TWI361059B - Pulsed ultra-wideband sensor and the method thereof - Google Patents
Pulsed ultra-wideband sensor and the method thereof Download PDFInfo
- Publication number
- TWI361059B TWI361059B TW98110064A TW98110064A TWI361059B TW I361059 B TWI361059 B TW I361059B TW 98110064 A TW98110064 A TW 98110064A TW 98110064 A TW98110064 A TW 98110064A TW I361059 B TWI361059 B TW I361059B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- output
- input
- block
- electronic switch
- Prior art date
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Description
1^105,9 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用以伯測人體生理參數之醫學 儀益,特別係關於-種利用雷達辅助以在靜態或㈣ 下診斷人體生理參數之醫學動狀態 【先前技術】 應用超寬頻雷達之量測裝置可解決諸多傳統量 所無法解決之問題,例如韶宫 聚置 超寬頻感測器可利用非侵入式之 里測方式以減少病患咸垫夕Μ φ 麻〜这木之機率,且超寬頻感測器無需特 疋之實驗室或是特別訓練之操作人員。 ·、 :寬頻感測器可提供大規模燒傷或是具有皮膚疾病之 傳統診斷方式所無法達成之非接觸式之診斷方式。藉 由〜種感測器’病患無需脫衣即可加以診斷而節省診斷^ 間0 在使用安王上,超寬頻感測器亦具有低能量輕射之特1^105,9 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a medical instrument for testing human physiological parameters, in particular, using radar assistance to diagnose a human body in static or (four) Medical dynamic state of physiological parameters [Prior Art] The measurement device using ultra-wideband radar can solve many problems that cannot be solved by traditional quantities. For example, the 韶 聚 聚 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超 超The patient has a salty mat. φ Ma ~ This wood is a chance, and the ultra-wideband sensor does not require special laboratories or specially trained operators. ·, : Broadband sensors provide a non-contact diagnostic method that cannot be achieved by large-scale burns or traditional diagnostic methods for skin diseases. By using a kind of sensor, patients can diagnose and save diagnosis without undressing. ^Between the use of An Wang, the ultra-wideband sensor also has low energy and light radiation.
性。相較於X射線之斷層攝影法,超寬頻感測器所發出之輕 射量減少了數個數量級。 此外,利用超寬頻感測器作為醫療量測儀器時,無需 對量測儀器作全盤神、、古主 、 毋’亦無需使用拋棄式之元件或耗 員式材才斗gj此,維持診斷技術所需之成本也可大幅降 低0 根據現7的分類方式(可見I.Ya.Immoreev於1998年11 月日於 Journal 〇f Bauman's MGTU 之系列 Instrument making^ ^^.^Ultra_wideb^d radars : new possibilities, unique problems, the feature of system或是 I.Ya.immoreev 於 2002 年 11月 2 日於 Applied electronics, Kharkov 第 1卷第 122 至 140 頁所發表之 The possibilities and features of ultra-wideband radio systems ),超寬頻雷達系統係指滿足下 列訊號頻寬條件之雷達:〇.25<(fupper-U/(fupper+fUwer)<1 ’其中fupper和flower分別為該訊號頻寬之上下界。此外,超 寬頻雷達里測糸統之訊说頻寬(fupper-f丨。wer)應大於5〇〇ΜΗζ (可見美國聯邦通訊委員會FCC於2002年4月22曰之ET Docket 98-153 之 First Report and Order)。由於超寬頻雷達 之距離解析度增加,其所發送之訊息内容也增加。 目前各種所熟知的脈衝式超寬頻感測器之電路設計係 應用於監測病患之呼吸器官及心血管系統,例如美國專利 US5,519,400 (公告於1996年5月21號)揭露一種脈衝式超 寬頻感測器’其利用相位碼調變方式(phase c〇de modulation)控制待測物之移動。該裝置之發射天線係應用 短時距脈衝作為參考訊號和激發訊號。該裝置具有一訊號 發射k,該訊號發射端具有一發射天線,並藉以發射頻率 2GHz至10GHz之超寬頻訊號^該裝置具有一時間延遲方塊 ,其產生一控制訊號以決定各脈衝間之時間延遲。該裝置 具有一接收端,該接收端具有一接收天線,其根據該時間 延遲方塊之一觸發訊號(gating signa丨)接收離散之脈衝訊 號。該觸發訊號延遲一發送訊號之接收時間,其中該延遲 之時間等於該發送訊號行經該待測物並反射至該接收天線 所需之時間。該延遲時間決定於該感測器和該待測物間之 1361059 距離。 該時間延遲方塊提供一探測脈衝訊號及一接收脈衝訊 號間所需之延遲。該等脈衝訊號係藉由該時間延遲方塊調 . 變。該調變之訊號係加以編碼以避免鄰近雷達感測器之干 . 擾。該訊號接收端包含一同步方塊以及兩個正交通道,其 中該同步方塊係用以將該訊號接收端和一調變訊號加以同 步。該等正父通道係用以處理一反射訊號,其中一通道係 和一參考訊號操作於同一相位,另一通道和該參考訊號具 有90度之相位差。該等通道之輸出資料係用於後續之分析 。該等通道係根據一高速可控制轉換機制於接收到一反射 訊號時轉換,且各通道皆具有一濾波器和一訊號放大器。 在習知的雷達感測器的功能上,無法同時處理該等正 交通道之訊號,而必須以單通道切換模式處理反射的電磁 波訊號,因而無法於該等正交通道同時處理訊號方式以降 低訊號失真。 • 由於在量測過程中無法同時處理該等正交通道之訊號 ,在某特定距離時,該感測器無法取得準確之待測物之生 理參數。該種待測物和感測器間之特定距離即所謂盲區( Wind zone)之區域,在該等區域内,即使該感測器接收大 振幅之反射探測訊號時,該感測器之相位靈敏度仍然大幅 下降。該等盲區及其彼此間間隔之數量取決於待測物和感 測器間之距離和探測訊號内之脈衝長度。 該等盲區之存在以及受限之量測距離(其係取決於探 測訊號之脈衝長度)皆導致於特定之量測距離時,病患生 理參數之量測準確度下降,故限制了此種脈衝式超寬頻感 測器之實際應用。該種感測器僅能使用於病患完全無法移 動而病患和感測器間為一固定距離之狀態,而病患位置之 任何改變皆需於感測器端重新調整。在此種狀況下,感測 器相對於待測物之位置需加以調整以避免病患位於盲區内 之情形。 —種自動式距離追蹤系統可自動調整該感測器之距離 ’然而其不僅使儀器之設計更複雜,且應用該昂貴之自動 式距離追蹤系統亦不能保證可免除待測物位於盲區之情形 發生。 美國公開專利2004/0249258 (於2004年12月9日公開) 揭示另一種超寬頻感測器以監視病患之生理參數。該裝置 係一包含發射接收天線之低功率脈衝式超寬頻雷達。該裝 置係以短時距脈衝作為參考探測訊號。該裝置包含一固定 頻率脈衝產生器、一發射器、一接收器、一延遲訊號產生 方塊、一類比至數位訊號轉換器、一訊號處理方塊、一資 料顯示方塊以及一控制和同步方塊。該訊號處理方塊係以 統計手法處理反射訊號。該接收器係以階梯式放大方式加 強反射訊號能量,再藉由該類比至數位訊號轉換器轉換該 反射訊號成數位訊號。 然而,該感測器之特性包含在某些空間區域時,反射 訊號之資料量會減少,且該感測器無法同時對病患之各器 官產生可靠之生理參數。 美國專利US5,573,012 (於1996年11月12曰公告)揭示 1361059 一種脈衝式雷達儀器以監視各種生理參數,包含病患之心 血管系統及呼吸器官之生理參數。該儀器之運作係基於來 自待測物之反射訊號及產生用以調變一音頻產生器之訊號 之一平均電壓訊號。該裝置包含一訊號轉換器,其用以轉 換反射訊號之量測電壓至一調變之振幅至頻率音頻訊號。 該裝置另包含一脈衝產生器及一累加器。該脈衝產生器用 以產生開啟一訊號接收器之輸入電路之脈衝。該累加器用 以累加該接收器輸入電路之訊號。 該裝置之接收訊號可經過溏波及放大之處理程序以控 制各種參數。然而,該裝置之訊號處理電路無法消除待測 物和感測器間之盲區。此外,該感測器並非超寬頻式之感 測器’該感測器之一驅動產生器之頻率為1MHz,而其訊號 頻寬不大於0.1 MHz。該感測器係藉由都卜勒效應(Doppler effect)量測及處理反射訊號。因此’該感測器無法如超寬 頻式感測器般提供包含足夠資料量之訊號。 最接近本發明之習知技術係美國專利US4,085,740 (於 1978年4月25曰公告),其揭示一種脈衝式雷達感測器以監 視病患之心血管系統及呼吸器官之生理參數。該感測器包 含一產生器,其產生一頻率為10GHz之震盪電磁波。該產 生之電磁波係經由一調變方塊予以調變,並經由一發送器 之發送天線發送至待測物》 該由待測物反射回之探測訊號係由一接收器之接收天 線所接收,並輸入至該接收器之輸入電路之兩通道。在此 同時,一參考探測訊號亦送至一衰減器,其中該衰減器亦Sex. Compared to X-ray tomography, the amount of light emitted by ultra-wideband sensors is reduced by several orders of magnitude. In addition, when using the ultra-wideband sensor as a medical measuring instrument, it is not necessary to use the measuring instrument as a whole-discovery, ancient master, and 毋', and there is no need to use a disposable component or a consumer profile to maintain the diagnostic technology. The required cost can also be significantly reduced by 0 according to the current classification of 7 (see I.Ya.Immoreev on November, 1998 in Journal 〇f Bauman's MGTU series Instrument making^ ^^.^Ultra_wideb^d radars : new possibilities , unique problems, the feature of system or I.Ya.immoreev, November 2, 2002, in Applied electronics, Kharkov Vol. 1, pp. 122-140, The possibilities and features of ultra-wideband radio systems, An ultra-wideband radar system is a radar that satisfies the following signal bandwidth conditions: 〇.25<(fupper-U/(fupper+fUwer)<1 ' where fupper and flower are the lower bounds of the signal bandwidth, respectively. The frequency bandwidth (fupper-f丨.wer) of the wide-band radar should be greater than 5〇〇ΜΗζ (see the First Report and Or of the EF Docket 98-153 of the Federal Communications Commission FCC on April 22, 2002). Der). As the distance resolution of ultra-wideband radar increases, the content of the messages it sends increases. The circuit design of various well-known pulsed ultra-wideband sensors is used to monitor the respiratory and cardiovascular systems of patients. A pulsed ultra-wideband sensor is disclosed, for example, in US Patent No. 5,519,400 (issued May 21, 1996), which utilizes phase c〇de modulation to control the movement of the object under test. The transmitting antenna uses a short-time pulse as a reference signal and an excitation signal. The device has a signal transmission k, and the signal transmitting end has a transmitting antenna, and transmits an ultra-wideband signal with a frequency of 2 GHz to 10 GHz. a delay block, which generates a control signal to determine a time delay between the pulses. The device has a receiving end having a receiving antenna that receives a discrete signal according to a trigger signal (gating signa) of the time delay block Pulse signal. The trigger signal delays the reception time of a transmission signal, wherein the delay time is equal to the transmission signal line. The analyte and the reflection of the time required to receive antenna. The delay time is determined by the distance of 1361059 between the sensor and the object to be tested. The time delay block provides a delay between the detection of the pulse signal and a reception of the pulse signal. The pulse signals are modulated by the time delay block. The modulated signal is encoded to avoid interference from adjacent radar sensors. The signal receiving end includes a sync block and two orthogonal channels, wherein the sync block is used to synchronize the signal receiving end and a modulated signal. The normal channel is used to process a reflected signal, wherein one channel and one reference signal operate in the same phase, and the other channel and the reference signal have a phase difference of 90 degrees. The output data of these channels is used for subsequent analysis. The channels are converted according to a high speed controllable switching mechanism when receiving a reflected signal, and each channel has a filter and a signal amplifier. In the function of the conventional radar sensor, the signals of the orthogonal channels cannot be processed at the same time, and the reflected electromagnetic signals must be processed in the single channel switching mode, so that the orthogonal signals can not be processed simultaneously to reduce the signal mode. The signal is distorted. • Since the signals of the orthogonal channels cannot be processed simultaneously during the measurement process, the sensor cannot obtain accurate physiological parameters of the analyte at a certain distance. The specific distance between the object to be tested and the sensor is the area of the so-called Wind Zone, in which the phase sensitivity of the sensor is obtained even if the sensor receives a large amplitude reflection detection signal. Still drastically falling. The number of such dead zones and their spacing depends on the distance between the object to be tested and the sensor and the length of the pulse within the probe signal. The presence of such dead zones and the limited measurement distance (which depends on the pulse length of the detection signal) result in a decrease in the measurement accuracy of the patient's physiological parameters at a particular measurement distance, thus limiting such pulses The practical application of ultra-wideband sensors. The sensor can only be used in a state where the patient is completely unable to move and the patient and the sensor are at a fixed distance, and any change in the patient's position needs to be readjusted at the sensor end. In this case, the position of the sensor relative to the object to be tested needs to be adjusted to avoid the situation where the patient is in the blind spot. An automatic distance tracking system automatically adjusts the distance of the sensor's. However, it not only makes the design of the instrument more complicated, but also does not guarantee that the object to be tested is in the blind zone when the expensive automatic distance tracking system is applied. . U.S. Patent Publication No. 2004/0249258 (published on Dec. 9, 2004) discloses another ultra-wideband sensor to monitor physiological parameters of a patient. The device is a low power pulsed ultra-wideband radar comprising a transmit and receive antenna. The device uses a short-time pulse as a reference detection signal. The apparatus includes a fixed frequency pulse generator, a transmitter, a receiver, a delay signal generating block, an analog to digital signal converter, a signal processing block, a data display block, and a control and sync block. The signal processing block processes the reflected signals in a statistical manner. The receiver enhances the reflected signal energy by stepwise amplification, and converts the reflected signal into a digital signal by the analog to digital signal converter. However, when the characteristics of the sensor are included in some spatial regions, the amount of data of the reflected signal is reduced, and the sensor cannot simultaneously generate reliable physiological parameters for the patient's organs. U.S. Patent No. 5,573,012 (issued on Nov. 12, 1996) discloses 1 361 059 A pulsed radar apparatus for monitoring various physiological parameters, including the physiological parameters of the patient's heart vasculature and respiratory organs. The operation of the instrument is based on a reflected signal from the object under test and an average voltage signal that produces a signal for modulating an audio generator. The device includes a signal converter for converting the measured voltage of the reflected signal to a modulated amplitude to the frequency audio signal. The device further includes a pulse generator and an accumulator. The pulse generator is operative to generate a pulse that turns on an input circuit of a signal receiver. The accumulator is used to accumulate the signal of the receiver input circuit. The receiving signal of the device can be processed by chopping and amplifying to control various parameters. However, the signal processing circuit of the device cannot eliminate the dead zone between the object to be tested and the sensor. In addition, the sensor is not an ultra-wideband sensor. One of the sensors drives the generator at a frequency of 1 MHz and a signal bandwidth of no more than 0.1 MHz. The sensor measures and processes the reflected signal by the Doppler effect. Therefore, the sensor cannot provide a signal containing sufficient data as an ultra-wideband sensor. The prior art which is closest to the present invention is U.S. Patent No. 4,085,740 (issued Apr. 25, 1978), which discloses a pulsed radar sensor for monitoring physiological parameters of the cardiovascular system and respiratory organs of a patient. The sensor includes a generator that generates an oscillating electromagnetic wave having a frequency of 10 GHz. The generated electromagnetic wave is modulated by a modulation block and sent to the object to be tested via a transmitting antenna of the transmitter. The detection signal reflected by the object to be tested is received by the receiving antenna of a receiver, and Input to the two channels of the input circuit of the receiver. At the same time, a reference probe signal is also sent to an attenuator, wherein the attenuator is also
i'S -10· 1361059 混波器係接收同相 包含兩通道。該接收器之第一通道之一 位之參考訊號。另一參考訊號經由一相位偏移電路以產生 9〇度之相位差,而該相位偏移電路之輸出端則連接至該接 收器之第二通道之一混波器之第二輸入端。 該感測器之接收端具有兩通道以處理反射訊號,其中 每通道白具有-混波器,而該等混波器之輸出係串聯至 一偵測器以解調反射訊號,該訊號並再經由一訊號放大器 和渡波ϋ處理。在監視病患之生理參數時,該等通道之混 波器係輸出正弦波形之訊號。在解調一包含兩個相位移位 之正弦波之複合訊號時’其振幅係根據該等輸人至混波器 之兩訊號㈣角速度所定義。藉由調整該等訊號處理通道 之據波器及放大器’該反射訊號於該兩通道之相對相位差 幅度即表示病患胸腔之移動或心跳之頻率。 該接收端之第-通道係用以分離代表胸腔移動頻率之 訊號’而第二通道係用以分離代表心跳頻率之訊號。該兩 訊娩係由根據病患生理參數之相對振幅和頻率調整之放大 器和濾波器所定義。i'S -10· 1361059 The mixer receives the same phase and contains two channels. The reference signal of one of the first channels of the receiver. Another reference signal is passed through a phase shifting circuit to produce a phase difference of 9 degrees, and the output of the phase shifting circuit is coupled to a second input of a mixer of the second channel of the receiver. The receiving end of the sensor has two channels for processing the reflected signal, wherein each channel has a -mixer, and the output of the mixers is connected in series to a detector to demodulate the reflected signal, and the signal is again It is processed via a signal amplifier and a wave. When monitoring the physiological parameters of the patient, the mixers of the channels output signals of the sinusoidal waveform. When demodulating a composite signal comprising two phase shifted sinusoids, the amplitude is defined by the angular velocity of the two signals (four) of the input to the mixer. The amplitude of the relative phase difference between the two channels by the signal and the amplifier of the signal processing channel is the frequency of the movement or heartbeat of the patient's chest. The first channel of the receiving end is used to separate the signal representing the frequency of movement of the chest, and the second channel is used to separate the signal representing the heartbeat frequency. The two births are defined by amplifiers and filters that are adjusted based on the relative amplitude and frequency of the patient's physiological parameters.
需要固定待測物和感測器間 離時(亦即盲區),該感測器之 資料量。該感測器之應用即因 之距離而受限。即使待測物僅 -11- 1361059 稍微移動,該感測器也無法使用。 上述習知技術之感測器之訊號處理模式係利用一相關 性系統(correlation system )處理反射訊號。該系統之操作 係基於相乘一探測訊號和一延遲之反射訊號,其中該延遲 時間係該訊號由發送端傳遞至待測物再反射回接收端之行 徑時間。一般常用之探測訊號係利用短時距脈衝,其持續 時間不超過一震盪週期。該相關性系統處理反射訊號之輸 出訊號係正比於反射訊號和探測訊號之相位差。It is necessary to fix the amount of data of the sensor when the object to be tested and the sensor are separated (that is, the dead zone). The application of this sensor is limited by the distance. Even if the object to be tested is only slightly moved from -11 to 1361059, the sensor cannot be used. The signal processing mode of the above-described sensor of the prior art utilizes a correlation system to process the reflected signal. The operation of the system is based on multiplying a detection signal and a delayed reflection signal, wherein the delay time is the time of the signal transmitted from the transmitting end to the object to be tested and then reflected back to the receiving end. Commonly used detection signals utilize short-term pulses with a duration that does not exceed one oscillation period. The output signal of the correlation system for processing the reflected signal is proportional to the phase difference between the reflected signal and the detected signal.
在待測物靜止的情況下,處理後之輸出訊號之振幅Z 係決定於下列相關性公式: Ζ = ^ψ-ηΤ0ο〇8(φ) > (1) 其中Ε〇係探測訊號之最大振幅, £丨係反射訊號之最大振幅; Τ 〇係探測訊號之最大振幅, η係探測訊號内震盪波之總數。 公式(1)内之相位差>之大小決定於電磁波來回待測物 和感測器之時間: φ = ω0^^- = 4π— (2) C λ 其中% =2私係探測訊號之圓周頻率; f〇係探測訊號頻譜之平均頻率; C係電磁波傳遞速度; λ係探測訊號内震盪波之波長;When the object to be tested is stationary, the amplitude Z of the processed output signal is determined by the following correlation formula: Ζ = ^ψ-ηΤ0ο〇8(φ) > (1) where the maximum amplitude of the 探测 detection signal , the maximum amplitude of the 丨 反射 reflection signal; 最大 the maximum amplitude of the 探测 detection signal, the total number of oscillating waves in the η detection signal. The phase difference in equation (1) is determined by the time when the electromagnetic wave travels back and forth to the object to be tested and the sensor: φ = ω0^^- = 4π— (2) C λ where % = 2 the circumference of the private detection signal Frequency; f 〇 is the average frequency of the spectrum of the signal; C is the electromagnetic wave transmission speed; λ is the wavelength of the oscillating wave inside the signal;
Ri係待測物和感測器間之距離。 圖1顯示由該相關性系統根據待測物距離處理反射訊· -12- is】 ^P1059 號所得之輸出訊號之振幅加以常態化之圖形z(Ri)t〇。如圖 所示,感測器和待測物間之工作距離内存在許多盲區,其 t在該等盲區内該感測器之輸出訊號趨近於零。該等盲區 之存在和待測物之反射能力(有效反射面積)無關。該等 盲區邊界間之距離正比於λ/4= TqC/4,絲決於探測訊號 之震盪波之週期。 該等盲區之個數N反比於探測訊號之震盪波之週期τ〇 或是探測訊號之波長Λ,.合手。週期越低(頻率越高 )’量測工作距離内之盲區數目越多。 特而言之,若工作距離為2公尺,而探測訊號頻譜之平 均頻率為6GHz,則約會有16〇個盲區,而該等盲區之邊界 距離約等於12.5公釐。因此,很有可能在量測心跳和呼吸 頻率時,病患用以反射探測訊號之胸腔表面位於該等盲區 之内。 萬一待測物位於該等盲區内,而其移動振幅小於探測 訊號内之震盪波波長之四分之一,則欲量測待測物之移動 將會相當困難。該等狀況對量測結果之準確率將有不良之 影響’而這對診斷病患而言係無法容忍之結果。 當待測物反覆移動之振幅很大,例如病患之深呼吸, 且探測訊號頻譜之平均頻率又高時,該相關性系統之輸出 訊號之波形相較於實際描述待測物移動之函式會有相舍程 度之失真。因此,在此種狀況決定之病患心跳及呼吸頻率 將難以達到高準確度。 相關性處理系統之輸出訊號之振幅z(t)可由下列公弋 •13- {"S3 1361059 表示: Z(〇 =心 cos_ +灼),(3) 其中& =-^«7;係反射訊號和探測訊號彼此互動之最 大能量值,並輸出至一單位阻抗之負載; 灼=2叫告=如j係根據待測物和感測器間之距離之相位 差; 沖)=2%^^ =知¥厂仰)係根據待測物移動之瞬間相位Ri is the distance between the analyte and the sensor. FIG. 1 shows a graph z(Ri)t〇 normalized by the amplitude of the output signal obtained by the correlation system according to the distance of the object to be measured. As shown in the figure, there are many blind spots in the working distance between the sensor and the object to be tested, and the output signal of the sensor approaches zero in the blind areas. The existence of such dead zones is independent of the reflectivity (effective reflection area) of the object to be tested. The distance between the boundaries of the blind areas is proportional to λ/4 = TqC/4, which is determined by the period of the oscillating wave of the detection signal. The number N of the blind zones is inversely proportional to the period τ 震 of the oscillating wave of the probe signal or the wavelength 探测 of the probe signal. The lower the period (the higher the frequency), the greater the number of dead zones within the measurement working distance. In particular, if the working distance is 2 meters and the average frequency of the probe signal spectrum is 6 GHz, there will be about 16 blind zones, and the boundary distance of the blind zones is approximately equal to 12.5 mm. Therefore, it is highly probable that the chest surface of the patient to reflect the detection signal is located within the blind zone when measuring the heartbeat and respiratory rate. In case the object to be tested is located in the blind zone and its amplitude of movement is less than one quarter of the wavelength of the oscillating wave in the detection signal, it will be quite difficult to measure the movement of the object to be tested. These conditions will have an adverse effect on the accuracy of the measurement results, which is an unacceptable result for the diagnosis of the patient. When the amplitude of the object to be tested repeatedly moves, for example, the deep breathing of the patient, and the average frequency of the spectrum of the detection signal is high, the waveform of the output signal of the correlation system is compared with the actual description of the movement of the object to be tested. There is a distortion of the degree of correlation. Therefore, it is difficult to achieve high accuracy in the heartbeat and respiratory rate of patients determined by such conditions. The amplitude z(t) of the output signal of the correlation processing system can be expressed by the following publication: 13- {"S3 1361059: Z (〇=心 cos_ + burning), (3) where &=-^«7; The maximum energy value of the reflected signal and the detection signal interact with each other, and output to a load of one unit impedance; burning = 2 call = if j is based on the phase difference between the object to be tested and the distance between the sensors; rush) = 2% ^^ =知¥厂仰) is the instantaneous phase according to the movement of the object to be tested
值; F(Qt)係待測物之移動規則; Ω =2 π f係待測物反覆運動之頻率; t係目前時間; △ R係待測物之最大位移量。 假設待測物距離感測器之距離為Ri,且待測物係根據 簡諧運動移動,並具有一圓周頻率Ω和振幅AR,則公式(3) 可調整成下列形式:Value; F(Qt) is the movement rule of the object to be tested; Ω = 2 π f is the frequency of the repetitive motion of the object to be tested; t is the current time; Δ R is the maximum displacement of the object to be tested. Assuming that the distance of the object to be tested is Ri from the sensor and the object to be tested moves according to the simple harmonic motion and has a circumferential frequency Ω and an amplitude AR, the formula (3) can be adjusted to the following form:
Z(t) = Em cos^4^-^^sin(Qi) + ^π~ (4)。 圖2至圖9顯不該相關性系統之輸出訊號之波形圖(改 變輸出訊號之振幅ζ⑴和振幅與頻率之頻譜2(6))。該振幅 Ζ⑴之改變對應至圖中僅有-變因,每—圖示分別對應至不 同的變數m (圖2和圖3中m等於〇.5,圖4和圖5^等於2, 圖6和圖7中m等於5,圖8和圖9*m等於1〇),其 如! ' ' λ 。圖2至圖9顯示改變待測物之最大位敕旦 取入位移1 △ R以及其相應之 變數m對應至輸出訊號之變化。待測物 寸叫物所置測出之震盪頻率 •14· 1361059 為1 Hz。圖中之f丨係反射訊號之頻率。 如圖所示,輸出訊號之波形不同於待測物之實際位移 ,其中待測物之最大位移量為△R,而探測訊號之波長為又 。當應用單一頻道訊號處理電路時,若Δκ>λ (如圖4至圖 9所示,m分別為2、5和10),待測物之振幅和移動速度之函 式將難以決定。 若待測物之最大位移量△ R相較於探測訊號之波長入 較小(ΔΙΙ<λ ),則正交通道之輸出訊號將同時含有變數和 常數成分。值得注意的是,反射訊號之常數成分帶有各靜 止物體之有用資訊,而待測物亦於該等靜止物體之列。在 %知技術的裝置下,該常數成分係在處理反射訊號時由各 通道内之濾波器去除。因此,該等可準確決定生理參數之 有用資訊將會失去。 為獲得待測物移動之資訊,可對靜止之待測物進行一 種特殊之程式化訊號校準,其中該資訊存在於反射訊號之 常數成分。若待測物之位置改變,則應重複該訊號校準步 驟。然而這也造成冗長的量測時間和複雜的軟體設計。 【發明内容】 本發明同時於兩通道處理來自待測物之反射訊號,以 及分離載有最大訊息内容之反射訊號以為後續處理並以 鬲準確度決定病患之心跳頻率、呼吸頻率或其他生理參數 〇 藉由本發明之解決方法可達成增加感測器相位靈敏度 及在病患於工作區間内移動時準確決定其心跳頻率、呼吸 -15- ί S3 !361〇59 頻率或其他生理參數之效果。 該上述效果係由一脈衝式超寬頻感測器所提供。該感 測器包含一控制單元、一探測訊號形成路徑、一發送天線 、一接收天線、一探測訊號發送路徑和一反射訊號接收路 徑和一相位偏移電路。該控制單元係用以形成脈衝同步時 之時間延遲。該探測訊號形成路徑包含一連接至該控制單 元之同調脈衝弦波產生器。該探測訊號發送路徑之輸出連 接至該發送天線。該反射訊號接收路徑包含兩個正交頻道 以處理一反射訊號。每一頻道皆包含一訊號混波器。該等 訊號混波器之第一輸入端連接至該接收天線。該相位偏移 電路之輸入端連接至該探測訊號形成路徑之一輸出端。該 相位偏移電路之輸出端連接至該第二通道之訊號混波器之 第—輸入端。 根據本發明之實施例之感測器包含一第一電子開關和 〜跳及呼吸頻率計算路徑。該心跳及呼吸頻率計算路徑 包含兩個濾波器、兩個加法器、兩個訊號振幅計算方塊、 兩個訊號能量計算方塊、兩個積分器 '兩個比較器、兩個 訊號采法方塊、兩個參考訊號產生方塊、一第二電子開關 第一電子開關、一心跳頻率計算方塊及一呼吸頻率計 算方塊。 該第一電子開關之輸入端連接至該探測訊號形成路徑 之輸出端該第一電子開關之第一輸出端連接至該探測訊 號發送路彳空之輸人端。該第—電子開關之第二輸出端連接 至第一通道之訊號混波器之第二輸入端以及該相位偏移電 m -16 - 路之輪入蟑。該第 cm 早元。 子開關之控制輪入端連接至該控制 該第一和第二濾波器之輪 二通道之輪出端。該第—加法器至該第-和第 -* ii .¾ . ^ , 之第一輸入端連接至該第 -^ .. ™ 去态之第二輸入端連接至該第 /慮波器之輸出端。該第二加 集一 α 法益之第一輸入端連接至該 弟一通道之輸出端。該第二 筮法益之第二輸入端連接至該 弟一濾波器之輸出端。 。。該第一訊號乘法方塊之第-輸入端連接至該第-加法 ^輸出端H賴乘法方塊之第二輸人端連接至該 第-參考訊號產生方塊之輸出端。該第二訊號乘法方塊之 第-輸入端連接至該第二加法器之輸出端。該第二訊號乘 法方塊之第二輸人端連接至該第二參考訊號產生方塊之輸 出端。 該第一積分器之輸入端連接至該第一訊號乘法方塊之 輸出端。該第一積分器之輸出端連接至該第二電子開關之 第一輪入端及該第一訊號能量計算方塊之輸入端。該第二 積分器之輸入端連接至該第二訊號乘法方塊之輸出端。該 第二積分器之輸出端連接至該第二電子開關之第二輸入端 及該第二訊號能量計算方塊之輸入端。該第一訊號能量計 算方塊之輸出端連接至該第一比較器之第一輸入端。該第 二訊號能量計算方塊之輸出端連接至該第一比較器之第二 輸入端。該第一比較器之輸出端連接至該第二電子開關之 控制輸入端。 • ί Si -17- 1361059 該第一訊號振幅S十算方塊之輸入端連接至該第一濾波 器之輸出端。該第一訊號振幅計算方塊之輪出端連接至該 第二比較器之第一輸入端。該第二訊號振幅計算方塊之輸 入端連接至該第二濾波器之輸出端。該第二訊號振幅計算 方塊之輸出端連接至該第二比較器之第二輸入端。該第二 比較器之輸出端連接至該第三電子開關之控制輸入端。該 第三電子開關之第一輸入端連接至該第一濾波器之輸出端 。該第三電子開關之第二輸入端連接至該第二濾波器之輸 出端。該第三電子開關之輸出端連接至該呼吸頻率計算方 塊之輸入端。該第一電子開關之輸出端連接至該心跳頻率 計算方塊之輸入端。 本發明之一實施例之量測生理參數之方法包含:過據 具備一第一生理參數和一第二生理參數之一第一訊息訊號 和一第二訊息訊號以產生僅具備該第一生理參數之一第_ 遽波號和一第二滤波訊號;相加該第一訊息訊號和該第 一濾波訊號以產生僅具備該第二生理參數之一第一相加訊 號;相加該第二訊息訊號和該第二濾波訊號以產生僅具備 該第二生理參數之一第二相加訊號;進行該第一相加訊號 和一第一參考訊號之相關性計算以產生一第一相關性訊號 ;進行該第二相加訊號和一第二參考訊號之相關性計算以 產生一第一相關性訊號,根據該第一據波訊號和該第二濾、 波訊號之振幅自該第一濾波訊號和該第二濾波訊號中選取 一第一生理參數訊號;以及根據該第一相關性訊號和該第 二相關性訊號之能量自該第一栢關性訊號和該第二相關性 -18- 1361059 訊號中選取一第二生理參數訊號。 本發明係由各用以量測心跳頻率、呼吸頻率或其他生 理參數之脈衝式超寬頻感測器之具體實施例加以例示說明 0 【實施方式】 如圖10所示,該脈衝式超寬頻感測器包含一控制單元1 及一探測訊號形成路徑。該控制單元i用以形成一延遲之同 步脈衝訊號。該探測訊號形成路徑包含一外部激發之微波 產生器2以作為一同調脈衝弦波產生器。該脈衝式超寬頻感 測器進一步包含一發射天線3、一接收天線4、一探測訊號 發送路徑、一第一電子開關5和一反射訊號接收路徑。該反 射訊號接收路徑包含兩個用以處理反射訊號之通道。 該探測訊號形成路徑包含一緩衝放大器6和一帶通渡 波器7,其中該緩衝放大器6和帶通濾波器7係串聯連接至該 微波產生器2。該帶通濾波器7係連接至該第一電子開關5 之輸入端。該探測訊號發送路徑包含一帶通濾波器8和一放 大器9’其中該帶通據波器8和該放大器9係串聯連接至該發 送天線3,而該放大器9之輸入端連接至該第一電子開關5 之第一輸出端。 該反射訊號接收路徑包含一帶通濾波器1〇及一低雜訊 放大器11,其中該帶通濾波器10和該低雜訊放大器11係串 聯連接至該接收天線4,而該低雜訊放大器11之輸出端連接 至該兩個平行用以處理反射訊號之通道。該反射訊號接收 路徑另包含相位偏移電路12。該用以處理反射訊號之第一 i S] 19- 1361059 通道包含一訊號混波器13,其輸出端係和一帶通濾波器14 、一低頻放大器15、一低頻濾波器16和一類比至數位轉換 器17串聯連接。該訊號混波器13之第一輸入端連接至該低 雜訊放大器11之輸出端,而該訊號混波器13之第二輸入端 連接至該第一電子開關5之第二輸出端。 該用以處理反射訊號之第二通道包含一訊號混波器18 ,其輸出端係和一帶通濾波器丨9、一低頻放大器2〇、一低 頻濾波器21和一類比至數位轉換器22串聯連接。該訊號混 波器18之第一輸入端連接至該低雜訊放大器丨丨之輸出端, 而該訊號混波器18之第二輸入端係經由該相位偏移電路i 2 連接至該第一電子開關5之第二輸出端,其中該相位偏移電 路12係用以提供一探測訊號一9〇度之相位差。該等低頻濾 波器16和21之頻率下限約為〇1Hz,以選擇頻帶高於截止頻 率之訊號。 該控制單元1係用以形成一延遲之同步脈衝訊號,其示 思圖係顯不於圖U,包含一驅動產生器23、一發送器同步 與探測訊號控制路徑及一接收器同步路徑。 該發送器同步路徑包含一第一短脈衝產生單元24,其 用以產生短脈衝同步訊號。該接收器同步路徑包含一可控 數位延遲線25及-第二短脈衝產生單元% ’構成該控制單 疋1之第一輸出$,其中該第一@出端連接至第一電子開關 5之控制輸入端。該等發送及接收同步路徑皆連接至一或閘 電路27之輸入端’其中該或閘電路27之輸出端為該控制單 元1之第二輸出端’該第二輸出端連接至該微波產生器:之 控制輸入端。 該心跳及呼吸頻率計算路徑之示意圖示於圖12和13, 並包含兩個濾波器28和29、兩個加法器30和31、兩個訊號 振幅計算方塊32和33、兩個訊號能量計算方塊34和35、兩 個積分器36和37、兩個比較器38和39、兩個訊號乘法方塊 40和41、兩個參考訊號產生方塊42和43、一第二電子開關 44、一第三電子開關45、一呼吸頻率計算方塊46、一心跳 頻率計算方塊47及一資料顯示方塊48。 該濾波器28和29係用以對輸入訊號以頻率選擇胸腔振 動之訊號及心跳之訊號。該等訊號係包含於反射訊號内, 其中該反射訊號係病患之心跳及呼吸功能之複合波形。該 等具有帶通作用之濾波器28和29係將提供該反射訊號内具 心跳頻率特性之部份予以平滑化。該波形包含心跳及胸腔 震動之頻率特性。該等濾波器28和29之上限截止頻率約為 1Hz。 該第一遽波器28之輸入端連接至該用以處理反射訊號 之第一通道之輸出端。該第二濾波器29之輸入端連接至該 用以處理反射訊號之第二通道之輸出端。在本實施例中, 該濾波器28和29之輸入端係分別連接至該等類比至數位轉 換器17和22之輸出端。 。該第一加法器30之第一輸入端連接至該用以處理反射 訊號之第一通道之輸出端’其中該類比至數位轉換器㈣ 乍為ι第通道之輸出端。該第一加法器如之第二輸入端 〇第;慮波器28之輸出端。該第二加法器η之第一 1361059 輸入端連接至該用以處理反射訊號之第二通道之輸出端, 其中該類比至數位轉換器22係作為該第二通道之輸出端。 該第二加法器31之第二輸入端連接至該第二濾波器29之輸 出端0 該第一訊號乘法方塊40之第一輸入端連接至該第—加 法器30之輸出端。該第一訊號乘法方塊40之第二輸入端連 接至該第一參考訊號產生方塊42之輸出端。該第二訊號乘 法方塊41之第一輸入端連接至該第二加法器31之輸出端。 該第二訊號乘法方塊41之第二輸入端連接至該第二參考訊 號產生方塊43之輸出端。 該第一積分器36之輸入端連接至該第一訊號乘法方塊 4〇之輸出端。該第一積分器36之輸出端連接至該第二電子 開關44之第一輸入端及該第一訊號能量計算方塊34之輸入 端。該第二積分器37之輸入端連接至該第二訊號乘法方塊 41之輸出端。該第二積分器37之輸出端連接至該第二電子 開關44之第二輸入端及該第二訊號能量計算方塊35之輸入 端。 該第一訊號能量計算方塊34之輸出端連接至該第一比 較器38之第一輸入端。該第二訊號能量計算方塊35之輸出 端連接至該第一比較器38之第二輸入端。該第一比較器38 之輪出端連接至該第二電子開關44之控制輸入端。 該第一訊號振幅計算方塊32之輸入端連接至該第一濾 波器28之輸出端。該第一訊號振幅計算方塊32之輸出端連 接至該第二比較器39之第一輸入端。該第二訊號振幅計算 -22- 1361059 方塊33之輸入端連接至該第二濾波器29之輸出端。該第二 訊號振幅計算方塊33之輸出端連接至該第二比較器39之第 二輸入端。該第二比較器39之輸出端連接至該第三電子開 • 關4 5之控制輸入端。 - 該第三電子開關45之第一輸入端連接至該第一濾波器 28之輸出端。該第三電子開關45之第二輸入端連接至該第 二濾波器29之輸出端。該第三電子開關45之輸出端連接至 該啤吸頻率計算方塊46之輸入端。該第二電子開關44之輸 ® 出端連接至該心跳頻率計算方塊47之輸入端。該資料顯示 方塊48之第一輸入端連接至該心跳頻率計算方塊47之輸出 端。該資料顯示方塊48之第二輸入端連接至該呼吸頻率計 算方塊46之輸出端。 在本實施例之一態樣中,如圖12所示,該第一參考訊 號產生方塊42和該第二參考訊號產生方塊43之輸入端係分 別連接至該等加法器30和31之輸出端。該等加法器3〇和31 • 之輸出訊號係用以形成一參考訊號,其係擷取一段時間之 即時反射訊號。該參考訊號之長度係選為3秒,而該參考訊 號係傳遞至該等訊號乘法方塊4〇和41。 在本實施例之另一態樣中,如圖13所示,該第一參考 訊號產生方塊42和該第二參考訊號產生方塊43之係用以產 生固定形狀之參考訊號。該參考訊號係儲存至該等參考訊 號產生方塊42和43並被傳送至該等號乘法方塊4〇和41之輸 入端。該參考訊號之長度可選為3秒,其波形可為下列式子 所定義: -23- iS] 1361059 m ι)> exp 值得注意的是,只要能夠實現本發明之電路可達到增 進相位靈敏度及偵測移動待測物之功效,許多在本發明之 實施例中所應用之元件及方塊即可被省略。 特而言之,在部分情況下,該資料顯示方塊可被省略 。在該探測訊號發送路徑中,該發送天線3可直接連接至該 第一電子開關5之第一輸出端。Z(t) = Em cos^4^-^^sin(Qi) + ^π~ (4). Figures 2 through 9 show waveform diagrams of the output signals of the correlation system (change the amplitude 输出(1) of the output signal and the spectrum 2(6) of the amplitude and frequency). The change of the amplitude Ζ(1) corresponds to only the -variation in the figure, and each graph corresponds to a different variable m (m is equal to 〇.5 in Fig. 2 and Fig. 3, and Fig. 4 and Fig. 5^ are equal to 2, Fig. 6 And in Figure 7, m is equal to 5, and Figure 8 and Figure 9*m are equal to 1〇), such as! ' ' λ. Figure 2 to Figure 9 show the change of the maximum position of the object to be tested. The displacement 1 Δ R and the corresponding variable m correspond to the change of the output signal. The oscillating frequency measured by the object to be tested is 14 Hz. 1361059 is 1 Hz. The f丨 is the frequency of the reflected signal. As shown in the figure, the waveform of the output signal is different from the actual displacement of the object to be tested, wherein the maximum displacement of the object to be tested is ΔR, and the wavelength of the detection signal is again. When a single channel signal processing circuit is applied, if Δκ > λ (m is 2, 5, and 10 as shown in Figs. 4 to 9, respectively), the function of the amplitude and moving speed of the object to be tested will be difficult to determine. If the maximum displacement Δ R of the object to be tested is smaller than the wavelength of the detection signal (ΔΙΙ < λ ), the output signal of the orthogonal channel will contain both variables and constant components. It is worth noting that the constant component of the reflected signal has useful information for each stationary object, and the object to be tested is also among the stationary objects. Under the % know-how device, the constant component is removed by the filters in each channel when processing the reflected signal. Therefore, such useful information that can accurately determine physiological parameters will be lost. In order to obtain the information of the movement of the object to be tested, a special stylized signal calibration can be performed on the stationary object to be tested, wherein the information exists in the constant component of the reflected signal. If the position of the object to be tested changes, the signal calibration step should be repeated. However, this also results in lengthy measurement time and complex software design. SUMMARY OF THE INVENTION The present invention simultaneously processes the reflected signal from the object to be tested in two channels, and separates the reflected signal carrying the largest message content for subsequent processing and determines the heartbeat frequency, respiratory rate or other physiological parameters of the patient with accuracy. By the solution of the present invention, it is possible to achieve an increase in sensor phase sensitivity and an accurate determination of the heartbeat frequency, the frequency of breathing, or the frequency of other physiological parameters when the patient moves within the working range. This effect is provided by a pulsed ultra-wideband sensor. The sensor comprises a control unit, a detection signal forming path, a transmitting antenna, a receiving antenna, a detecting signal transmitting path, a reflected signal receiving path and a phase shifting circuit. The control unit is used to form a time delay in pulse synchronization. The probe signal forming path includes a coherent pulse sine wave generator coupled to the control unit. The output of the probe signal transmission path is connected to the transmitting antenna. The reflected signal receiving path includes two orthogonal channels to process a reflected signal. Each channel contains a signal mixer. A first input of the signal mixer is coupled to the receive antenna. An input of the phase shift circuit is coupled to an output of the probe signal forming path. The output of the phase shifting circuit is coupled to the first input of the signal mixer of the second channel. A sensor in accordance with an embodiment of the present invention includes a first electronic switch and a ~hop and respiratory frequency calculation path. The heartbeat and respiratory frequency calculation path includes two filters, two adders, two signal amplitude calculation blocks, two signal energy calculation blocks, two integrators, two comparators, two signal acquisition blocks, and two Reference signal generation block, a second electronic switch first electronic switch, a heartbeat frequency calculation block and a respiratory frequency calculation block. The input end of the first electronic switch is connected to the output end of the detection signal forming path, and the first output end of the first electronic switch is connected to the input end of the detection signal transmission path. The second output of the first electronic switch is connected to the second input of the signal mixer of the first channel and the wheel of the phase offset electrical m -16 - path. The cmth early element. The control wheel of the sub-switch is connected to the wheel of the second and second filters. The first input of the first adder to the first and the -* ii .3⁄4 . ^ , is connected to the second input of the first -^.. TM de-asserted state and connected to the output of the first / wave filter end. The first input of the second additive-alpha method is connected to the output of the channel of the brother. The second input of the second method is connected to the output of the filter. . . The first input terminal of the first signal multiplication block is connected to the first-addition output terminal. The second input terminal of the multiplication block is connected to the output end of the first reference signal generating block. The first input of the second signal multiplication block is coupled to the output of the second adder. The second input end of the second signal multiplication block is connected to the output end of the second reference signal generation block. The input of the first integrator is coupled to the output of the first signal multiplication block. The output of the first integrator is connected to the first wheel end of the second electronic switch and the input end of the first signal energy calculation block. The input of the second integrator is coupled to the output of the second signal multiplication block. The output of the second integrator is coupled to the second input of the second electronic switch and the input of the second signal energy calculation block. An output of the first signal energy calculation block is coupled to the first input of the first comparator. The output of the second signal energy calculation block is coupled to the second input of the first comparator. An output of the first comparator is coupled to a control input of the second electronic switch. • ί Si -17- 1361059 The input of the first signal amplitude S ten block is connected to the output of the first filter. The round output end of the first signal amplitude calculation block is connected to the first input end of the second comparator. The input of the second signal amplitude calculation block is connected to the output of the second filter. An output of the second signal amplitude calculation block is coupled to a second input of the second comparator. An output of the second comparator is coupled to a control input of the third electronic switch. A first input of the third electronic switch is coupled to an output of the first filter. A second input of the third electronic switch is coupled to the output of the second filter. An output of the third electronic switch is coupled to an input of the respiratory frequency calculation block. An output of the first electronic switch is coupled to an input of the heartbeat frequency calculation block. The method for measuring a physiological parameter according to an embodiment of the present invention includes: first, having a first physiological parameter and a second physiological parameter, a first message signal and a second message signal to generate only the first physiological parameter a first _ chopping signal and a second filtering signal; adding the first message signal and the first filtering signal to generate a first addition signal having only one of the second physiological parameters; adding the second message The signal and the second filtered signal are used to generate a second addition signal having only one of the second physiological parameters; performing a correlation calculation between the first added signal and a first reference signal to generate a first correlation signal; Performing a correlation calculation between the second addition signal and a second reference signal to generate a first correlation signal, according to the amplitude of the first data signal and the second filter wave signal from the first filtered signal and Selecting a first physiological parameter signal from the second filtered signal; and extracting, according to the first correlation signal and the second correlation signal, the first correlation signal and the second correlation -18-1361059 signal in A second physiological parameter signal is selected. The present invention is exemplified by a specific embodiment of a pulse type ultra-wideband sensor for measuring a heartbeat frequency, a respiratory frequency or other physiological parameters. [Embodiment] As shown in FIG. 10, the pulse type ultra-wideband sense The detector comprises a control unit 1 and a detection signal forming path. The control unit i is used to form a delayed sync pulse signal. The probe signal forming path includes an externally excited microwave generator 2 as a coherent pulse sine wave generator. The pulsed ultra-wideband sensor further includes a transmitting antenna 3, a receiving antenna 4, a detecting signal transmitting path, a first electronic switch 5 and a reflected signal receiving path. The reflected signal receiving path includes two channels for processing the reflected signal. The probe signal forming path includes a buffer amplifier 6 and a band pass filter 7, wherein the buffer amplifier 6 and the band pass filter 7 are connected in series to the microwave generator 2. The band pass filter 7 is connected to the input end of the first electronic switch 5. The detection signal transmission path includes a band pass filter 8 and an amplifier 9', wherein the band pass data device 8 and the amplifier 9 are connected in series to the transmitting antenna 3, and an input terminal of the amplifier 9 is connected to the first electron The first output of switch 5. The reflected signal receiving path includes a band pass filter 1 and a low noise amplifier 11, wherein the band pass filter 10 and the low noise amplifier 11 are connected in series to the receiving antenna 4, and the low noise amplifier 11 The output is connected to the two parallel channels for processing the reflected signal. The reflected signal receiving path further includes a phase shift circuit 12. The first i S] 19- 1361059 channel for processing the reflected signal comprises a signal mixer 13 having an output system and a band pass filter 14, a low frequency amplifier 15, a low frequency filter 16 and an analog to digital position. The converters 17 are connected in series. The first input of the signal mixer 13 is connected to the output of the low noise amplifier 11, and the second input of the signal mixer 13 is connected to the second output of the first electronic switch 5. The second channel for processing the reflected signal comprises a signal mixer 18, the output of which is connected in series with a bandpass filter 丨9, a low frequency amplifier 2〇, a low frequency filter 21 and an analog to digital converter 22. connection. The first input end of the signal mixer 18 is connected to the output of the low noise amplifier ,, and the second input end of the signal mixer 18 is connected to the first via the phase shift circuit i 2 The second output of the electronic switch 5, wherein the phase shifting circuit 12 is configured to provide a phase difference of a detection signal of 9 degrees. The lower frequency limits of the low frequency filters 16 and 21 are about 〇1 Hz to select a signal whose frequency band is higher than the cutoff frequency. The control unit 1 is configured to form a delayed sync pulse signal. The display diagram is not shown in FIG. 9, and includes a driver generator 23, a transmitter sync and probe signal control path, and a receiver sync path. The transmitter synchronization path includes a first short pulse generating unit 24 for generating a short pulse sync signal. The receiver synchronization path includes a controllable digital delay line 25 and a second short pulse generation unit %' constituting a first output $ of the control unit 1, wherein the first@out terminal is connected to the first electronic switch 5 Control input. The transmit and receive sync paths are both connected to the input terminal of the OR gate circuit 27, wherein the output of the OR gate circuit 27 is the second output terminal of the control unit 1 and the second output terminal is connected to the microwave generator : The control input. A schematic diagram of the heartbeat and respiratory rate calculation path is shown in Figures 12 and 13, and includes two filters 28 and 29, two adders 30 and 31, two signal amplitude calculation blocks 32 and 33, and two signal energy calculations. Blocks 34 and 35, two integrators 36 and 37, two comparators 38 and 39, two signal multiplication blocks 40 and 41, two reference signal generation blocks 42 and 43, a second electronic switch 44, and a third The electronic switch 45, a respiratory rate calculation block 46, a heartbeat frequency calculation block 47, and a data display block 48. The filters 28 and 29 are used to select the signal of the chest vibration and the heartbeat signal at the frequency of the input signal. The signals are included in the reflected signal, wherein the reflected signal is a composite waveform of the heartbeat and respiratory function of the patient. The bands 28 and 29 with bandpass effects provide smoothing of portions of the reflected signal that have heartbeat frequency characteristics. This waveform contains the frequency characteristics of heartbeat and chest vibrations. The upper cutoff frequencies of these filters 28 and 29 are approximately 1 Hz. An input of the first chopper 28 is coupled to an output of the first channel for processing the reflected signal. An input of the second filter 29 is coupled to an output of the second channel for processing the reflected signal. In the present embodiment, the inputs of the filters 28 and 29 are connected to the analog outputs to the outputs of the digital converters 17 and 22, respectively. . The first input of the first adder 30 is coupled to the output terminal of the first channel for processing the reflected signal, wherein the analog to digital converter (4) is the output of the first channel. The first adder is as a second input terminal; the output of the wave filter 28. The first 1361059 input of the second adder η is coupled to the output of the second channel for processing the reflected signal, wherein the analog to digital converter 22 serves as the output of the second channel. The second input of the second adder 31 is coupled to the output 0 of the second filter 29. The first input of the first signal multiplication block 40 is coupled to the output of the first adder 30. The second input of the first signal multiplication block 40 is coupled to the output of the first reference signal generating block 42. The first input of the second signal multiplication block 41 is coupled to the output of the second adder 31. The second input of the second signal multiplication block 41 is coupled to the output of the second reference signal generating block 43. The input of the first integrator 36 is coupled to the output of the first signal multiplication block 4A. The output of the first integrator 36 is coupled to the first input of the second electronic switch 44 and the input of the first signal energy calculation block 34. The input of the second integrator 37 is coupled to the output of the second signal multiplication block 41. The output of the second integrator 37 is coupled to the second input of the second electronic switch 44 and the input of the second signal energy calculation block 35. The output of the first signal energy calculation block 34 is coupled to the first input of the first comparator 38. The output of the second signal energy calculation block 35 is connected to the second input of the first comparator 38. The wheeled end of the first comparator 38 is coupled to the control input of the second electronic switch 44. An input of the first signal amplitude calculation block 32 is coupled to an output of the first filter 28. The output of the first signal amplitude calculation block 32 is coupled to the first input of the second comparator 39. The second signal amplitude calculation -22- 1361059 is input to the output of the second filter 29. The output of the second signal amplitude calculation block 33 is coupled to the second input of the second comparator 39. The output of the second comparator 39 is coupled to the control input of the third electronic switch 42. - a first input of the third electronic switch 45 is connected to the output of the first filter 28. A second input of the third electronic switch 45 is coupled to the output of the second filter 29. The output of the third electronic switch 45 is coupled to the input of the beer frequency calculation block 46. The output of the second electronic switch 44 is connected to the input of the heartbeat frequency calculation block 47. The data display block 48 has a first input coupled to the output of the heartbeat frequency calculation block 47. The second input of the data display block 48 is coupled to the output of the respiratory frequency calculation block 46. In an aspect of the embodiment, as shown in FIG. 12, the input ends of the first reference signal generating block 42 and the second reference signal generating block 43 are respectively connected to the outputs of the adders 30 and 31. . The output signals of the adders 3 and 31 are used to form a reference signal, which is an instantaneous reflection signal for a period of time. The length of the reference signal is selected to be 3 seconds, and the reference signal is passed to the signal multiplication blocks 4A and 41. In another aspect of the embodiment, as shown in FIG. 13, the first reference signal generating block 42 and the second reference signal generating block 43 are used to generate a fixed-shaped reference signal. The reference signal is stored to the reference signal generating blocks 42 and 43 and transmitted to the inputs of the equal sign multiplication blocks 4A and 41. The length of the reference signal can be selected as 3 seconds, and the waveform can be defined by the following formula: -23- iS] 1361059 m ι)> exp It is worth noting that the phase sensitivity can be improved as long as the circuit of the present invention can be implemented. And detecting the effect of moving the object to be tested, many of the components and blocks used in the embodiments of the present invention can be omitted. In particular, in some cases, the data display block can be omitted. In the detection signal transmission path, the transmitting antenna 3 can be directly connected to the first output end of the first electronic switch 5.
此外’在本發明之部分實施例中,該發送天線3和該接 收天線4可整合於一收發裝置(未示於圖中)之一單一方塊 。該方塊可在該收發裝置之不同週期中耦合至不同元件, 例如於該發送天線操作時耦合至該探測訊號發送路徑,或 於該接收天線操作時耦合至該反射訊號接收路徑,其中該 收發裝置則交替作用為電波發送器及電波接收器。該等發 送及接收路徑可經由一額外的電子開關交替地耦合至該等 發送和接收天線。該單一方塊之應用使該兩獨立運作之天 線得以整合成該感測器内之一單一元件。 上述之脈衝式超寬頻感測器之操作方式如下所述。 該驅動產生器23產生-週期為τ〇,敎為彳波之同步 脈衝訊號(該同步脈衝訊號之時序圖可見圖14)。接著, 該脈衝訊號分別為兩路徑接收:亦即該發送器同步路徑和 該接收器同步路徑。 在該發送H同步路徑中,藉由該第—短脈衝產生單夭 於第j同步脈衝訊號之上升邊緣產生-延遲時間為td 之紐脈衝訊號’如圖丨6所示。該短脈衝訊號之時距係根損 -24- [S3 1361059 所需探測訊號之時距而決定。 在該接收器同步路徑中,藉由該可控數位延遲線25延 遲該同步脈衝訊號一延遲時間td2,如圖15所示,其中該延 遲時間k係探測訊號傳遞至待測物再反射回感測器所需之 時間。該延遲時間tda可定義待測物和感測器間之工作距離 ,並可由下列式子表示:其中心為待測物和感測 器間之距離,c為電波之速度。藉由該第二短脈衝產生單元 26 ’於第二組同步脈衝波之上升邊緣產生一延遲時間為 td3=tdl之短脈衝訊號,如圖π所示。該形成之短脈衝訊號即 傳送至該控制單元1之第一輸出端,其中該第一輸出端即連 接至該第一電子開關5之控制輸入端。 該控制單元1藉由該或閘電路27結合該等形成於該等 同步路徑之同步訊號成一單一同步訊號,其係一週期性的 一對短脈衝訊號,如圖18所示。該等一對短脈衝訊號之時 間間隔為t d 2 〇該等一對脈衝訊號之週期τ 〇係由該驅動產生 器23所設定。該等包含一對脈衝訊號之同步訊號即傳送至 該控制單元1之第二輸出端,其中該第二輸出端即連接至該 微波產生器2之控制輸入端。當該微波產生器2接收到該同 步訊號時即產生兩個相鄰且區間為h之同調脈衝弦波,如 圖19所示。 該等由該微波產生器2所產生之一對同調脈衝弦波經 由該緩衝放大器6和該帶通濾波器7傳送至該第一電子開關 5之輸入端。該第一電子開關5係由該控制單元1之第一輸出 端輸出之訊號所控制。該第一電子開關5係控制該探測訊號 -25- 形成路徑訊號之切換,亦即該等探測訊號傳送至該探測訊 號發送路徑或該反射訊號接收路徑。 在初始狀態時,該第一電子開關5之切換係如圖10所示 ’該微波產生器2所產生之第一個同調脈衝波進入該探測訊 號發送路徑。該放大器9放大該探測訊號以補償其於該帶通 濾波器7和該帶通濾波器8所造成之能量損失。該等帶通濾 波器7、8和10結合之通過頻帶為3GHz至10GHz,以抑制頻 帶外之訊號轄射。 該探測訊號經由該發送天線3發送並傳遞至待測物。在 經過td2的時間後,該探測訊號經由待測物反射回感測器, 該接收器同步路徑亦產生一短脈衝同步訊號,其中該同步 訊號係經由該控制單元1之第一輸出端傳送至該第一電子 開關5之控制輸入端。 當該控制單元1接收到該短脈衝同步訊號,該控制單元 1即切換其開關。因此,該探測訊號形成路徑即連接至該等 訊號混波器13和18之第二輸入端。該參考探測訊號藉由該 相位偏移電路12提供一90度之相位差後,即傳送至該訊號 混波器18。據此’該微波產生器2所產生之第二個同調脈衝 弦波即帶著一相位差進入該用以處理反射訊號之第二通道 。該專同相及具相位差之同調脈衝弦波即作為該等執號混 波器13和18之參考訊號。 該由待測物反射回之訊號係由該接收天線4所接收,並 通過該帶通濾波器10以及該低雜訊放大器U,其中該帶通 濾波器10係用以降低來自外在電磁波之雜訊。該濾波及放 1361059 大後之訊號便被傳送至該等用以處理反射訊號之通道,亦 即該等作為相位偵測器之訊號混波器13和18。經過和傳送 至該等訊號混波器13和18之第二輸入端之參考探測訊號進 行相關性運算後,該等用以處理反射訊號之通道即產生兩 個訊號:一位於第一通道之同相位訊號及另一位於第二通 道具90度相位差之訊號。 在該等通道中’該等訊號各自經由該等帶通濾波器14 和19所分離,以及該等低頻放大器15和2〇所放大。該等低 頻濾波器16和21係以頻率選擇該等訊號,並以截止頻率為 下限分離該等訊號’其中該截止頻率約為01 Hz,其對應至 哞吸頻率之下限。該等分離及放大之訊號即經由該等類比 至數位轉換器17和22進行數位化之動作。 如圖20所示,一訊號神)+外)係形成於該第一 通道之輸出端’其中該訊號和參考探測訊號同相。如圖22 所示’另一訊號Ζζ(ί) = Sin(p(i)+i?i)係形成於該第二通道之 輸出端,其中該訊號和參考探測訊號具9〇度之相位差。該 等訊號即傳送至該心跳及呼吸頻率計算路徑,其示意圖如 圖12和圖13所示。 該第一通道之訊號係傳送至該第一濾波器28,而該第 二通道之訊號係傳送至該第一濾波器29。該等濾波器具有 一上限截止頻率1Hz ’用以衰減該等訊號中具高頻心跳之成 分。因此,該等濾波器28和29之輸出訊號即為自該等具有 病患胸腔震動及心跳成分之反射訊號中所分離出代表病患 呼吸之成分之訊號。 •27- iS】 1361059 經由該頻率選擇後’該等濾、波器28和29之輸出訊號即 進入該等加法器30和31之第二輪入端、該第三電子開關45 之輸入端及該第一訊號振幅計算方塊32和該第二訊號振幅 計鼻方塊33之輸入端。該第一通道和該第二通道之訊號則 傳送至該等加法器30和31之第一輸入端。Further, in some embodiments of the present invention, the transmitting antenna 3 and the receiving antenna 4 may be integrated into one single block of a transceiver (not shown). The block may be coupled to different components during different periods of the transceiver, such as coupled to the probe signal transmission path when the transmit antenna is in operation, or coupled to the reflected signal receive path during operation of the receive antenna, wherein the transceiver Then alternately acts as a radio wave transmitter and a radio wave receiver. The transmit and receive paths can be alternately coupled to the transmit and receive antennas via an additional electronic switch. The application of the single block allows the two independently operated antennas to be integrated into a single component within the sensor. The operation of the pulse type ultra-wideband sensor described above is as follows. The drive generator 23 generates a sync pulse signal whose period is τ 〇 and 敎 is chopped (the timing chart of the sync pulse signal can be seen in Fig. 14). Then, the pulse signals are respectively received by two paths: that is, the transmitter synchronization path and the receiver synchronization path. In the transmission H-synchronization path, the first burst signal is generated by the first short pulse generated by the rising edge of the j-th sync pulse signal, and the delay signal is delayed by td as shown in FIG. The time interval of the short pulse signal is determined by the root loss -24- [S3 1361059 required time interval of the detection signal. In the receiver synchronization path, the synchronization pulse signal is delayed by the delay time td2 by the controllable digital delay line 25, as shown in FIG. 15, wherein the delay time k is a detection signal transmitted to the object to be tested and then reflected back. The time required for the detector. The delay time tda defines the working distance between the object to be tested and the sensor, and can be expressed by the following equation: the center is the distance between the object to be tested and the sensor, and c is the speed of the wave. The short pulse signal having a delay time of td3=tdl is generated by the second short pulse generating unit 26' on the rising edge of the second group of synchronous pulse waves, as shown in FIG. The formed short pulse signal is transmitted to the first output of the control unit 1, wherein the first output terminal is connected to the control input of the first electronic switch 5. The control unit 1 combines the synchronization signals formed on the synchronization paths into a single synchronization signal by the OR gate circuit 27, which is a periodic pair of short pulse signals, as shown in FIG. The time interval between the pair of short pulse signals is t d 2 〇 The period τ 〇 of the pair of pulse signals is set by the drive generator 23. The synchronization signals including a pair of pulse signals are transmitted to the second output of the control unit 1, wherein the second output is connected to the control input of the microwave generator 2. When the microwave generator 2 receives the synchronization signal, two adjacent homologous pulse chords of interval h are generated, as shown in FIG. The pair of coherent pulse chops generated by the microwave generator 2 are transmitted to the input terminal of the first electronic switch 5 via the buffer amplifier 6 and the band pass filter 7. The first electronic switch 5 is controlled by a signal output by the first output of the control unit 1. The first electronic switch 5 controls the detection signal -25- to form a switching of the path signals, that is, the detection signals are transmitted to the detection signal transmission path or the reflected signal receiving path. In the initial state, the switching of the first electronic switch 5 is as shown in Fig. 10. The first coherent pulse wave generated by the microwave generator 2 enters the detection signal transmission path. The amplifier 9 amplifies the detection signal to compensate for the energy loss caused by the band pass filter 7 and the band pass filter 8. The band pass filters 7, 8 and 10 are combined to pass a frequency band of 3 GHz to 10 GHz to suppress signal igniting outside the band. The detection signal is transmitted via the transmitting antenna 3 and transmitted to the object to be tested. After the elapse of td2, the detection signal is reflected back to the sensor via the object to be tested, and the receiver synchronization path also generates a short pulse synchronization signal, wherein the synchronization signal is transmitted to the first output terminal of the control unit 1 to The control input of the first electronic switch 5. When the control unit 1 receives the short pulse synchronization signal, the control unit 1 switches its switch. Therefore, the detection signal forming path is connected to the second input terminals of the signal mixers 13 and 18. The reference detection signal is transmitted to the signal mixer 18 after the phase shift circuit 12 provides a phase difference of 90 degrees. Accordingly, the second coherent pulse sine wave generated by the microwave generator 2 enters the second channel for processing the reflected signal with a phase difference. The phase and the homologous pulsed chord with a phase difference serve as reference signals for the number of mixers 13 and 18. The signal reflected by the object to be tested is received by the receiving antenna 4 and passes through the band pass filter 10 and the low noise amplifier U, wherein the band pass filter 10 is used to reduce external electromagnetic waves. Noise. The filter and the signal after the 1361059 are transmitted to the channels for processing the reflected signals, that is, the signal mixers 13 and 18 as the phase detectors. After correlating with the reference detection signals transmitted to the second input terminals of the signal mixers 13 and 18, the channels for processing the reflected signals generate two signals: one is located in the first channel The phase signal and another signal having a phase difference of 90 degrees in the second channel. In these channels, the signals are separated by the bandpass filters 14 and 19, respectively, and the low frequency amplifiers 15 and 2 are amplified. The low frequency filters 16 and 21 select the signals by frequency and separate the signals by the cutoff frequency as the lower limit, wherein the cutoff frequency is about 01 Hz, which corresponds to the lower limit of the sucking frequency. The separated and amplified signals are digitized by the analog to digital converters 17 and 22. As shown in Fig. 20, a signal god +) is formed at the output end of the first channel where the signal and the reference probe signal are in phase. As shown in Fig. 22, 'another signal Ζζ(ί) = Sin(p(i)+i?i) is formed at the output end of the second channel, wherein the signal and the reference detection signal have a phase difference of 9 degrees . The signals are transmitted to the heartbeat and respiratory rate calculation path, as shown in Figures 12 and 13. The signal of the first channel is transmitted to the first filter 28, and the signal of the second channel is transmitted to the first filter 29. The filters have an upper cutoff frequency of 1 Hz' to attenuate the components of the signal with high frequency heartbeats. Therefore, the output signals of the filters 28 and 29 are signals separating the components representing the patient's breathing from the reflected signals of the patient's chest vibrations and heartbeat components. • 27-iS] 1361059 After the selection of the frequency, the output signals of the filters 28 and 29 enter the second wheel of the adders 30 and 31, the input of the third electronic switch 45, and The first signal amplitude calculation block 32 and the input end of the second signal amplitude meter block 33. The signals of the first channel and the second channel are transmitted to the first inputs of the adders 30 and 31.
該等加法器30和31係用以分離其輪入訊號。該等加法 器30和3 1係將該等包含病患胸腔震動及心跳成分之複合訊 號消除病患呼吸成分之訊號’使其於輸出端形成僅包含病 患心跳成分之訊號。該等經由頻率選擇及特徵化各生理參 數(心跳及呼吸)後之離散訊號即作為後續相關性處理之 用途。The adders 30 and 31 are used to separate their turn-in signals. The adders 30 and 31 are signals that include the patient's chest vibration and heartbeat components to eliminate the respiratory component of the patient' to form a signal containing only the patient's heartbeat component at the output. The discrete signals after frequency selection and characterization of physiological parameters (heartbeat and respiration) are used for subsequent correlation processing.
該等訊號乘法方塊40和41及該等積分器36和37即耗合 至上述方塊之輸出端,以作為處理該等僅包含病患心跳成 分訊號之相關性系統。該等參考訊號產生方塊42和43所輸 出之參考訊號即傳送至該等訊號乘法方塊4〇和41之第二輸 入端。 如圖12所示,在本實施例的一架構中,該等參考訊號 產生方塊42和43之輸入端係連接至該等加法器3〇和31之輸 出端。在此架構中,係由該等處理後訊號之取一固定長度 作為參考訊號。該訊號長度係選定至少等於反射訊號震盈 之平均週期。在本架構中,該訊號長度係選為3秒。 在特定時間内,例如60秒内,該等參考訊號產生方塊 42和43係將該等加法器30和31之輸出訊號儲存至一記憶單 元。該等訊號即作為參考訊號,並加以傳送至該等訊號乘The signal multiplication blocks 40 and 41 and the integrators 36 and 37 are consuming to the output of the above-mentioned block as a correlation system for processing such heartbeat-only component signals. The reference signals output by the reference signal generation blocks 42 and 43 are transmitted to the second input terminals of the signal multiplication blocks 4A and 41. As shown in Figure 12, in an architecture of the present embodiment, the inputs of the reference signal generating blocks 42 and 43 are coupled to the outputs of the adders 3A and 31. In this architecture, a fixed length of the processed signals is taken as a reference signal. The length of the signal is selected to be at least equal to the average period of the reflected signal. In this architecture, the signal length is chosen to be 3 seconds. The reference signal generation blocks 42 and 43 store the output signals of the adders 30 and 31 to a memory unit for a specific time, for example, 60 seconds. These signals are used as reference signals and transmitted to the signals
[SI 28· 1361059 法方塊40和41之第二輸入端直至下次之儲存動作。 如圖13所示,在本實施例的另一架構中,該等參考訊 號產生方塊42和43係用以產生一固定波形之參考訊號。該 等預先決定波形之參考訊號係儲存於該等參考訊號產生方 塊42和43之記憶單元,並持續傳送至該等訊號乘法方塊4〇 和41之輸入端。 在本架構中,該固定長度及固定波形之參考訊號可為 下列式子所定義D = + _1)xex<—ge該訊號長度係選定至 少等於反射訊號震盪之平均週期。在本架構中,該訊號長 度係選為3秒。 該等參考訊號即藉由該等訊號乘法方塊4〇和41之乘法 動作併人處理之料m縣时塊4G和41之輸出訊 號即傳送至該等積分||36和371等積分器36和37係於每 一時間進行該等輸人訊號之積分動作。圖21和圖23即分別 顯示該等積分H 36和37之輸出訊號Ζι⑴和Z2⑴之時序圖。 可由圖21和圖23所顯示之輸出訊號Ζι⑴和&⑴之時序 圖看出’經由相關性系統所輸出之第—通道之訊號具有較 員之週期性,且根據該訊號決定之^跳頻率具有較高之 準確度H道之訊號則較為擴散,其週期性較不明顯 ,而依此訊號決定之心跳頻率難以得到期望之準確度。 該等積分器36和37之輸出訊號即傳送至該第二電子開 :4:,輸入端及該第-訊號能量計算方塊34和該第二訊‘ ::叶鼻方塊35之輸入端。該訊號心⑴自該積分器36之輸 知進入該第二電子開關44之第—輸人端及該第_訊號能 •29- Π] 里°十算方塊34之輸入端。該訊號Z2⑴自該積分器37之輸出 端進入該第二電子開關44之第二輸入端及該第二訊號能量 叶算方塊35之輸入端。 為選擇一可用以更精確地決定心跳頻率之訊號,可根 據訊號之能量選擇訊號。該等訊號能量計算方塊34和35即 用以計算該第一和第二通道訊號之能量。該等訊號能量計 算方塊34和35係計算固定時間内訊號振幅之平方和。在本 實施例中’該等訊號振幅之平方和係於固定時間内計算。 該等訊號能量計算方塊34和35之操作係於每次量測後,即 時性地以一滑動視窗(其時間長度為3秒)沿著輸入訊號移 動以進行運算。 該等訊號能量計算方塊34和35係分別將其計算結果傳 送至該第一比較器38之第一和第二輸入端。該第一比較器 38即選擇具有較大能量之訊號。圖24顯示該等計算之訊號 能量之比較圖E(t) »該比較圖e⑴之上半圖形顯示該第一訊 號能量計算方塊34之輸出結果。該比較圖e⑴之下半圖形顯 示該第二訊號能量計算方塊35之輸出結果。 可由圖24得知第一通道之訊號能量實質上超越了第二 通道之訊號。根據該比較結果’該第一比較器3 8傳送控制 訊號至該第一電子開關44之控制輸入端,其中該控制訊號 即用以切換該第二電子開關44。該第二電子開關44之切換 結果應符合所選取具有較大能量之訊號。該第一積分器36 之輸出訊號即切換至該心跳頻率計算方塊4 7以進行後續之 運算。 1361059 • · 該心跳頻率計算方塊47係“尋找其輸入訊號之局部 極大值及其時間點。根據所找出之時間點可計算出病患之 心跳頻率。該用以表示斛呌瞀— 至 衣不所计算之心跳頻率之訊號即傳送 該資料顯示方塊48。[SI 28· 1361059 The second input of blocks 40 and 41 until the next storage action. As shown in FIG. 13, in another architecture of the embodiment, the reference signal generating blocks 42 and 43 are used to generate a fixed waveform reference signal. The reference signals of the predetermined waveforms are stored in the memory cells of the reference signal generating blocks 42 and 43, and are continuously transmitted to the input terminals of the signal multiplication blocks 4A and 41. In this architecture, the reference signal of the fixed length and the fixed waveform may be defined by the following formula: D = + _1) xex < - ge The length of the signal is selected to be at least equal to the average period of the reflected signal oscillation. In this architecture, the signal length is chosen to be 3 seconds. The reference signals are transmitted by the multiplication operations of the signal multiplication blocks 4 and 41 and the output signals of the blocks 4G and 41 of the m-counter are transmitted to the integrators 36 such as the points ||36 and 371 and The 37 performs the integral action of the input signals at each time. Fig. 21 and Fig. 23 are timing charts showing the output signals Ζι(1) and Z2(1) of the integral points H 36 and 37, respectively. It can be seen from the timing diagrams of the output signals Ζι(1) and &(1) shown in FIG. 21 and FIG. 23 that the signal of the first channel outputted through the correlation system has a periodicity, and the frequency of the hop is determined according to the signal. Signals with higher accuracy H-channels are more diffuse, and their periodicity is less obvious, and the heartbeat frequency determined by this signal is difficult to obtain the desired accuracy. The output signals of the integrators 36 and 37 are transmitted to the second electronic open: 4: input and the input of the first signal energy calculation block 34 and the second signal ': leaf nose block 35. The signal heart (1) enters the input end of the second electronic switch 44 and the input end of the tenth arithmetic block 34 from the first input end of the second electronic switch 44 and the first signal. The signal Z2(1) enters the second input of the second electronic switch 44 and the input of the second signal energy calculation block 35 from the output of the integrator 37. To select a signal that can be used to more accurately determine the heartbeat frequency, the signal can be selected based on the energy of the signal. The signal energy calculation blocks 34 and 35 are used to calculate the energy of the first and second channel signals. The signal energy calculation blocks 34 and 35 calculate the sum of the squares of the signal amplitudes over a fixed period of time. In this embodiment, the sum of the squares of the amplitudes of the signals is calculated in a fixed time. The operation of the signal energy calculation blocks 34 and 35 is performed after each measurement, and is instantaneously moved along the input signal by a sliding window (the length of which is 3 seconds) to perform an operation. The signal energy calculation blocks 34 and 35 respectively transmit their calculation results to the first and second inputs of the first comparator 38. The first comparator 38 selects a signal having a larger energy. Figure 24 shows a comparison of the calculated signal energies E(t) » The upper half of the comparison graph e(1) shows the output of the first signal energy calculation block 34. The lower half of the comparison map e(1) shows the output of the second signal energy calculation block 35. It can be seen from Fig. 24 that the signal energy of the first channel substantially exceeds the signal of the second channel. According to the comparison result, the first comparator 38 transmits a control signal to the control input of the first electronic switch 44, wherein the control signal is used to switch the second electronic switch 44. The switching result of the second electronic switch 44 should conform to the signal selected to have a larger energy. The output signal of the first integrator 36 is switched to the heartbeat frequency calculation block 47 for subsequent operations. 1361059 • The heartbeat frequency calculation block 47 is “looking for the local maximum of its input signal and its time point. The heartbeat frequency of the patient can be calculated based on the time point found. The data display block 48 is transmitted by the signal of the heartbeat frequency that is not calculated.
為選擇-可用以更精媒地決定呼吸頻率之訊號,可根 據訊號之振幅選擇訊號。由於病患胸腔震靈之低頻特性, 故本實施例係比較該料波器28和29之輸出訊號之振幅。 呼吸頻率-般而言約小於心跳頻率一個數量級。因此,選 擇呼吸訊號之決疋性因素即為是否明顯可得該訊號振幅 之最大值。可由Z丨⑴和Z2⑴之時序圖得知第一通道訊號之 振幅大於第二通道訊號之振幅。如圖2()和22所示,第一通 道訊號之平_料值約為辦位,而第二通道訊號之平 均相對峰值約為3單位。For selection - a signal that can be used to more accurately determine the respiratory rate, the signal can be selected based on the amplitude of the signal. Because of the low frequency characteristics of the patient's chest vibration, this embodiment compares the amplitudes of the output signals of the wavers 28 and 29. The respiratory rate is generally about an order of magnitude less than the heart rate. Therefore, the decisive factor in selecting the respiratory signal is whether the maximum amplitude of the signal is clearly available. The amplitude of the first channel signal is greater than the amplitude of the second channel signal by the timing diagrams of Z丨(1) and Z2(1). As shown in Figures 2() and 22, the flat signal value of the first channel signal is approximately the location, and the average relative peak value of the second channel signal is approximately 3 units.
該等訊號振幅計算方塊32和33即用以進行經由該等遽 波器28和29分離而得之呼吸訊號之相關性計算。該第一訊 號振幅計算方塊32輸出一表示第一通道訊號振幅之訊號。 該第二訊號振幅計算方塊3 3輸出一表示第二通道訊號振幅 之訊號。該等用以表示第一通道訊號振幅和第二通道訊號 振幅之訊號即分別傳送至該第二比較器39之第一和第二輸 入端。 該第二比較器39即用以比較該等振幅計算方塊32和33 之輸出訊號。根據該比較結果,該第二比較器39傳送控制 訊號至該第三電子開關45之控制輸入端。該第三電子開關 45之切換結果應符合所選取具有較大振幅之訊號。在本實 -31- 1361059 %例中’該第—毅ϋ28之輸出訊號即切換至該呼 計算方動㈣進行㈣之„。 ㈣頻率 該啤吸頻率計算方塊46係用以尋找其輸入訊號之局部 極大值及其時間點。根據所找出之時間點可計算出病患之 呼吸頻率。該用以表示所計算之呼吸頻率之訊號即傳送至 該資料顯示方塊48。該資料顯示方塊48係以方便觀賞之形 式顯不該心跳和呼吸頻率之量測結果,特而言之,以 方式呈現予螢幕上。 圖25根據本發明之一實施例之處理電路。該處理電路 2500係應用於一脈衝式超寬頻感應器,例如根據本發明之 實施例之脈衝式超寬頻感應器’以量測心跳和呼吸頻率。 該處理電路2500包含一第一濾波器2501、一第二濾波器 2502、一第一訊號振幅計算單元2503、一第二訊號振幅計 算單元2504、一第一電子開關2505、一第一加法器25〇6、 第一加法器2507、一第一訊號積分單元25〇8、一第二訊 號積分單元2509、一第一訊號能量計算單元2510、一第二 訊號能量計算單元2511和一第二電子開關2512。 該第一濾波器2501用以接收一同相訊號,例如該類比 至數位轉換器17之輸出訊號。該第二濾波器2502用以接收 —正交訊號,例如該類比至數位轉換器22之輸出訊號。該 第—訊號振幅計算單元2503用以計算該第一濾波器250 i之 輸出訊號之振幅。該第二訊號振幅計算單元2504用以計算 該第二濾波器2502之輸出訊號,之振幅。該第一電子開關 25〇5用以根據該第一訊號振幅計算單元2503和該第二訊號 -32- 1361059 振幅計算單元2504之計算結果輸出該第一濾波器2501或該 第二濾波器2502之輸出訊號。該第一加法器2506用以進行 該第一濾波器2501之輸出訊號和輸入訊號之相減運算。該 第二加法器2507用以進行該第二濾波器2502之輸出訊號和 輸入訊號之相減運算。該第一訊號積分單元2508用以計算 該第一加法器2506之輸出訊號和一第一參考訊號之相關性 積分。該第二訊號積分單元2509用以計算該第二加法器 2507之輸出訊號和一第二參考訊號之相關性積分。該第一 訊號能量計算單元2510用以計算該第一訊號積分單元2508 之輸入訊號之能量。該第二訊號能量計算單元2511用以計 算該第二訊號積分單元2509之輸入訊號之能量。該第二電 子開關2512用以根據該第一訊號能量計算單元2510和該第 二能量振幅計算單元2511之計算結果輸出該第一訊號積分 單元2508或該第二訊號積分單元2509之輸出訊號。 在本發明之部分實施例中,該第一訊號積分單元2508 包含一第一訊號乘法方塊2515和一第一積分器2516。該第 一訊號乘法方塊25 15用以計算該第一加法器2506之輪出訊 號和該第一參考訊號之乘積。該第一積分器2516用以計算 該第一訊號乘法方塊2515之輸出訊號之積分值。在本發明 之另一部份實施例中,該第二訊號積分單元2509包含一第 二訊號乘法方塊2517和一第二積分器2518。該第二訊號乘 法方塊25 17用以計算該第二加法器2507之輸出訊號和該第 二參考訊號之乘積。該第二積分器2518用以計算該第二訊 號乘法方塊2517之輸出訊號之積分值。在本發明之部分實 [S] -33- 1361059 細例中,該處理電路2500進一步包含一第一比較器2513和 一第一比較器2514。該第一比較器2513用以比較該第一訊 號振幅計算單元2503和該第二訊號振幅計算單元25〇4之計 算結果以控制該第一電子開關25〇5。該第二比較器2514用 以比較該第一訊號能量計算單元251〇和該第二訊號能量計 算單元2511之計算結果以控制該第二電子開關2512。在本 發明之部分實施例中,該第一參考訊號和該第二參考訊號 為一固定波形。在本發明之另一部份實施例中,該第一參 考訊號係根據該第一加法器25〇6之輸入訊號所產生,而該 第二參考訊號係根據該第二加法器2507之輸入訊號所產生 。在本發明之部分實施例中,該處理電路25〇〇進一步包含 用以產生該第一參考訊號之一第一參考訊號產生方塊,以 及用以產生該第二參考訊號之一第二參考訊號產生方塊。 根據本發明所實現之感測器可依序於兩個通道進行反 射訊號之頻率選擇,可自表示心跳之訊號分離出表示呼吸 之訊號,可各自進行該等分離訊號之相關性運算,及可對 各欲量測之生理參數選取具有較大資料量之訊號以精準地 進行後續心跳及呼吸頻率之運算。然而’根據本發明之感 測器和方法所量測到的生理參數不限於心跳頻率和呼吸頻 率,而可應用至例如腸蠕動等之生理參數。 藉由上述對反射訊號之處理過程及特定結構之通道以 計算心跳及呼吸頻率,可大幅增進感測器相位靈敏度及生 理參數之量測精準度。此外,藉由消除工作距離内之盲區 對量測結果造成之影響,量測移動待測物之參數也變得可 •34- m 1361059 行0 本發明之脈衝式超寬頻感測器可應用於醫療設備,以 在靜態或非活動狀態下作為具有高準確度之心血管系統及 呼吸器官之監視裝置。 本發明之技術内容及技術特點已揭示如上,然而熟悉 本項技術之人士仍可能基於本發明之教示及揭示而作種種 不背離本發明精神之替換及修飾。因此,本發明之保護範 圍應不限於實施例所揭示者,而應包括各種不背離本發明 之替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡要說明】 圖1顯示根據靜止待測物之相對距離Ri/又所得之一相 關性處理系統之輸出訊號之振幅加以常態化之圖形 Z(Ri)T〇 ; 圖2顯示在m等於〇,5時,一相關性處理系統之輸出訊號 Z(t); 圖3顯示在m等於0 5時,一相關性處理系統之輸出訊號 之振幅頻率頻譜Z(f〇 ; 圖4顯示在m等於2時,一相關性處理系統之輸出訊號 Z(t); 圖5顯示在m等於2時,一相關性處理系統之輸出訊號之 振幅頻率頻譜Z(f〇 ; 圖6顯示在m等於5時,一相關性處理系統之輸出訊號 Z(t); 圖7顳示在m等於5時,—相關性處理系統之輸出訊號之 •35- 1361059 振幅頻率頻譜z(f〇 ; 圖8顯示在m等於10時,一相關性處理系統之輪出訊號 Z(t); ' 圖9顯示在m等於10時,一相關性處理系統之輸出訊號 之振幅頻率頻譜ζ(ι); 圖1〇顯示一探測訊號形成路徑、一探測訊號發送路徑 和一反射訊號接收路徑之示意圖; 圖11顯示一控制單元之示意圖; 圖丨2顯示根據本發明之第一實施架構之心跳及呼吸頻 率計算路徑之示意圖; 圖13顯示根據本發明之第二實施架構之心跳及呼吸頻 率計算路徑之示意圖; 顯示驅動產生器之輸出訊號之同步脈衝波u⑴ 之時序圖; 圖15顯示一可控數位延遲線之輸出訊號之同步脈衝波 U⑴之時序圖; 圖16顯示一第一短脈衝產生單元之輸出訊號之同步脈 衝波ϋ⑴之時序圖; 圖 17 顯示一笛-4**Ηΐ?ί£_·*· 第一短脈衝產生單元之輸出訊號之同步脈 衝波U(t)之時序圖; ’’示控制單元之輪出訊號之同步脈衝波u⑴之 時序圖; 圖19顯示—斜,士 做波產生Is之輸出訊號之同調脈衝弦波 U⑴之時序圖; -36 - 1361059 之:顯示-第-通道之+遽波器之輪出訊號z,⑴ 夂輸出訊號Zi(t) 圖21顯示一第一通道之一第一積分器 之時序圖; 圖22顯示一第二通道之一 之時序圖; 第一濾波器之輪出訊號Z2(t) 圖23顯示一第二通道之一篦_ ^ 第一積分器之輸出訊號Z2(t) 之時序圖;The signal amplitude calculation blocks 32 and 33 are used to calculate the correlation of the respiratory signals separated by the choppers 28 and 29. The first signal amplitude calculation block 32 outputs a signal indicating the amplitude of the first channel signal. The second signal amplitude calculation block 3 3 outputs a signal indicating the amplitude of the second channel signal. The signals for indicating the amplitude of the first channel signal and the amplitude of the second channel signal are respectively transmitted to the first and second inputs of the second comparator 39. The second comparator 39 is used to compare the output signals of the amplitude calculation blocks 32 and 33. Based on the comparison, the second comparator 39 transmits a control signal to the control input of the third electronic switch 45. The switching result of the third electronic switch 45 should conform to the selected signal having a large amplitude. In the case of the actual -31 - 1361059%, the output signal of 'the first - Yi Yi 28 is switched to the calculation of the call (4). (4) Frequency The beer frequency calculation block 46 is used to find the input signal. The local maximum and its time point. The respiratory rate of the patient can be calculated based on the time point found. The signal indicating the calculated respiratory frequency is transmitted to the data display block 48. The data is displayed in block 48. The measurement results of the heartbeat and respiratory rate are displayed in a convenient form, in particular, presented on the screen in a manner. Figure 25 is a processing circuit in accordance with an embodiment of the present invention. The processing circuit 2500 is applied to a A pulsed ultra-wideband sensor, such as a pulsed ultra-wideband sensor according to an embodiment of the invention, is used to measure heartbeat and respiratory rate. The processing circuit 2500 includes a first filter 2501, a second filter 2502, and a The first signal amplitude calculation unit 2503, a second signal amplitude calculation unit 2504, a first electronic switch 2505, a first adder 25〇6, a first adder 2507, and a first signal integration list 25〇8, a second signal integration unit 2509, a first signal energy calculation unit 2510, a second signal energy calculation unit 2511 and a second electronic switch 2512. The first filter 2501 is configured to receive an in-phase signal. For example, the analog signal is analogous to the output signal of the digital converter 17. The second filter 2502 is configured to receive an orthogonal signal, such as an analog signal to the output signal of the digital converter 22. The first signal amplitude calculating unit 2503 is configured to calculate the output signal. The amplitude of the output signal of the first filter 250 i. The second signal amplitude calculation unit 2504 is configured to calculate an amplitude of the output signal of the second filter 2502. The first electronic switch 25〇5 is used according to the first The signal amplitude calculation unit 2503 and the second signal-32-1361059 amplitude calculation unit 2504 output the output signal of the first filter 2501 or the second filter 2502. The first adder 2506 is configured to perform the first A subtraction operation is performed between the output signal of the filter 2501 and the input signal. The second adder 2507 is configured to perform a subtraction operation between the output signal and the input signal of the second filter 2502. The first signal integration unit 2508 is configured to calculate a correlation score between the output signal of the first adder 2506 and a first reference signal. The second signal integration unit 2509 is configured to calculate an output signal of the second adder 2507 and a The correlation energy of the second reference signal is calculated by the first signal energy calculation unit 2510 for calculating the energy of the input signal of the first signal integration unit 2508. The second signal energy calculation unit 2511 is configured to calculate the second signal integration unit. The energy of the input signal of 2509. The second electronic switch 2512 is configured to output the first signal integration unit 2508 or the second signal integral according to the calculation result of the first signal energy calculation unit 2510 and the second energy amplitude calculation unit 2511. The output signal of unit 2509. In some embodiments of the present invention, the first signal integration unit 2508 includes a first signal multiplication block 2515 and a first integrator 2516. The first signal multiplication block 25 15 is used to calculate the product of the round-trip signal of the first adder 2506 and the first reference signal. The first integrator 2516 is configured to calculate an integrated value of the output signal of the first signal multiplication block 2515. In another embodiment of the present invention, the second signal integration unit 2509 includes a second signal multiplication block 2517 and a second integrator 2518. The second signal multiplication block 25 17 is used to calculate the product of the output signal of the second adder 2507 and the second reference signal. The second integrator 2518 is configured to calculate an integrated value of the output signal of the second signal multiplication block 2517. In the embodiment of the present invention [S] - 33 - 1361059, the processing circuit 2500 further includes a first comparator 2513 and a first comparator 2514. The first comparator 2513 is configured to compare the calculation results of the first signal amplitude calculation unit 2503 and the second signal amplitude calculation unit 25〇4 to control the first electronic switch 25〇5. The second comparator 2514 is configured to compare the calculation results of the first signal energy calculating unit 251 〇 and the second signal energy calculating unit 2511 to control the second electronic switch 2512. In some embodiments of the present invention, the first reference signal and the second reference signal are a fixed waveform. In another embodiment of the present invention, the first reference signal is generated according to the input signal of the first adder 25〇6, and the second reference signal is generated according to the input signal of the second adder 2507. Produced. In some embodiments of the present invention, the processing circuit 25 further includes a first reference signal generating block for generating the first reference signal, and a second reference signal for generating the second reference signal. Square. The sensor implemented in accordance with the present invention can sequentially select the frequency of the reflected signal in two channels, and can separate the signal indicating the breathing from the signal indicating the heartbeat, and can perform the correlation operation of the separated signals, respectively. A signal with a large amount of data is selected for each physiological parameter to be measured to accurately perform subsequent heartbeat and respiratory frequency calculations. However, the physiological parameters measured by the sensor and method according to the present invention are not limited to the heartbeat frequency and the respiratory frequency, but can be applied to physiological parameters such as intestinal peristalsis. By calculating the heartbeat and respiratory frequency by the above-mentioned processing of the reflected signal and the channel of the specific structure, the sensitivity of the sensor phase sensitivity and the measurement accuracy of the physiological parameters can be greatly improved. In addition, by eliminating the influence of the blind spot in the working distance on the measurement result, the parameter for measuring the moving object to be tested also becomes available. 34- m 1361059 Row 0 The pulsed ultra-wideband sensor of the present invention can be applied to Medical equipment to monitor the cardiovascular system and respiratory organs with high accuracy under static or inactive conditions. The technical and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention is not limited by the scope of the invention, and the invention is intended to cover various alternatives and modifications. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a graph Z(Ri)T〇 normalized according to the relative distance Ri of the static object to be tested and the amplitude of the output signal of one of the correlation processing systems; Figure 2 shows that m is equal to 〇, 5 o'clock, the output signal Z(t) of a correlation processing system; Figure 3 shows the amplitude frequency spectrum Z of the output signal of a correlation processing system when m is equal to 0 5 (f〇; Figure 4 shows at m When equal to 2, the output signal Z(t) of a correlation processing system; Figure 5 shows the amplitude frequency spectrum Z of the output signal of a correlation processing system when m is equal to 2 (f〇; Figure 6 shows that m is equal to 5 When the output signal of the correlation processing system is Z(t); Figure 7 shows that when m is equal to 5, the output signal of the correlation processing system is 35- 1361059. The amplitude frequency spectrum z (f〇; Figure 8 shows When m is equal to 10, the rotation signal Z(t) of a correlation processing system; 'Figure 9 shows the amplitude frequency spectrum ζ(ι) of the output signal of a correlation processing system when m is equal to 10; Figure 1〇 a schematic diagram of a probe signal forming path, a probe signal transmission path, and a reflected signal receiving path; 11 shows a schematic diagram of a control unit; FIG. 2 shows a schematic diagram of a heartbeat and respiratory frequency calculation path according to the first embodiment of the present invention; FIG. 13 shows a schematic diagram of a heartbeat and respiratory frequency calculation path according to the second embodiment of the present invention. ; shows the timing diagram of the synchronous pulse wave u(1) of the output signal of the drive generator; FIG. 15 shows the timing diagram of the synchronous pulse wave U(1) of the output signal of a controllable digital delay line; FIG. 16 shows the output of a first short pulse generating unit. Timing diagram of the sync pulse wave (1) of the signal; Figure 17 shows a timing diagram of the sync pulse wave U(t) of the output signal of the first short pulse generating unit; The timing diagram of the synchronous pulse wave u(1) of the output signal of the control unit; Fig. 19 shows the timing diagram of the homologous pulse chord U(1) of the output signal of the wave making Is, and the -36 - 1361059: display - the first Channel + chopper wheel signal z, (1) 夂 output signal Zi (t) Figure 21 shows a timing diagram of a first integrator of a first channel; Figure 22 shows a timing diagram of one of the second channels;The first filter's turn-off signal Z2(t) Figure 23 shows a timing diagram of one of the second channels 篦 _ ^ the first integrator output signal Z2(t);
^圖24顯示一第一(上半曲線)和第二(下半曲線)訊 號能量計算方塊之輸出訊號之比較圖E(t);以及 圖25顯示根據本發明之一實施例之一處理電路。 【主要元件符號說明】FIG. 24 shows a comparison diagram E(t) of output signals of a first (upper half curve) and a second (lower half curve) signal energy calculation block; and FIG. 25 shows a processing circuit according to an embodiment of the present invention. . [Main component symbol description]
1 控制單元 2 微波產生器 3 發送天線 4 接收天線 5 第一電子開關 6 緩衝放大器 7 帶通濾波器 8 帶通濾波器 9 放大器 10 帶通濾波器 11 低頻放大器 12 相位偏移電路 i S] -37- 13610591 control unit 2 microwave generator 3 transmitting antenna 4 receiving antenna 5 first electronic switch 6 buffer amplifier 7 bandpass filter 8 bandpass filter 9 amplifier 10 bandpass filter 11 low frequency amplifier 12 phase offset circuit i S] - 37- 1361059
13 訊號混波器 14 帶通濾波器 15 低頻放大器 16 低頻濾波器 17 類比至數位轉換器 18 訊號混波器 19 帶通濾波器 20 低頻放大器 21 低頻滤、波益 22 類比至數位轉換器 23 驅動產生器 24 第一短脈衝產生單元 25 可控數位延遲線 26 第二短脈衝產生單元 27 或閘電路 28 第一濾、波器 29 第二渡波益 30 第一加法器 31 第二加法器 32 第一訊號振幅計算方塊 33 第二訊號振幅計算方塊 34 第一訊號能量計算方塊 35 第二訊號能量計算方塊 36 第一積分器 37 第二積分器 i'Si -38- 1361059 38 第一比較器 39 第二比較器 40 第一訊號乘法方塊 41 第二訊號乘法方塊 42 第一參考訊號產生方塊 43 第二參考訊號產生方塊 44 第二電子開關 45 第三電子開關13 Signal mixer 14 Bandpass filter 15 Low frequency amplifier 16 Low frequency filter 17 Analog to digital converter 18 Signal mixer 19 Bandpass filter 20 Low frequency amplifier 21 Low frequency filter, Boyi 22 Analog to digital converter 23 Drive Generator 24 first short pulse generating unit 25 controllable digital delay line 26 second short pulse generating unit 27 or gate circuit 28 first filter, waver 29 second wave benefit 30 first adder 31 second adder 32 A signal amplitude calculation block 33 Second signal amplitude calculation block 34 First signal energy calculation block 35 Second signal energy calculation block 36 First integrator 37 Second integrator i'Si -38 - 1361059 38 First comparator 39 Second comparator 40 first signal multiplication block 41 second signal multiplication block 42 first reference signal generation block 43 second reference signal generation block 44 second electronic switch 45 third electronic switch
46 呼吸頻率計算方塊 47 心跳頻率計算方塊 48 資料顯示方塊 2501 第一濾波器 2502 第二濾波器 2503 第一訊號振幅計算單元 2504 第二訊號振幅計算單元 2505 第一電子開關46 Respiratory Frequency Calculation Block 47 Heartbeat Frequency Calculation Block 48 Data Display Block 2501 First Filter 2502 Second Filter 2503 First Signal Amplitude Calculation Unit 2504 Second Signal Amplitude Calculation Unit 2505 First Electronic Switch
2506 第一加法器 2507 第二加法器 2508 第一訊號積分單元 2509 第二訊號積分單元 2510 第一訊號能量計算單元 2511 第二訊號能量計算單元 2512 第二電子開關 2513 第一比較器 2514 第二比較器 -39- 1361059 2515 第一訊號乘法方塊 2516 第一積分器 2517 第二訊號乘法方塊 2518 第二積分器2506 first adder 2507 second adder 2508 first signal integration unit 2509 second signal integration unit 2510 first signal energy calculation unit 2511 second signal energy calculation unit 2512 second electronic switch 2513 first comparator 2514 second comparison -39- 1361059 2515 First Signal Multiplication Block 2516 First Integrator 2517 Second Signal Multiplication Block 2518 Second Integrator
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98110064A TWI361059B (en) | 2008-11-04 | 2009-03-27 | Pulsed ultra-wideband sensor and the method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97142451 | 2008-11-04 | ||
TW98110064A TWI361059B (en) | 2008-11-04 | 2009-03-27 | Pulsed ultra-wideband sensor and the method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201018447A TW201018447A (en) | 2010-05-16 |
TWI361059B true TWI361059B (en) | 2012-04-01 |
Family
ID=44831245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98110064A TWI361059B (en) | 2008-11-04 | 2009-03-27 | Pulsed ultra-wideband sensor and the method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI361059B (en) |
-
2009
- 2009-03-27 TW TW98110064A patent/TWI361059B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201018447A (en) | 2010-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5230477B2 (en) | Pulse type ultra-wideband sensor and method thereof | |
JP2009213881A6 (en) | Pulse type ultra-wideband sensor and method thereof | |
US9713434B2 (en) | Microwave contactless heart rate sensor | |
JP3877783B2 (en) | A method for finding the position of a living organism and a microwave probe using the | |
Anitori et al. | FMCW radar for life-sign detection | |
JP4962947B2 (en) | Non-contact diagnostic device | |
JP5861178B1 (en) | Biological information detection device and method of using the same | |
Sacco et al. | A radar system for indoor human localization and breath monitoring | |
Petkie et al. | Millimeter wave radar for remote measurement of vital signs | |
Acar et al. | An experimental study: Detecting the respiration rates of multiple stationary human targets by stepped frequency continuous wave radar | |
JP5578683B2 (en) | Physical information measuring device and physical information measuring method | |
CN112617773A (en) | Signal processing method and signal processing device for health monitoring | |
US12102476B2 (en) | Contact-free acoustic monitoring and measurement system | |
KR102060101B1 (en) | System and method for detecting infant sleep using ultra-wide band | |
RU2392853C1 (en) | Method of remote breath and heartbeat parametre measurement | |
Gharamohammadi et al. | Multi-Bin Breathing Pattern Estimation by Radar Fusion for Enhanced Driver Monitoring | |
RU2392852C2 (en) | Impulse superbroadband sensor of remote breath and heartbeat monitoring | |
TWI361059B (en) | Pulsed ultra-wideband sensor and the method thereof | |
Gouveia et al. | Bio-radar performance evaluation for different antenna designs | |
RU2327415C1 (en) | Method of man's functional state monitoring and related monitoring device | |
KR102381262B1 (en) | Radar system and bio-signal detection method performed thereby | |
KR102060102B1 (en) | Method for managing aging and vulnerability behaviors using ultra wide band | |
RU2470581C1 (en) | Method of registering patient's breathing and heartbeat rhythms and device for its realisation | |
RU2159942C1 (en) | Procedure detecting location of living objects and microwave locator for realization of procedure | |
Iwata et al. | Accurate Radar-Based Heartbeat Measurement Using Higher Harmonic Components |