TWI361142B - - Google Patents

Download PDF

Info

Publication number
TWI361142B
TWI361142B TW96141869A TW96141869A TWI361142B TW I361142 B TWI361142 B TW I361142B TW 96141869 A TW96141869 A TW 96141869A TW 96141869 A TW96141869 A TW 96141869A TW I361142 B TWI361142 B TW I361142B
Authority
TW
Taiwan
Prior art keywords
substrate
glass
solution
mixed
self
Prior art date
Application number
TW96141869A
Other languages
Chinese (zh)
Other versions
TW200920602A (en
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW96141869A priority Critical patent/TW200920602A/en
Publication of TW200920602A publication Critical patent/TW200920602A/en
Application granted granted Critical
Publication of TWI361142B publication Critical patent/TWI361142B/zh

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明係有關一種混合自組裝分子薄膜及其製法,特別是 才曰種具有十八跪基二曱氧基石夕烧及十六院基硫醇之混合 自組裴分子薄膜,其兼具疏水性佳、透光性高及耐磨損性高等 優點。 【先前技術】 在視覺效果日益受到重視的時代中,產業生產之顯示元件 在使用期間的可靠度與美觀要求愈來愈重要。由於光電系統與 零件的快速發展,為了滿足上述要求,使得在低負荷下之塗層 機械性質(黏附、磨擦與磨損)研究越來越重要。塗層一般雖然 均具有抗磨損特性,但由於顆粒與水份在大氣環境下,容易沾 在元件.表面使其磨損與透光性效應變差,因此如何在硬塗層上 進行分子薄膜之表面改質’使其減少環境對鍍層表面之緩慢傷 害,並且不傷害本身之性能展現,為商品極待解決之問題。 一般光學元件需具備良好之透光率及疏水性,而是否具有 良好的疏水性在於接觸角及黏附力的大小。參閱第一圖,其顯 示兩滴液滴’左邊之液滴具有較大之接觸角0 1,而右邊之液 滴具有較小之接觸角02。接觸角太小,元件表面黏附力大, 代表著親水性,生活中的細微顆粒及水份在大氣環境中,容易 沾在元件表面使其磨損及透光性變差,當接觸角愈大,元件表 面枯附力小’代表著疏水性,表面不易沾染細微顆粒及水份, 疋件較容If轉其表面潔淨度及透紐。如第一表所示,一般 玻璃及玻璃皆具有良好之透光率,但表面接觸角太小(如第二 表),導致表面黏附力大(如第三表),故,疏水性不佳。 第一表 一般傳統玻璃之透光率的比較表 材料 玻璃 玻璃 透光率(%) 99.25 91.55 第二表 一般傳統玻璃之接觸角的比較表 材料 Μ奶玻璃 玻璃 接觸角 (deg) 66 19.7 第三表 一般傳統玻璃之黏附力的比較表 材料 玻璃 λ·ο2玻璃 黏附力 (ηΝ) 300 500 為解決光學元件表面之接觸角問題,習知技術係利用單一 的自、且裝刀子薄膜(Self-assembled Monolayers,簡稱 SAMs, 如第一圖所不)塗佈於一材料(例如在如2玻璃上或是邮玻璃 上)之表面上進行表面改質,該自組裝分子薄膜係由複數個鏈 狀結構80所組成,每一鏈狀結構8〇具有一前端官能基81(連 結於一基材90上)、一中間碳鏈82及一末端官能機83。習知 常見之單一的自組裝分子薄膜有: (1) 正十八烧基三氯矽烷: (Octadecy1tr i ch1oros i1ane) (CH3(CH2)nSiCl3),簡稱 OTS; (2) 十八烷基三曱氧基矽烷: (Octadecy11r i methoxys i1ane) (CH3(CH2)nSi(0CH3)3),簡稱〇DS ; (3) 1-十六烷基硫醇: (1-Hexadecane thiol) (CH3(CH2)15SH),簡稱 HDT。 如第四表、第五表、第六表、第七表及第三圖(其中,Li 係為HDT曲線,L2係為0TS曲線,L3係為0DS曲線,L4係為 曲線,L5係為λό2曲線)所示,以傳統技術中之1_十六烧 基硫醇(HDT)、正十八烧基三氣碎烧(0TS)、及十八烧基三甲氧 基矽烷(0DS)做表面改質後,其接觸角皆大幅提升。但是,仍 1361142 有一些缺點,當卜十六烷基硫醇於玻璃表面時,接觸角太 小,而該正十八烷基三氯矽烷及該十八烷基三甲氧基矽烷於 叫坡姑面時’透絲較不理想,且該正十八絲三氯魏 其耐磨性太差。 第四表 玻璃與習知自組裝分子薄膜之接觸角的比較表 材料 綠f2玻璃 OTS於地f2 玻璃表面 接觸角 (deg) 66 111.4 ODS 於 MgF2 玻璃表面 106.4 HDT 於 MgF2 玻璃表面 95.1 第五表 沿〇2玻璃與習知自組裝分子薄膜之接觸角的比較表 材料 Si02 OTS 於 λό2 玻璃表面 0DS於如2 玻璃表面 HDT於汾〇2 玻璃表面 接觸角 (deg) 19.7 111.4 106.4 68.4 第六表 玻璃與習知自組裝分子薄膜之透光率的比較表 材料 MgF2 0TS 於 μ#2 玻璃表面 0DS於从奶 玻璃表面 玻璃表面 透光率〇〇 99.2 93.6 94.8 98.0 8 1361142 第七表 舶2玻璃與f知自喊分子細之透光率的比較表 材料 &〇2 ODS於聊2丨HDT於聊2IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a hybrid self-assembling molecular film and a method for preparing the same, and in particular to a seed having a octadecyl quinone oxime and a hexavalent thiol The self-assembled ruthenium molecular film has the advantages of good hydrophobicity, high light transmittance and high wear resistance. [Prior Art] In an era in which visual effects are increasingly valued, the reliability and aesthetic requirements of industrially produced display elements during use are becoming more and more important. Due to the rapid development of photovoltaic systems and components, in order to meet the above requirements, research on the mechanical properties (adhesion, friction and wear) of coatings under low load is becoming more and more important. Although the coatings generally have anti-wear properties, since the particles and moisture are easily adhered to the components in the atmosphere, the surface is worn and the light transmissive effect is deteriorated, so how to perform the surface of the molecular film on the hard coat layer Modification 'to reduce the environmental damage to the surface of the coating, and not to hurt the performance of its own performance, is a problem to be solved. Generally, optical components need to have good light transmittance and hydrophobicity, and whether they have good hydrophobicity are the contact angle and the adhesion force. Referring to the first figure, it is shown that the droplets on the left of the two droplets have a larger contact angle of 0 1 and the droplets on the right have a smaller contact angle 02. The contact angle is too small, the surface adhesion of the component is large, and it represents hydrophilicity. The fine particles and water in the living environment are easily stained on the surface of the component to cause wear and light transmission, and the larger the contact angle, The surface of the component has a small adhesion force, which means it is hydrophobic, and the surface is not easy to be contaminated with fine particles and moisture. The surface of the component is more suitable for the surface to be clean and transparent. As shown in the first table, generally glass and glass have good light transmittance, but the surface contact angle is too small (such as the second table), resulting in a large surface adhesion (such as the third table), so the hydrophobicity is not good. . The first table is generally a comparison of the transmittance of conventional glass. The material glass glass transmittance (%) 99.25 91.55 The second table is a comparison of the contact angle of the conventional glass. The contact angle of the milk glass glass (deg) 66 19.7 Third Table Comparison of Adhesion Forces of Conventional Glass Materials Glass λ·ο2 Glass Adhesion (ηΝ) 300 500 In order to solve the contact angle problem of optical components, the conventional technology utilizes a single self-assembled and self-assembled film (Self-assembled). Monolayers (abbreviated as SAMs, as shown in the first figure) are surface-modified on a surface of a material such as, for example, 2 glass or postal glass, which is composed of a plurality of chain structures. 80. Each chain structure 8 has a front end functional group 81 (attached to a substrate 90), an intermediate carbon chain 82, and an end functioning machine 83. Common single self-assembled molecular films are: (1) n-octadecane trichloromethane: (Octadecy1tr i ch1oros i1ane) (CH3(CH2)nSiCl3), referred to as OTS; (2) octadecyl triazine Oxydecane: (Octadecy11r i methoxys i1ane) (CH3(CH2)nSi(0CH3)3), abbreviated as 〇DS; (3) 1-hexadecyl mercaptan: (1-Hexadecane thiol) (CH3(CH2)15SH ), referred to as HDT. For example, the fourth table, the fifth table, the sixth table, the seventh table, and the third chart (where Li is the HDT curve, L2 is the 0TS curve, L3 is the 0DS curve, L4 is the curve, and L5 is the λό2 Curve) shows the surface modification of 1_hexadecyl mercaptan (HDT), n-octadecyl trigasene (0TS), and octadecyl trimethoxydecane (0DS) in the conventional technology. After the quality, the contact angle is greatly improved. However, there are still some disadvantages in 1361442, when the hexadecyl mercaptan is on the glass surface, the contact angle is too small, and the n-octadecyltrichloromethane and the octadecyltrimethoxynonane are called When the surface is 'transparent, the silk is less than ideal, and the wear resistance of the eight-dimensional trichloro-wei is too poor. Comparison of contact angles between the fourth watch glass and the conventional self-assembled molecular film. Table material Green f2 glass OTS at ground f2 Glass surface contact angle (deg) 66 111.4 ODS on MgF2 Glass surface 106.4 HDT on MgF2 glass surface 95.1 Fifth surface edge Comparison of contact angles between 〇2 glass and conventional self-assembled molecular films. Table material SiO 2 OTS on λ ό 2 glass surface 0DS as in 2 glass surface HDT on 汾〇 2 glass surface contact angle (deg) 19.7 111.4 106.4 68.4 Comparison of light transmittance of conventional self-assembled molecular films. Table material MgF2 0TS on μ#2 Glass surface 0DS on glass surface transmittance from milk glass surface 〇〇99.2 93.6 94.8 98.0 8 1361142 Seventh table 2 glass and f Self-examination molecular fine transmittance comparison table material & 〇 2 ODS in chat 2 丨 HDT chat 2

因此’有必要研發新產品’以解決上述缺點及問題。 【發明内容】 本發月之主要目的,在於提供―種混合自組I分子薄膜之 製法’其具有疏水性佳。 本發月之★目的,在於提供—種混合自組裝分子薄膜之 製法,其具有透光率高。 本發明之又-目的’在於提供—種混合自組裝分子薄膜之 製法,其具有耐磨損性佳。 本發明係提供-觀合自_分子_之製法其混合自 組裝分子薄膜係包括: 一基材; -表面,該表面分子薄 1十六貌基硫醇所組 一表面分子薄膜,其係設於該基材之表 膜之成份係由十八烷基三甲氧基矽烷及 成。 一·準備基材步驟; 二.前處理步驟; 本發明之混合自_分子_之製法包括下列步驟: 9 三.置入混合溶液步驟; 四·清理步驟;以及 五·完成步驟。 本發明之上述目的與優點,不難從下述所選用實施例之詳 細說明與附圖中,獲得深入瞭解。 兹以下列實施例並配合圖式詳細說明本發明於後: 【實施方式】 本發明係提供一種混合自組裝分子薄膜之製法,如第四圖 所示,其混合自組裝分子薄膜係包括: 一基材10,係可為汾〇2玻璃基材、玻璃基材或其它透 光固體基材; 一表面分子薄膜20,係設於該基材10之表面且厚度為lnm 至9nm間(以2nm至5nm為宜),該表面分子薄膜2〇之成份係 由十八烷基三甲氧基石夕烷及1-十六烷基硫醇所組成。 更詳細的說,本發明在研發之過程中,係以十八烷基三甲 氧基矽烷(ODS)、l-十六烷基硫醇(hdT)及正十八烷基三氯矽烷 (OTS)三種自組裝分子薄膜中之兩種作混合,分別係為 ODS+HDT、DTS+HDT及OTS+ODS三種組合,先進行實驗分析。 由第八表、第九表、第十表及第十一表可知,該三種組合 之混合自組裝分子薄膜於沿〇2玻璃及玻璃兩種材質表面上 改質後’接觸角皆大大提升,使其更具疏水性,而改質後之黏 附力的降低亦是相當的明顯’使表面不易絲灰塵或顆粒(如 五圖所不,自組裝分子膜的表面之末端官能基係為長鏈狀碳 之鏈狀結構80 ’具有高度柔順度,且組裝縣面接觸角 大&黏附力低’故’不易沾染灰塵或顆粒);但DTS+HDT混合 自’卫裝分子薄膜於叫玻璃及寧2玻璃兩種材質表面上改質後 透光率較不理想。然而,眺雖有最佳之接觸角但於叫 玻璃時表面時透絲林理想。而DTS+HDT及GTS+GDS於改質 後耐磨損性較為不佳。因此,最域定的是瞻混合自組 ㈣膜’(ODS+HDT)接觸肖及飾力雜姐合組裝膜中不是 最好的,但其接觸角均超過100度,且其透光率及表面粗糙 度,都是混合組裝膜中最好的,適用於光學元件之表面改質 上。故,本發明之保護標的只限定在〇DS+HDT之混合自組裝膜。 第八表 本發明於m#2玻璃之表面改質前後之接觸角的比較表 材料 MgF卜 OTS + 0DS於 MgF2玻璃表面 ODS + HDT於 叫朽玻璃表面 ODS + HDT於 从#2玻璃表面 接觸角 (deg) 66 118.8 114.9 106.2 1361142 第九表 本發明於侃?2玻璃之表面改質前後之接觸角的比較表 材料 Si02 OTS + ODS 於 玻璃表 面 ODS + HDT於 &〇2玻璃表面 ODS + HDT於 汾_〇2玻璃表面 接觸角 (deg) 19.7 118.7 114.6 106.6 第十表 本發明於MgF2玻璃之表面改質前後之黏附力的比較表 材料 MgF2 OTS + ODS於 Mg/^玻璃表面 ODS + HDT於 耐朽玻璃表面 ODS + HDT於 Μ奸;玻璃表面 姑附力 (nN) 330 78 121 125 第Η 表 本發明於沉>2玻璃之表面改質前後之黏附力的比較表 材料 Si02 0TS+0DS於 玻璃表 面 ODS + HDT於 &〇2玻璃表面 ODS + HDT於 Si〇2破璃 表面 黏附力 (Νη) 500 78 130 128 12 1361142 如第六圖所示,其混合自組裝分子細之製法包括下列步 驟: 一.準備基材步驟31 :準備一基材1〇 ; 二·前處理步驟32 :去除該紐10表面油脂及污染物, 然後清洗乾淨’例如可將基材1Q置入去離子水中經超音波振 盪10分鐘,再用氮氣將其吹乾; 三·置入混合溶液步驟33 :將該基材1〇置入由十八烷基 二曱氧基矽烷及1-十六烷基硫醇調配而成之混合溶液中,使 混合溶液於該基材1〇表面上鏈結,形成表面分子薄膜2〇 ;更 詳細來說,該混合溶液的製作係將十八烷基三曱氧基矽烷溶於 酒精中形成一第一溶液,而1_十六烧基硫醇則溶於庚烷中形 成一第二溶液,且該第一溶液與該第二溶液之莫耳濃度係控制 在5mM至10mM間,再將該第一溶液及該第二溶液混合即成為 一混合溶液,該混合溶液之莫耳濃度係為5mM,且該混合溶液 在恆溫控制箱設定溫度為25它至35艺之環境下,基材1〇浸泡 時間為五至七小時,此時,可得最穩定之接觸角及黏附力; 四·清理步驟34 :將該基材1〇於混合溶液中取出並加以 清洗; 五·完成步驟35 :完成前述之步驟後,於該基材1〇上獲 得由十八烧基二曱氧基石夕烧及1_十六烧基硫醇所組成之表面 分子薄膜。 13 1361142 综上所述,本發明之優點及功效歸納為: [1] 疏水性佳。-般而言’自組裝分子_之接觸角愈 大,其疏水性性愈佳,如第八表及第九表所示,本發明所採用 之ODS砸混合自組裝分子薄膜於邮玻璃表面上改質後,接 觸角角度大大提升約6G% ’且在柳2玻璃表面改質後,效果更 加明顯,接觸角角度提升五倍以上,換言之,疏水性亦大大提 升。 [2] 透光性佳。由第十二表及第十三表可知,本發明採用 之0DS+HDT混合自組裝分子薄膜於叫玻璃及M奶玻璃兩種材 質表面上改質後,仍維持原先玻璃及Μ#2玻璃之高透光 率,沒有明顯的變化,故,該ODS+HDT混合自組裝分子薄膜之 透光性佳。 第十二表 本發明於A<gF2玻璃之表面改質前後之透光率的比較表 材料 MgF2 OTS + ODS於 从#2玻璃表面 ODS + HDT於 从#2玻璃表面 ODS + HDT於 MgF2^璃表面 透光率(%) 99.2 94.4 82.1 97.4 14 第十三表 本發明於S/02玻璃之表面改質前後之透光性的比較表 材料 Si02 OTS + 0DS 於 玻璃表 面 ODS + HDT於 &〇2玻璃表面 ODS + HDT於 •5/〇2玻璃表面 透光率〇〇 91.5 80.5 63.9 90.3 [3]耐磨性佳。由第七圖(其中,L4係為曲線,L5係 為咖2曲線,L6係為OTS+ODS曲線,L7係為ODS+HDT曲線,L8 係為OTS+HDT曲線)可知,本發明所採用之0DS+HDT混合自組 裴分子薄膜於λό2玻璃及m#2玻璃兩種材質表面上改質後,仍 具有一定之耐磨性,且優於傳統技術之自組裝分子薄膜,故, 耐磨損性佳。 由以上詳細說明,可使熟知本項技藝者明瞭本發明的確可 達成前述目的,實已符合專利法之規定,纽出發日辑利申請。 【圖式簡單說明】 第一圖係元件表面之接觸角的示意圖 第二圖係自組裝分子薄膜之分子層組成的示意圖 第三圖=較-般傳統玻璃與自組裝分子細之耐磨損的示 第四圖係本發明之混合自組裝分子薄膜的示意圖 第五圖縣發狀自崎分子縣面之分子的示意圖 第六圖係本發明之製作方法之流程的示_ " 1361142 第七圖係比較本發明與一般傳統玻璃之耐磨損的示意圖 【主要元件符號說明】 10、90基材 20表面分子薄膜 31準備基材步驟 32前處理步驟 33置入混合溶液步驟 34清理步驟 35完成步驟 80鏈狀結構 81前端官能基 82中間破鏈 83末端官能機 LI HDT曲線 L2 OTS曲線 L3 ODS曲線 L4 MgF2曲線 L5及〇2曲線 L6 OTS +ODS 曲線 L7 ODS+HDT 曲線 L8 OTS +HDT 曲線 0卜0 2接觸角 16Therefore, it is necessary to develop new products to solve the above shortcomings and problems. SUMMARY OF THE INVENTION The main purpose of this month is to provide a method for preparing a mixed molecular I molecular film, which has good hydrophobicity. The purpose of this month is to provide a method for mixing a self-assembled molecular film having a high light transmittance. A further object of the present invention is to provide a method of mixing a self-assembled molecular film which is excellent in abrasion resistance. The invention provides a method for preparing a self-assembled molecular film comprising: a substrate; a surface, the surface molecule is a thin film of a surface molecule of a group of fibrils; The composition of the film on the substrate is composed of octadecyltrimethoxydecane. 1. Preparation of substrate step; 2. Pretreatment step; The method for preparing the mixture from the invention comprises the following steps: 9 3. placing the mixed solution step; 4. cleaning step; and 5. completing the step. The above objects and advantages of the present invention will be readily understood from the following detailed description of the preferred embodiments illustrated herein. The present invention will be described in detail below with reference to the following embodiments: [Embodiment] The present invention provides a method for preparing a hybrid self-assembled molecular film. As shown in the fourth figure, the mixed self-assembled molecular film system includes: The substrate 10 may be a 汾〇2 glass substrate, a glass substrate or other light transmissive solid substrate; a surface molecular film 20 is disposed on the surface of the substrate 10 and has a thickness of between 1 nm and 9 nm (at 2 nm). Preferably, the surface molecular film is composed of octadecyltrimethoxy oxalate and 1-hexadecyl mercaptan. In more detail, the invention is developed in the process of octadecyltrimethoxydecane (ODS), l-hexadecyl mercaptan (hdT) and n-octadecyltrichloromethane (OTS). Two kinds of three self-assembled molecular films were mixed, which were ODS+HDT, DTS+HDT and OTS+ODS, respectively. It can be seen from the eighth table, the ninth table, the tenth table and the eleventh table that the contact angles of the three kinds of mixed self-assembled molecular films are greatly improved after being modified along the surface of the 〇2 glass and glass materials. It is more hydrophobic, and the reduction of adhesion after modification is quite obvious. 'The surface is not easy to be dusty or granules (as shown in Figure 5, the end functional group of the surface of the self-assembled molecular film is long chain). The carbon-like chain structure 80' has a high degree of flexibility, and the assembled contact angle of the county is large & the adhesion is low, so it is not easy to be contaminated with dust or particles; but DTS+HDT is mixed with the 'protective molecular film' called glass and ning 2 The transmittance of the two materials on the surface of the glass is less than ideal. However, although it has the best contact angle, it is ideal for silky leaves when it is called glass. DTS+HDT and GTS+GDS have poor wear resistance after upgrading. Therefore, the most specific is that the hybrid self-assembled (four) film '(ODS + HDT) contact Shaw and Shili mixed sister is not the best in the assembled film, but the contact angle is more than 100 degrees, and its light transmittance and The surface roughness is the best among the mixed assembly films and is suitable for surface modification of optical components. Therefore, the protection target of the present invention is limited to the hybrid self-assembled film of 〇DS+HDT. The eighth table of the present invention is a comparison of the contact angles of the surface of the m#2 glass before and after the modification. The material MgFb OTS + 0DS on the surface of the MgF2 glass ODS + HDT on the glass surface ODS + HDT from the contact angle of the glass surface of #2 (deg) 66 118.8 114.9 106.2 1361142 Ninth table Comparison of contact angles before and after surface modification of 侃?2 glass of the present invention Material SiO2 OTS + ODS on glass surface ODS + HDT on & 〇 2 glass surface ODS + HDT汾 〇 〇 2 glass surface contact angle (deg) 19.7 118.7 114.6 106.6 The tenth table of the present invention on the surface of the MgF2 glass before and after the modification of the adhesion force material MgF2 OTS + ODS on the Mg / ^ glass surface ODS + HDT Oxidized glass surface ODS + HDT in smuggling; glass surface abutment force (nN) 330 78 121 125 Η Η Η 本 本 & & & & & & & & & & & & & & & & & & & & & & & & & Si Si Si Si Si Si Si Si Si Si Si Si Si Glass surface ODS + HDT on & 〇 2 glass surface ODS + HDT on Si 〇 2 glass surface adhesion (Νη) 500 78 130 128 12 1361142 As shown in the sixth figure, the method of mixing self-assembled molecules is as follows Steps: 1. Prepare the base Step 31: Prepare a substrate 1 〇; 2. Pre-treatment step 32: remove the grease and contaminants on the surface of the button 10, and then clean it. For example, the substrate 1Q can be placed in deionized water and ultrasonically oscillated for 10 minutes. Blowing it off with nitrogen; 3. Adding the mixed solution Step 33: Putting the substrate into a mixed solution of octadecyldimethoxy decane and 1-hexadecyl thiol The mixed solution is chained on the surface of the substrate to form a surface molecular film 2; more specifically, the mixed solution is prepared by dissolving octadecyltrimethoxydecane in alcohol to form a first a solution, and 1_hexadecyl mercaptan is dissolved in heptane to form a second solution, and the molar concentration of the first solution and the second solution is controlled between 5 mM and 10 mM, and then the first The solution and the second solution are mixed to form a mixed solution having a molar concentration of 5 mM, and the mixed solution is immersed in a substrate at a temperature of 25 to 35 in a constant temperature control box. The time is five to seven hours, at which time the most stable contact angle and adhesion are obtained; 4. Cleaning step 34: the substrate 1 is taken out in the mixed solution and washed; 5. Complete step 35: After the above steps are completed, the octadecylate-based bismuth oxide stone is obtained on the substrate 1 〇 A surface molecular film composed of Xishao and 1_hexadecyl mercaptan. 13 1361142 In summary, the advantages and effects of the present invention are summarized as follows: [1] Good hydrophobicity. Generally speaking, the larger the contact angle of the 'self-assembled molecule', the better the hydrophobicity. As shown in the eighth and ninth tables, the ODS砸 mixed self-assembled molecular film used in the present invention is on the surface of the postal glass. After the modification, the angle of the contact angle is greatly improved by about 6G%', and after the surface modification of the Liu 2 glass, the effect is more obvious, and the contact angle is increased by more than five times, in other words, the hydrophobicity is greatly improved. [2] Good light transmission. It can be seen from the twelfth table and the thirteenth table that the 0DS+HDT hybrid self-assembled molecular film used in the invention is modified on the surface of the glass and the M-milk glass, and the original glass and the enamel #2 glass are maintained. The high light transmittance has no obvious change, so the ODS+HDT mixed self-assembled molecular film has good light transmittance. Twelfth Table The comparison table of the light transmittance before and after the surface modification of the A<gF2 glass of the present invention MgF2 OTS + ODS on the surface of the #2 glass ODS + HDT from the #2 glass surface ODS + HDT to MgF2 Surface light transmittance (%) 99.2 94.4 82.1 97.4 14 Thirteenth table Comparison of light transmittance before and after surface modification of S/02 glass of the present invention Material Si02 OTS + 0DS on glass surface ODS + HDT in & 2 glass surface ODS + HDT on · 5 / 〇 2 glass surface transmittance 〇〇 91.5 80.5 63.9 90.3 [3] good wear resistance. From the seventh figure (wherein L4 is a curve, L5 is a coffee 2 curve, L6 is an OTS+ODS curve, L7 is an ODS+HDT curve, and L8 is an OTS+HDT curve). The 0DS+HDT hybrid self-assembled molecular film has a certain wear resistance after being modified on the surface of λό2 glass and m#2 glass, and is superior to the self-assembled molecular film of the conventional technology, so it is resistant to wear. Good sex. From the above detailed description, it will be apparent to those skilled in the art that the present invention can achieve the foregoing objects and is in accordance with the provisions of the Patent Law. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic diagram of the contact angle of the surface of the component. The second figure is a schematic diagram of the molecular layer composition of the self-assembled molecular film. The third figure is more resistant to wear than the conventional glass and self-assembled molecules. 4 is a schematic view of a hybrid self-assembled molecular film of the present invention. FIG. 5 is a schematic view showing the flow of a molecule of the present invention. FIG. 6 is a diagram showing the flow of the manufacturing method of the present invention _ " 1361142 A comparison of the wear resistance of the present invention and the conventional glass [main element symbol description] 10, 90 substrate 20 surface molecular film 31 preparation of the substrate step 32 pretreatment step 33 placement of the mixed solution step 34 cleaning step 35 completion steps 80 chain structure 81 front end functional group 82 intermediate broken chain 83 end function machine LI HDT curve L2 OTS curve L3 ODS curve L4 MgF2 curve L5 and 〇 2 curve L6 OTS + ODS curve L7 ODS + HDT curve L8 OTS + HDT curve 0 Bu 0 2 contact angle 16

Claims (1)

、申請專利範圍: 1·一種混合自組裝分子薄膜之製法,係包括下列步驟: 一·準備基材步驟:準備一基材; 二.前處理步驟:去除該基材表面油脂及污染物,然後清 洗乾淨; 三.置入混合溶液步驟··將該基材置入由十八垸基三曱氧 基矽烷及1-十六烷基硫醇調配而成之混合溶液中,使 該混合溶液於該基材表面上鏈結,形成表面分子薄 膜,该十八烷基三甲氧基矽烷係溶於酒精中形成一第 一溶液’該1-十六烷基硫醇則溶於庚烷中形成一第二 溶液,該第一溶液與該第二溶液之莫耳濃度係控制在 至10mM間,並由該第一、第二溶液組成該混合溶 液; 四·清理步驟:將該基材從該混合溶液中取出並加以清洗; 五·元成步驟:完成前述之步驟後該基材上即獲得由十八 燒基二甲氧基石夕烷及卜十六烷基硫醇所組成之表面分 子薄膜。 2.如申請專利範圍第1項所述之混合自組裝分子薄膜之製 法,其中,該混合溶液之莫耳濃度係為5遽至1〇π]Μ間,且 該混合溶液在一怪溫控制箱設定溫度為25〇c至3yc之環境 下’該基材浸泡時間為五至七小時。 17Patent application scope: 1. A method for preparing a mixed self-assembled molecular film, comprising the following steps: 1. preparing a substrate step: preparing a substrate; 2. pre-processing step: removing grease and contaminants on the surface of the substrate, and then Cleaned; 3. Placed in a mixed solution step · Place the substrate in a mixed solution prepared from octadecyltrimethoxy decane and 1-hexadecyl thiol to make the mixed solution The surface of the substrate is linked to form a surface molecular film, and the octadecyltrimethoxydecane is dissolved in alcohol to form a first solution. The 1-hexadecyl mercaptan is dissolved in heptane to form a film. a second solution, the molar concentration of the first solution and the second solution is controlled to be between 10 mM, and the mixed solution is composed of the first and second solutions; 4. Cleaning step: the substrate is mixed from the mixture The solution is taken out and washed; a five-component step: after completion of the foregoing steps, a surface molecular film composed of octadecyl dimethoxy oxalate and hexadecyl mercaptan is obtained on the substrate. 2. The method for preparing a mixed self-assembled molecular film according to claim 1, wherein the molar concentration of the mixed solution is between 5 遽 and 1 〇 π], and the mixed solution is controlled at a strange temperature. The substrate is set to a temperature of 25 ° C to 3 yc. The substrate soaking time is five to seven hours. 17
TW96141869A 2007-11-06 2007-11-06 Composite self-assembly molecular thin film and its manufacturing method TW200920602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96141869A TW200920602A (en) 2007-11-06 2007-11-06 Composite self-assembly molecular thin film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96141869A TW200920602A (en) 2007-11-06 2007-11-06 Composite self-assembly molecular thin film and its manufacturing method

Publications (2)

Publication Number Publication Date
TW200920602A TW200920602A (en) 2009-05-16
TWI361142B true TWI361142B (en) 2012-04-01

Family

ID=44727545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96141869A TW200920602A (en) 2007-11-06 2007-11-06 Composite self-assembly molecular thin film and its manufacturing method

Country Status (1)

Country Link
TW (1) TW200920602A (en)

Also Published As

Publication number Publication date
TW200920602A (en) 2009-05-16

Similar Documents

Publication Publication Date Title
CN111163936B (en) Water-and oil-repellent member and method for producing water-and oil-repellent member
JP6305462B2 (en) Sulfonate functional coatings and methods
TWI322894B (en) Plastic lens and manufacturing method of plastic lens
TWI772388B (en) Anti-reflection member and its manufacturing method
US10280315B2 (en) Anti-fouling surface coating materials
TW200934733A (en) Metal oxide complex sol, coating composition and optical member
TWI297032B (en) Films or structural exterior materials using coating composition having self-cleaning property and preparation method thereof
TWI767023B (en) Water repellent member and method of manufacturing the water repellent member
JP6805127B2 (en) Glass plate with coating film and its manufacturing method
Hamada et al. Robust and transparent antifogging polysilsesquioxane film containing a hydroxy group
TWI361142B (en)
WO2022255158A1 (en) Water-repellent, oil-repellent member having anti-microbial, anti-mold, and anti-viral properties, method for producing water-repellent, oil-repellent member, and article
JP4706097B2 (en) Substrate having surface treatment layer and method for producing the same
JP2001205747A (en) Base material having surface treatment layer and method of manufacturing the same
KR102707308B1 (en) Water-repellent absence and method for manufacturing water-repellent absence
JP2017214494A (en) Surface modifier, surface modification method using the same, and surface-modified article
KR20160119804A (en) Easy-clean coating
CN114630871B (en) Alkali-resistant water-repellent member, method for producing same, and method for improving alkali resistance and abrasion resistance of water-repellent member
US11384012B2 (en) Atomized anti-scratching nano-coating for glass surface and method of manufacturing thereof
CN114269868A (en) Water-and oil-repellent member and method for producing water-and oil-repellent member
JPS61215235A (en) Glass of low reflectance having stain resistance
KR20160096496A (en) Method and material for transmittance improvement of substrate surface