計算係假定由方程式(ίο)至(丨3)所界定之 函數對於所評價大小之校準誤差而言近似為線性。由於該-23· 1361601 The calculation of the partial derivative matrix 4 assumes that the functions defined by the equations (ίο) to (丨3) are approximately linear for the calibration error of the evaluated magnitude. Because of this

線性假定並不完全準確,因而可將該程序疊代多次來確定 正確之校準誤差。在某些情形中,該程序並不收斂。然 而,藉由簡單地選擇一不同之校準誤差初始猜想值,通常 可達成收敛。若未達成收敛,則使用者終端亦可根據下行 鏈路受導引參考信號之另一估計值及下行鏈路導頻 來獲得^及In之另一版本,並使用該等新的矩陣來執行 MMSE適應性程序。 假若方程式(10)、(12)、(14)及(15)為線性’則將使兰 中各元素之均方最小化。然而,由於該等方程式並非線 性,因而使用灯辽來取代红,然後重複該程序。由此可按下 式來更新校準誤差向量: 方程式(18) 其中《係一疊代次數附標; 係用於第„次疊代之校準誤差向量; 係針對所獲得第^次疊代之更新向量;及 係用於第(η+1)次疊代之校準誤差向量。 可將上述計算重複任意數量之疊代次數。每一次疊代皆 使用自前一次疊代獲得之已更新校準誤差向量 。當更新向量Σ(幻足夠小時,即可結束該程序。 舉例而言,結束條件可係I丨Ζ(»)丨丨,其中少係ii(n)中各元 素之值之平方和且、係一閾值。作為另一實例,結束條件 99590.docThe linear assumption is not completely accurate, so the program can be iterated multiple times to determine the correct calibration error. In some cases, the program does not converge. However, convergence can usually be achieved by simply selecting a different initial error value for the calibration error. If convergence is not achieved, the user terminal may also obtain another version of ^ and In according to another estimated value of the downlink pilot reference signal and the downlink pilot, and perform the use of the new matrix. MMSE adaptive program. If equations (10), (12), (14), and (15) are linear, then the mean square of each element in the blue is minimized. However, since the equations are not linear, the lamp is used instead of red and the procedure is repeated. Thus, the calibration error vector can be updated as follows: Equation (18) where "the number of iterations is attached; the calibration error vector used for the „th iterations; the update for the obtained iterations Vector; and the calibration error vector used for the (n+1)th iteration. The above calculation can be repeated for any number of iterations. Each iteration uses the updated calibration error vector obtained from the previous iteration. When the vector is updated (the illusion is small enough, the program can be ended. For example, the end condition can be I丨Ζ(»)丨丨, where the sum of the squares of the values of the elements in ii(n) is a threshold. As another example, the end condition is 99590.doc

-24- 1361601 可係兄_<〜(對於所有!·),其中力係1(„)中之第袖 乐Z1固70素、係 另—間值。在已完成所有疊代後,將校準誤差最終估計值 矩陣表示為QaWne/及 Q_ut,y7„e/。 對於最陡下降適應性程序,可定義一總誤差為: ζ=_2=ιι乞-Lu2。 方程式(19) 總誤差z係藉由對E中各元素之值之平方進行求和而得到。 2相對於a中各元素之偏導數可按下式來計算: 5 二 2(g + l)-z(q) dg> δ ,其中卜1…2(NaP+Nut'2),方程式(2〇) 其中^係z相對於a中第Ζ·個元素之近似偏導數,丄係一長度 為2(Nap+Nut-2)之向量,其在第Η固元素處包含j的一小實數 值而在其他位置處包含零。近似偏導數心可按下述方式獲 得。首先按•計算出一向量山。然後,針對山來評價 由方程式(10)、(12)、(Μ)及(15)所定義之函數,以獲得一 新的誤差向量么〃然後,針對該新的誤差向量。來計算總 誤差h,如方程式(19)所示。然後,自使用扎獲得之總誤差 A(在方私式(20)中其標記為2(a+4))中減去使用红獲得之總 誤差z(在方程式(2〇)中其標記為z(w) ^然後將相減的結果 除以占以獲得心。針對正中之2(Nap+Nut_2)個元素重複該計 舁。由針對辽中之2(Nap+Nur2)個元素獲得之近似偏導數形 成一 2(Nap+Nut-2)維向量£。&中之每一元素皆係在辽中之對 應元素處所評價之總誤差之斜率。 然後,可按下式更新校準誤差向量: 方程式(21) 99590-doc -25- !3616〇1 其中&(n)係所獲得之第„次疊冲 叠代之斜率向量,U(«)及-24- 1361601 can be brother _<~(for all!·), where the first sleeve of the force system 1(„) is 70, and the other value is. After all the iterations have been completed, The final estimate matrix of calibration errors is expressed as QaWne/ and Q_ut, y7„e/. For the steepest descent adaptive program, a total error can be defined as: ζ=_2=ιι乞-Lu2. Equation (19) The total error z is obtained by summing the squares of the values of the elements in E. 2 The partial derivative of each element in a can be calculated as follows: 5 2 2 (g + l) - z (q) dg > δ , where 卜 1...2 (NaP + Nut '2), equation (2 〇) where ^ is the approximate partial derivative of z in relation to the third element in a, which is a vector of length 2 (Nap+Nut-2), which contains a small real value of j at the third solid element It contains zeros at other locations. The approximate partial derivative heart can be obtained as follows. First press • to calculate a vector mountain. Then, the functions defined by equations (10), (12), (Μ), and (15) are evaluated for the mountain to obtain a new error vector, and then, for the new error vector. To calculate the total error h, as shown in equation (19). Then, subtract the total error z obtained using red from the total error A obtained by using the tie (marked as 2(a+4) in the square (20)) (in equation (2〇) it is marked as z(w) ^ Then divide the result of the subtraction by the gain to obtain the heart. Repeat the calculation for the 2 (Nap+Nut_2) elements in the middle. Approximate for the 2 (Nap+Nur2) elements for Liaozhong The partial derivative forms a 2(Nap+Nut-2) dimensional vector £. Each element in the & is the slope of the total error evaluated at the corresponding element in Liao. Then, the calibration error vector can be updated as follows: Equation (21) 99590-doc -25- !3616〇1 where &(n) is the slope vector of the „th-stacked iteration, U(«) and

IrfO + l)分別係在最陡下降程戽由 往序中第《次及第次疊代 之校準誤差向量。可將上述呻曾 殳叶异重複任意數量之疊代次 數。每一次疊代皆使用自前一次 人疊代獲得之已更新校準誤 差向量a^(«+i)。當總誤差〇鈞 2疋夠小,例如小於一閾值 訏’即可結束該程序。 上文已針對導出實際校準誤差之估計值來闡述了兩種適 應性程序。亦可使用其他適應性及非適應性程序,此仍歸 屬於本發明之範疇内。 使用者終端可按下式更新其修正矩陣來補償校準誤差: Κδ:- 〇 方程式(22) 如圖2所示,使用者終端使用新修正矩陣i而非先前之修 =矩陣對上行鏈路傳輸執行空間處理。使用者終端可將 準。吳差矩陣Qap,/infl/發送至存取點,然後存取點可將其修 正矩陣更新為^aiyiw=:兹Q' 。為減;發訊量,若校準誤差矩 陣么P,/ina/滿足某一預定閾值,則使用者終端可僅發送回 準誤差矩陣达以…。 圖3顯示一由存取點及使用者終端執行的用於初始校 準、正:作業及後續校準之過程3〇〇。首先,存取點及使 用者終端執行初始校準來校準其發射鏈及接收鏈,並導出 L正矩陣盒印及1(方塊3 10)。言亥初始校準將在下文中 說明。 卞以 之後,在正常作業中,存取點使用其修正矩陣金ap發射— 99590.doc -26- 1361601 下行鏈路ΜΙΜΟ導頻(方塊322) ^使用者終端根據該下行鏈 路ΜΙΜΟ導頻獲得一已校準之下行鏈路通道響應估計值 0cdn(方塊3 24),並對&dn執行奇異值分解,以獲得其發射矩 :陣氬(方塊326)。然後,使用者终端使用么及t發射一上 ·. 行鏈路受導引參考信號,如方程式(6)所示(方塊328)。如 上文所述,存取點接收該上行鏈路受導引參考信號,並導 出其發射矩陣L(方塊330)。存取點及使用者終端分別使 用發射矩陣t及t進行空間處理。 ® 在後續校準中,存取點使用ip及上p發射一下行鏈路受導 引參考信號,並進一步使用t發射一下行鏈路MIM0導頻 (方塊342)人如上文所述(方塊344),使用者終端根據該下 行鏈路受導引參考信號導出實際之非正規化發射矩陣£。 使用者終端亦根據其發射矩陣之、已校準下行鏈路通道響 應估計值ficdn及校準誤差矩陣立叮及,按方程式(1〇)及 (12)或«來計算非正規化發射矩陣t (方塊 φ 346)。使用者終端進一步以與存取點本應執行之相同方式 來處理(例如執行正交化),以獲得正規化發射矩陣迅(方 塊348)。然後,使用者終端根據發射矩陣仏及已校準下行 鏈路通道響應估計值gedn,按方程式(1〇)及其係 )來計算假定之非正規化發射矩陣兄〆方塊35⑴。 若存取點使用仏發射一下行鏈路受導引參考信號,則矩陣 垔吻係使用者終端本應接收到之非正規化發射矩陣。然後, 使用者終端根據發射矩陣乞及交咖來修改校準誤差矩陣込p 及ilut(方塊352)。可使用一適應性程序來執行方塊346至 99590.doc -27- 1361601 352。此後,使用者终端可使用校準誤差矩陣泛^來更新其 修正矩陣容》«(方塊354),且此後存取點可使用校準誤差矩陣 來更新其修正矩陣兹ap(方塊356)。 圖4顯示一可用於圖3所示之方塊346至352之1^^卯適應 序400。首先,根據In、泛ap及立ut計算出假定發射矩 陣Y㈣(方塊410)。方塊41〇對應於圖3中之方塊346至35〇。 接下來’如方程式(15)所示,計算誤差矩陣【作為發射矩 陣L與〜之差(方塊412)。然後,如方程式(16)所示,導出 誤差矩陣K中每-元素相對於校準誤差矩陣知及心中所 選之某些元素(例如除首項元素以外之所有對角線元素)中 每-元素之偏導數(方塊414)。如下文所述,為易於計算, 可將矩陣及矩陣及立ut置為向量形式。亦如上文所 述,可針對該等矩陣中各元素之實分量及虛分量分別導出 偏導數。接著,如方程式(17)所示,根據偏導數矩陣丄及 誤差矩陣研算更新向量r(方塊416)。‘然後,如方程式^ 所示,使用該更新向量义來更新校準誤差矩陣心及W方 塊418)。接下来,料該更新向量找否滿足-結束條件 (方塊420)。若答案為「是」,則過程_結束。否則,該過 程返回至方塊410並執行另—次疊代。 圖5顯示一最陡下降適應性程序5〇〇,其亦可用於圖艸 之方塊346至3 52。首先,桐诚合 a 〜 根據HU、及泛ut計算出假定發 射矩陣Yhyp(方塊510)。接下央,士+f 1 ~〜 接下來,如方程式(19)所示,將總誤 差2作為進行計算(方塊5i2)n,如方程式 (2〇)所示’導出該總誤差相對於校準誤差矩陣紅及仏中 99590.doc •28· 1361601 所選的某些元素中每一元素之偏導 等數(方塊514)〇可將矩陣 ilap及仏置為向量形式,並針對該等 θ „ , ν θ 丨干〒各兀素之實分 直及虛^分別導出偏導b然後,⑹方程式⑼所示, 使用㈣偏導數來更新校準誤差料‘及仏(方塊5⑻。 接下來,判定該總誤差4否滿足—結束條件(方塊518)。 若答案為「是」,則過程鄉結束。否則,該過程返回至方 塊5 10並執行另一次疊代βIrfO + l) is the calibration error vector of the second and second iterations in the steepest descending process. Any number of iterations can be repeated for the above-mentioned 呻 殳 殳 leaf. Each iteration uses the updated calibration error vector a^(«+i) obtained from the previous iteration. The program is terminated when the total error 〇钧 2 疋 is small enough, for example, less than a threshold 訏'. Two adaptation procedures have been described above for the estimation of the actual calibration error. Other adaptive and non-adaptive procedures may also be used, which are still within the scope of the present invention. The user terminal can update its correction matrix to compensate for the calibration error as follows: Κδ:- 〇 Equation (22) As shown in Figure 2, the user terminal uses the new correction matrix i instead of the previous revision matrix to transmit the uplink. Perform space processing. The user terminal can be used. The Wu difference matrix Qap, /infl/ is sent to the access point, and then the access point can update its correction matrix to ^aiyiw=:Z'. To reduce the amount of transmission, if the calibration error matrix P, /ina/ satisfies a predetermined threshold, the user terminal can only send the reference error matrix up to .... Figure 3 shows a process performed by the access point and the user terminal for initial calibration, positive: operation, and subsequent calibration. First, the access point and the user terminal perform an initial calibration to calibrate their transmit and receive chains and derive the L positive matrix print and 1 (block 3 10). The initial calibration of Yanhai will be explained below. After that, in normal operation, the access point uses its correction matrix ap to transmit - 99590.doc -26 - 1361601 downlink ΜΙΜΟ pilot (block 322) ^ the user terminal obtains according to the downlink ΜΙΜΟ pilot A calibrated downlink channel response estimate of 0cdn (block 3 24) is performed and singular value decomposition is performed on &dn to obtain its emission moment: argon (block 326). Then, the user terminal uses t and transmits an uplink-guided reference signal as shown in equation (6) (block 328). As described above, the access point receives the uplink guided reference signal and derives its transmit matrix L (block 330). The access point and the user terminal use the transmit matrices t and t for spatial processing, respectively. In subsequent calibrations, the access point transmits the downlink guided reference signal using ip and upper p, and further transmits the downlink MIM0 pilot using t (block 342) as described above (block 344). The user terminal derives an actual denormalized emission matrix £ according to the downlink guided reference signal. The user terminal also calculates the denormalized emission matrix t according to the equation (1〇) and (12) or « according to the modulating downlink channel response estimation value ficdn and the calibration error matrix of the transmission matrix. φ 346). The user terminal is further processed (e. g., performing orthogonalization) in the same manner as the access point should perform to obtain a normalized transmit matrix instant (block 348). Then, the user terminal calculates the assumed denormalized emission matrix sibling block 35(1) according to the emission matrix 仏 and the calibrated downlink channel response estimate gedn according to equation (1〇) and its system. If the access point uses 仏 to transmit the downlink guided reference signal, then the matrix 系 is the unnormalized transmit matrix that the user terminal should have received. The user terminal then modifies the calibration error matrices 込p and ilat according to the transmit matrix 交 and the coffee (block 352). Blocks 346 through 99590.doc -27- 1361601 352 can be performed using an adaptive program. Thereafter, the user terminal can update its correction matrix capacitance using the calibration error matrix (block 354), and thereafter the access point can update its correction matrix ap using the calibration error matrix (block 356). Figure 4 shows an adaptation 400 that can be used for blocks 346 through 352 shown in Figure 3. First, the assumed transmission matrix Y (4) is calculated from In, the general ap, and the vertical ut (block 410). Block 41A corresponds to blocks 346 to 35A in FIG. Next, as shown in equation (15), the error matrix is calculated [as the difference between the transmission matrix L and 〜 (block 412). Then, as shown in equation (16), each element in the derived error matrix K is associated with the calibration error matrix to know each element in the selected element of the mind (eg, all diagonal elements except the first element). The partial derivative (block 414). As described below, for ease of calculation, the matrix and the matrix and the ut can be placed in a vector form. As also mentioned above, partial derivatives can be derived for the real and imaginary components of the elements in the matrices, respectively. Next, as shown in equation (17), the update vector r is calculated from the partial derivative matrix 丄 and the error matrix (block 416). ‘Then, as shown in Equation ^, the updated vector sense is used to update the calibration error matrix and W block 418). Next, the update vector is found to satisfy the end-end condition (block 420). If the answer is "yes", the process_ ends. Otherwise, the process returns to block 410 and performs another iteration. Figure 5 shows a steepest descent adaptive procedure 5 〇〇 which can also be used for blocks 346 to 352 of Figure 。. First, Tong Chenghe a ~ calculates a hypothetical emission matrix Yhyp based on HU and pan ut (block 510). Next, go to +, 1~~ Next, as shown in equation (19), take the total error 2 as a calculation (block 5i2)n, as shown in equation (2〇), and derive the total error relative to the calibration. Error matrix red and 99 99590.doc •28· 1361601 The partial derivative of each of the selected elements (block 514) 〇 can be used to form the matrix ilap and 仏 as vectors, and for these θ „ , ν θ 丨 〒 实 之 之 之 之 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚 虚The total error 4 is satisfied - the end condition (block 518). If the answer is yes, the process ends. Otherwise, the process returns to block 5 10 and another iteration is performed.

在上文說明中,使用者終端係估計修正矩陣^及^二者 中之校準誤差。為簡化後續校準’使用者終端可假定修正 矩陣心不含有誤差,而僅估計修正矩陣t中之誤差。此等 價於將校準誤差矩陣込p設定為恒等矩陣。藉由省略込〆 可減小向量£、1及&以及矩陣4之維數,因而此可大大減P少 計算。 為清楚起見,上文說明係針對由使用者終端執行後續校 準之情形。存取點亦可執行後續校準。在此種情形中,在 圖3中,存取點及使用者終端轉換角色。此時,使用者終 端將發射一上行鏈路受導引參考信號及一上行鏈路MIM〇 導頻’而存取點將執行計算來導出公^及立ut » 同樣為清楚起見,上文係針對一單載波厘1^1〇系統來說 明後續校準。亦可對一可利用正交分頻多工(〇FDM)或某 些其他多載波調變技術之多載波ΜΙΜΟ系統執行後續校 準。OFDM可有效地將整個系統頻寬劃分成多個(Nf個)正 交子頻帶,該等正交子頻帶通常亦稱作音調、子載波、頻 段、及頻道。對於OFDM而言,每一子頻帶皆與一可使用 99590.doc •29- ⑧ 1361601 資科來調變之相應载波相關聯。對於一利用〇印^之 ΜΙΜΟ系統(MIM0_0FDM系統),可對多個子頻帶中每一子 頻帶執行上文所述計算。由於在各鄰近子 ^ 州处于頻帶之間可能存 在高度的相關性,因而可以一利用此種相關之方式來執行 校準’舉例而言’以減少執行後續校準之子頻帶數量、加 速收斂等等》 2.初始校準In the above description, the user terminal estimates the calibration errors in both the correction matrix and the ^. To simplify subsequent calibration, the user terminal can assume that the correction matrix does not contain errors, but only the errors in the correction matrix t. This is equivalent to setting the calibration error matrix 込p to an identity matrix. By omitting 込〆, the vectors £, 1, and & and the dimension of the matrix 4 can be reduced, so that this can be greatly reduced by P. For the sake of clarity, the above description is directed to the case where subsequent calibration is performed by the user terminal. The access point can also perform subsequent calibrations. In this case, in Figure 3, the access point and the user terminal switch roles. At this point, the user terminal will transmit an uplink pilot reference signal and an uplink MIM 〇 pilot 'and the access point will perform the calculation to derive the public and ut » also for clarity, the above The subsequent calibration is illustrated for a single carrier PCT system. Subsequent calibration can also be performed on a multi-carrier system that can utilize orthogonal frequency division multiplexing (〇FDM) or some other multi-carrier modulation technique. OFDM effectively divides the overall system bandwidth into multiple (Nf) orthogonal sub-bands, also commonly referred to as tones, sub-carriers, frequency bands, and channels. For OFDM, each subband is associated with a corresponding carrier that can be modulated using 99590.doc • 29-8 1361601. For a 〇 〇 system (MIM0_0FDM system), the above calculation can be performed for each of a plurality of sub-bands. Since there may be a high degree of correlation between the frequency bands in each of the neighboring states, it is possible to perform the calibration 'by example' in such a manner as to reduce the number of sub-bands for performing subsequent calibration, accelerate convergence, etc. 2 Initial calibration

為實施初始校準來導出修正矩陣绞及I,由一個實體 (/吏用者终端或存取點)獲得有效上行鏈路通道響應估計值 色n及有效下行鏈路通道響應估計值^up。通道估計值色^及 0up可分別根據下行鏈路及上行鏈路ΜΙΜ〇導頻來獲得。嗲 等修正矩陣可根據及0up、❹矩陣比計算或μ職計曾 來計算出。 在進行矩陣比計算時,首先根據下式計算一Ν^χ队階矩 陣 £ : 3Ρ C=4e- Ηο», 方程式(23) 其中係逐一元素地求取該比率。 存取』之修正矩陣金印中之各對角線元素係設定為等於^ 中各正規化列之平均值。首先藉由將£中每-列中之Nap個— 元素中之每一元素乘以該列中之第一元素,將該列:規 化…w爰將5亥等正規化列(由一向量互咖表示)之平均值作 為該等Ν"個正規化列之和除以Nut來計算。然後,將心中 之〜個對角線元素設定為等於!,中之Nap個元素。由於已 99590.doc -30. ουι 正規化,因而I之首項元素等於卜 使用者終端之修正^ " 車一**_之對角線元素係設定為等於 £各:規化行之逆之平均值。首先,藉由將⑽0. 一…aP)中每一元素乘以I中第7·個對角線元素,將該行 正規化。然後,藉由如下方式來計算各正規化行之逆之: 均值(由-向量^表示广⑴求取每一正規化行之逆,其中 係逐- S素地進行求逆,⑺求取~個逆正規化行之^, 及(3)將結果行中之每一元素除以、,以獲得。I之N 個對角線元素設定為等於ΚΙ個元^ Ut 在MMSE計算巾,係自有效下行鏈路及上行鏈路通道響 應估计值iih^iLp導出修正矩陣盒印及1,以使已校準下行 鏈路與上行鍵路響應之間的均方誤差(刪)最小化。該條 件可表達為: 方程式(24) min |(fiU Eip )r - H 丨, 其亦可寫作: min 其中由於sap係一對角矩陣,因而氟。 方程式(24)受到以下約束之首項元素設定為等於 卜假若無該約束,將會獲得其中矩陣&及氪中之所有元 素皆設定為等於零之平凡醢。^ τ 凡解。在方程式(24)中,首先獲得 一矩陣Y : X=3^PSL-H。接-Γ办 也…θ — 接下來’獲得Υ中NapNut個元素 中每一元素之絕對值之平方。±山 丁万 由此’均方誤差(或平方誤 差,乃因未除以NapNut)等於所有平方值之和。 99590.doc • 31 - AUUi mmSE計算係按以下方式進行。為簡明起見,將i中之 各元素標記為㈣,將aup中之各元素標記為㈣,枝 之對角線元素標記為{小將i之對角線元素標記為 {vy} ’ 其中 / = 1 N 且 / = 1To implement the initial calibration to derive the correction matrix and I, an effective uplink channel response estimate value n and the effective downlink channel response estimate ^up are obtained by an entity (/user terminal or access point). The channel estimate values ^ and 0up can be obtained from the downlink and uplink ΜΙΜ〇 pilots, respectively.修正 The correction matrix can be calculated based on the 0up, ❹ matrix ratio calculation or μ job. In the calculation of the matrix ratio, first calculate a 阶 χ 阶 阶 £ £ : : : : : : : : £ £ £ £ £ , , , , , , , , , , , , , , , , , , , , , , , , , Each diagonal element in the correction matrix goldprint of the access is set equal to the average of the normalized columns in ^. First, by multiplying each of the Nap elements in each column of £ by the first element in the column, the column: normalizes...w爰 normalizes the column by 5 hai (by a vector) The average value of the mutual coffee is calculated as the sum of the normalized columns divided by Nut. Then, set the ~ diagonal element in your mind to equal! , the Nap elements in the middle. Since 99590.doc -30. ουι is normalized, the first element of I is equal to the correction of the user terminal ^ " The diagonal element of the car **_ is set equal to £: the inverse of the rule The average value. First, the row is normalized by multiplying each element in (10) 0. a...aP) by the 7th diagonal element in I. Then, the inverse of each normalized line is calculated as follows: Mean value (represented by -vector ^ is wide (1) to find the inverse of each normalized line, where the system is inversed by S-S, and (7) is obtained. The inverse normalization line ^, and (3) divide each element in the result row by , to obtain. The N diagonal elements of I are set equal to ΚΙ 元 ^ Ut in the MMSE calculation towel, is valid The downlink and uplink channel response estimates iih^iLp derive the correction matrix box and 1 to minimize the mean square error (deletion) between the calibrated downlink and the uplink link response. This condition can be expressed. It is: Equation (24) min |(fiU Eip )r - H 丨, which can also be written as: min where sap is a pair of angular matrices, thus fluorine. Equation (24) is set to equal the first element of the following constraints If there is no such constraint, it will be obtained that all the elements in the matrix & and 氪 are set equal to zero. ^ τ The solution. In equation (24), first obtain a matrix Y: X=3^PSL- H. Connect - Γ also ... θ - Next 'get every sacred NapNut element The square of the value. ± Shandingwan This 'mean square error (or square error, which is not divided by NapNut) is equal to the sum of all squared values. 99590.doc • 31 - AUUi mmSE calculation is performed as follows. For the sake of brevity, mark each element in i as (4), mark each element in aup as (4), and mark the diagonal element in the branch as {the diagonal element of i will be marked as {vy} ' where / = 1 N and / = 1

Aap且7 i.-.Nut。可根據方程式(24)將均方 誤差改寫如下: H 丨,w, 方程式(26) 同樣’其受《, = 1約束。可藉由求取方程式(25)相對於… 之偏導數並將該等偏導數設定為零來獲得最小均方誤差。 該,運算之結果係如下方程式: Σ(αί/ΊΉ=〇 ν ,其中i-2...Nap,且 方程式(26a) ,其中/-l."Nut。 方程式(26b) 在方程式(26a)中,Ml = 1,因而在此種情形中無偏導數,且 附標ζ·係自2至Nan。 ap 方程組(26a)及(26b)中之該組Nap+Nut-1個方程式可更為 方便地表示為如下矩陣形式: 方程式(27)Aap and 7 i.-.Nut. The mean square error can be rewritten as follows according to equation (24): H 丨, w, equation (26) is the same as ', = 1 constraint. The minimum mean square error can be obtained by taking the partial derivative of equation (25) with respect to ... and setting the partial derivatives to zero. The result of the operation is as follows: Σ(αί/ΊΉ=〇ν , where i-2...Nap, and equation (26a), where /-l."Nut. Equation (26b) is in equation (26a) In the case, Ml = 1, and thus there is no partial derivative in this case, and the attached standard is from 2 to Nan. The set of Nap+Nut-1 equations in the equations (26a) and (26b) of the equation can be It is more conveniently expressed as the following matrix form: Equation (27)

Bk=z, 其中 99590.doc -32· 1361601 'ΪΜ2 户1 0 ... 0 ^^2\a2i … 0 ϊ\%\2 ο y=j ··· ... … 0 ... 0 N,. 5 = 0 ... 0 尸1 -αιΑι ... Ά, ΪΜ 0 ... 0 … … 1=1 0 ΪΜ 〇 isl … _β2Ν„Λ·Νβ … 0 0 ... ... 0 «2 ' 0 ' «3 0 且?= 0 V1 α\Φη V2 β12612 »1Nm 矩陣旦包含Nap+Nut-1個列’其中前Nap_H@列對應於來自 方程式組(26a)之Nap-1個方程式、最末Nut個列則對應於來 _ 自方程式組(26b)之Nut個方程式。矩陣里及向量2中之各元 素可根據及^up之各元素獲得。么p及盒⑵之對角線元素包 含於向量起中,向量K可按下式獲得: 匕=这Ί。 方程式(28) MMSE計算之結果係修正矩陣(及^,其會使已校準下行 鍵路及上行鏈路通道響應中之均方誤差最小化,如方程式 (24)所示。 3.空間處理 表2歸納了由使用者終端及存取點執行的用於在讓〇通 99590.doc -33- 1361601 道之本徵模態上發射及接收資料之空間處理。 表2 上行鍵路 下行鏈路 使用者终端 存取點 發射: 接收: 接收:么ηΓώι Λ 為· 發射:Xdn - SapHap&n 對於圖2及表2所示實施例,修正矩陣&及&係分別應用於Bk=z, where 99590.doc -32· 1361601 'ΪΜ2 household 1 0 ... 0 ^^2\a2i ... 0 ϊ\%\2 ο y=j ··· ... ... 0 ... 0 N , 5 = 0 ... 0 尸1 -αιΑι ... Ά, ΪΜ 0 ... 0 ... ... 1=1 0 ΪΜ 〇isl ... _β2Ν„Λ·Νβ ... 0 0 ... ... 0 « « 2 ' 0 ' «3 0 and?= 0 V1 α\Φη V2 β12612 »1Nm The matrix contains Nap+Nut-1 columns' where the front Nap_H@ column corresponds to the Nap-1 equation from equation group (26a), The last Nut column corresponds to the Nut equation from the equation group (26b). The elements in the matrix and in the vector 2 can be obtained according to the elements of ^up. The diagonal elements of p and box (2) Included in the vector, the vector K can be obtained as follows: 匕 = Ί. Equation (28) The result of the MMSE calculation is the correction matrix (and ^, which will result in the calibrated downlink and uplink channel responses. The mean square error is minimized, as shown in equation (24). 3. Spatial Processing Table 2 summarizes the eigenmodes performed by the user terminal and the access point for the pass 99290.doc -33 - 1361601 Transmitting and receiving data Space processing. Table 2 Uplink Key Downlink User Terminal Access Point Transmit: Receive: Receive: ηηι Λ Yes · Transmit: Xdn - SapHap&n For the embodiment shown in Figure 2 and Table 2, Correction Matrix & And & are applied separately

存取點及使用者终端處之發射側上。 4.系統 圖6顯不TDD ΜΙΜΟ系統1〇〇中存取點11〇及使用者终端 150之一實施例之方塊圖。在下行鏈路上,在存取點u〇 處,一發射(τχ)資料處理器610自一資料源6〇8接收流量資 料(即資訊位元)並自一控制器63〇接收信號及其他資料。 ΤΧ資料處理器61〇格式化、編碼、交錯及調變(或符號映 射)不同類型之資料,然後提供資料符號。本文中所述 • 「資料符號」係對應於資料之調變符號,「導頻符號」係 對應於導頻之調變符號。導頻符號為存取點及使用者終端 所先驗已知。一 ΤΧ空間處理器620自ΤΧ資料處理器610接 收資料符號’對該等資料符號執行空間處理,根據需要 (例如用於通道估計、校準等等)將其多工於導頻符號中, 然後提供個發射符號流至Nap個調變器(MOD)622a至 622ap。每—調變器622皆接收並處理一相應之發射符號 々,L ’以獲得一對應之OFDM符號流,該對應之OFDM符號 /;,L由調變器内的一發射鏈進一步處理,以獲得一對應之下 99590.doc •34- 1361601 行鏈路已調變信號。然後’自Nap個天線624a至624ap分別 . 發射來自調變器622a至622ap之下行鏈路已調變信號。 .; 在使用者終端150處,Nut個天線652a至652ut接收所發射 . 下仃鏈路已調變信號,且每一天線皆提供一接收信號至一 相應之解调器(DEM〇D)654。每一解調器654(其包含一接 收鏈)皆執行與在調變器622處所執行處理互補之處理,然 後提供接收符號。然後,一接收(RX)空間處理器660對來 _ 自所有Nujsi解調器654之接收符號執行接收機空間處理, 以獲得所偵測符號’該等所偵測符號係由存取點所發射資 料符號之估„·(·值β為進行後續校準,RX空間處理器66〇提 供(1)一已校準下行鏈路通道響應估計值良dn,其係自一由 存取點所發射之下行鏈路ΜΙΜΟ導頻獲得,及(2)對應於一 由存取點所發射下行鏈路受導引參考信號之接收符號。一 RX資料處理670處理(例如符號解映射、解交錯及解碼) 該等所偵n號’並提供已解碼資料。已解碼資料可包括 • 提供至一資料槽672以供儲存及/或提供至一控制器680以 供進一步處理之已恢復流量資料、信號等等。 上行鏈路處理既可相同於亦可不同於下行鏈路處理。資 料及信號在由-ΤΧ資料處理器69〇處理(例如編碼、交錯及 調變)後,由ΤΧ空間處理器692進行進一步空間處理絲其 與導頻符號相多工,以獲得發射符號。然後,由調變器 654a至654Ut進一步處理該等發射符號,以獲得個上行 鏈路已調變信號’然後,該等Nut個上行鏈路已調變信號 經由Nut個天線652a至652ut發射至存取點。對於上述實施 99590.doc -35- 1361601 方案而言’使用者終端15〇會發送回修正矩陣t用於初始 校準’並可發送回校準誤差矩陣仏ρ//ηβί用於後續校準。在 . 存取點110處’上行鏈路已調變信號在由天線624接收後, • 經解調器622解調,然後由一 rx空間處理器640及一 rx資 料處理器642以與在使用者終端處所執行處理互補之方式 實施處理。然後,RX資料處理器642將矩陣匕及提 供至控制器630。 φ 為實施初始校準,存取點及使用者終端分別在下行鏈路 及上行鏈路上發射MIM〇導頻。每一實體皆為其鏈路導出 有效通道響應估計值。其中一個實體(例如存取點)將通道 估計值發送至另一實體(例如使用者終端),以用於計算該 等兩個實體之修正矩陣盒”及‘。導出修正矩陣之實體會使 用其修正矩陣,並將另一修正矩陣發送回另一實體。為實 施後續校準,其中一個實體(例如存取點)發射受導引參考 L號及ΜΙΜΟ導頻二者。另一實體則會根據所接收導頻, • 如上文所述導出校準誤差矩陣及iW",導出校準 誤差矩陣之實體會使用其校準誤差矩陣’並可將另一校準 誤差矩陣發送回另一實體(例如若誤差足夠大卜 控制态630及680分別控制存取點及使用者終端處各種處 單元之運作。控制器63〇及/或亦可為初始及後續校 準執打處理(例如計算修正矩陣匕及t以及校準誤差矩陣 込及込。記憶體單元032及682則分別儲存控制 器630及680所用之資料及程式碼。 本文所述校準技術可藉由各種方法來構建。相而言, 99590.doc ⑧ -36· 該等技術可構建於硬體、 構建方案,用於執行初始及::二Γ… 建於或多個應用專用積體電路(ASIC)、數位信號處㈣On the transmitting side of the access point and the user terminal. 4. System Figure 6 shows a block diagram of one embodiment of an access point 11 and a user terminal 150 in a TDD system. On the downlink, at the access point u, a transmit (τχ) data processor 610 receives traffic data (ie, information bits) from a data source 6 〇 8 and receives signals and other data from a controller 63 〇 . The data processor 61 formats, encodes, interleaves, and modulates (or symbolically maps) different types of data and then provides data symbols. As described in this document • “data symbols” correspond to the modulation symbols of the data, and “pilot symbols” correspond to the modulation symbols of the pilots. The pilot symbols are known a priori for the access point and the user terminal. A spatial processor 620 receives data symbols from the data processor 610 'performs spatial processing of the data symbols, multiplexes them into pilot symbols as needed (eg, for channel estimation, calibration, etc.) and then provides The transmitted symbols flow to Nap modulators (MOD) 622a through 622ap. Each modulator 622 receives and processes a corresponding transmit symbol 々, L ' to obtain a corresponding OFDM symbol stream, and the corresponding OFDM symbol /;, L is further processed by a transmit chain within the modulator to Obtain a corresponding 99590.doc •34- 1361601 line link modulated signal. Then, from the Nap antennas 624a to 624ap respectively, the downlink modulated signals from the modulators 622a through 622ap are transmitted. At the user terminal 150, the Nut antennas 652a to 652ut receive the transmitted. The downlink link modulated signal, and each antenna provides a received signal to a corresponding demodulator (DEM〇D) 654. . Each demodulator 654 (which includes a receive chain) performs processing complementary to that performed at modulator 622, and then provides received symbols. Then, a receive (RX) spatial processor 660 performs receiver spatial processing on the received symbols from all of the Nujsi demodulator 654 to obtain detected symbols. The detected symbols are transmitted by the access point. Estimation of the data symbol „·(·value β for subsequent calibration, RX spatial processor 66〇 provides (1) a calibrated downlink channel response estimate dn, which is transmitted from an access point The link ΜΙΜΟ pilot is obtained, and (2) corresponds to a received symbol of the downlink guided reference signal transmitted by the access point. An RX data processing 670 process (eg, symbol de-mapping, de-interlacing, and decoding) The detected n number 'and provides decoded data. The decoded data may include • recovered data, signals, etc., provided to a data slot 672 for storage and/or to a controller 680 for further processing. The uplink processing may be the same as or different from the downlink processing. The data and signals are further processed by the spatial processor 692 after being processed (e.g., encoded, interleaved, and modulated) by the data processor 69. At The multiplexer is multiplexed with the pilot symbols to obtain the transmitted symbols. Then, the transmitted symbols are further processed by the modulators 654a through 654Ut to obtain an uplink modulated signal 'then, then these Nuts are uplinked The link modulated signal is transmitted to the access point via Nut antennas 652a through 652ut. For the implementation of the above-described implementation 99590.doc - 35 - 1361601, the 'user terminal 15 发送 sends back the correction matrix t for initial calibration' and The calibration error matrix 仏ρ//ηβί can be sent back for subsequent calibration. At the access point 110, the 'uplink modulated signal is received by the antenna 624, demodulated by the demodulator 622, and then The rx spatial processor 640 and an rx data processor 642 perform processing in a manner complementary to the processing performed at the user terminal. The RX data processor 642 then provides the matrix to the controller 630. φ is to perform an initial calibration, The access point and the user terminal transmit MIM 〇 pilots on the downlink and uplink respectively. Each entity derives an effective channel response estimate for its link. One of the entities (eg, an access point) will pass The channel estimate is sent to another entity (such as a user terminal) for calculating the correction matrix boxes of the two entities "and". The entity that derives the correction matrix uses its correction matrix and sends another correction matrix Back to another entity. To perform subsequent calibration, one of the entities (such as an access point) transmits both the piloted reference L number and the ΜΙΜΟ pilot. The other entity is derived based on the received pilot, • as described above The calibration error matrix and iW", the entity that derives the calibration error matrix will use its calibration error matrix' and can send another calibration error matrix back to another entity (eg, if the error is large enough, control states 630 and 680 control the access point, respectively) And the operation of various units at the user terminal. The controller 63 〇 and/or may also perform initial and subsequent calibration processing (eg, calculation of the correction matrix 匕 and t and the calibration error matrix 込 and 込. The memory units 032 and 682 store the data used by the controllers 630 and 680, respectively). And the code. The calibration techniques described in this article can be constructed by various methods. In terms of terms, 99590.doc 8 -36· These technologies can be built on hardware, construction schemes, used to perform initial and:: two... Built in or multiple application-specific integrated circuits (ASIC), digital signal (4)

位化唬處理裝置(DSPD)、可程式化邏輯裝置 (則)、現場可程式化閉陣列(FPGA)、處理器、控制I 微控制n、微處理H、其他料用於執行本文所述功能之 電子單元、或其一組合中。Bit 唬 Processing Unit (DSPD), Programmable Logic Device (R), Field Programmable Closed Array (FPGA), Processor, Control I Micro Control n, Micro Processing H, and other materials used to perform the functions described herein The electronic unit, or a combination thereof.

對於軟體構建方案而言,可使用能執行本文所述功能之 模組(例如程序、功能等等)來構建該等校準技術。軟體碼 可儲存於_ s己憶體單元(例如圖6中之記憶體單元632及奶) :並由-處理器(例如控制器⑽及叫來執行1記憶體 早减可構建於該處理器内部亦可構建於該處理器外部, 1其構建於該處理器外部情況下,其可經由此項技術中所 習知之各種方法以通訊方式耦合至處理器。For software construction scenarios, modules (e.g., programs, functions, etc.) capable of performing the functions described herein can be used to construct such calibration techniques. The software code can be stored in the _s memory unit (for example, the memory unit 632 and the milk in FIG. 6): and the processor can be executed by the processor (for example, the controller (10) and the caller 1 memory early reduction can be built on the processor The internals may also be external to the processor, 1 being built external to the processor, which may be communicatively coupled to the processor via various methods as are known in the art.

本文中所包含之標題旨在方便查閱並幫助確定某些章節 之位置。該等標題並非意欲限定該等標題下所述概念之範 疇,該等概念亦可適用於整篇說明書中之其他章節。 上文對所揭示實施例之說明旨在使任一熟習此項技術者 皆旎夠製作或利用本發明。熟習此項技術者將易於得出該 等實施例之各種修改形式,且本文所界定之一般原理亦可 適用於其他實施例,此並不背離本發明之精神或範疇。因 此本發明並非思欲限定為本文所示實施例,而是應符合 /、本文所揭示之原理及新賴特徵相一致之最寬廣範嘴。 【圖式簡單說明】 99590.doc -37· 1361601 圖1顯示TDD ΜΙΜΟ系統中存取點及使用者終端處之發 射及接收部分; 圖2顯示使用存取點及使用者終端處之修正矩陣來補償 其發射/接收鏈; 圖3顯示一種由存取點及使用者終端執行的用於初始校 準、正常作業及後續校準之過程; 圖4顯示一最小均方誤差(MMSE)適應性程序;The headings included in this article are intended to facilitate access and help determine the location of certain chapters. These headings are not intended to limit the scope of the concepts described under the headings, and the concepts may apply to other sections throughout the specification. The above description of the disclosed embodiments is intended to enable any person skilled in the art to make or utilize the invention. The various modifications of the embodiments are readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not intended to be limited to the embodiments shown herein, but rather to the broadest scope of the principles disclosed herein. [Simplified description] 99590.doc -37· 1361601 Figure 1 shows the transmission and reception parts of the access point and user terminal in the TDD system; Figure 2 shows the correction matrix using the access point and the user terminal. Compensating for its transmit/receive chain; Figure 3 shows a process performed by the access point and user terminal for initial calibration, normal operation, and subsequent calibration; Figure 4 shows a minimum mean square error (MMSE) adaptive procedure;

圖5顯示一最陡下降適應性程序;及 圖6顯示存取點及使用者終端之方塊圖。 【主要元件符號說明】 100 TDD ΜΙΜΟ 系統 110 存取點 112 修正單元 114 發射鏈 116 天線 124 接收鏈 150 使用者終端 152 天線 154 接收鏈 162 修正單元 164 發射鏈 608 資料源 610 發射(ΤΧ)資料處理器 620 ΤΧ空間處理器 99590.doc -38* 1361601 622a 調變器 622ap 調變器 624a 天線 624ap 天線 630 控制器 632 記憶體 640 RX空間處理器 642 RX資料處理器Figure 5 shows a steepest descent adaptive procedure; and Figure 6 shows a block diagram of the access point and the user terminal. [Main component symbol description] 100 TDD ΜΙΜΟ System 110 Access point 112 Correction unit 114 Transmit chain 116 Antenna 124 Receive chain 150 User terminal 152 Antenna 154 Receive chain 162 Correction unit 164 Transmit chain 608 Source 610 Transmit (ΤΧ) Data processing 620 ΤΧ Space Processor 99590.doc -38* 1361601 622a Modulator 622ap Modulator 624a Antenna 624ap Antenna 630 Controller 632 Memory 640 RX Space Processor 642 RX Data Processor

644 資料槽 652a 天線 652ut 天線 654a 調變器 654ut 調變器 660 RX空間處理器 670 RX資料處理器 672 資料槽644 data slot 652a antenna 652ut antenna 654a modulator 654ut modulator 660 RX space processor 670 RX data processor 672 data slot

680 控制器 682 記憶體 688 資料源 690 TX資料處理器 692 TX空間處理器 99590.doc -39-680 Controller 682 Memory 688 Source 690 TX Data Processor 692 TX Space Processor 99590.doc -39-

Claims (1)

1361601 十、申請專利範圍: 1. 一種於一無線多輸入多輸出(MIM〇)通信系統中校準下行 鏈路及上行鏈路通道之方法,其包括: 根據一經由一發射實體與一接收實體之間之一 通道接收之第一導頻,導出一第一發射矩陣; 根據一 ΜΙΜΟ通道響應估計值及第一和第二校準誤差 矩陣導出一第二發射矩陣,該ΜΙΜ〇通道響應估計值係 該職〇通道之-響應之_估計值,且隸據—經由該 ΜΙΜΟ通道接收之第二導頻所導出,該第一校準誤差矩 陣包含一用於補償該發射實體處發射及接收鏈之響應之 第修正矩陣中之誤差的估計值,且該第二校準誤差矩 陣包含一用於補償該接收實體處發射及接收鏈之響應之 第二修正矩陣中之誤差的估計值;及 根據忒第一及第二發射矩陣修改該第一及第二校準誤 差矩陣。‘ 2. 如喷求項1之方法,其中該第一導頻係一經由該ΜΙΜ〇通 道之複數個本徵模態接收到之受導引導頻。 3·如清求項丨之方法’其中該第二導頻係一由自該發射實 體處之複數個發射天線發送之複數個導頻傳輸所構成之 ΜΙΜΟ導頻,其中來自每一發射天線之導頻傳輸皆可由 該接收實體識別。 4.如清求項1之方法’其中該導出一第二發射矩陣包括 刀解該ΜΙΜΟ通道響應估計值,以獲得該μιμΟ通道之 第一本徵向量矩陣, 99590.doc 根據該ΜΙΜΟ通道響應估計值及該第一及第二校準誤 差矩陣,計算該ΜΙΜΟ通道之一第二本徵向量矩陣,及 根據该第二本徵向量矩陣及該μιμ〇通道響應估計 值’ 异该苐二發射矩陣。 5.如請求項4之方法,其中該導出一第二發射矩陣進一步 包括 處理該第二本徵向量矩陣以獲得一第三本徵向量矩 陣’其中該對該帛二矩陣之處理與由該發射實體執行之 用於根據-由該發射實體自該接收實體接收之受導引導 頻來產生一發射矩陣的處理相一致’且其中根據該第三 本徵向I矩陣及该通道響應估計值來計算該第二 發射矩陣。 6·如研求項5之方法,其中該處理該第二本徵向量矩陣包括 對該第二矩陣中之該等本徵向量執行正交化,以導出 該第三矩陣之正交本徵向量。 月求員1之方法’其中根據-最小均方誤差(MMSE)適 應性程序來修改該第—及第二校準誤差矩陣。 8.如請求 ,/、中該修改該第一及第二校準誤差 矩陣包括 叶算p誤差矩陣作為該第一與第二發射矩陣之差, 至:!5亥误差矩陣中之元素相對於該第-及第二校準誤 差矩陣中之所選元素之偏導數, 2據該等偏導數及該誤差矩陣來計算—更新向量,及 用該更新向量來更新該第一及第二校準誤差矩陣。 99590.doc 9. 如%求項8之方法,其中該導出偏導數包括 根據該ΜΙΜΟ通道響應估計值、該第一及第二校準誤 差矩陣,及一誤差向量,導出一已修改之第二發射矩 陣, 汁异一已修改之誤差矩陣作為該第一發射矩陣與該已 修改之第二發射矩陣之差,及 據”亥涘差矩陣及該已修改之誤差矩陣來計算該等偏 導數。 10. 如清求項8之方法, 再中6亥誤差矩陣及該第一和第二校 :义陣包含複數值元素,每一複數值元素皆具有— 貝分ΐ及一虛分詈, 且其中分別針對該等實分量及. 量導出該等偏導數。 11 ·如晴求項8之方法,盆士斗你 矩陣進-步包括,、中㈣改該第-及第二校準誤差 使用該等偏導數形成一 及該偏導數矩陣之—逆來計:㈣且其中f據該誤差矩陣 12. 如請求項8之方法,其中該;:新向®。 之該等元素十之所 ^ 及第二校準誤差矩陣中 陣中除最左上側元素::包括該第-及第二校準誤差矩 13. 如請求項8之方法,政卜之所有對角線元素。 矩陣進-步包括〃中該修改該第-及第二校準誤差 重複”亥汁异—誤差矩陣、導出 ^ 量,及更新該第—及… 導數、計算一更新向 更新向量滿足—結束^差料複數次,直至該 99590.doc 1361601 14,如請求項1之方法 二之万沄其中根據一最陡下降適應性程序修 改該第—及第二校準誤差矩陣。 月求項1之方法,其中該修改該第一及第二校準誤差 矩陣包括 . ' 十^誤差矩陣作為該第一與該第二發射矩陣之差, 根據該誤差矩陣計算一總誤差, 導出5玄總誤差相對於該第一及第二校準誤差矩陣中之 所選元素之偏導數,及 使用該等偏導數來更新該第一A第二校準誤差矩陣。 16.如味求項15之方法,其中計算該總誤差作為該誤差矩陣 中元素值之平方之和。 17·如π求項15之方法,其中該修改該第一及第二校準誤差 矩陣進一步包括 ' 重複該計算一誤差矩陣、計算一總誤差、導出偏導 數,及更新該第一及第二校準誤差矩陣複數次,直至該 總誤差滿足一結東條件為止。 18. 如請求項丨之方法,其進一步包括: 使用邊第二校準誤差矩陣更新該第二修正矩陣。 19. 如%求項丨之方法,其中使用該第一校準誤差矩陣更新 該第一修正矩陣。 20. 如凊求項1之方法,其中該接收實體係一分時雙工 (TDD)MIMO系統中的—使用者終端,且該發射實體係一 存取點。 21. 如°月求項1之方法’其中該系統利用正交分頻多工 99590.doc 1361601 (OFDM) ’且其中根據在複數個 上所接收之該第一及第二導頻, —及第二校準誤差矩陣。 子頻帶中之每—子頻帶 為該子頻帶導出一組第 22. -種於-無線多輸人多輪出⑽_通信系統中之裝置 其包括:1361601 X. Patent Application Range: 1. A method for calibrating a downlink and an uplink channel in a wireless multiple input multiple output (MIM) communication system, comprising: according to a transmitting entity and a receiving entity a first pilot received by one of the channels, deriving a first transmit matrix; deriving a second transmit matrix based on a channel response estimate and the first and second calibration error matrices, the mean channel response estimate The _ estimated value of the response channel, and the data is derived from the second pilot received via the ΜΙΜΟ channel, the first calibration error matrix including a response for compensating the transmit and receive chains at the transmitting entity An estimate of the error in the first correction matrix, and the second calibration error matrix includes an estimate of an error in a second correction matrix for compensating for a response of the transmit and receive chains at the receiving entity; The second emission matrix modifies the first and second calibration error matrices. 2. The method of claim 1, wherein the first pilot is a guided pilot frequency received via a plurality of eigenmodes of the chirp channel. 3. The method of claim </ RTI> wherein the second pilot is a ΜΙΜΟ pilot formed by a plurality of pilot transmissions transmitted from a plurality of transmit antennas at the transmitting entity, wherein each of the transmit antennas The pilot transmissions are all identifiable by the receiving entity. 4. The method of claim 1, wherein the deriving a second emission matrix comprises singulating the ΜΙΜΟ channel response estimate to obtain a first eigenvector matrix of the μιμΟ channel, 99590.doc based on the ΜΙΜΟ channel response estimate And the first and second calibration error matrices, calculating a second eigenvector matrix of the one of the chirp channels, and selecting the second emissive matrix from the second eigenvector matrix and the μιμ〇 channel response estimate. 5. The method of claim 4, wherein the deriving a second transmit matrix further comprises processing the second eigenvector matrix to obtain a third eigenvector matrix 'where the processing of the second matrix is performed by the transmitting Entity executed by the entity to generate a transmit matrix according to the received pilot frequency received by the transmitting entity from the receiving entity, and wherein the third eigenvalue is calculated according to the I matrix and the channel response estimate The second emission matrix. 6. The method of claim 5, wherein the processing the second eigenvector matrix comprises performing orthogonalization on the eigenvectors in the second matrix to derive orthogonal eigenvectors of the third matrix . The method of claim 1 is wherein the first and second calibration error matrices are modified according to a minimum mean square error (MMSE) suitability procedure. 8. If requested, the first and second calibration error matrices are modified, and the leaf computing p error matrix is used as the difference between the first and second emission matrices, to: The partial derivative of the element in the 5 Hz error matrix relative to the selected element in the first and second calibration error matrices, 2 calculated according to the partial derivative and the error matrix - updating the vector, and updating with the update vector The first and second calibration error matrices. 99590.doc 9. The method of claim 8, wherein the deriving the partial derivative comprises deriving a modified second emission based on the chirp channel response estimate, the first and second calibration error matrices, and an error vector The matrix, the modified error matrix is used as the difference between the first emission matrix and the modified second emission matrix, and the partial derivatives are calculated according to the "comparison matrix" and the modified error matrix. For example, in the method of claim 8, the sixth-mile error matrix and the first and second schools: the matrix includes complex-valued elements, and each of the complex-valued elements has a - - and a virtual branch, and wherein The partial derivatives are derived for the real components and the quantities respectively. 11 · If the method of the method 8 is used, the basin is in the step of including, and the middle (four) is changed to use the first and second calibration errors. The partial derivative forms one and the partial derivative matrix is inversely calculated: (d) and wherein f is according to the error matrix 12. According to the method of claim 8, wherein: the new element is the element of the tenth and the first In the second calibration error matrix, except for the top left Side element: includes the first and second calibration error moments 13. As in the method of claim 8, all diagonal elements of the political matrix. The matrix advance step includes the modification of the first and second calibration errors. "Hui juice - error matrix, export ^ quantity, and update the first - and ... derivative, calculate an update to the update vector to meet - end ^ difference material multiple times, until the 99590.doc 1361601 14, as in the method of claim 1 In the second place, the first and second calibration error matrices are modified according to a steepest descent adaptive procedure. The method of claim 1, wherein the modifying the first and second calibration error matrices comprises: a ten error matrix as a difference between the first and the second transmit matrix, and calculating a total error according to the error matrix, and deriving 5 The partial derivative of the total error relative to the selected one of the first and second calibration error matrices, and the first partial second calibration error matrix is updated using the partial derivatives. 16. The method of claim 15, wherein the total error is calculated as the sum of the squares of the element values in the error matrix. 17. The method of claim 15, wherein the modifying the first and second calibration error matrices further comprises: repeating the calculating an error matrix, calculating a total error, deriving a partial derivative, and updating the first and second calibrations. The error matrix is repeated multiple times until the total error satisfies an unconditional condition. 18. The method of claim 1, further comprising: updating the second correction matrix using a second calibration error matrix. 19. The method of % 求, wherein the first correction matrix is updated using the first calibration error matrix. 20. The method of claim 1, wherein the receiving system is a user terminal in a time division duplex (TDD) MIMO system, and the transmitting system is an access point. 21. The method of claim 1 wherein the system utilizes orthogonal frequency division multiplexing 99590.doc 1361601 (OFDM)' and wherein the first and second pilots are received based on the plurality of bits, and The second calibration error matrix. Each of the sub-bands derives a set of devices in the sub-band for the sub-band. - The device in the wireless multi-input multi-round (10) communication system includes: 一控制器,其運作用於 根據一經由一發射實體與一 ΜΙΜΟ通道接收之第一導頻,導出 接收實體之間之一 一第一發射矩陣, 、根據-Μ細通道響應估計值及第一和第二校準誤 差矩陣導出—第二發射矩陣,該ΜΙΜΟ通道響應估計 值係該應之—估計冑,且係根據一 經由該ΜΙΜΟ通道接收之第二導頻所導出,該第一校 準《吳差矩Is車包含一用於補償該發射實體處發射及接收 鏈之響應之第一修正矩陣中誤差之估計值,且該第二 校準誤差矩陣包含一用於補償該接收實體處發射及接a controller, configured to derive a first transmit matrix between the receiving entities according to a first pilot received via a transmitting entity and a channel, and according to the estimated value of the channel response and the first And a second calibration error matrix derived - a second emission matrix, the ΜΙΜΟ channel response estimate is the estimated 胄 estimated, and derived from a second pilot received via the ΜΙΜΟ channel, the first calibration The differential Is vehicle includes an estimated value of an error in a first correction matrix for compensating for a response of a transmitting and receiving chain at the transmitting entity, and the second calibration error matrix includes a method for compensating for transmission and reception at the receiving entity 收鏈之響應之第二修正矩陣中誤差之估計值,及 根據該第一及第二發射矩陣修改該第一及第二校準 誤差矩陣;及 一空間處理器,其運作用於在經由該MlM〇通道傳輸 寅料付號之則’將其乘以該第二修正矩陣。 23.如請求項22之裝置,其中該第一導頻係一經由該ΜίΜ〇 通道之複數個本徵模態接收到之受導引導頻,且其中該 第二導頻係一由該發射實體處之複數個發射天線發送之 複數個導頻傳輸所構成之ΜΙΜΟ導頻,其中來自每一發 99590.doc 1361601 射天線之導頻傳輸皆可由該接收實體識別。 24·如請求項22之裝置,其中該控制器運作用於根據一以叠 代方式調節該第一及第二校準誤差矩陣之適應性程序來 修改該第一及第二校準誤差矩陣,以減小該第一與第一 發射矩陣之間的誤差。 — 25·如請求項22之裝置,其中該控制器進一步運作用於 分解該MiMcmit響應估計值,以獲得該mim〇通 一第一本徵向量矩陣, 根據該ΜIΜ Ο通道響應估計值及該第一及第二校準誤 差矩陣,計算該ΜΙΜ0通道之一第二本徵向量矩陣,/ 根據該第二本徵向量矩陣及該ΜΙΜ〇通道響應估 值,計算該第二發射矩陣。 s ‘'计 26.如請求項22之裝置,其中該控制器進一步運作用於 計算-誤差矩陣作為該第一與第二發射矩陣之差, 導出該誤差矩陣中之元素相對於該第一及第二校準誤 差矩陣中之所選元素之偏導數, ' 根據該等偏導數及該誤差矩陣來 使用該更新向量來更新該第—及第二更=差 陣,及 矩 重複該計算該誤差料、導出該等偏導數、計算 新向量’及更新該第一及第二校準誤差矩陣複數次: 至該更新向量滿足一結束條件為止。 27·如請求項22之裝置’其中該控制器進—步運作用於 計算一誤差矩陣作為該第一與該第二發射矩陣之差, 99590.doc 1361601 根據該誤差矩陣計算一總誤差, 導出該總誤差相對於該第一及第二校準誤差矩陣申之 所選元素之偏導數, 使用該等偏導數來更新該第一及第二校準誤差矩 陣,及 重複該計算該誤差矩陣、計算該總誤差、導出該等偏 導數,及更新該第一及第二校準誤差矩陣複數次,直至 該總誤差滿足一結束條件為止。 28. —種位於一無線多輸入多輸出(ΜΙΜΟ)通信系統中之麥 置,其包括: 導出構件,其用於根據一經由一發射實體與一接收實 體之間之一 ΜΙΜΟ通道接收之第一導頻來導出一第一發 射矩陣;Estimating an error in a second correction matrix of the response of the chain, and modifying the first and second calibration error matrices according to the first and second emission matrices; and a spatial processor operative to pass through the MlM The 〇 channel transmits the data payout number 'multiply it by the second correction matrix. 23. The apparatus of claim 22, wherein the first pilot is a guided pilot received via a plurality of eigenmodes of the channel, and wherein the second pilot is by the transmitting entity A pilot consisting of a plurality of pilot transmissions transmitted by a plurality of transmit antennas, wherein pilot transmissions from each of the 99590.doc 1361601 antennas are identifiable by the receiving entity. The apparatus of claim 22, wherein the controller is operative to modify the first and second calibration error matrices according to an adaptive procedure for adjusting the first and second calibration error matrices in an iterative manner to reduce The error between the first and first transmit matrices is small. The apparatus of claim 22, wherein the controller is further operative to decompose the MiMcmit response estimate to obtain the first eigenvector matrix, based on the ΜIΜ Ο channel response estimate and the And a second calibration error matrix, calculating a second eigenvector matrix of the ΜΙΜ0 channel,/ calculating the second emission matrix according to the second eigenvector matrix and the ΜΙΜ〇 channel response estimate. The apparatus of claim 22, wherein the controller is further operative to calculate a error matrix as a difference between the first and second emission matrices, and derive an element in the error matrix relative to the first a partial derivative of the selected element in the second calibration error matrix, 'the update vector is used to update the first and second more difference frames according to the partial derivative and the error matrix, and the moment is repeated to calculate the error material And deriving the partial derivatives, calculating the new vector', and updating the first and second calibration error matrices a plurality of times: until the update vector satisfies an end condition. 27. The apparatus of claim 22 wherein the controller is operative to calculate an error matrix as the difference between the first and second transmit matrices, 99590.doc 1361601 calculating a total error based on the error matrix, derived The total error is relative to the partial derivative of the selected element of the first and second calibration error matrices, and the first and second calibration error matrices are updated by using the partial derivatives, and the error matrix is repeated and the calculation is performed. The total error, deriving the partial derivatives, and updating the first and second calibration error matrices a plurality of times until the total error satisfies an end condition. 28. A gamut in a wireless multiple input multiple output (MIMO) communication system, comprising: a deriving means for receiving a first channel according to a channel between a transmitting entity and a receiving entity Pilot to derive a first transmit matrix; 導出構件’其用於根據一 ΜΙΜΟ通道響應估計值及第 一和第二校準誤差矩陣導出一第二發射矩陣,該μιμ〇 通道響應估計值係該ΜΙΜΟ通道之一響應之一估計值, 且係根據一經由該ΜΙΜΟ通道接收之第二導頻所導出, 該第一校準誤差矩陣包含一用於補償該發射實體處發射 及接收鏈之響應之第一修正矩陣中誤差之估計值,且該 第二校準誤差矩陣包含-用於補償該接收實體處發射及 接收鏈之響應之第二修正矩陣中誤差之估計值;及 修改構件,其用於根據該第—及第二發射矩陣修改該 第一及第二校準誤差矩陣。 29.如請求項28之裝置, 其中5亥第一導頻係一經由該ΜΙΜΟ 99590.doc 30. 通道之複數個本徵模態接收到之受導引導頻,且其中該 第二導頻係一由該發射實體處之複數個發射天線發送之 複數個導頻傳輸所構成之ΜΙΜΟ導頻,其中來自每一發 射天線之導頻傳輸皆可由該接收實體識別。 如請求項28之裝置,進一步包括: 分解構件,其用於分解該ΜΙΜ〇通道響應估計值,以 獲知該^11]^〇通道之一第一本徵向量矩陣; 什异構件’其用於根據該ΜΙΜΟ通道響應估計值及該 第一及第二校準誤差矩陣來計算該ΜΙΜΟ通道之一第二 本徵向量矩陣;及 計算構件,其用於根據該第二本徵向量矩陣及該 ΜΙΜΟ通道響應估計值來計算㈣二發射矩陣。 31. 如請求項28之裝置,進一步包括: 計算構件,其用於計算一誤差矩陣作為該第一與第二 發射矩陣之差; 導出構件’其用於導出該誤差矩陣中之元素相對於該 第及第一权準誤差矩陣中之所選元素之偏導數; 計算構件,其用於根據該等偏導數及該誤差矩陣來計 算一更新向量; 更新構件,纟用於使用該更新向量來更新該第—及第 二校準誤差矩陣;及 重複構件’其用於重複該計算該誤差矩陣、導出該等 偏導數、計#該更新向量,及更新該第—及第二校準誤 差矩陣複數次,直至該更新向量滿足一結束條件為止。 99590.doc 32.如請求項28之裝置,進一步包括: 什异構件,其用於計算一誤差矩陣作為該第一盥嗲第 二發射矩陣之差; 什算構件,其用於根據該誤差矩陣計算一總誤差; 導出構件,其用於導出該總誤差相對於該第一及第二 校準誤差矩陣中之所選元素之偏導數; 更新構件,其用於使用該等偏導數來更新該第一及第 一校準誤差矩陣;及 μ重複構件,其用於重複該計算該誤差矩陣、計算該總 誤差、導出該等偏導數,及更新該第一及第二校準誤差 矩陣複數次’直至該總誤差滿足一結束條件為止。 33· 一種於一無線多輸入多輸出(μιμ〇)通信系統中校準下行 鏈路及上行鏈路通道之方法,其包括: 根據一發射實體與-接收實體之間之一 μιμ〇通道之 下行鏈路及上行鏈路通道響應估計值來執行一第一校 準,以獲得第一及第二修正矩陣’該第一修正矩陣用二 補償該發射實體處發射及接收鏈之響應,且該第二修正 矩陣用於補償該接收實體處發射及接收鏈之響應;及 根據經由該ΜΙΜΟ通道接收之第一及第二導頻來執行 -第二校準’以獲得第一及第二校準誤差矩陣,該第一 校準誤差矩陣包含該第一修正矩陣中誤差之估計值,且 該第二校準誤差矩陣包含該第二修正矩陣中誤差之估 值。 34·如請求項33之方法,進一步包括·· 99590.doc ^01601 使用該第二校準誤差矩陣來更新該第二修正矩陣β 35·如請求項33之方法,其甲該第一導頻係'經由該奶助 通道之複數個本徵模態接收到之受導引導頻,且其中該 第一導頻係一由該發射實體處之複數個發射天線發送之 複數個導頻傳輸所構成之ΜΙΜΟ導頻,其中來自每一發 射天線之導頻傳輪皆可由該接收實體識別。 36·如明求項33之方法’其中該執行-第二校準包括 根據該第—導頻導出一第-發射矩陣, 根據一獲自該第二導頻之ΜΙΜ〇通道響應估計值來導 出一第一發射矩陣,及 根據該第一及第二發射矩陣來修改該第一及第二校 誤差矩陣。 Χ ”·如請求項36之方法’其中使用一以疊代方式調節該第一 及第二校準誤差矩陣之適應性程序來修改該第一及第二 校準誤差矩陣’以減小該第一與第二發射矩陣之間的誤 差。 38· 一種位於一無線多輸入多輸出(ΜΙΜΟ)通信系統中之裝 置’其包括: 一控制器,其運作用於 根據一發射實體與-接收實體之間之- ΜIΜ 0通道 之下行鏈路及上行鏈路通道響應估計值來執行一第一 枚準,以獲得第—及第二修正矩陣’該第一修正矩陣 用於補償該發射實體處發射及接收鏈之響應,且該第 二修正矩陣用於補償該接收實體處發射及接收鏈之響 99590.doc 10 1361601Deriving a component for deriving a second emission matrix according to a channel response estimate and the first and second calibration error matrices, wherein the μι μ channel response estimate is an estimated value of one of the channel responses, and Deriving from a second pilot received via the buffer channel, the first calibration error matrix includes an estimate of an error in a first correction matrix for compensating for a response of a transmit and receive chain at the transmit entity, and the a second calibration error matrix comprising: an estimate of an error in a second correction matrix for compensating for a response of the transmit and receive chains at the receiving entity; and a modifying component for modifying the first according to the first and second transmit matrices And a second calibration error matrix. 29. The apparatus of claim 28, wherein the first pilot system is a guided pilot frequency received via a plurality of eigenmodes of the channel, and wherein the second pilot system A chirp pilot formed by a plurality of pilot transmissions transmitted by a plurality of transmit antennas at the transmitting entity, wherein pilot transmissions from each of the transmit antennas are identifiable by the receiving entity. The apparatus of claim 28, further comprising: a decomposition component for decomposing the ΜΙΜ〇 channel response estimate to learn a first eigenvector matrix of the channel; the singular component' Calculating a second eigenvector matrix of the one of the chirp channels according to the chirp channel response estimate and the first and second calibration error matrices; and calculating means for using the second eigenvector matrix and the chirp channel The (four) two emission matrix is calculated in response to the estimated value. 31. The apparatus of claim 28, further comprising: a computing component for calculating an error matrix as a difference between the first and second emission matrices; and a deriving component 'for deriving an element in the error matrix relative to the a partial derivative of the selected element in the first and first weight error matrices; a computing component for calculating an update vector based on the partial derivative and the error matrix; updating the component, 纟 for updating using the update vector The first and second calibration error matrices; and a repeating component 'for repeating the calculating the error matrix, deriving the partial derivatives, counting the update vector, and updating the first and second calibration error matrices, Until the update vector satisfies an end condition. 99. The apparatus of claim 28, further comprising: a singular component for calculating an error matrix as a difference between the first 盥嗲 second emission matrix; an arithmetic component for using the error matrix Calculating a total error; deriving a component for deriving a partial derivative of the total error relative to a selected one of the first and second calibration error matrices; updating means for updating the first using the partial derivative And a first calibration error matrix; and a μ repeating component for repeating the calculating the error matrix, calculating the total error, deriving the partial derivatives, and updating the first and second calibration error matrices to a plurality of times The total error satisfies an end condition. 33. A method of calibrating a downlink and an uplink channel in a wireless multiple input multiple output (μιμ〇) communication system, comprising: a line chain under a μιμ〇 channel between a transmitting entity and a receiving entity And determining, by the path and uplink channel response estimates, a first calibration to obtain first and second correction matrices, the first correction matrix compensating for a response of the transmit and receive chains at the transmit entity, and the second correction The matrix is configured to compensate a response of the transmit and receive chains at the receiving entity; and perform a second calibration according to the first and second pilots received via the buffer channel to obtain first and second calibration error matrices, the first A calibration error matrix includes an estimate of the error in the first correction matrix, and the second calibration error matrix includes an estimate of the error in the second correction matrix. 34. The method of claim 33, further comprising: 99590.doc ^01601 using the second calibration error matrix to update the second correction matrix β 35. The method of claim 33, wherein the first pilot system Receiving a pilot pilot received by a plurality of eigenmodes of the milk assist channel, and wherein the first pilot is comprised of a plurality of pilot transmissions transmitted by a plurality of transmit antennas at the transmitting entity Pilots in which pilot transmissions from each transmit antenna are identifiable by the receiving entity. 36. The method of claim 33, wherein the performing - the second calibration comprises deriving a first-emission matrix from the first pilot, deriving a channel response estimate from the second pilot a first transmit matrix, and modifying the first and second calibration error matrices according to the first and second transmit matrices. The method of claim 36, wherein the first and second calibration error matrices are modified to reduce the first and second using an adaptive procedure for adjusting the first and second calibration error matrices in an iterative manner An error between the second transmit matrix. 38. A device in a wireless multiple input multiple output (MIMO) communication system that includes: a controller that operates between a transmitting entity and a receiving entity - ΜIΜ 0 channel downlink and uplink channel response estimates to perform a first order to obtain first and second correction matrices 'The first correction matrix is used to compensate for the transmit and receive chains at the transmitting entity Response, and the second correction matrix is used to compensate for the transmission and reception chain at the receiving entity 99590.doc 10 1361601 根據經由該ΜΙΜΟ通道接收之第一及第二導頻來執 行一第二校準,以獲得第一及第二校準誤差矩陣’該 第校準誤差矩陣包含該第一修正矩陣中誤差之估計 值,且該第二校準誤差矩陣包含該第二修正矩陣中誤 差之估計值;及 二間處理器,其運作用於在經由該MlM〇通道傳輸 資料符號之前,將其乘以該第二修正矩陣。 39.如清求項38之裝置,其中該控制器運作用於 根據該第一導頻導出一第一發射矩陣, 根據一自該第二導頻獲得之ΜΙΜΟ通道響應估計值來 導出一第二發射矩陣,及 根據《亥第一及第二發射矩陣來修改該第一及第二校準 誤差矩陣。 40. 如請求項39之裝置,其中該控制 器運作用於使用一以疊 Φ 代方式°周節该第-及第二校準誤差矩陣之適應性程序來 t改該第一及第二校準誤差矩陣,以減小該第一與第二 發射矩陣之間的誤差。 41. 種位於一無線多輸入多輸出(MIM〇)通信系統中之裝 置,其包括: 用於執仃一第一校準之構件,其用於根據一發射實體 接收實體之間之一 ΜΙΜΟ通道之下行鏈路及上行鏈 路通道響應估計值來執行 二修正矩陣,該第一修正 該第一校準,以獲得第一及第 矩陣用於補償該發射實體處發 99590.doc ⑧ -11 - 1361601 射及接收鏈之響應,且該第 實體處發射及接收鏈之響應 二修正矩陣用於補償該接收 :及 用於執行-第二校準之執行構件,其用於根據經由該 画〇通道接收之第—及第:導頻來執行該第二校準, 以獲得第-及第二校準誤差矩陣,該第一校準誤差矩陣 包含該第-修正矩陣中誤差之估計值且該第二校準誤 差矩陣包含該第二修正矩陣巾誤差之估計值。Performing a second calibration based on the first and second pilots received via the buffer channel to obtain first and second calibration error matrices, the first calibration error matrix including an estimate of the error in the first correction matrix, and The second calibration error matrix includes an estimate of the error in the second correction matrix; and two processors operative to multiply the data symbol by the second correction matrix before transmitting the data symbol via the M1M channel. 39. The apparatus of claim 38, wherein the controller is operative to derive a first transmit matrix based on the first pilot, and derive a second based on a channel response estimate obtained from the second pilot Transmitting a matrix, and modifying the first and second calibration error matrices according to the first and second emission matrices. 40. The apparatus of claim 39, wherein the controller is operative to change the first and second calibration errors using an adaptive procedure of the first and second calibration error matrices in a stacked mode a matrix to reduce the error between the first and second emission matrices. 41. Apparatus for a wireless multiple input multiple output (MIM(R)) communication system, comprising: means for performing a first calibration for receiving a channel between entities based on a transmitting entity The downlink and uplink channel response estimates are used to perform a second correction matrix, the first correction of the first calibration to obtain the first and the first matrix for compensating for the transmitting entity to send 99590.doc 8 -11 - 1361601 And a response of the receive chain, and the response two correction matrix of the transmit and receive chains of the first entity is used to compensate for the receive: and an execution component for performing the second calibration, for receiving the first received via the draw channel And performing: the second calibration to obtain the first and second calibration error matrices, the first calibration error matrix including an estimate of the error in the first correction matrix and the second calibration error matrix including the The second correction matrix is an estimate of the error of the towel. 42.如請求項41之裝置,以該用於執行—第二校準之構件 包括 導出構件 陣, 其用於根據該第一導頻導出一第一發射矩 導出構件,其用於根據—自該第二導頻獲得之ΜΙΜΟ 通道響應估計值來導出一第二發射矩陣,及 修改構件,其用於根據該第一及第二發射矩陣來修改 該第一及第二校準誤差矩陣。42. The apparatus of claim 41, wherein the means for performing the second calibration comprises a derived component array for deriving a first emission moment deriving member based on the first pilot, the The second pilot obtains a channel response estimate to derive a second transmit matrix, and a modifying component for modifying the first and second calibration error matrices based on the first and second transmit matrices. 43· :¾ m 42之裝置’其中使用—以疊代方式調節該第— 及第才交準„吳差矩陣之適應性程序來修改該第一及第二 校準誤差矩陣,以、•出,—时 .^ ^ — 乂減小该第一與第二發射矩陣之間的誤 99590.doc43· : 3⁄4 m 42 device 'which is used - adjusts the first and the second to adjust the adaptive program of the difference matrix to modify the first and second calibration error matrices, —时.^ ^ — 乂 Reduce the error between the first and second emission matrices 99590.doc -12--12-
TW094104760A 2004-02-19 2005-02-18 Calibration of downlink and uplink channel responses in a wireless mimo communication system TWI361601B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/783,175 US7206354B2 (en) 2004-02-19 2004-02-19 Calibration of downlink and uplink channel responses in a wireless MIMO communication system

Publications (2)

Publication Number Publication Date
TW200605582A TW200605582A (en) 2006-02-01
TWI361601B true TWI361601B (en) 2012-04-01

Family

ID=34861168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094104760A TWI361601B (en) 2004-02-19 2005-02-18 Calibration of downlink and uplink channel responses in a wireless mimo communication system

Country Status (9)

Country Link
US (1) US7206354B2 (en)
EP (1) EP1721431B1 (en)
JP (2) JP5269320B2 (en)
KR (1) KR100809896B1 (en)
CN (1) CN1943194B (en)
CA (1) CA2556710C (en)
ES (1) ES2561466T3 (en)
TW (1) TWI361601B (en)
WO (1) WO2005081483A1 (en)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7986742B2 (en) * 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8218609B2 (en) * 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7336746B2 (en) 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7356017B2 (en) * 2004-02-19 2008-04-08 Nokia Corporation Data loading method, transmitter, and base station
US7206354B2 (en) * 2004-02-19 2007-04-17 Qualcomm Incorporated Calibration of downlink and uplink channel responses in a wireless MIMO communication system
US8285226B2 (en) * 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8923785B2 (en) * 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US7978649B2 (en) * 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
JP4744965B2 (en) * 2004-08-09 2011-08-10 パナソニック株式会社 Wireless communication device
US7680212B2 (en) * 2004-08-17 2010-03-16 The Board Of Trustees Of The Leland Stanford Junior University Linear precoding for multi-input systems based on channel estimate and channel statistics
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7872981B2 (en) * 2005-05-12 2011-01-18 Qualcomm Incorporated Rate selection for eigensteering in a MIMO communication system
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8498669B2 (en) 2005-06-16 2013-07-30 Qualcomm Incorporated Antenna array calibration for wireless communication systems
KR20070032548A (en) * 2005-09-16 2007-03-22 삼성전자주식회사 Apparatus and method for calibrating channel in wireless communication system using multiple antennas
US8280430B2 (en) 2005-11-02 2012-10-02 Qualcomm Incorporated Antenna array calibration for multi-input multi-output wireless communication systems
RU2395163C2 (en) * 2005-11-02 2010-07-20 Квэлкомм Инкорпорейтед Calibration of antenna matrix for multi-input-multi-output systems of wireless communication
US9118111B2 (en) 2005-11-02 2015-08-25 Qualcomm Incorporated Antenna array calibration for wireless communication systems
WO2007103085A2 (en) 2006-03-01 2007-09-13 Interdigital Technology Corporation Method and apparatus for calibration and channel state feedback to support transmit beamforming in a mimo system
US8543070B2 (en) * 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8290089B2 (en) * 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
JP4836186B2 (en) * 2006-05-31 2011-12-14 三洋電機株式会社 Transmitter
EP2064818B1 (en) 2006-09-18 2017-07-26 Marvell World Trade Ltd. Calibration correction for implicit beamforming in a wireless mimo communication system
US7746766B2 (en) * 2006-09-21 2010-06-29 Sharp Laboratories Of America, Inc. Systems and methods for obtaining an optimum transmission format of reference signals to maximize capacity and minimize peak to average power ratio
US8055226B2 (en) * 2006-10-18 2011-11-08 Tektronix, Inc. Frequency response correction for a receiver having a frequency translation device
JP5127269B2 (en) 2007-03-07 2013-01-23 キヤノン株式会社 Wireless communication apparatus, wireless communication method, and computer program for causing computer to execute wireless communication method
US8379745B1 (en) 2007-07-06 2013-02-19 Marvell International Ltd. Forward channel variation detection in a wireless communication system
US8095097B1 (en) 2007-08-06 2012-01-10 Marvell International Ltd. Increasing the robustness of channel estimates derived through sounding for WLAN
US7986755B2 (en) * 2007-08-17 2011-07-26 Ralink Technology Corporation Method and apparatus for calibration for beamforming of multi-input-multi-output (MIMO) orthogonol frequency division multiplexing (OFDM) transceivers
US8559571B2 (en) * 2007-08-17 2013-10-15 Ralink Technology Corporation Method and apparatus for beamforming of multi-input-multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) transceivers
US8229017B1 (en) 2007-12-13 2012-07-24 Marvell International Ltd. Transmit beamforming utilizing channel estimation matrix decomposition feedback in a wireless MIMO communication system
CN101604991B (en) * 2008-06-13 2013-01-02 展讯通信(上海)有限公司 Method and device for estimating radio-frequency channel parameters in multiple input multiple output (MIMO) system
US20090323783A1 (en) * 2008-06-25 2009-12-31 Motorola, Inc. Calibration techniques for mimo wireless communication systems
CN101626353B (en) * 2008-07-07 2012-01-25 上海华为技术有限公司 Method, equipment and system for data communication
JP5149111B2 (en) * 2008-09-09 2013-02-20 株式会社エヌ・ティ・ティ・ドコモ Radio relay apparatus and radio relay method
CN101374124B (en) * 2008-09-27 2011-11-30 上海微电子装备有限公司 Channel gain digital equalizing self-adapting calibration system and method
US8892383B2 (en) * 2009-02-12 2014-11-18 Mitsubishi Electric Corporation Calibration device
US20120099469A1 (en) * 2009-06-23 2012-04-26 Qinglin Luo Methods of transmitting a signal in a time division duplexing mimo system and associated apparatuses
CN101626355B (en) * 2009-08-11 2012-11-14 北京天碁科技有限公司 Calibration device and calibration method of multi-input multi-output (MIMO) terminal
US8660497B1 (en) 2009-08-18 2014-02-25 Marvell International Ltd. Beamsteering in a spatial division multiple access (SDMA) system
CN101662446B (en) * 2009-09-28 2013-01-16 中兴通讯股份有限公司 Channel estimation method and device thereof
EP2536036A4 (en) * 2010-02-12 2015-07-08 Alcatel Lucent Device and method for calibrating reciprocity errors
US8971178B1 (en) 2010-04-05 2015-03-03 Marvell International Ltd. Calibration correction for implicit beamformer using an explicit beamforming technique in a wireless MIMO communication system
US9444577B1 (en) 2010-04-05 2016-09-13 Marvell International Ltd. Calibration correction for implicit beamformer using an explicit beamforming technique in a wireless MIMO communication system
CN102082745B (en) * 2010-04-19 2013-10-16 电信科学技术研究院 Method and equipment for reporting antenna calibration information and determining antenna calibration factor
WO2011159800A1 (en) 2010-06-16 2011-12-22 Marvell World Trade Ltd. Alternate feedback types for downlink multiple user mimo configurations
EP2604008B1 (en) 2010-08-10 2019-10-16 Marvell World Trade Ltd. Sub-band feedback for beamforming on downlink multiple user mimo configurations
US9154969B1 (en) 2011-09-29 2015-10-06 Marvell International Ltd. Wireless device calibration for implicit transmit
US9294179B2 (en) * 2012-02-07 2016-03-22 Google Technology Holdings LLC Gain normalization correction of PMI and COI feedback for base station with antenna array
US9503170B2 (en) 2012-06-04 2016-11-22 Trustees Of Tufts College System, method and apparatus for multi-input multi-output communications over per-transmitter power-constrained channels
US20140160957A1 (en) * 2012-12-11 2014-06-12 Broadcom Corporation Channel state information calibration
US9661579B1 (en) 2013-05-03 2017-05-23 Marvell International Ltd. Per-tone power control in OFDM
US9872295B2 (en) 2013-05-24 2018-01-16 Nippon Telegraph And Telephone Corporation Wireless communication apparatus and wireless communication method
US9843097B1 (en) 2013-07-08 2017-12-12 Marvell International Ltd. MIMO implicit beamforming techniques
US10038996B1 (en) 2013-07-09 2018-07-31 Marvell International Ltd. User group selection in multiple user multiple input multiple output (MU-MIMO) configurations
JP6430535B2 (en) 2014-05-02 2018-11-28 マーベル ワールド トレード リミテッド Method, apparatus, and first communication device
US9590745B2 (en) 2014-11-20 2017-03-07 Mediatek Inc. Scheme for performing beamforming calibration by measuring joint signal path mismatch
WO2016104930A1 (en) * 2014-12-22 2016-06-30 주식회사 엘지화학 Aminosilane terminal modifier to which functional group has been introduced, method for producing terminal-modified conjugated diene polymer using the aminosilane terminal modifier, and terminal-modified conjugated diene polymer produced according to the method
CN104601257B (en) * 2015-01-14 2017-03-29 东南大学 The reciprocity calibration steps of multiaerial system under a kind of time division duplex communication mode
US10306603B1 (en) 2015-02-09 2019-05-28 Marvell International Ltd. Resource request for uplink multi-user transmission
US9826532B1 (en) 2015-02-09 2017-11-21 Marvell International Ltd. Orthogonal frequency division multiple access resource request
US9722730B1 (en) 2015-02-12 2017-08-01 Marvell International Ltd. Multi-stream demodulation schemes with progressive optimization
CN107852218A (en) 2015-06-08 2018-03-27 马维尔国际贸易有限公司 Explicit wave beam forming in efficient WLAN
US9590708B1 (en) * 2015-08-25 2017-03-07 Motorola Mobility Llc Method and apparatus for equal energy codebooks for antenna arrays with mutual coupling
US10305659B2 (en) 2016-04-12 2019-05-28 Marvell World Trade Ltd. Uplink multi-user transmission
WO2017180995A1 (en) 2016-04-14 2017-10-19 Marvell Semiconductor, Inc. Determining channel availability for orthogonal frequency division multiple access operation
KR102045287B1 (en) 2016-12-15 2019-11-15 고려대학교 산학협력단 Wireless communication system, access point apparatus, method for wireless communication, program for performing the method and computer readable medium
CN111130661B (en) * 2018-10-31 2021-08-31 华为技术有限公司 Antenna correction method and device
US10505599B1 (en) 2018-12-19 2019-12-10 Marvell International Ltd. Matrix equalization computation with pipelined architecture
CN110266620B (en) * 2019-07-08 2020-06-30 电子科技大学 Convolutional neural network-based 3D MIMO-OFDM system channel estimation method
US11777567B2 (en) * 2021-04-30 2023-10-03 Aptiv Technologies Limited Independent transmit and receive channel calibration for multiple-input multiple-output (MIMO) systems
CN114142986B (en) * 2021-12-06 2023-12-26 东南大学 Uplink and downlink channel reciprocity air interface calibration method based on access point grouping

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4238697A (en) * 1996-08-29 1998-03-19 Cisco Technology, Inc. Spatio-temporal processing for communication
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
US6801580B2 (en) * 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels
US6862440B2 (en) * 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7151809B2 (en) 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7236535B2 (en) * 2002-11-19 2007-06-26 Qualcomm Incorporated Reduced complexity channel estimation for wireless communication systems
US7206354B2 (en) * 2004-02-19 2007-04-17 Qualcomm Incorporated Calibration of downlink and uplink channel responses in a wireless MIMO communication system

Also Published As

Publication number Publication date
TW200605582A (en) 2006-02-01
ES2561466T3 (en) 2016-02-26
CN1943194B (en) 2010-09-01
CN1943194A (en) 2007-04-04
KR20060125908A (en) 2006-12-06
EP1721431B1 (en) 2015-11-04
US20050185728A1 (en) 2005-08-25
CA2556710A1 (en) 2005-09-01
KR100809896B1 (en) 2008-03-07
US7206354B2 (en) 2007-04-17
JP2007523570A (en) 2007-08-16
CA2556710C (en) 2011-12-20
WO2005081483A1 (en) 2005-09-01
JP2011160440A (en) 2011-08-18
EP1721431A1 (en) 2006-11-15
JP5269320B2 (en) 2013-08-21
JP5496931B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
TWI361601B (en) Calibration of downlink and uplink channel responses in a wireless mimo communication system
KR100958957B1 (en) Channel calibration for a time division duplexed communication system
KR100979644B1 (en) Rate selection for eigensteering in a mimo communication system
JP4494462B2 (en) Calibration of transmit and receive chains in MIMO communication systems
TWI335155B (en) Mimo system with multiple spatial multiplexing modes and method using the same
JP5247976B2 (en) Multimode terminal in wireless MIMO system
US8781020B1 (en) Transmit beamforming utilizing channel estimation matrix decomposition feedback in a wireless MIMO communication system
JP5133346B2 (en) Calibration correction method for implicit beamforming in wireless MIMO communication system
US8576937B2 (en) Precoding apparatus and method in a wireless communication system using multiple input multiple output
US8971178B1 (en) Calibration correction for implicit beamformer using an explicit beamforming technique in a wireless MIMO communication system
US9444577B1 (en) Calibration correction for implicit beamformer using an explicit beamforming technique in a wireless MIMO communication system
JP2011160440A5 (en)
TW200417176A (en) Channel calibration for a time division duplexed communication system
TW200529613A (en) Receiver spatial processing for eigenmode transmission in a mimo system
US20200252056A1 (en) System and method for calibrating filter mismatch in multi-input multi-output communication systems