TWI361465B - Rapid thermal process method and rapid thermal process device - Google Patents

Rapid thermal process method and rapid thermal process device Download PDF

Info

Publication number
TWI361465B
TWI361465B TW96107390A TW96107390A TWI361465B TW I361465 B TWI361465 B TW I361465B TW 96107390 A TW96107390 A TW 96107390A TW 96107390 A TW96107390 A TW 96107390A TW I361465 B TWI361465 B TW I361465B
Authority
TW
Taiwan
Prior art keywords
laser beam
rapid
substrate
temperature
laser
Prior art date
Application number
TW96107390A
Other languages
Chinese (zh)
Other versions
TW200837836A (en
Inventor
Chan Lon Yang
Ching I Li
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW96107390A priority Critical patent/TWI361465B/en
Publication of TW200837836A publication Critical patent/TW200837836A/en
Application granted granted Critical
Publication of TWI361465B publication Critical patent/TWI361465B/en

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

九、發明說明: [發明所屬之技術領域】 ,發日⑽有關於—職速鱗理製財法與進行該快速熱處 t之快迷熱處理裝置,尤指—種利用雷射光束進行預熱之快 速”、、處理製程與快速熱處理裝置。 【先前技術】 通著半導體製造技術越來越精密,積體電路也發生重大 的變革’使得電腦的運算性能和存儲容量突飛猛進,症带 動周邊產業迅速發展。而半導體產業也如同摩爾定律所預 測的以,18個月増加一倍電晶體數目在積體電路上的速 度么展著@時半導體製程也已經從工州年的微米、 2001年的〇·13微米、_年的90奈米(nm ),進入到2005 年65不*並朝向45奈米邁進。因此,伴隨著半導體製 程的進步和《子元件的微小化n片上的半導體元 件的密度越來越大,相對地元件之間的間隔也越來越小。 在此It IT各種半導體製程皆面臨新的挑戰與瓶頸,必 須不斷研發出能符合高積集度要求的新製程技術。 在各種半導體製程中,快速熱處理製程 (rapid thermal processing ’ RTP)為近年來頗受嗎目的一項新技術,並已被廣泛 地使用於超大㈣體t路製造巾㈣熱活化反應之半導體製程, 其應用祐圍極廣’包括金屬氧化半導體 1361465 (metal-oxide-semiconductor ’ M〇s)電晶體之超淺接合介面 (*a shaikh junction,USJ)、超薄氧化層成長、退火: 以及金屬魏物形成’甚至_電晶體中多晶料導體層之製⑸ 作。隨著半導難術的發展與積極度的提高,快賴處理製程所 使用的技術也稍更新,以符合更高魏之製程要求。具代表性 的熱處理技術發展進程,舉例而言早期係以高_管加熱為代 表,隨著抛技術進人90奈料級,轉_使料峰式快速熱 退火(spikerapidthermalannea丨)製程以對材料進行快速熱處理’,' 。而當製程技術邁人現今之65奈料級時,處理製程也開始採 f用非炼融快閃退火、脈衝式以及雷射退火等快速熱處理製程。相 應地,熱處理製程的製程時間也隨技術的進步而不斷縮短時間, 從早期爐管加熱的10秒製程時間,發展到現今製程時間約ι秒 〇鐘,甚至約1毫秒。 雷射熱處理製程除了可用來對半導體材料進行雷射退火等快 速升降溫製程,純廣泛應躲如液晶顯示器等顯示裝置的製作 中。在液晶顯示器中,由於一般玻璃基板的耐熱度往往只 能到600。(: ’因此若在高溫下直接製作多晶石夕薄膜將會造 f玻璃基板的扭曲變形,所以傳統的多晶矽薄膜電晶體液 2顯示器往往必須要使用價格昂貴的石英作為基材,應用 乾圍也只能侷限於小尺寸的液晶面板。然而,目前業界已 使用低溫複晶石夕薄膜電晶體(low temperature polysilicon TFT ’ LTPS TFT)技術來達到量產大尺寸液晶顯示器的目 7 1361465 標。一般低溫多晶矽製程大多利用準分子雷射退火 (Excimer Laser Annealing, ELA )技術進行,亦即利用準 * j分子雷射作為熱源以將非晶矽結構轉換為多晶矽結構。當 ' 準分子雷射經過光學投射系統後,會產生能量均勻分布的 « ' 雷射光束’並投射於沉積有非晶石夕膜的基板上,以使吸收 準分子雷射能量的非晶矽膜再結晶而轉變成為多晶矽結 構。由於上述製程係於60(TC以下完成,一般玻璃基板或 • 是塑膠基板等皆可適用,因此更擴大了低溫多晶矽薄臈電 晶體液晶顯示器的應用範圍。 由上述可知,不論在積體電路製程或顯示器領域,雷射熱處理 製程皆已成為相當重要的一項製程技術。依據現行雷射熱處理製 程’係將欲加熱的基底(例如半_晶圓)設置於反應室的加熱 墊(chuck)表面’藉由包含加熱器裝置之加熱塾對整面基底加熱 • _達基底材料的臨界點,例如400°c,使基底產生自由載子 (carrier) ’獅雷射絲對基底掃晦進行快速升溫製程,使基底 材料之溫度達到約至12〇〇〇C以上,以完成退火或再結晶等熱反應 • 效果。_,由於加熱塾本身設計的問題,很容㈣整面基底無 法有均勻的溫度,又因為—次雷射掃猫製程可能有3至】〇分鐘的 -時間,便使得整面基底同樣必須維持在·。c的高溫下3至财 鐘,有高熱·賴’村朗溫度獨導絲底產生片電阻, 甚至賴應力秘顧;^再者,為了麟因加触加熱而產生 的基底溫度不料之_,目前機㈣造商也設計了藉由抽真空 1361465 或靜電方絲蚊晶®。以抽真空方式為例,對於基底表面不同 位置的吸_弱,隱會影_基底表_熱應力,因此在高溫 ’ f射絲接觸下,基底健料產生則。由此可知,要藉由修 改加熱墊等硬體設備纽善整雜處理結果較制難,且需要耗 費可觀的設備成本。此外,傳統藉由加熱墊加熱整面基底的方法, 不論是加·_糾_冷卻時_較長,無法提㈣程效率。 • 〃因此,如何改善半導體的快速熱處理製程以及提供具有低熱運 算且能避免減力問題之快速熱處理裝置,仍為半導體業界一重 要之議題。 μ 【發明内容】 本發明之主要目的在於提供-種_ t射光錢行預熱製程 之快速熱處理製财法與快賴處理錢,轉㈣知以加執塾 預熱晶圓之熱處理製程容易造成溫度不均與破片等問題。 、根據本發明之申請翻顧,倾供—雜絲處理製程方 法首先提供基底,然後利用一第—雷射光束對該基底之至 >少:第-部份進行-局部製程,接著對被預熱後之該基底的 5玄第一部分進行一快速升溫製程。 根據本發明之申請專利範圍,另提供一種快速熱處理裝置,並 包含有至少―加齡統以及至少—自動辨控職置。加熱系統 9 ¢65 Π,光束與—第二雷射光束,且該第-雷射光束係 ,來對-基底進行-預熱製程,而該第二雷射光束個來對 f行一快速升溫製程。自動功率控制裝置則能即時偵測該_ 由於本發_卿第1射光束先對基底進行預熱,因此可以 快速將基底局部加熱至默溫度,而基底的其㈣分則可維持 在低溫狀態,因此可降低製程的熱運算,並避免因熱應力而造成 的破片危險’亦缺善加熱麵絲絲必彡貞耗費較長的 升溫與冷卻時間之問題。再者,使用本發明快速熱處理製程方法 與快速熱處理裝置’可以即時調整雷射光束的參數設定,以將製 程控制在最佳狀態下,而不需大幅修改習知加熱塾等硬體設備。 【實施方式】 請參考第1圖至第5圖,第i圖至第5圖為本發明快速熱處理 製程方法以及快速熱處雜置之第―實施觸示意圖。本實施例 之快速熱處理製程方法係應用於半導體晶圓製作M〇s電晶體中 的超淺接合介面(ultra shallow junction,USJ)製作。首先, 凊參考第1圖與第2圖,提供需要進行快速熱處理製程的一基底 ⑺’該基底10可包含一半導體晶圓丨2,例如矽晶圓,其上包含有 至少一 MOS電晶體區域14,其表面已形成有閘極π以及閘極介 電層18,並完成一離子佈置製程,而形成源極/汲極延伸摻雜區域 丄北1465 (source/drain extension doping region ) 20。 然後,利用本發明快速熱處理裝置30對基底l〇進行一快速回 火裝私卩活化先如植入於源極/汲極延伸摻雜區域内的換質° 本發明快速熱處理裝置30包含一加熱系統32,其包括至少_;射 =,且:射裝置36能同時產生一第一雷射光束% (以粗線 二射光束4G (以細線箭頭表示)。加熱系統 另匕3有-雷射控制制器42 ’能隨時調整雷射裝置%之机 定,以控制第-雷射光束38與第二雷射光束4〇。此外,本發明^ 迷熱處理裝置3〇另包含具有自動功率控制(am_ticpower ' ⑺咖卜APC)功能的溫度回饋控制系統34,其具有—偵測 46以及-訊號處理展置44,能即時偵測第一雷射光束犯與第二 =先束4G對基底1G的加熱狀況,鱗遞訊號給加鮮統%而 心%調整雷射裝置36的製程參數。 參考第3圖,在進行本發明之快速熱處理製程方法時,係先 以弟一雷射光束38對基底10之第一 線箭頭表示第-雷射光束38的斤心八進仃預熱(财以粗 —遍、 光束38的知猫路徑38a),使得基底10的第 :縣A被局部升溫至—預熱溫度,例如約至航,此時, ^ 10的其他部分難絲持在—低溫耗,例如轉於 參看第4圖,使用第二雷射光束•對於基底〗。 = 部份A進行—快速升溫製程(圖中以細線箭 第二雷射光束40的掃晦路徑他),該快逮升溫製程可為- 1361465 毫秒雷射非炼融退火(msec laser non-melt annealing )製程,以將 基底10的第一部份A快速加熱至約1200至1300。(:,以完成退火 與活化基底10。其中,由於基底10的第一部份A已在預熱中達 到其表面材料的臨界溫度,因此可產生自由載子以供第二雷射光 束4〇進行退火製程。 值得注意的是,當第二雷射光束40,對於基底1〇表面被預熱 ,之第一部份A進行快速升溫製程時,第一雷射光束38可同時繼 績對基底10表面之H分b進行局部麵製程。之後,待第 一雷射光束40掃瞄過第一部份A,便可繼續掃瞄第二部分B,對 基底10的第二部分B進行快速升溫製程了,此時第一雷射光束 犯則可謂基底1G表面之—第三部分(圖未示)進行局部預熱製 私亦即,第-雷射光束38所進行的局部預熱製程與第二雷射光 ^0的快速升溫製程可同時進行,只要基底⑴表面的特定部分 2由第—錄光束38局部馳,便可再由第二雷射光束40對 ^仃快速升溫製程,以完成本發明快速熱處理製程方法。在本 B皆為示咅11,/^ /底10的第一部份A以及第二部份 4〇先後^其广際執行中,第—雷射光束38與第二雷射光束 差異,1G的同—部分之時間差會隨不同製程要求而有 田日、間差縮㈣’亦可有效減少整體製程時間。 待第一雷射光束%斑策_ 便完成本發明快速熱處理如雷^光束4〇完整將基底10掃猫後, 亚元成源極/汲極延伸推雜區域2〇, 12Nine, invention description: [Technical field to which the invention belongs], the Japanese (10) has a method for the production of wealth and the rapid heat treatment of the rapid heat, especially the use of laser beams for preheating "Fast", processing process and rapid heat treatment device. [Prior Art] With the increasingly sophisticated semiconductor manufacturing technology and major changes in the integrated circuit, the computer's computing performance and storage capacity have advanced by leaps and bounds. Rapid development. The semiconductor industry is also predicted by Moore's Law. The 18-month doubling of the number of transistors on the integrated circuit is on display. @时半导体process has also been from the years of the industrial year of Micron, 2001 〇·13 micron, 90 nanometers (nm) of _ years, entered into 2005 and did not move toward 45 nanometers. Therefore, along with advances in semiconductor manufacturing and the miniaturization of sub-components on semiconductor devices The density is getting bigger and bigger, and the spacing between the components is getting smaller and smaller. Here, IT IT's various semiconductor processes are facing new challenges and bottlenecks, and must be continuously developed to meet the requirements. New process technology required for integration. Rapid thermal processing 'RTP' is a new technology that has been widely used in recent years in various semiconductor processes and has been widely used in ultra-large (four) body t-channel manufacturing. Towel (4) The semiconductor process of thermal activation reaction, which is widely used in the ultra-shallow joint interface (*J shaikh junction, USJ) including metal oxide semiconductor 1361465 (metal-oxide-semiconductor 'M〇s) transistor Oxidation layer growth, annealing: and metal material formation 'even the production of polycrystalline conductor layers in the transistor (5). With the development of semi-conducting difficulties and the improvement of enthusiasm, the technology used in the processing process is also Slightly updated to meet the requirements of the higher Wei process. The representative development process of heat treatment technology, for example, the early stage is represented by high_tube heating, with the throwing technology entering the 90-nano level, The rapid thermal annealing (spikerapidthermalannea) process to rapidly heat the material ','. When the process technology is now 65 meters, the processing process is also started. Rapid thermal processing such as flash flash annealing, pulsed and laser annealing. Correspondingly, the processing time of the heat treatment process is also shortened with the advancement of technology, from the 10 second process time of the early furnace tube heating to the current process time. About 1 second, or even about 1 millisecond. In addition to the rapid temperature rise and fall process for laser annealing of semiconductor materials, the laser heat treatment process should be widely used in the production of display devices such as liquid crystal displays. Since the heat resistance of a general glass substrate is often only up to 600. (: 'So if the polycrystalline stone film is directly produced at a high temperature, the distortion of the glass substrate will be made, so the conventional polycrystalline silicon oxide liquid crystal 2 display often has to be To use expensive quartz as a substrate, the application of the dry circumference can only be limited to small-sized liquid crystal panels. However, low-temperature polysilicon TFT LTPS TFT technology has been used in the industry to achieve the mass production of large-size liquid crystal displays. Generally, the low-temperature polysilicon process is mostly performed by Excimer Laser Annealing (ELA) technology, that is, a quasi-j molecule laser is used as a heat source to convert an amorphous germanium structure into a polycrystalline germanium structure. When the 'excimer laser passes through the optical projection system, a 'laser beam' with even energy distribution is generated and projected onto the substrate on which the amorphous film is deposited, so that the amorphous erbium that absorbs the excimer laser energy The film is recrystallized to transform into a polycrystalline germanium structure. Since the above process is completed at 60 (TC or less, general glass substrate or plastic substrate can be applied, the application range of the low temperature polycrystalline silicon germanium transistor liquid crystal display is further expanded. From the above, it is known that the integrated circuit process In the field of displays or lasers, laser heat treatment processes have become a very important process technology. According to the current laser heat treatment process, the substrate to be heated (for example, a half wafer) is placed on the chuck surface of the reaction chamber. 'The heating of the whole surface by heating the heating device containing the heater device _ reaches the critical point of the substrate material, for example 400 °c, so that the substrate generates a free carrier. The lion laser quickly heats up the substrate broom. The process is such that the temperature of the base material reaches about 12 〇〇〇C or more to complete the thermal reaction such as annealing or recrystallization. _, due to the design problem of the heating crucible itself, it is very difficult (4) the entire surface of the substrate cannot have a uniform temperature. And because the laser sweeping process may have 3 to 〇 minute-time, the entire substrate must also be maintained at a high temperature of 3 ° The clock, there is a high heat, Lai's village temperature alone, the sole of the wire produces a sheet resistance, and even the stress of the pressure; ^ Again, for the temperature of the base caused by the heating of the lining, the current machine (four) manufacturers also design By vacuuming 1361465 or electrostatic square wire mosquito crystals. Taking the vacuum method as an example, the suction _ weak at different positions on the substrate surface, the shadow _ base table _ thermal stress, so under the high temperature 'f wire contact Therefore, it is known that it is difficult to manufacture the hardware by modifying the heating device such as the heating pad, and it requires a considerable equipment cost. In addition, the heating of the entire surface is conventionally performed by a heating pad. The method, whether it is adding _ _ _ cooling _ long time, can not mention (four) process efficiency. 〃 Therefore, how to improve the rapid thermal processing of semiconductors and provide a rapid thermal processing device with low thermal calculations and can avoid the problem of force reduction, still It is an important issue for the semiconductor industry. μ [Summary] The main purpose of the present invention is to provide a rapid heat treatment method for the preheating process of the ray t-light preheating process and to process the money. The heat treatment process of preheating the wafer is easy to cause problems such as temperature unevenness and fragmentation. According to the application of the present invention, the dumping-filament processing method first provides a substrate, and then uses a first-laser beam pair The substrate is > less: the first-part-to-local process, and then a rapid heating process is performed on the pre-heated substrate 5's first portion. According to the patent application scope of the present invention, a rapid heat treatment is further provided. The device includes at least a "calorie system" and at least an automatic discriminating position. The heating system 9 ¢ 65 Π, the beam and the second laser beam, and the first-laser beam system is used to - the substrate The preheating process, and the second laser beam is used to quickly heat up the process of the f line. The automatic power control device can detect the _ immediately because of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Quickly heat the substrate locally to the silent temperature, while the (4) part of the substrate can be maintained at a low temperature, thus reducing the thermal calculation of the process and avoiding the risk of fragmentation caused by thermal stress. Issues will San Chen takes longer heating and cooling times. Furthermore, the rapid thermal processing method and the rapid thermal processing apparatus of the present invention can be used to instantly adjust the parameter setting of the laser beam to control the process in an optimum state without greatly modifying the conventional hardware such as heating. [Embodiment] Please refer to Figs. 1 to 5, and Fig. 5 to Fig. 5 are schematic diagrams showing the method of rapid heat treatment of the present invention and the first embodiment of the rapid heat mixing. The rapid thermal processing process of the present embodiment is applied to the fabrication of an ultra shallow junction (USJ) in a semiconductor wafer fabrication M〇s transistor. First, referring to FIGS. 1 and 2, a substrate (7) that requires a rapid thermal processing process is provided. The substrate 10 may include a semiconductor wafer 2, such as a germanium wafer, including at least one MOS transistor region thereon. 14. A gate π and a gate dielectric layer 18 are formed on the surface thereof, and an ion arrangement process is completed to form a source/drain extension doping region 20 (Middle). Then, the rapid thermal processing device 30 of the present invention is used to perform a rapid tempering activation on the substrate, such as the implantation in the source/drain extension doping region. The rapid thermal processing device 30 of the present invention comprises a heating. System 32, which includes at least _; shot =, and: the launching device 36 can simultaneously generate a first laser beam % (indicated by a thick-line diffracted beam 4G (indicated by a thin line arrow). The heating system is further 有3--laser The controller 42' can adjust the laser device % at any time to control the first-beam laser beam 38 and the second laser beam 4'. Further, the heat treatment device 3 of the present invention further includes automatic power control ( The am_ticpower ' (7) wifi APC) function temperature feedback control system 34 has a detection 46 and a signal processing spread 44, which can instantly detect the first laser beam and the second = first beam 4G to the base 1G. The heating condition, the scale signal is used to adjust the process parameters of the laser device 36. Referring to FIG. 3, when performing the rapid heat treatment process method of the present invention, the laser beam 38 is first applied to the substrate. The first line arrow of 10 indicates the first-laser light The 38's heart is warmed up (the thick-through, the light-talking path 38a of the light beam 38), so that the first: County A of the substrate 10 is locally heated to the preheating temperature, for example, to the voyage, at this time, ^ The other parts of 10 are difficult to hold - low temperature consumption, for example, refer to Figure 4, using the second laser beam • for the substrate. = Part A is carried out - rapid heating process (pictured with a thin line arrow second mine The bail path of the beam 40 can be -1361465 milliseconds laser-non-melt annealing process to rapidly heat the first portion A of the substrate 10 to about 1200 to 1300. (:, to complete the annealing and activation of the substrate 10. Among them, since the first portion A of the substrate 10 has reached the critical temperature of its surface material in the preheating, a free carrier can be generated for the second thunder. The beam X is subjected to an annealing process. It is noted that when the second laser beam 40 is preheated for the surface of the substrate 1 and the first portion A is subjected to a rapid heating process, the first laser beam 38 can simultaneously The successor performs a partial surface process on the H-point b of the surface of the substrate 10. After that After the first laser beam 40 scans the first portion A, the second portion B can be continuously scanned to perform a rapid heating process on the second portion B of the substrate 10, and the first laser beam is a base. The third part (not shown) of the 1G surface is subjected to local preheating, that is, the local preheating process performed by the first laser beam 38 and the rapid heating process of the second laser beam can be performed simultaneously, as long as The specific portion 2 of the surface of the substrate (1) is partially driven by the first-recorded beam 38, and can be further heated by the second laser beam 40 to complete the rapid thermal processing process of the present invention. , /^ / The first part A and the second part of the bottom 10 are successively executed, and the first laser beam 38 is different from the second laser beam, and the time difference of the same part of 1G is Different process requirements, such as Tiantian, and the difference between the four (four) 'can also effectively reduce the overall process time. After the first laser beam % ze _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

丄:)0丄矸UJ :作。接著請參考第5圖,可於半導體晶圓12表面形成氧化層, 4 a钱心驟而於間極16側縣面形細好22,並以側壁子 田作佈植鮮,進行—離子健製程,而解導體晶圓表面 、原極/及極摻雜區域24,此時可再:欠糊本發明快速熱處理製 f法而對源極/汲極雜區域24進行快速熱退火製程,以形成深 度較淺之源極/;:及極。 # 、有關於本發縣速熱處理裝置3G所包含裝置,以及在其進行 决速熱處理製程時各裝置彼賴之運作_,轉述如下。如前 所述,本發明快迷熱處理裝置30主要包含-加熱系統32以及-溫度回饋控制系統34,而加熱系統32另包含一雷射控制偵測器 42以及能提供至少二雷射光束之雷射裝置%。其中,第一雷射光 束%係用以預熱基底10 ,將基底10局部加熱至一預熱溫度,例 如400至500°C ’而第二雷射光束4〇係用以對基底料行快速升 •溫與快速降溫製程,例如一快速熱退火製程,可使基底10局部升 /皿至1200至13〇0〇C左右。由於第一雷射光束38係用來在快速升 溫製程之前進行預齡作,加熱基底1Q之關必須大於等於 第二雷射光束40的範圍’以確保之後第二雷射光束4〇所掃晦的 區域已確實被第-雷射光束%所預熱,亦即第一雷射光束^的 尺寸範圍必須大於等於第二雷射光束4〇的尺寸範圍,在較佳情況 下,第一雷射光束38的尺寸範圍應大於第二雷射光束4〇的尺寸 ,範圍。舉例而言,若第二雷射光束40的尺寸範圍為!毫米χ7毫 • 米’則第一雷射光束%的尺寸範圍便必須大於〗毫米χ7毫米。 13 1361465 此外’雷射控制偵測器42則 能,藉由調校雷射裝置36== 功 第二雷射光束40的穩紐。乂控制第一雷射光束38與 乃一方面 略_控嶋統34具有鞭魏,包含有一债 斑第+ ^及—峨處理裝置44。偵測袈置46可同時_第一 J-㈣光束38、4G對於絲1G的加 、丄:)0丄矸UJ: Made. Next, please refer to Fig. 5, an oxide layer can be formed on the surface of the semiconductor wafer 12, and the surface of the county 16 is finely shaped 22, and the side wall is used for the planting of the seed. The process, and the surface of the conductor wafer, the primary/and the highly doped region 24 are solved. In this case, the rapid thermal processing of the source/deuterium region 24 can be performed by the rapid thermal processing method of the present invention. Form a shallow depth source /;: and pole. # 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 As described above, the fast heat treatment device 30 of the present invention mainly comprises a heating system 32 and a temperature feedback control system 34, and the heating system 32 further comprises a laser control detector 42 and a lightning beam capable of providing at least two laser beams. Shooting device%. Wherein, the first laser beam % is used to preheat the substrate 10, and the substrate 10 is locally heated to a preheating temperature, for example, 400 to 500 ° C. and the second laser beam 4 is used to fast the substrate. The liter temperature and rapid cooling process, such as a rapid thermal annealing process, can locally raise the substrate 10 to about 1200 to 13 〇0 〇C. Since the first laser beam 38 is used to perform pre-age work prior to the rapid heating process, the temperature of the heating substrate 1Q must be greater than or equal to the range of the second laser beam 40 to ensure that the second laser beam 4 is then broomed. The area has been preheated by the first-laser beam %, that is, the size range of the first laser beam ^ must be greater than or equal to the size range of the second laser beam 4 ,, preferably, the first laser The size of the beam 38 should be greater than the size and extent of the second laser beam 4〇. For example, if the second laser beam 40 has a size range of ! The millimeter χ 7 m • m 'the size range of the first laser beam % must be greater than 〖mm χ 7 mm. 13 1361465 In addition, the 'laser control detector 42 can be adjusted by the laser device 36== the second laser beam 40. The first laser beam 38 is controlled to have a whip, and includes a defect pattern + ^ and - 峨 processing device 44. The detecting device 46 can simultaneously add _ first J-(four) beams 38, 4G to the wire 1G.

峨齡物_== 翰―fl旒處理裝置44。若第一與第二雷 需^調整’觀f編裝置44 貞概提^: =偏差值的邏輯換算,例如進行溫度偏差值= 削42資—姆也魏32物旨令,藉_控制偵 纟明的其他實施例中,溫度_控制系統34可包含 :=置46,分別侧第一雷射光束38與第二雷射光束霸. 土氏、加熱效果’並分別將偵測結果傳輸給賴處理裝置44。 。月乡考第6圖,第6圖為本發明快速熱處理製程方法以及快速 2理裝置之第二實施例的示意圖。如第6圖所示,本發明快速 ;:處理裝置1(XH_縣底1料行—快速鱗輸呈,其包 加録統1G2以及—溫度_㈣系統收,其中溫度回饋 控制系統104係、為一 apc裝置。加熱系統丨 請與第二雷射裝請,能分別產生第—雷射二= 14 1361465 -雷射光束U4,其巾第—雷射縣U2的光束尺寸範_大於或 4於第二雷射光束m的光束尺寸範圍,且第-雷射光束112的 能量低於第二雷射光束114的能量。第_、第二雷射裝置⑽、ιι〇 -雷射光束m以及第二雷射光束114的製程參數二= 他實施例中,加熱系、统1〇2可包含二雷射控制读測器1〇6,以分別 控制第一、第二雷射裝置1〇8、11〇。 溫度回饋控織統1G4則包含有-訊號處理裝置116以及一偵 測裝置118 ’其中偵測裝置118可用來即時偵測第—雷射光束⑴ 與第二雷射絲m對基底13〇的加熱情形,並將侧結果回傳 給訊號處理裝置116,當_結果與製程的預定加熱情形有出入 時’則訊號處理裝置116便可經由邏輯換算,將參數偏差值傳輸 、”口雷射控制偵測器106,以即時調整第一雷射光束H2與第二雷射 φ 光束114的製程參數而提供較佳熱處理效果。在本實施例中,基 底130可為一表面包含有非晶矽層之透明基板,藉由第一雷射光 束112對基底13〇表面預熱之後,緊接著使用第二雷射光束114 對預熱後之基底130進行快速升溫製程,以使非晶石夕層烙融再結 晶,而形成一多晶矽層,可用來提供薄膜電晶體之半導體材料。 - 然而,在其他實施例中,基底130亦可為半導體晶圓。 . 請考第7圖,第7圖為本發明快速熱處理製程方法以及快速熱 處理裝置之第三實施例的示意圖,為便於說明,第7圖中各裝置 15 1361465 2心遽係沿用第6圖中的元件。如第7圖所示’加熱系統102包 =有第-與第二雷射裝置⑽、110,分別提供H射光束出 7。第—田射光束114,以對基底130分別進行預熱以及快速升溫 製各其令該快速升溫製程可為一毫秒雷射非炼融退火製程或一 炼融雷射退火製程。溫度回饋控制系統1〇4包含-第-伯測裝置 120與-第二偵測裝置122,分別用來偵測第一雷射光束山與第 ,雷射光束1M對基底13〇的加熱情形。第一_裝置12〇與一 φ第一偵測褒置122另可分別提供侧結果之分析功能,將製程情 屯即時回傳給峨處理裝置】16與雷雜俯貞湘娜,以即時調 k第-雷射光束m與第二雷射光束m的製程參數。 本發明快速熱處理製程方法與裝置,可以應用於毫秒雷射非炼 融退火製程或錄f㈣快速升溫與冷卻製程巾。與習知技術相 較’本發明係利用-雷射光束對於需要進行快速熱處理之基底先 φ 衍員熱’而取代習知以加熱墊對基底加熱之方法。由於本發明利 用雷射光束預熱之方法可以僅局部預熱基底,因此不論是先進行 的第一雷射光束預熱或後進行的第二雷射光束毫秒升溫製程,都 只有部分基底處於加熱狀態,而基底的其他部分仍維持在低溫或 至溫狀態,能有效避免因熱應力所造成的基底破片問題。而且, 使用雷射光束可以快速地預熱基底,相較於習知使用加熱墊必須 長時間且全面預熱晶圓以及長時間冷卻晶圓的方法,本發明能大 . 幅降低熱運算’亦能避免習知使用加熱塾所造成的基底加熱不均 . 勻以及片電阻等問題。再者,習知以加熱墊預熱基底的方法,若 16 1361465 需修改製程環境’可料要另外設計雜改加難本身的硬體設 計’然而本㈣翻具有縱魏之快賴處理裝置能即時瞭解 基底加熱狀況’可即_整光束的參數設定,_能即時掌 控基底的4雜與溫度㈣性等問題,雜大賴雜,也能提 供良好的齡从。因此,綜上㈣,本㈣快賴處理製程方 阿與快速熱處理裝置能有效提供良好的熱處理環境、降低設備成 本以及大幅提昇量產效率。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆闕本發明之涵蓋範圍。 【圖式簡單說明】 第1圖至第5圖為本發明快速熱處理製程方法以及快速熱處理 置之第一實施例的示意圖。 、 • 第6圖為本發明快速熱處理製程方法以及快速熱處理襄置之楚一 實施例的示意圖。 一 第7圖為本發縣賴處理製財法減快速熱翻 實施例的示意圖。 一 12 半導體晶圓 16 閘極 【主要元件符號說明】 10 基底 14 MOS電晶體區域 18 閘極介電層 17 1361465峨 物 _ == John 旒 旒 processing device 44. If the first and second mines need to be adjusted, adjust the 'viewing device' 44 贞 提^^^========================================================================= In other embodiments of the invention, the temperature control system 34 may include: = set 46, respectively the first first laser beam 38 and the second laser beam. The soil, the heating effect' and respectively transmit the detection result to Processing device 44. . Fig. 6 is a diagram showing the second embodiment of the rapid heat treatment process and the rapid control device of the present invention. As shown in Fig. 6, the invention is fast; the processing device 1 (XH_ county bottom 1 material row - fast scale delivery, its package plus recording system 1G2 and - temperature _ (four) system collection, wherein the temperature feedback control system 104 For an apc device, the heating system and the second laser device can generate the first - laser two = 14 1361465 - laser beam U4, the size of the beam - the laser beam size of the U2 is greater than or 4 in the range of beam sizes of the second laser beam m, and the energy of the first laser beam 112 is lower than the energy of the second laser beam 114. _, second laser device (10), ιι〇-laser beam m And the process parameter 2 of the second laser beam 114. In the embodiment, the heating system, the system 1〇2, may include two laser control readers 1〇6 to respectively control the first and second laser devices 1 〇8, 11〇. The temperature feedback control system 1G4 includes a signal processing device 116 and a detecting device 118. The detecting device 118 can be used to instantly detect the first laser beam (1) and the second laser wire m. The heating condition of the substrate 13〇, and the side result is transmitted back to the signal processing device 116, when the result and the predetermined heating condition of the process When there is an in-and-out condition, the signal processing device 116 can transmit the parameter deviation value via the logical conversion, and the "oral laser control detector 106" adjusts the first laser beam H2 and the second laser φ beam 114 in real time. The process parameters provide a better heat treatment effect. In this embodiment, the substrate 130 can be a transparent substrate having an amorphous germanium layer on the surface, and the surface of the substrate 13 is preheated by the first laser beam 112, followed by The preheated substrate 130 is subjected to a rapid heating process using the second laser beam 114 to melt and recrystallize the amorphous layer to form a polysilicon layer, which can be used to provide a semiconductor material of the thin film transistor. In other embodiments, the substrate 130 may also be a semiconductor wafer. Please refer to FIG. 7 and FIG. 7 is a schematic diagram of a third embodiment of the rapid thermal processing process and the rapid thermal processing apparatus of the present invention. In the figure, each device 15 1361465 2 core system uses the elements in Fig. 6. As shown in Fig. 7, 'heating system 102 package=with first-and second laser devices (10), 110, respectively, providing H-beams out 7 Ditian The light beam 114 preheats and rapidly heats up the substrate 130, respectively, so that the rapid heating process can be a one millisecond laser non-refining annealing process or a smelting laser annealing process. The temperature feedback control system 1〇4 includes - the first-to-bottom device 120 and the second detecting device 122 are respectively configured to detect the heating condition of the first laser beam mountain and the first laser beam 1M to the substrate 13A. The first device 12 and the first device The φ first detecting device 122 can separately provide the analysis function of the side result, and the process information is immediately transmitted back to the 峨 processing device] 16 and the 杂 贞 贞 , , ,, to instantly adjust the k-throic beam m and Process parameters of the second laser beam m. The rapid thermal processing process and apparatus of the present invention can be applied to a millisecond laser non-refining annealing process or a f (four) rapid heating and cooling process towel. In contrast to the prior art, the present invention utilizes a method in which a laser beam is used to heat the substrate with a heating pad for the purpose of heating the substrate first. Since the present invention can only partially preheat the substrate by the method of preheating the laser beam, only part of the substrate is heated, whether it is the first laser beam preheating performed first or the second laser beam millisecond heating process performed later. The state, while the rest of the substrate is still maintained at a low temperature or a temperature, can effectively avoid the problem of substrate fragmentation caused by thermal stress. Moreover, the use of a laser beam can quickly preheat the substrate. Compared with the conventional method of using a heating pad, it is necessary to preheat the wafer for a long time and fully heat the wafer for a long time, and the present invention can reduce the thermal operation of the image. It can avoid the problems of uneven heating of the substrate caused by the use of heated crucible, uniformity and sheet resistance. Furthermore, it is customary to use a heating pad to preheat the substrate. If 16 1361465 needs to modify the process environment, it may be necessary to design a hardware design of the miscellaneous modification and difficulty. However, this (four) flip has a vertical processing device. Instantly understand the heating condition of the substrate 'can be _ the parameter setting of the whole beam, _ can immediately control the problem of the 4 impurities and temperature (four) of the substrate, and the miscellaneous, can also provide good age. Therefore, in summary (4), this (4) fast processing process and a rapid heat treatment device can effectively provide a good heat treatment environment, reduce equipment costs and greatly improve mass production efficiency. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention are within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figs. 1 to 5 are schematic views showing a first embodiment of a rapid thermal processing process and a rapid thermal processing according to the present invention. Fig. 6 is a schematic view showing an embodiment of the rapid thermal processing process and the rapid thermal processing apparatus of the present invention. A picture of Fig. 7 is a schematic diagram of an embodiment of the rapid processing of the financial treatment of the county. A 12 semiconductor wafer 16 gate [Major component symbol description] 10 substrate 14 MOS transistor region 18 gate dielectric layer 17 1361465

20、 20, 源極/汲極延伸摻雜區域 22 側壁子 24 源極/汲極摻雜區域 30 快速熱處理裝置 32 加熱系統 34 溫度回饋控制系統 36 雷射裝置 38 第一雷射光束 38a 雷射光束掃瞄路徑 40 第二雷射光束 40a 雷射光束掃瞄路徑 42 雷射控制偵測器 44 訊號處理裝置 46 偵測裝置 100 快速熱處理裝置 102 加熱系統 104 溫度回饋控制系統進 106 雷射控制偵測器 108 第一雷射裝置 110 第二雷射裝置 112 第一雷射光束 114 第二雷射光束 116 訊號處理裝置 118 偵測裝置 120 第一偵測裝置 122 第二偵測裝置 130 基底20, 20, source/drain extension doping region 22 sidewall spacer 24 source/drain doping region 30 rapid thermal processing device 32 heating system 34 temperature feedback control system 36 laser device 38 first laser beam 38a laser Beam scanning path 40 Second laser beam 40a Laser beam scanning path 42 Laser control detector 44 Signal processing device 46 Detection device 100 Rapid heat treatment device 102 Heating system 104 Temperature feedback control system into 106 Laser control Detector 108 first laser device 110 second laser device 112 first laser beam 114 second laser beam 116 signal processing device 118 detecting device 120 first detecting device 122 second detecting device 130 substrate

1818

Claims (1)

13614651361465 十、申請專利範圍: 該方法包含有: I —種快速熱處理製程之方法 提供一基底; 利用 第一雷射光束對該基底之至少—第—部份進行 熱製程,以將該基底加熱至一第—溫度;以及 丨頂 利用一第二錄絲對被雜後之該基部— 快速升溢製程,以將該基底升溫至—第二溫度,並同: 雷射t束義紅至少士部分進行該局部 I▲程,之後翻_第二雷射光讀難後之該第二 部分進㈣快速升溫製程,射該第二溫度高於該第—溫 度。 '皿 2. t申請專利範圍第1項所述之方法,其中該第—雷射光束之光 尺寸feu約大於該第二雷射光束之光束尺寸範圍。 3· 2請專利範圍第丨項所述之方法,其中該快速升溫製程包含 —耄秒雷射雜融退火(mseelasernQIMneltanneal)製程。 19 1361465 換頁 6· 翻第1彻述之方法,針麵行郎部預敎制 該基底之其他部分係維持於-低溫I 程或該快速升溫製程時, 態 8. 1項所述之方法,其中該快速_程係將以土 _ 部錄料溫至大於約咖。。之溫度。 9. =梅_ 8細咖,爾溫製程係將 °〆基底之該第—部份快速升溫至大於約13GG0C之溫度。 10. 如申凊專利範圍第1項所述之方法,其中該局部預熱製程係將 該基底之該第-部份局部升溫至約至鳩c之溫度。 η.如帽專利範圍第i項所述之方法,其中該快速熱處理製程另 匕3 k供自動功率控制(aut〇matic p〇wer〇〇此〇1,Ape)裝 置’以分別即時調整該局部預熱製程以及該快速升溫製程之製 程參數。 11如申請專概圍第n撕述之方法,其中該自動功率控織 20 J S 1361465 101年1月16日修正替換頁 置匕3偵/則裝置’用來即時細該局部預熱製程以及該快速 升溫製程之加熱效果。 13·如申請專利範_2項所述之方法,其中該自動功率控繼 置另匕3 理裂置,用來處職侧裝置之侧結果, 以進-步控制調整該局部預熱製程以及該快速升溫製程。 κ如申請專利範圍第i項所述之方法,其中該基底包含一半導體 =底’而雜速升溫製程係於該半導體基絲面形成一超淺接 合”面 Ultra shallow jUneti〇n,TJSJ)。 15. 纖㈣1項所述之方法,射祕絲面包含一非 S而該快速升溫製程係使該非晶石夕層形成一低溫多晶矽 16.—種快速熱處理裝置,其包含有: 第1= ι提供—第—雷射光束與一第二雷射光束,且該 …射光束係用來對一預定部位進行一局部的預轨製 溫製程 自動功率控制裝置, 料束_綠____預定部位 雷’其中該第-雷射光束與該第二 一.【:同域作’以分別進行_熱製程與該快速升 能 即時偵測該預_程或該快速升溫製 21 1361465 程,以 數設定 即時調校該第一雷射光束與該第二 1〇1 羊 1 Β Ί —日修正替換頁 雷射光束之製程參 17. 如申請專鄕圍第16項之祕熱處理 Ϊ含有1姆置,可產找第1觀麵鄕 18.Η=:==:=: 19 W讀控測li,絲控制該第—f射光束或 雷射光束之製程參數。 / / — 20. 如申睛專利翻第16項之快速熱處理裝置,其巾該自動功 控制裝置包含-裝置,用來即時_該預 速升溫製程。这决 21‘如申請專利範圍第20項之快速熱處理裝置,其中該自動功率 =制褒置另包含-訊號處理裝置,用來處理該偵職置之侦測 、”《果’以進-步控咖整該局部職餘以及該快速升溫制 程。 衣 101年1月16日修正替換頁 22·如申請專利範圍第21之快速熱處理裝置,其中該訊號處理裝 .置可接_制裝置所傳來之減,以運算辦_雷射光束或 該第二雷射光束之製程參數偏差值。 23·如申請專利範圍第16項之快速熱處理裝置,其中該自動功率 控制裝置包含二損測裝置,分別用來即時债測該預熱製程以及 該快迷升溫製程。 24.如申請專利範圍第16項之快速熱處理裝置,其中該第一雷射 光朿之光束尺寸範圍約大於該第二雷射光束之光束尺寸範圍。X. Patent Application Range: The method comprises: I - a rapid thermal processing process providing a substrate; using at least a first portion of the substrate by a first laser beam to heat the substrate to a a first temperature; and the dome uses a second recording pair to bury the base - a rapid overfill process to raise the substrate to a second temperature, and the laser beam is at least a portion of the red The partial I ▲ process, after the second laser light reading after the second part of the (four) rapid heating process, the second temperature is higher than the first temperature. The method of claim 1, wherein the first laser beam has a light size feu greater than a beam size range of the second laser beam. The method of claim 2, wherein the rapid heating process comprises a mseelasern QIMneltanne process. 19 1361465 翻翻6· Turning to the method of the first detailed description, the method of the 8.1, the method described in item 8.1, is carried out by the accommodating portion of the slab, and the other portion of the substrate is maintained at the low temperature I process or the rapid heating process. Among them, the fast _ cheng will be warmed to more than about café. . The temperature. 9. = Mei _ 8 fine coffee, Erwin process will quickly heat the first part of the base to a temperature greater than about 13GG0C. 10. The method of claim 1, wherein the partial preheating process locally heats the first portion of the substrate to a temperature of about 鸠c. η. The method of claim 1, wherein the rapid thermal processing process is further provided for automatic power control (automatic power control (Ape) device) to adjust the local portion separately The preheating process and the process parameters of the rapid heating process. 11If the application for the n-th tearing method is applied, the automatic power control weaving 20 JS 1361465, January 16, the revised replacement page is set to 3, the device is used to immediately fine-tune the local preheating process and The heating effect of the rapid heating process. 13. The method of claim 2, wherein the automatic power control is further disposed to be used for the side result of the service side device, and the local preheating process is adjusted by the step control. The rapid heating process. κ. The method of claim i, wherein the substrate comprises a semiconductor=bottom and the hybrid heating process is performed on the semiconductor base surface to form an ultra-shallow junction surface (Ultra shallow jUneti〇n, TJSJ). 15. The method of item (4), wherein the secret surface comprises a non-S and the rapid heating process forms the amorphous layer to form a low temperature polycrystalline crucible. The rapid thermal processing apparatus comprises: 1= ι Providing a first-laser beam and a second laser beam, and the beam is used to perform a partial pre-tracking temperature control automatic power control device for a predetermined portion, the bundle _ green ____ predetermined portion Ray's the first-laser beam and the second one. [: in the same domain as 'to perform the _thermal process and the fast-energy to detect the pre-process or the rapid heating system 21 1361465 process, respectively Set the process to adjust the first laser beam and the second 1〇1 sheep 1 Β 日 日 替换 替换 替换 替换 修正 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 , can find the first viewing area 鄕18.Η=:==:=: 19 The W read and control test li, the wire controls the process parameters of the first-f beam or the laser beam. / / - 20. The rapid-heat treatment device of the claim 16 is applied to the automatic power control device. For the instant _ the pre-speed heating process. This is 21', as in the rapid heat treatment device of claim 20, wherein the automatic power=system further includes a signal processing device for processing the Detective Detection, "fruit" into the step-by-step control of the partial job and the rapid heating process. Modified on January 16, 2003, the replacement page 22. The rapid heat treatment device of claim 21, wherein the signal processing device is provided with a subtraction from the device, to calculate the laser beam or the The process parameter deviation value of the second laser beam. 23. The rapid thermal processing apparatus of claim 16, wherein the automatic power control device comprises two damage detecting devices for respectively measuring the preheating process and the fast heating process. 24. The rapid thermal processing apparatus of claim 16, wherein the first laser aperture has a beam size range greater than a beam size range of the second laser beam. S - 23S - 23
TW96107390A 2007-03-03 2007-03-03 Rapid thermal process method and rapid thermal process device TWI361465B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96107390A TWI361465B (en) 2007-03-03 2007-03-03 Rapid thermal process method and rapid thermal process device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96107390A TWI361465B (en) 2007-03-03 2007-03-03 Rapid thermal process method and rapid thermal process device

Publications (2)

Publication Number Publication Date
TW200837836A TW200837836A (en) 2008-09-16
TWI361465B true TWI361465B (en) 2012-04-01

Family

ID=44820340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96107390A TWI361465B (en) 2007-03-03 2007-03-03 Rapid thermal process method and rapid thermal process device

Country Status (1)

Country Link
TW (1) TWI361465B (en)

Also Published As

Publication number Publication date
TW200837836A (en) 2008-09-16

Similar Documents

Publication Publication Date Title
US7776728B2 (en) Rapid thermal process method and rapid thermal process device
TW557397B (en) Thin film transistor and liquid crystal display device
TW457553B (en) Process for producing thin film semiconductor device and laser irradiation apparatus
TWI282126B (en) Method for manufacturing semiconductor device
TW384506B (en) Formation of ultra-shallow semiconductor junction using microwave annealing
JP5517396B2 (en) Laser thermal annealing of lightly doped silicon substrates
TWI497600B (en) Ultrafast laser annealing with reduced pattern density effects in integrated circuit fabrication
CN101459057B (en) Laser annealing equipment and annealing process for semi-conductor manufacturing
JP5094825B2 (en) Laser thermal annealing of lightly doped silicon substrates.
CN105719958A (en) Laser annealing systems and methods with ultra-short dwell times
TW201017797A (en) Thermal processing of substrates with pre-and post-spike temperature control
TW200303584A (en) Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor deviceusing the laser apparatus, and electronic equipment
TW569351B (en) Excimer laser anneal apparatus and the application of the same
US7737036B2 (en) Integrated circuit fabrication process with minimal post-laser annealing dopant deactivation
TWI361465B (en) Rapid thermal process method and rapid thermal process device
JP3986342B2 (en) Substrate heat treatment equipment
JP4974425B2 (en) Method for manufacturing semiconductor device
JP4387111B2 (en) Method for manufacturing semiconductor device
JP2003209054A (en) Heat treatment method and apparatus for substrate
JP4568000B2 (en) Manufacturing method of semiconductor thin film
US20090042353A1 (en) Integrated circuit fabrication process for a high melting temperature silicide with minimal post-laser annealing dopant deactivation
US6596612B2 (en) Method for manufacturing semiconductor circuit
JP3311522B2 (en) Method for manufacturing semiconductor device
US7863193B2 (en) Integrated circuit fabrication process using a compression cap layer in forming a silicide with minimal post-laser annealing dopant deactivation
JP2005214726A (en) Light-intensity distribution detection method, light-intensity distribution detecting device, annealing device, and annealing method